
AUXILIARY RAWNET: COMPLEMENTING HANDCRAFTED FEATURES WITH RAW
WAVEFORM USING A LIGHT-WEIGHT AUXILIARY MODEL

Zhongwei Teng?, Quchen Fu?, Jules White?, Maria E. Powell†, Douglas C. Schmidt ?

? Dept. of Computer Science, Vanderbilt University
† Dept. of Otolaryngology–Head and Neck Surgery, Vanderbilt University Medical Center

ABSTRACT

An emerging trend in audio processing is capturing low-level
speech representations from raw waveforms. These represen-
tations have shown promising results on a variety of tasks,
such as speech recognition and speech separation. Com-
pared to handcrafted features, learning speech features via
backpropagation provides the model greater flexibility to rep-
resent data for different tasks theoretically. However, results
from empirical studies show that handcrafted features are
more competitive than learned features in some tasks, such
as voice spoof detection. Instead of evaluating handcrafted
features and raw waveforms independently, this paper pro-
poses an Auxiliary Rawnet model to complement handcrafted
features with features learned from raw waveforms. A key
benefit of our approach is that it can improve accuracy at a
relatively low computational cost. The proposed Auxiliary
Rawnet model is tested using the ASVspoof 2019 dataset
and the results from this dataset indicate that a light-weight
waveform encoder can boost the performance of handcrafted-
features-based encoders in exchange for a small amount of
additional computational work.

Index Terms— Raw waveform, handcrafted features,
spoof detection

1. INTRODUCTION
Fixed, handcrafted audio features, such as Mel-filter banks,
exhibit high performance in capturing strong audio features
in aspects of both auditory and machine learning [1, 2]. How-
ever, handcrafted features are often designed based on spe-
cific tasks, such as speech recognition. Therefore using these
features to solve problems that they were not designed for
may be suboptimal.

For example, Mel-filter banks apply triangular filter banks
on a Mel-scale to spectrograms calculated using short-term
Fourier transform (STFT) to represent the non-linear percep-
tion of the human hearing. The Mel-scale is derived from a
set of perception experiments on humans. As a result, Mel-
filter banks are coarse-grained at high-frequencies since hu-
mans are less sensitive to high frequency sound. This loss of
signal energy (information) in high frequencies may lead to
poor performance on tasks that rely on information in these
higher frequencies [2].

Extracting audio features with backpropagation provides
an alternative way to represent raw waveforms by using deep
neural networks to learn task-specific features. Task-specific
features can be learned for many problems, such as voice
recognition[3, 4] or automatic speaker verification (ASV) Di-
rectly learning features from raw waveforms provides greater
flexibility in handling unknown tasks, thereby overcoming
some challenges of handcrafted features, which may lose sig-
nal energy needed by a specific task.

Previous research [1] indicates that representations learned
from waveforms still have limitations on signal energy loss
compared to the original raw signals they were learned from.
On certain tasks, such as Voice Spoof Detection, models
based on handcrafted data still show much better performance
than models based on waveforms [5, 6]. Instead of relying on
raw waveforms independently, therefore, a potential solution
is to take advantage of both handcrafted and learned features.

For example, lost phase information in handcrafted fea-
tures can be complemented by features learned from raw
waveforms. There have been attempts to feed both hand-
crafted features and raw waveforms into networks for audio
pattern recognition problems. Hoewver, little research has
focused on the role of merging raw waveforms into arbitrary
networks, as well as the trade-offs in model complexity of
doing so.

This paper proposes the Auxiliary Rawnet (ARNet) archi-
tecture to combine learned features from raw waveforms with
existing handcrafted features, by designing a lightweight aux-
iliary encoder. The proposed model was tested on the ASV
Spoof 2019 dataset [7]. The model shows great promise
in boosting the performance of single handcrafted-features-
based networks that warrant further investigation on addi-
tional data sets and tasks.

This paper provides three contributions to research on
complementing handcrafted features with raw waveforms us-
ing a light-weight auxiliary model. First, we elaborate on the
problem of concatenating raw waveforms and handcrafted
features in the speech field and propose an means to solve
this problem efficiently. Second, we introduce the Auxiliary
Rawnet architecture that attaches a light-weight auxiliary en-
coder to a model that relies on handcrafted features, thereby
boosting model performance for the ASV spoof 2019 dataset



that outperforms existing single systems. Third, we describe
how our results show the potential of combining a light-
weight waveform encoder with other encoders, providing an
approach to balance the trade-off between performance and
model complexity for models containing multiple encoders.

The remainder of this paper is organized as follows:
Section2 discusses prior work in audio signal feature rep-
resentation. Section3 explains the problem analyzed in this
paper and describes the Auxiliary Rawnet structure. Section4
introduces the experimental dataset and tasks used in this
paper. Section5 analyzes experimental results. Section6
presents concluding remarks and lessons learned.

2. RELATED WORK
Prior work has shown how the "front-end" of models, which
extract features from raw data, can be improved by using
deep neural networks [1, 8, 4, 2, 9] to directly learn features
from raw signal data. Directly applying standard convolu-
tional neural networks (CNNs) to process raw waveforms [10]
has shown promising results in speech recognition, spoofing
detection, and speech separation.

Convolutions on time-domain raw waveforms can be ex-
plained as finite impulse response filter banks [1]. Structured
filters are applied to optimize standard CNNs based on digital
signal processing theory, by initializing the first convolutional
layer, which is believed to be the most important part, with
known filter families [9, 11], so that a custom filter bank can
be designed for a specific task.

Filter-based waveforms networks are emerging as excel-
lent front-ends for many tasks [5, 2]. However, a theoreti-
cal analysis from Joakim et al. [1] shows that signal energy
loss is still inevitable for features extracted from raw wave-
forms by a CNN. Their results show extracted features can
carry up to 94.5% signal energy compared to the original
waveforms. On the other hand, empirical research also indi-
cates that handcrafted features are still competitive in specific
questions, such as speech commands [2], voice spoof detec-
tion [7], and instrument classification [2].

Although there have been attempts to combine raw wave-
forms and handcrafted features in audio recognition [12],
a general architecture for merging raw waveforms into net-
works that use handcrafted features, as well as the trade-offs
in model complexity, has not been investigated thoroughly.
This paper considers the use of waveforms as a supplement to
handcrafted features and investigates their potential to boost
performance with little additional computational cost.

3. THE AUXILIARY RAWNET ARCHITECTURE
3.1. Problem Formulation
Before introducing the Auxiliary RawNet (ARNet) architec-
ture, we first formalize the problem it is intended to solve.
Denote Fw as features of a raw waveform, and p as a problem
to solve. We assume there is a constructive function f that
can map Fpmag , Fpphase

and Spnoise into Fw, as described
in Equation 1, where Fpmag

is the ideal magnitude informa-
tion needed to solve p, Fpphase

is the ideal phase information

needed to solve p, and Spnoise
are signals with limited contri-

bution to solving p (e.g., background noise).

Fw = f(Fpmag
, Fpphase

, Spnoise
) (1)

Empirical studies [2] have shown the ability of handcrafted
features to represent the strongest audio features for a vari-
ety of problems. Based on our assumption, the calculation of
handcrafted features can be denoted as a mapping function g
that can retrieve approximations of Fpmag

or Fpphase
. For ex-

ample, Mel-spectragrams can be described by the following
equation:

Fpmag ≈ Fmel = gmel(|STFT (Fw)|2)) (2)
When concatenating raw waveform data and handcrafted

features to enhance model performance, our work is essen-
tially to find a function, h, so that the total loss of g(Fw)
and h(Fw) is smaller than a single g(Fw). In other words,
we want to find representations closer to the ideal solution
Fpmag

+ Fpphase
, as describe in Equation 3.

concat(g(Fw), h(Fw)) ≈ Fpmag
+ Fpphase

> g(Fw) (3)
However, it is not clear how g(Fw) interacts with h(Fw).

Inspired by observations from results regarding g(Fw) and
h(Fw) on various tasks [2, 5], we make the following as-
sumption about combining learned features and handcrafted
features:
Assumption 1 (A1): If a handcrafted feature, g(Fw) shows
strong results solving problem p, then there exists a h(Fw)
with size less than N in concat(g(Fw), h(Fw)) that will en-
hance overall performance. In other words, h(Fw) can be an
auxiliary component of g(Fw) to improve performance with a
bounded cost.

3.2. The ARNet Structure
Based on the assumptions presented in section 3.1, we pro-
pose the ARNet architecturem which is shown in Figure 1.
EA, which processes the raw waveform, has a smaller bot-
tleneck than EM which processes handcrafted audio features,
to make the raw waveforms play a supplementary role and
bound the computational cost (e.g., bound N ).

The Encoders. There are 3 encoders in the ARNet: the
Main Encoder(EM ), Auxiliary Encoder(EA), and Concate-
nate Encoder(EC). EM denotes the main encoder, whose
inputs are the original handcrafted features that have shown
good performance in solving the target problem. EA is the en-
coder used to encode the raw waveforms in a light-weight way
to compress Fw into Fa, where Fa are the features extracted
by the auxiliary encoder. Fa and Fm (hand crafted features
from the main encoder) are then concatenated in channels and
further encoded by EC .

Figure 1 shows the encoders used in our experiments on
the ASVspoof 2019 dataset. We select the strided convolu-
tional layer[4] as the first layer to directly process the raw
waveforms. However, unlike previous raw waveforms net-
works, which include multiple CNN blocks with large ker-
nels, the strided convolutional layer is only followed by three



Fig. 1. The ARNet Architecture. EA contains one strided CNN, 3 continuous max-pooling layers and a GRU. A TDNN-based
model is illustrated here as an example of the EM .

Fig. 2. Overview of the ARawNet. The model consists of
a Main Encoder(EM ), Auxiliary Encoder(EA), and Concate-
nate Encoder(EC). EA has a smaller bottleneck than EM .
continuous pooling blocks to collapse vectors and remove any
frame variance without further convolution. A GRU is used to
encode frame-level features into utterance-level embeddings
by keeping output vectors from the last time step.

The main encoder keeps layers before the statistical pool-
ing layer, which will output utterance-level embeddings.
Based on our assumption 1, we chose a narrow bottleneck for
EA. The dimension of the utterance-level embedding from
EA is designed to be smaller than the output dimension from
EM . Ultimately, EC only contains a single Conv1d to encode
concatenated results from EA and EM . The full architecture
and model hyper-parameters are explained in Table 1.

Encoders Blocks
Auxiliary Encoder Conv(3,3,128)

BN&LeakyReLu
MaxPooling

BN&LeakyReLu
GRU(512)

Concatenate Encoder BN
Conv1D(1,1,256)

Table 1. The architecture Encoders.
The Decoder. In our problem, the decoder is a linear clas-

sifier layer that decodes embeddings from EC to target clas-
sification.

3.3. Why do light-weight encoded raw waveforms aug-
ment handcrafted features?

Compared to the current filter-based architectures discussed
in Section 2, we chose the strided convolutional receptive
field, which is a standard CNN, as the first layer to process the

raw waveforms. This layer consists of a set of time-domain
convolutions, where all parameters(CNN kernel), are learned
from the data. Calculation of the first CNN layer can be de-
scribed as the following Equation [9], where x[n] is raw wave-
forms, h[n] is the filter and y[n] is filtered output:

y[n] = x[n] ∗ h[n] =
L−1∑
0

x[l] · h[n− l] (4)

As discussed in Section 3.1, concatenating g(Fw) and
h(Fw) requires each encoder to have different attention to
features in the raw waveforms so that they can complement
each other. The standard convolutional layer with small
kernels gives the EA the least information about the signal
processing mechanisms in g(Fw), and thus potentially grants
it the most flexibility to extract features, which do not overlap
with g(Fw).

In contrast to previous waveform-based networks [4, 5],
the CNN blocks used in between the strided convolution layer
and the GRU are completely removed, and only three contin-
uous max-pooling layers with batch normalization are kept to
collapse frame-level features step-by-step.

The first convolutional layer is considered the most criti-
cal part in processing raw waveforms. In deep networks it is
also the most vulnerable to problems, such as vanishing gra-
dients, without initializing filters [9]. However, based on our
assumption 1, only significant frame-level features must be
kept, indicating networks without deep CNN blocks can be
used for EA. Max pooling layers are used to collapse vectors
and find significant pattern information that can be visualized
after three pooling layers, as shown in Figure 3.

Fig. 3. Outputs visualization of the strided convolution layer
and pooling layers. Outputs after 3 pooling layers(d) shows
signification pattern information.

We test our assumption 1 based on the Theorem [13] from
speech conversion problems, that if information bottlenecks
between different encoders are precisely set, the model will
decompose and produce disentangled representations of input



speech signals. In our model, this Theorem can be described
by the following equation:

EM (Fw) = g(Fw), EA(Fw) = h(Fw) (5)
Thus, a narrow bottleneck is designed for EA, which means
the dimension of utterance-level embeddings dimEA

is much
smaller than dimEM

.
4. EXPERIMENTAL SETUP

4.1. Experimental Dataset
The ASVspoof 2019 logical access (LA) dataset was de-
veloped to improve research on the growing threat of voice
spoofing attacks on automated speech verification systems [7].
This dataset contains human-recorded audios and spoof au-
dios generated from 19 sources (A01 - A19), including speech
synthesis, voice conversion, and hybrid algorithms. We chose
the ASVspoof 2019 LA dataset to validate the performance
of our proposed model since:

• The performance of handcrafted features is limited by
the difference in spoofing sources between the training
and evaluation data.

• Current results on the ASVspoof 2019 challenge [7, 5]
indicate that correct handcrafted features still provide
the most competitive results from a single model com-
pared raw waveforms approaches.

• Although pooling results of 19 spoof attacks is not sat-
isfying, the waveforms-based network outperforms on
the infamous A17 attacks [5].

4.2. Evaluation Metrics
Two metrics are used to evaluate the ASVspoof 2019 LA
dataset including min t-DCF as the primary metric and
EqualErrorRate(EER) as a secondary metric, as de-
scribed in [7]. The Tandem Detection Cost Function (t-
DCF) [14] extends the conventional Detection Cost Function
(DCF) in voice verification systems for spoofing attacks. The
t-DCF measures the overall effect of CM systems combined
with existing ASV systems. EER indicates the threshold of
a CM system where the false positive and false negative rates
are equal each to other.
4.3. Baseline Setup
Our experiments include one handcrafted feature-based sys-
tem and one raw waveforms-based system respectively:

Res2net Architecture. The Res2net architecture [6] is
the state-of-the-art single system in the ASVspoof 2019 chal-
lenge, which tested the performance of three handcrafted fea-
tures: log power magnitude spectrogram (Spec), linear fre-
quency cepstral coefficients (LFCC), and constant-Q trans-
form (CQT).

RawNet2. The RawNet2 [5] is the first anti-spoofing
model, which only relies on the raw waveforms as input. It
shows good performance on the A17 attack.

5. RESULTS AND ANALYSIS
Table 2 shows the experimental results of the ARNet on the
ASVSpoof 2019 dataset. These results demonstrate the ef-
fectiveness of adding a light-weight auxiliary encoder to the
main encoder. Two handcrafted features, Mel-spectrogram

Front-end Main Encoder EA EER min-tDCF
[6] Spec Res2Net[6] - 8.783 0.2237

LFCC - 2.869 0.0786
CQT - 2.502 0.0743

[5] Raw waveforms Rawnet2[5] - 5.13 0.1175

Ours Mel-Spectrogram XVector X 1.32 0.03894
- 2.39320 0.06875

Ours Mel-Spectrogram ECAPA-TDNN X 1.39 0.04316
- 2.11 0.06425

Ours CQT XVector X 1.74 0.05194
- 3.39875 0.09510

Ours CQT ECAPA-TDNN X 1.11 0.03645
. - 1.72667 0.05077

Table 2. Results on the ASVspoof 2019 dataset
and CQT [15], as well as two state-of-the-art models in the
speaker verification problem (XVector [16, 17] and ECAPA-
TDNN [18, 17]) were selected as main encoders in the ARNet
architecture. Without modifying the hyper-parameters in the
main encoder, we added the auxiliary encoder, as described in
Table 1, in the network to evaluate our assumption. Overall,
by introducing the auxiliary encoder, both EER and min −
tDCF are reduced by 5̃0% in all combinations of front-end
and main encoders. Specifically, CQT/ECAPA-TDNN with
auxiliar encoder achieved the best performance on EER of
1.11% and min− tDCF of 0.0364.

Table 3 compares the number of trainable parameters and
model complexity, multiply-and-accumulates (MACs) in our
experiments. Compared to encoding handcrafted features
(Res2Net), directly encoding raw waveforms (Rawnet2) in-
creases model size and complexity by 2400% and 600%.
In contrast, our auxiliary waveforms encoder only takes up
1.15M trainable parameters, which is a 19% increase in
ECAPA-TDNN and the model complexity increases from
2.36 GMac to 3.19 GMac, i.e., the performance of our model
increases by 28.2% with increments of 35.1% MACs.

Main Encoder EA Parameters MACs
Rawnet2 - 25.43 M 7.61 GMac
Res2Net - 0.92 M 1.11 GMac
XVector X 5.81 M 2.71 GMac
XVector - 4.66M 1.88 GMac

ECAPA-TDNN X 7.18 M 3.19 GMac
ECAPA-TDNN - 6.03M 2.36 GMac

Table 3. Comparison of model complexity (MACs)

6. CONCLUDING REMARKS
This paper explored the problem of combining learned fea-
tures and handcrafted featured in the audio field. We also de-
scribed the ARNet architecture, which combines hand-crafted
features and raw waveforms to complement each other with-
out sacrificing model complexity. We tested two hand-crafted
features (Mel-spectrogram and CQT) and two state-of-the-art
models (XVector and ECAPA-TDNN) as the main encoder
with our Auxiliary Encoder. Results from our experiments
showed that raw waveforms have a general complementing
ability to handcrafted features in the ASVspoof 2019 dataset.
The code described here is available as open-source from
github.com/magnumresearchgroup/AuxiliaryRawNet.
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