
0 7 4 0 - 7 4 5 9 / 9 8 / $ 1 0 . 0 0 © 1 9 9 8 I E E E N o v e m b e r / D e c e m b e r 1 9 9 8 I E E E S o f t w a r e 3 7

ncreasingly, software engineers spend their time creating software
families consisting of similar systems with many variations. While devel-
opers are pressed to build these families, they have no effective means
for doing so. They are asked to create and reuse libraries of components

but find those libraries costly to build and of limited value. They search for the right
decomposition of their software into modules or classes, but have limited guidance
in finding those decompositions, especially in the face of constraints on perfor-
mance, reliability, and ease of use.

Scope, commonality, and variability (SCV) analysis gives software engineers a
systematic way of thinking about and identifying the product family they are cre-
ating. Among other things, it helps developers

♦ create a design that contributes to reuse and ease of change,
♦ predict how a design might fail or succeed as it evolves, and
♦ identify opportunities for automating the creation of family members.

James Coplien, Daniel Hoffman, and David Weiss, Bell Labs

Commonality and
Variability in
Software
Engineering

I

S of t ware engineers a re under t remendous pressure to
deve lop new system vers ions in less t ime. The authors
show the b enef i t s o f exp l i c i t ly ident i fy ing the common
and var iab le asp ec ts o f the d i f fe rent vers ions o f a sys tem.

Experience Report

.

For example, when designers know that a product
will have to control and monitor a variety of similar
devices, they can establish requirements for device
variabilities. In this case, designers might use stan-
dardized, abstract interfaces to each device, and en-
capsulate the device control code into separate
modules that users can access through the inter-
face.1 Here, the commonality is the interface, and the
variability is the device control code. The cost and

speed with which a new device can be incorporated
into the product line will depend on how well it con-
forms to the abstract interface. Astute product-line
designers may try to influence industry standards
so that device suppliers will build products that eas-
ily conform to the company’s abstract interfaces,
thereby giving the company a competitive advan-
tage.

The themes of commonality and variability im-
plicitly pervade many aspects of software develop-
ment today, as we describe in the boxed text, “SCV
Analysis: Origins and Related Work” on p. 39. SCV
analysis synthesizes these ideas. Here we describe
SCV analysis precisely, and discuss the benefits and
challenges of its application. We also discuss our
Family-Oriented Abstraction, Specification, and
Translation (FAST) approach, which uses SCV analy-
sis to identify, formalize, and document commonal-
ities and variabilities. At Lucent Technologies, we
have used the FAST approach in more than 25 do-
mains and have seen immediate payoff, both in
overall productivity and changes in the way devel-
opers think about their design problems.

A Model for SCV Analysis

To achieve both precision and abstractness, we
specify commonality and variability in terms of sets.
A commonality is an assumption held uniformly
across a given set of objects (S). Frequently, such as-
sumptions are attributes with the same values for
all elements of S. Conversely, a variability is an as-
sumption true of only some elements of S, or an at-
tribute with different values for at least two ele-
ments of S. We can illustrate these concepts in three
simple examples.

Model examples
For our first example, let S be the set of all circles,

triangles, and squares. We can assume that every el-
ement of S is planar and has an area, and thus both
“planarity” and “has an area” are S commonalities.
Because triangles and squares differ in number of
sides and how their areas are computed, “number
of sides” and “formula for area” are variabilities. Our
second example concerns the familiar “isa” rela-

tionship, which gives rise to a hi-
erarchical structure in which
commonality increases with spe-
cialization. For example, let S0 be
the set of all four-sided polygons.
All elements of S0 are planar and

have four sides. However, two elements of S0 may
differ in the lengths of their sides and size of their
interior angles, and may be convex or concave. Let S1

be the set of all rectangles. Because a rectangle is a
four-sided polygon, S1 inherits the commonalities
of S0 and has others as well, including “concave,”“op-
posite sides are equal in length,” and “interior an-
gles are all right angles.”Then, let S2 be the set of all
squares. Because a square is a rectangle, S2 inherits
the commonalities of S0 and S1, and has some new
ones including “all four sides are of equal length.”
As this example shows, changing S can significantly
affect the commonalities and variabilities. Generally,
reducing the size of S increases the commonalities
and reduces the variabilities.

Our third example uses factoring in algebra.
Consider the following set S of two formulas:

(x – y)2 (1)

(x2 + y)(x – y) (2)

The common factor in the formulas is x – y. The re-
mainders—x – y for (1) and x2 + y for (2)—are vari-
abilities. If we introduce even a small change, such as
replacing the minus with a plus in equation (1), then
x – y is no longer a common factor. Also, if (1) and (2)
are rewritten as x3 –x2y + xy – y and x(x + y) + y + (y – 3x),
they are algebraically equivalent, but the common-
ality and variability are much harder to identify.

Benefits of systematic analysis
Most efforts in designing C and V into a program

are directed toward deciding what decisions can be
changed at runtime and what cannot. For example,
some operating systems let a hardware device—
such as a printer or a network interface—be added
at runtime and some do not. Many of these deci-

3 8 I E E E S o f t w a r e N o v e m b e r / D e c e m b e r 1 9 9 8

We have used the FAST approach in over 25
domains and have seen immediate payoff.

.

N o v e m b e r / D e c e m b e r 1 9 9 8 I E E E S o f t w a r e 3 9

The art of progress is to preserve order amid change, and
to preserve change amid order.

—Alfred North Whitehead

SCV analysis has it roots in work by David Parnas, Edsger

Dijkstra, and Harlan Mills.

Information Hiding
Parnas’ information hiding principle1 encodes commonality

as a module’s interface and variability as a module’s secret. In

some sense, developers used information hiding long before

Parnas published his seminal paper. For example, device drivers

were commonly used well before 1972, providing abstract in-

terfaces to the underlying hardware. Parnas identified and made

explicit a common aspect of good software development prac-

tice. He provided the basis for teaching information hiding, for re-

viewing the resulting designs, and for applying the technique

to a variety of modules.

Program Families
Early work by Dijkstra recognized a key relationship between

design decisions and program families;2 each alternative corre-

sponds to a new family member.

Parnas identified the fundamental motivation for creating

program families: “We consider a set of programs to constitute

a family whenever it is worthwhile to study programs from the

set by first studying the common properties of the set and then

determining the special properties of the individual family

members.”3

Program Factoring
Factoring plays an important role in SCV analysis. Mills viewed

programs as algebraic expressions and showed how operations

such as factoring and substitution could be usefully applied to

source code.4 Mills took the algebraic viewpoint literally, often

reducing programs to their prime factors: irreducible constructs

from structured programming.

Domain Engineering
Concepts of commonality and variability are appearing

widely in domain engineering. Domain engineering in hardware

product lines was in practical use at least 30 years ago. The IBM

360 hardware family is a classic example, providing strict upward

compatibility for machine code across a product line containing

six models and spanning a performance range of 50:1.

Software domain engineering is less mature, but is being

actively pursued. In these efforts, commonality and variability

appear repeatedly, but are often implicit.

There are several examples of this. Hans Schmid5 presents

the design of a family of software controllers for automated ma-

chining. The design focuses on “hot spots” (variabilities) and

makes use of design patterns to encapsulate them. W. Lam6 de-

scribes a process for variability analysis based on variability tem-

plates and a variability hierarchy. This process was used to de-

velop an initial architecture for a family of software controllers

for jet engines; abstract interfaces encapsulated the variabilities.

Jacques Meekel7 describes the design of the FLEX kernel, a real-

time operating system for a wireless-pager product family.

Variabilities were identified and classified as feature, device, and

performance variabilities, and techniques were developed to

handle each type.

Work in domain-specific architectures8 and software devel-

opment processes based on domain engineering9,10 explicitly

use commonality and variability analysis.

REFERENCES
1. D.L. Parnas, “On the Criteria to be Used in Decomposing a System into

Modules,” Comm. ACM, Dec. 1972, ACM Press, New York, pp. 1053-1058.

2. E.W. Dijkstra, “Notes on Structured Programming,” in Structured
Programming, O.J. Dahl, E.W. Dijkstra, and C.A.R. Hoare, eds., Academic
Press, London, 1972.

3. D.L. Parnas, “On the Design and Development of Program Families,”
IEEE Trans. Software Eng., Mar. 1976, pp. 1-9.

4. H. Mills et al., Structured Programming: Theory and Practice, Addison
Wesley Longman, Reading, Mass., 1979.

5. H.A. Schmid, “Creating Applications from Components: A
Manufacturing Framework Design,” IEEE Software, Nov. 1996, pp.
67-75.

6. W. Lam, “Creating Reusable Architectures: Initial Experience Report,”
Software Eng. Notes, Vol. 22, No. 4, July 1997, pp. 39-43.

7. J. Meekel, T.B. Horton, and C. Mellone, “Architecting for Domain
Variability,” Second Int’l Workshop on Development and Evolution of
Software Architectures for Product Families, LNCS 1429, Springer Verlag,
Berlin, 1988, pp. 205-213.

8. D. Batory and S. O'Malley, “The Design and Implementation of
Hierarchical Software Systems with Reusable Components,” ACM
Trans. Software Eng. and Methodology, ACM Press, New York, Oct. 1992,
pp. 355-398.

9. W. Tracz, “LILEANNA: A Parameterized Programming Language,”
Selected Papers from the 2nd Int’l Workshop on Software Reliability, IEEE
Computer Soc. Press, Los Alamitos, Calif., 1993, pp. 66-78.

10. G.J. Campbell et al., “Reuse in Command and Control Systems,” IEEE
Software, Sept. 1994, pp. 70-79.

S C V A N A L Y S I S : O R I G I N S A N D R E L A T E D W O R K

.

sions are made when the code is written and are par-
ticularly difficult to discover and change after the
code is in use. As a result, the inherent power in soft-
ware also becomes a liability, making the ability to
define and control C and V both a blessing and a
curse. We suggest that both software developers
and software users would benefit if SCV analysis
were applied systematically throughout the soft-
ware development life cycle.

The benefits of this systematic approach include
opportunities for rapid new development due to
reuse, as well as decreased development costs and
the rapid creation of new family members stem-
ming from automation, reuse, and ease of change
(through encapsulation of variabilities).

Making a Case for
Automation

When commonalities are invariant and variabil-
ities precisely defined, developers create opportu-
nities for high-payoff automation. The benefit of
automation is well known in manufacturing indus-
tries, where production lines for items such as au-
tomobiles, television sets, and personal computers
rely on a family architecture to improve production
efficiency.

To automate assembly lines, designers create
family architectures with known and precisely de-
termined variability. Regardless of whether the line
is fully or partially automated, certain product as-

pects, such as the chassis, must remain the same for
all products, and variability must be confined to a
predetermined range of values (that is, the variabil-
ities are parameterized).

Manufacturers invest in tool sets that repeat the
same task sequence with predetermined variability
introduced at specific steps. For software, such tools
might be generators that take as input a parameter-
ization of variabilities (such as a table or other speci-
fication), and then generate the desired software.

But automation involves tradeoffs. Figure 1
shows a simple economic model that compares the
costs of automation with and without SCV analysis.
Let’s suppose we are producing members of a fam-
ily for which we have analyzed the commonality and
variability, and established the variability parame-
ters. Suppose that, initially, the average cost to de-
velop a single family member manually is C0, and
that the cost of completing this development with
automation is C1. Suppose further that the cost of
the analysis and automation is A. The cost for de-
veloping N family members is then N ∗ C0 before
SCV analysis and A + N ∗ C1 after. To make a business
case for the automation effort, C1 must be smaller
(typically much smaller) than C0, and N must be
large enough to recover the upfront investment, A.
In Figure 1, the break-even point is at N = 4.

Naturally, in practice, the situation is much more
complex than Figure 1 suggests. Among other con-
siderations are time to market and the change in
production costs over time. Nonetheless, Figure 1 il-
lustrates a fundamental tradeoff that is often ig-
nored in software automation efforts.

Applying SCV Analysis

We use five main steps in SCV analysis.
1. Establish the scope: the collection of objects

under consideration.
2. Identify the commonalities and variabilities.
3. Bound the variabilities by placing specific lim-

its—such as maximum values—on each variability.
4. Exploit the commonalities.
5. Accommodate the variabilities.
SCV analysis can be applied to narrow and broad

programming tasks. To create specific programs, pro-
grammers use SCV analysis to craft individual lines
of code that permit certain variability and take ad-
vantage of commonality. In broader tasks—such as
domain engineering—programmers use SCV analy-
sis to create systems that will be long-lived and exist

4 0 I E E E S o f t w a r e N o v e m b e r / D e c e m b e r 1 9 9 8

1 2 3

Number of family members

4

C
u

m
u

la
ti

ve
 c

o
st

With SCV analysis
Cost = A+N∗C1

Without SCV analysis
Cost = N∗C 0

C0

2C0

3C0

4C0

Figure 1. Automation tradeoffs with and without SCV analysis.

.

in many variations; that is, they create software prod-
uct lines.

SCV thinking has always been a driving force in
language design. Many language features are fo-
cused primarily on exploiting commonality and ac-
commodating variability. Language mechanisms
are designed to support a particular paradigm or
group of paradigms such as procedural, functional,
object-based, and object-oriented. Each of these
paradigms reflects a recurring pairing of common-
alities and variabilities. We next consider three
mechanisms: procedures, inheritance, and class
templates.

Procedures
For exploiting commonality, procedures are a

powerful mechanism, and probably the one most
widely used by programmers today. In SCV analysis,
procedures break down as follows:

♦ S: a collection of similar code fragments, each
to be replaced by a call to some new function F.

♦ C: the code common to all fragments in S.
♦ V: the “uncommon” code in S. Variabilities are

handled by, for example, parameters to F or custom
code before or after each call to F.

Inheritance
Inheritance provides abstraction similar to pro-

cedures, but enlarges the scope to groups of proce-
dures and their associated data structure. In SCV
analysis, inheritance breaks down as follows:

♦ S: a collection of classes.
♦ C: the code common to all classes in S; this

code is placed in the base class.
♦ V: the “uncommon” code in S; this code is

placed in the subclasses.
Simply used, inheritance is only a factoring

mechanism to capture common code. The more
powerful use of inheritance is for object-oriented
programming, where the base class captures com-
mon type semantics that are inherited by derived
classes. These semantics are expressed as member
functions and their parameter and return types
called a signature. Derived classes each supply their
own code implementation. Here the SCV analysis is:

♦ S: a collection of member functions organized
into a class hierarchy.

♦ C: the signature common to all classes in S; this
signature is supported by all classes, either expressly,
or by inheriting a base class function.

♦ V: the “uncommon” code in S; this code is
placed in the subclasses.

Parametric polymorphism
Inheritance is most commonly used with inclu-

sion polymorphism, a language feature that auto-
matically calls out the variabilities at runtime.
Parametric polymorphism, including class and
function templates, provides what is possibly the
most direct and straightforward representation of
commonalities and variabilities. Code and data
structure can be written in terms of explicit para-
meters of variation. For example, templates can rep-
resent a “stack of T of maximum size N,” where T
might be int, float, or some user-defined type,
and N might be a cardinal expression. With respect
to the class templates, which are the most common
form of parametric polymorphism, the SCV analy-
sis is:

♦ S: a set of classes implementing the same op-
erations but on different types.

♦ C: the template code; identical across classes
except for one or more types.

♦ V: the template actual parameters, that is, the
different types.

N o v e m b e r / D e c e m b e r 1 9 9 8 I E E E S o f t w a r e 4 1

a

a

b

c

a

b

c

Without
a library

With a library

Library

Key:

Application program

Commom operation

Call to a library function

1
P

1
P

b

c

n
P

i
P

n
P

Figure 2. A simplified before and after scenario

for a set of programs P1, P2, ..., Pn. Programs are on

the left; common operations are a, b, and c.

.

Reuse libraries
Software libraries have been in widespread use

since the 1950s, when developers observed that cer-
tain operations were repeated across programs and
could be reused to increase productivity and relia-
bility. In SCV analysis, reuse libraries break down as
follows:

♦ S is the set of all operations in the programs

being considered;
♦ C is the operations appearing in all (or many)

of the programs; and
♦ V is the remaining code in the programs.
Figure 2 illustrates this before/after scenario

graphically for a set of programs P1, P2, ... , Pn. The
programs are shown on the left, with common op-
erations a, b, and c. The impact of a reuse library is
shown on the right, with the code for each opera-
tion replaced by a call to a library function. In prac-
tice, however, the situation is not so simple. Typically,
shared operations, such as b in P1 and Pn, do not ap-
pear identically in each program. The variations be-
tween each instance of an operation must be ac-
commodated, for example by adding parameters to
the library function or by placing code in each pro-
gram before or after the function call. Many choices
are possible, making the design space large.

Although a big payoff is possible by factoring out
common code into libraries, achieving this payoff re-
quires skill, experience, and considerable trial and
error. There are numerous examples of successful soft-
ware libraries, including early I/O libraries, math li-
braries, and the C standard libraries. Two more recent
examples, the C++ Standard Template Library and
the Java Abstract Window Toolkit (AWT), are de-
scribed in the boxed text, “Lessons from the Libraries,”
on this page.

Software product lines
To create successful systems, companies must

predict how the marketplace will evolve, including
future changes in customer requirements, com-
petitor offerings, and the underlying technology. A
company’s ability to identify product-line variabil-
ity and commonality affects its marketplace share
and research and development costs. In today’s
competitive marketplace, failing to consider these
factors can lead to company failure. In SCV analysis,
software product lines break down as follows:

♦ S is the product line, driven by the market and
constrained by the available technology;

♦ C is the characteristics common to all products
in the line; and

♦ V is the variations among those products.
Using our earlier example, we apply SCV analysis to
similar hardware devices used in a product line:

♦ S is the set of devices used in the product line;
♦ C is the abstract interface used to access the

device; and
♦ V is the implementation required for a partic-

ular device.

4 2 I E E E S o f t w a r e N o v e m b e r / D e c e m b e r 1 9 9 8

Two modern reuse libraries teach important lessons about SCV

analysis as it relates to designers’skill and the impact of marketing and

political issues.

STL
The Standard Template Library, now an ANSI standard, provides

C++ programmers a variety of operations on sets and sequences. STL

supplies seven container classes and approximately 80 algorithms, and

pays considerable attention to performance. Iterators are used to avoid

the “algorithm explosion problem” common to other libraries, which

require one set of algorithms for each container. In STL, each container

provides a standardized iterator interface, based on overloaded ver-

sions of the C++ operators used to access conventional arrays. Because

algorithms access the containers only through this interface, a single set

of algorithms accesses all containers and arrays. Further, STL algorithms

such as copy can “mix and match”copying. They can, for example, copy

from one set to another or from a vector to a set. Finally, if STL users de-

velop a class that provides the standard iterator interface, then all STL

algorithms can be applied to the new class.

The STL design teaches an important lesson in SCV analysis: some-

times a skillful designer can exploit commonality that is not even ap-

parent to others and can accommodate variability in ways others never

considered. This skill can provide enormous leverage.

Java AWT
The Java Abstract Window Toolkit is an ambitious attempt at cross-

platform portability, aiming to supply modern GUI features on plat-

forms such as Macintosh, Unix, and Windows. In Java AWT, the scope

consists of the features offered by one or more of the popular GUI li-

braries, but factors out features offered by all (or most) of those libraries.

The AWT library does not offer remarkable features; indeed, many

existing libraries offer more. Nonetheless, AWT does achieve impres-

sive portability, though this is already being threatened by variability.

For example, Microsoft has developed their own Java GUI library to ex-

ploit features of the Windows APIs not available through the AWT. In

SCV terms, Microsoft has reduced the library’s scope to features offered

by the Windows APIs, preferring functionality to portability.

The AWT design teaches two important lessons about SCV. First, a

large experience base is typically required for success. The Java AWT

was designed with detailed knowledge of many preceding libraries.

Second, SCV efforts are sensitive not just to technical concerns, but to

marketing and political concerns as well.

L E S S O N S F R O M T H E L I B R A R I E S

.

Device variation is a common example of SCV
analysis as applied early in the product develop-
ment cycle—in this case, during requirements analy-
sis. This early application of SCV is directly traceable
to later decisions in design and implementation;
without it, such decisions can go unmade until the
implementation stage, when the people making de-
cisions are less familiar with their implications and
impact. The more accurately designers can predict
SCV, and the earlier they can do so, the greater the
advantage to the product line.

Designing software product lines2 requires that
designers think about SCV early in the development
cycle. Such thinking frequently points the way to
large-scale reuse throughout the product line and
to automated generation of family members.

The FAST Approach

SCV analysis can be incorporated into a software
development process in various ways. Our FAST ap-
proach to domain engineering uses SCV analysis to
identify, formalize, and document commonalities
and variabilities.3 FAST uses the results of this
process to first create a language for specifying do-
main members, and then generate members from
these specifications.

The SCV analysis we use in the FAST process fo-
cuses on program families and produces a com-
monality analysis document, which is a record of the
family’s terminology, commonalities, and variabili-
ties, and the key issues that arose during the analy-
sis. Figure 3 shows the structure of a FAST com-
monality analysis document.

Terminology
Most software development methodologies

now suggest that developers equip themselves with
a dictionary of standard terms to make communi-
cation among developers easier and more precise.
Also, because the terms are standard, they represent
ideas that are common to the development and are
therefore a fruitful source of abstractions. We thus
made developing a dictionary of terms part of the
FAST SCV analysis process.

Commonalities and variabilities
Identifying common aspects of the family is a

central aspect of SCV analysis in FAST. Accordingly,
the analysis contains a list of assumptions that are
true for all family members. Variabilities define the

family’s scope by predicting which decisions about
family members are likely to change over the fam-
ily’s lifetime. A commonality analysis document thus
contains a list of variabilities, with a range of values
for each. These value ranges are the parameters of
variation.

Fixing a value for a parameter of variation spec-
ifies a family subset. For example, a variability for the
shapes family is that different shapes have different
numbers of sides. Selecting “four” for the number
of sides rules out circles and triangles as subfamily
members and admits squares.

In addition to specifying the range of values for
each variability, the analysis also specifies the time
at which the value is fixed; that is, it specifies the
binding time for the decision. Typical binding times
include runtime, system-build time, and system-
specification time. Fixing a decision early can lead
to more efficient software, in terms of both size and
performance. For example, if we want to generate a
calculator for the shapes family that computes area,

N o v e m b e r / D e c e m b e r 1 9 9 8 I E E E S o f t w a r e 4 3

Introduction. Describes the purpose of the analysis, which
typically includes

1. Defining the requirements of a particular family
2. Providing the basis for capabilities such as

♦ family member specification,
♦ family member code and documentation generation,

and
♦ family member composition (based on a components

set designed for use in many family members).

Overview. Briefly describes the domain and its relationship to
other domains.

Dictionary of Terms. Provides a standard set of key technical
terms used in discussions about and descriptions of the
domain.

Commonalities. Provides a structured list of assumptions that
are true for all family members.

Variabilities. Provides a structured list of assumptions about
how family members can vary.

Parameters of Variation. Specifies the value range and bind-
ing time for each variability.

Issues. Provides a record of the alternatives considered for key
issues that arose in analysis of the family.

Figure 3. The FAST commonality analysis document describes

the purpose of the analysis and highlights key issues that arose while

it was underway.

.

perimeter, and other metrics for family members,
then we might be able to fix various program para-
meters, such as the formula for calculating the
perimeter, at compile time.

Patterns and SCV
Software designers and programmers are in-

creasingly using patterns to document fundamental
structural design models that lack strong semantics
of commonality and variation. Design pattern litera-
ture4 is the most popular offshoot of patterns in con-
temporary software design and often reflects such
considerations. For example, the Adapter pattern4

makes it possible to hide isolated differences in the
way a service is offered. Adapter hides differences that
violate the predominate commonality in a class in-

terface. These negative variabilities5 violate com-
monality, rather than complementing commonality
as variabilities should. Though such exceptions aren’t
the rule, they are common enough to capture as stan-
dardized design approaches. As such, they comple-
ment stock methods (such as structured design and
objects) well. By extension, patterns complement the
principles of commonality and variation that under-
lie such methods.

FAST versus other approaches
The FAST approach draws on the SCV thinking

prevalent in many approaches to domain engi-
neering, but differs in four important ways. First,
FAST’s SCV analysis is explicit and pervasive in the
process and the resulting work products. We set
aside time for performing the analysis early in the
development process.

Second, we have standardized both the analysis
process and the resulting document. As a result, de-
signers can focus their attention on designing the
family.

Third, FAST analysis focuses on bounding vari-
ability. Both the parameter values and their binding
time can significantly affect the feasibility of auto-
matically generating family members; they can also
affect their runtime performance. Because these de-
cisions are influential, they must be precisely
recorded. This gives all stakeholders an opportunity

to review decisions, and provides designers and im-
plementers with a written record.

Finally, at Lucent, we have extensive experience
with SCV analysis and have applied it using the FAST
approach in more than 25 domains. The FAST ap-
proach is polished and proven. Experienced mod-
erators lead FAST sessions and our analysis teams
include the developers responsible for the software
in the given domain.

Lessons Learned

Based on our experience, we have formulated
the following basic principles for SCV analysis.

♦ Make S, C, and V explicit. SCV analysis focuses on
a set of decisions with influential
consequences. With or without an
explicit SCV analysis, the choices
will be made; the analysis pro-
vides a useful framework for dis-
cussing the decisions and their
consequences.

♦ Choose S to balance generation costs and fam-
ily size. Establishing the scope can be extremely in-
fluential and misunderstandings can be damaging.
If S is too big, the family has many members but few
commonalities, and automatic generation oppor-
tunities are limited. If S is too small, there are plenty
of commonalities but not enough family members
to make automatic generation pay.

♦ Search for C to maximize reuse. Commonalities
are the main source of reuse and thus SCV analysis
provides “the cure for the common code.”Common
code can be written once and shared by all family
members. Much of the progress in programming-
language design and software methodology has
been based on techniques for identifying and ex-
ploiting commonality.

♦ Bound the variabilities to minimize production
costs. Variabilities are the main focus of automated
software generation. Bounding the variabilities is
central to successful automation. At times, brutal
restrictions are necessary. The classic example of
this is the Ford Motor Company’s “any color you
like, as long as it is black” approach to automobile
paint color in the early days of assembly-line man-
ufacture. The market has since demanded in-
creased variability and the technology has im-
proved to permit it.

♦ View programs as mathematical expressions;
use factoring to find commonality. SCV analysis has

4 4 I E E E S o f t w a r e N o v e m b e r / D e c e m b e r 1 9 9 8

Patterns complement the principles of
commonality and variation that underlie such

methods as structured design and objects.

.

N o v e m b e r / D e c e m b e r 1 9 9 8 I E E E S o f t w a r e 4 5

a lot in common with factoring in conventional al-
gebra. A good factorization can be a big win in sim-
plicity, insight, and ease of computation, but it
takes effort, skill, and sometimes luck to achieve.
For example, it is hard to predict when or if success
will be achieved, and factorizations are sensitive to
change. However, S, C, and V are often negotiable.
This is good in that a developer can sometimes
spot a small change to permit a factorization that
saves significant effort. On the other hand, cus-
tomers can mandate a small change that invali-
dates a successful factorization—and all the work
that went into finding and implementing it. Such
negotiations can vastly increase design-space size
and design difficulty.

♦ Skill and experience count. Skillful designers can
find and exploit more commonality and accommo-
date more variability than their less-skilled coun-
terparts. With the design space so large, consider-
able invention is required. Further, a large experience
base is required to successfully identify C and V.

♦ Periodically revisit each SCV analysis. While it is
important to make S, C, and V explicit, it is equally
important to realize that they will change over time
(Ford now offers numerous automobile colors).

Software engineers must produce systems
rapidly, but also be sure they are carefully

engineered. This is the software engineer’s
dilemma. Frequently the dilemma arises from past
success: a product that is successful in the mar-
ketplace blossoms into many versions due to con-
tinuing demands for new features, implementa-
tion on new platforms, and improvements in the
user interface. It is easy for a software develop-
ment organization to find itself maintaining many
versions of the same product with large amounts
of similar code created as an afterthought to sat-
isfy new requirements.6

SCV analysis gives software engineers a tech-
nique that helps them ameliorate the problems of
such success. It gives them a systematic way of
thinking about and identifying the family that they
are creating. It helps to analyze the economics of cre-
ating a family. It helps to inform and illuminate a de-
sign to clarify structures and patterns that contribute
to ease of change and reuse, suggesting ways that
a design may fail or succeed as it evolves. It helps
identify opportunities for automation to support
the creation of family members.

Using SCV analysis at Lucent, we have come to
expect decreases in development interval of a fac-
tor of 3 to 5, particularly when we apply the FAST
approach in a particular domain. The key to success
with SCV analysis is that it changes the way software
engineers think about software development. Once
they are trained to think about SCV in a systematic

way, their viewpoint about software development
and its tradeoffs are forever changed. ❖

REFERENCES
1. D.L. Parnas et al., “The Modular Structure Of Complex Systems,”

IEEE Trans. Software Eng., Mar. 1985, pp. 408-417.

2. L. Bass et al, Software Architecture in Practice, Addison Wesley
Longman, Reading, Mass., 1998.

3. N.L. Gupta et al., “Auditdraw: Generating Audits the FAST Way,”
Proc. IEEE Int’l Symp. Requirements Eng., IEEE Computer Soc.
Press, Los Alamitos, Calif., 1997, pp. 188-197.

4. E. Gamma et al., Design Patterns: Elements of Reusable Object-
Oriented Software, Addison Wesley Longman, Reading, Mass.,
1995.

5. J. Coplien, Multi-Paradigm Design for C++, Addison Wesley
Longman, Reading, Mass., 1998 (to appear).

6. D. Dikel et al., “Applying Software Product-Line Architecture,”
Computer, Aug. 1997, pp. 49-55.

James O. Coplien is a principal investi-
gator in the Software Production
Research department at Bell
Laboratories in Naperville, Illinois. He
conducts research in software design
patterns, empirical organizational
modeling, multiparadigm design, and
the object paradigm.

Coplien received a BS in electrical and computer engi-
neering and an MS in computer science from the University
of Wisconsin at Madison.

Daniel Hoffman is an associate profes-
sor of computer science at the University
of Victoria, British Columbia, and is cur-
rently on sabbatical leave at Bell
Laboratories. His research focuses on the
industrial application of software docu-
mentation, inspection, and testing.

Hoffman received a BA in mathematics
from the State University of New York, Binghamton, and MS
and PhD degrees in computer science from the University of
North Carolina, Chapel Hill.

David M. Weiss is currently head of the
Software Production Research
Department at Lucent Technologies /
Bell Laboratories, where he conducts
research into methods and processes
for improving software production effi-
ciency. Previously, he was director of
the Reuse and Measurement

Department of the Software Productivity Consortium. He
has also worked in the US Office of Technology Assessment,
where he co-authored a technology assessment of the
Strategic Defense Initiative. He has also been a visiting
scholar at the Wang Institute and a researcher at the Naval
Research Laboratory. His research interests are in software
engineering, particularly in software development method-
ologies, software design, software measurement, and, more
recently, domain engineering.

Weiss received a BS in mathematics from Union College
and an MS and PhD in computer science from the University
of Maryland.

About the Authors

Address questions about this article to Coplien, Hoffman, and
Weiss at Bell Laboratories, Lucent Technologies, 263 Shuman
Blvd., Naperville, IL 60566; {cope,dhoffman}@research. bell-
labs.com; Weiss at weiss@lucent.com.

.

