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Hardware trends

As of ~2003, we stopped seeing 
increases in CPU clock rate

Chip designers have nowhere to go 
but parallel

not faster cores
Hit the wall in power dissipation, 

instruction-level parallelism, clock 
rate, and chip scale

We must learn to write software that 
parallelizes gracefully

(Graphic courtesy Herb Sutter)



Hardware trends

For years, we had it easy
Always a faster machine coming out in a few months

Can no longer just buy a new machine and have our program run 
faster

Even true of many so-called concurrent programs!
Challenge #1: decomposing your application into units of work that 

can be executed concurrently
Challenge #2: Continuing to meet challenge #1 as processor 

counts increase
Even so-called scalable programs often run into scaling limits just by 

doubling the number of available CPUs
Need coding techniques that parallelize efficiently across a wide 

range of processor counts



Hardware trends

Primary goal of using threads has always been to achieve better 
CPU utilization
But those hardware guys just keep raising the bar

In the old days only one CPU
Threads were largely about asynchrony

Utilization improved by doing other work during I/O operations 
More recently handful (or a few handfuls) of cores

Coarse-grained parallelism usually enough for reasonable utilization
Application-level requests made reasonable task boundaries
Thread pools were a reasonable scheduling mechanism

The future all the cores you can eat
May not be enough concurrent user requests to keep CPUs busy
May need to dig deeper to find latent parallelism
Shared work queues become a bottleneck



Hardware trends drive software trends

Languages, libraries, and frameworks shape how we program
All languages are Turing- actually 

write reflect the idioms of the languages and frameworks we use
Hardware shapes language, library, and framework design

The Java language had thread support from day 1
But early support was mostly useful for asynchrony, not 

concurrency
Which was just about right for the hardware of the day

As MP systems became cheaper, platform evolved better library 
support for coarse-grained concurrency (JDK 5)
Principal user challenge was identifying reasonable task boundaries

Programmers now need to exploit fine-grained parallelism
We need to learn to spot latent parallelism
No single technique works in all situations



Finding finer-grained parallelism

User requests are often too coarse-grained a unit of work for 
keeping many-core systems busy
May not be enough concurrent requests
Possible solution: find parallelism within existing task boundaries

One promising candidate is sorting and searching
Amenable to parallelization

Sorting can be parallelized with merge sort
Searching can be parallelized by searching sub-regions of the 

data in parallel and then merging the results
Can improve response time by using more CPUs

May actually use more total CPU cycles, but less wall-clock time
Response time may be more important than total CPU cost

Human time is valuable!



Finding finer-grained parallelism

Example: stages in the life of a database query
Parsing and analysis
Plan selection (may evaluate many candidate plans)
I/O (already reasonably parallelized)
Post-processing (filtering, sorting, aggregation)

SELECT  first,  last  FROM  Names  ORDER  BY  last,  first

SELECT  SUM(amount)  FROM  Orders
SELECT  student,  AVG(grade)  as  avg  FROM  Tests  

GROUP  BY  student  
HAVING  avg  >  3.5

Plan selection and post-processing phases are CPU-intensive 
Could be sped up with more parallelism



Point solutions

Work queues + thread pools
Divide and conquer (fork-join)
Parallel collection libraries
Map/Reduce
Actors / Message passing
Software Transactional Memory (STM)
GPU-based computation



Point solution: Thread pools / work queues

A reasonable solution for coarse-grained concurrency
Typical server applications with medium-weight requests 

Database servers
File servers
Web servers

Library support added in JDK 5
Works well in SMP systems

Even when tasks do IO

Shared work queue is eventually source of contention



Running example: select-max

Simplified example: find the largest element in a list
O(n) problem
Obvious sequential solution: iterate the elements 

For very small lists the sequential solution is obviously fine
For larger lists a parallel solution will clearly win

Though still O(n)
class  MaxProblem  {

final  int[]  nums;;
final  int  start,  end,  size;;

public  int  solveSequentially()  {
int  max  =  Integer.MIN_VALUE;;
for  (int  i=start;;  i<end;;  i++)

max  =  Math.max(max,  nums[i]);;
return  max;;

}

public  MaxProblem  subproblem(int  subStart,  int  subEnd)  {
return  new  MaxProblem(nums,  start+subStart,  start+subEnd);;

}  
}



First attempt: Executor+Future

We can divide the problem into N disjoint subproblems and solve 
them independently
Then compute the maximum of the result of all the subproblems
Can solve the subproblems concurrently with invokeAll()

Collection<Callable<Integer>>  tasks  =  ...
for  (int  i=0;;  i<N;;  i++)

tasks.add(makeCallableForSubproblem(problem,  N,  i));;
List<Future<Integer>>  results  =  executor.invokeAll(tasks);;
int  max  =  -Integer.MAX_VALUE;;
for  (Future<Integer>  result  :  results)  

max  =  Math.max(max,  result.get());;



First attempt: Executor+Future

A reasonable choice of N is Runtime.availableProcessors()
Will prevent threads from competing with each other for CPU cycles

But has inherent scalability limits
Shared work queue in Executor eventually becomes a bottleneck
If some subtasks finish faster than others, may not get ideal utilization

Can address by using smaller subproblems
But this increases contention costs

Code is clunky!  
Subproblem extraction prone to fencepost errors
Find-maximum loop duplicated



Point solution: divide and conquer

Divide-and-conquer breaks down a problem into subproblems, solves the 
subproblems, and combines the result

Apply recursively until subproblems are so small that sequential solution is 
faster

Scales well can keep 100s of CPUs busy
Good for fine-grained tasks

Example: merge sort
Divide the data set into pieces
Sort the pieces
Merge the results
Result is still O(n log n), but subproblems can be solved in parallel

Parallelizes fairly efficiently subproblems operate on disjoint data
Divide-and-conquer applies this process recursively

Until subproblems are so small that sequential solution is faster
Scales well can keep many CPUs busy



Divide-and-conquer

Divide-and-conquer algorithms take this general form
Result  solve(Problem  problem)  {  

if  (problem.size  <  SEQUENTIAL_THRESHOLD)  
return  problem.solveSequentially();;  

else  {  
Result  left,  right;;  
INVOKE-IN-PARALLEL  {  

left  =  solve(problem.extractLeftHalf());;  
right  =  solve(problem.extractRightHalf());;

}  
return  combine(left,  right);;  

}
}

The invoke-in-parallel step waits for both halves to complete
Then performs the combination step



Fork-join parallelism

The key to implementing divide-and-conquer is the invoke-in-
parallel operation
Create two or more new tasks (fork)
Suspend the current task until the new tasks complete (join)

Naïve implementation creates a new thread for each task
Invoke Thread() constructor for the fork operation
Thread.join() for the join operation

Thread creation is expensive
Requires O(log n) idle threads

Of course, non-naïve implementations are possible
Package java.util.concurrent.forkjoin proposed for JDK 7 offers one
For now, download package jsr166y from

http://gee.cs.oswego.edu/dl/concurrency-interest/index.html



Fork-join libraries: coming in JDK 7

There are good libraries for fork-join decomposition

Scheduled for inclusion in JDK 7
Also can be used with JDK 5, 6 as a standalone library



Solving select-max with fork-join

The RecursiveAction class in the fork-join framework is 
ideal for representing divide-and-conquer solutions
class  MaxSolver  extends  RecursiveAction {

private  final  MaxProblem  problem;;
int  result;;

protected  void  compute()  {
if  (problem.size  <  THRESHOLD)

result  =  problem.solveSequentially();;
else  {

int  m  =  problem.size  /  2;;
MaxSolver  left,  right;;
left  =  new  MaxSolver(problem.subproblem(0,  m));;
right  =  new  MaxSolver(problem.subproblem(m,  

problem.size));;
forkJoin(left,  right);;
result  =  Math.max(left.result,  right.result);;

}
}

}

ForkJoinExecutor  pool  =  new  ForkJoinPool(nThreads);;
MaxSolver  solver  =  new  MaxSolver(problem);;
pool.invoke(solver);;



Fork-join example

Example implements RecursiveAction
forkJoin() creates two new tasks and waits for them
ForkJoinPool is like an Executor, but optimized for fork-join 

task
Waiting for other pool tasks risks thread-starvation 

deadlock in standard executors
While waiting for the results of a task, pool threads find 

other tasks to work on 
Implementation can avoid copying elements

Different subproblems work on disjoint portions of the data
Which also happens to have good cache locality
Data copying would impose a significant cost

In this case, data is read-only for the entirety of the operation



Performance considerations

How low should the sequential threshold be set?  
Two competing performance forces

Making tasks smaller enhances parallelism
Increased load balancing, improves throughput

Making tasks larger reduces coordination overhead
Must create, enqueue, dequeue, execute, and wait for 

tasks
Fork-join task framework is designed to minimize per-

task overhead for compute-intensive tasks
The lower the task-management overhead, the lower the 

sequential threshold can be set
Traditional Executor framework works better for tasks that 

have a mix of CPU and I/O activity



Performance considerations

Fork-join offers a portable way to express many parallel algorithms
Code is independent of the execution topology
Reasonably efficient for a wide range of CPU counts
Library manages the parallelism

Frequently no additional synchronization is required
Still must set number of threads in fork-join pool

Runtime.availableProcessors() is usually the best choice

parallelism
Must also determine a reasonable sequential threshold

Done by experimentation and profiling



Performance considerations

Table shows speedup relative to sequential for various platforms 
and thresholds for 500K run (bigger is better)
Pool size always equals number of HW threads

No code differences across HW platforms

introduce some overhead
Reasonable speedups for wide range of threshold

Threshold=500k Threshold=50K Threshold=5K Threshold=500 Threshold=50

Dual Xeon HT (4) .88 3.02 3.2 2.22 .43

8-way Opteron (8) 1.0 5.29 5.73 4.53 2.03

8-core Niagara 
(32)

.98 10.46 17.21 15.34 6.49



Under the hood

Already discussed naïve implementation use Thread
Problem is it uses a lot of threads, and they mostly just wait around

Executor is similarly a bad choice
Likely deadlock if pool is bounded standard thread pools are 

designed for independent tasks
Standard thread pools can have high contention for task queue and 

other data structures when used with fine-grained tasks
An ideal solution minimizes

Context switch overhead between worker threads
Have as many threads as hardware threads, and keep them busy

Contention for data structures
Avoid a common task queue



Work stealing

Fork-join framework is implemented using work-stealing
Create a limited number of worker threads
Each worker thread maintains a private double-ended work 

queue (deque)
Optimized implementation, not the standard JUC deques

When forking, worker pushes new task at the head of its deque
When waiting or idle, worker pops a task off the head of its 

deque and executes it 
Instead of sleeping

tail of the 
deque of another randomly chosen worker



Work stealing

Work-stealing is efficient introduces little per-task overhead
Reduced contention compared to shared work queue

No contention ever for head
Because only the owner accesses the head

No contention ever between head and tail access
Because good queue algorithms enable this

Almost never contention for tail
Because stealing is infrequent, and steal collisions more so

Stealing is infrequent
Workers put and retrieve items from their queue in LIFO order
Size of work items gets smaller as problem is divided 

generally steals a big chunk!
This will keep it from having to steal again for a while



Work stealing

When pool.invoke() is called, task is placed on a random deque
That worker executes the task

Usually just pushes two more tasks onto its deque very fast
Starts on one of the subtasks

Soon some other worker steals the other top-level subtask
Pretty soon, most of the forking is done, and the tasks are distributed 

among the various work queues
Now the workers start on the meaty (sequential) subtasks

If work is unequally distributed, corrected via stealing
Result: reasonable load balancing 

With no central coordination
With little scheduling overhead
With minimal synchronization costs

Because synchronization is almost never contended



Example: Traversing and marking a graph

class  GraphVisitor  extends  RecursiveAction  {  
private  final  Node  node;;
private  final  Collection<ForkJoinTask>  children  =  

new  ArrayList<>();;

GraphVisitor(Node  node)  {
this.node  =  node;;

}

protected  void  compute()  {  
if  (node.mark.compareAndSet(false,  true))  {

//  Do  node-visiting  action  here
for  (Edge  e  :  node.edges())  {  

Node  dest  =  e.getDestination();;  
if  (!dest.mark.get())  {

children.add(new  GraphVisitor(dest));;
}  

}  
ForkJoinTask.invokeAll(children);;  

}  

}  
}



Other applications

Fork-join can be used for parallelizing many types of 
problems
Matrix operations

Multiplication, LU decomposition, etc
Finite-element modeling
Numerical integration
Game playing

Move generation
Move evaluation
Alpha-beta pruning



Point solution: parallel collection libraries

One can build on the fork/join approach to add parallel 
aggregate operations to collection-like classes

example
Collections will likely acquire bulk data operations in JDK 8

Aim is to enable code that has a functional / query-like 
feel



Example: ParallelArray

class  Student  {
String  name;;
int  graduationYear;;
double  gpa;;

}

ParallelArray<Student>  students  
=  ParallelArray.createUsingHandoff(studentsArray,  forkJoinPool);;

double  highestGpa  =  students.withFilter(new  Ops.Predicate<Student>()  {
public  boolean  op(Student  s)  {

return  s.graduationYear  ==  2010;;
}

})
.withMapping(new  Ops.ObjectToDouble<Student>()  {

public  double  op(Student  student)  {
return  student.gpa;;

})
.max();;



ParallelArray

Bulk data operations offer opportunities for library-
directed parallelism and laziness
More functional style, code reads more like problem statement
Except that inner classes make it painful

With closures in the language (JDK 8), gets much 
better:

double  highestGpa  
=  students.withFilter(#{  s  ->  s.graduationYear  ==  2010  })

.withMapping(#{  s  ->  student.gpa  })

.max();;



Point solution: Map / Reduce

Map / Reduce is a distributed generalization of fork/join
Decomposes data queries across a cluster

Designed for very large input data sets (usually distributed)

Map task often runs on node where the data is, for locality

Framework handles distribution, reliability, scheduling

Scales to thousands of nodes
High quality open-source implementations available 

(e.g., Hadoop)



Point solution: Actors

Actors are a computing model where state is not 
shared all mutable state is confined to actors
Actors communicate by sending messages to each other
To access another actor's state, send it a request, and it sends 

a response, containing a read-only copy of the state
-prone

Works well in Erlang and Scala
Possible in Java, but clunkier and requires more discipline



Point solution: Software Transactional 
Memory

Some might say oversold

Programmer demarcates transaction boundaries
System figures out what is modified, and prevents interference

Performance of current general-purpose systems is 
poor
But...seems to work very well in Clojure
Because Clojure is mostly functional and greatly limits mutable 

state



Point solution: GPU computing

GPUs have zillions of simple cores
Great for doing the same operation to lots of data (SIMD)
Designed for graphics, but can be programmed for general-

purpose computations too

Significant latency moving data between CPU / GPU
But enough parallelism makes up for that

Works well on certain types of problems
Widely supported APIs CUDA, OpenCL, 

DirectCompute
Java bindings starting to appear jCuda, JOCL



Conclusion

We have not yet identified a general framework for 
parallel computing in Java
But there are lots of point solutions that work on specific 

problem types
Each point solution introduces a specific style of programming 

and program organization


