
<Insert Picture Here>

Data Parallelism in Java
Brian Goetz
Java Language Architect

Hardware trends

As of ~2003, we stopped seeing
increases in CPU clock rate

Chip designers have nowhere to go
but parallel

not faster cores
Hit the wall in power dissipation,

instruction-level parallelism, clock
rate, and chip scale

We must learn to write software that
parallelizes gracefully

(Graphic courtesy Herb Sutter)

Hardware trends

For years, we had it easy
Always a faster machine coming out in a few months

Can no longer just buy a new machine and have our program run
faster

Even true of many so-called concurrent programs!
Challenge #1: decomposing your application into units of work that

can be executed concurrently
Challenge #2: Continuing to meet challenge #1 as processor

counts increase
Even so-called scalable programs often run into scaling limits just by

doubling the number of available CPUs
Need coding techniques that parallelize efficiently across a wide

range of processor counts

Hardware trends

Primary goal of using threads has always been to achieve better
CPU utilization
But those hardware guys just keep raising the bar

In the old days only one CPU
Threads were largely about asynchrony

Utilization improved by doing other work during I/O operations
More recently handful (or a few handfuls) of cores

Coarse-grained parallelism usually enough for reasonable utilization
Application-level requests made reasonable task boundaries
Thread pools were a reasonable scheduling mechanism

The future all the cores you can eat
May not be enough concurrent user requests to keep CPUs busy
May need to dig deeper to find latent parallelism
Shared work queues become a bottleneck

Hardware trends drive software trends

Languages, libraries, and frameworks shape how we program
All languages are Turing- actually

write reflect the idioms of the languages and frameworks we use
Hardware shapes language, library, and framework design

The Java language had thread support from day 1
But early support was mostly useful for asynchrony, not

concurrency
Which was just about right for the hardware of the day

As MP systems became cheaper, platform evolved better library
support for coarse-grained concurrency (JDK 5)
Principal user challenge was identifying reasonable task boundaries

Programmers now need to exploit fine-grained parallelism
We need to learn to spot latent parallelism
No single technique works in all situations

Finding finer-grained parallelism

User requests are often too coarse-grained a unit of work for
keeping many-core systems busy
May not be enough concurrent requests
Possible solution: find parallelism within existing task boundaries

One promising candidate is sorting and searching
Amenable to parallelization

Sorting can be parallelized with merge sort
Searching can be parallelized by searching sub-regions of the

data in parallel and then merging the results
Can improve response time by using more CPUs

May actually use more total CPU cycles, but less wall-clock time
Response time may be more important than total CPU cost

Human time is valuable!

Finding finer-grained parallelism

Example: stages in the life of a database query
Parsing and analysis
Plan selection (may evaluate many candidate plans)
I/O (already reasonably parallelized)
Post-processing (filtering, sorting, aggregation)

SELECT first, last FROM Names ORDER BY last, first

SELECT SUM(amount) FROM Orders
SELECT student, AVG(grade) as avg FROM Tests

GROUP BY student
HAVING avg > 3.5

Plan selection and post-processing phases are CPU-intensive
Could be sped up with more parallelism

Point solutions

Work queues + thread pools
Divide and conquer (fork-join)
Parallel collection libraries
Map/Reduce
Actors / Message passing
Software Transactional Memory (STM)
GPU-based computation

Point solution: Thread pools / work queues

A reasonable solution for coarse-grained concurrency
Typical server applications with medium-weight requests

Database servers
File servers
Web servers

Library support added in JDK 5
Works well in SMP systems

Even when tasks do IO

Shared work queue is eventually source of contention

Running example: select-max

Simplified example: find the largest element in a list
O(n) problem
Obvious sequential solution: iterate the elements

For very small lists the sequential solution is obviously fine
For larger lists a parallel solution will clearly win

Though still O(n)
class MaxProblem {

final int[] nums;;
final int start, end, size;;

public int solveSequentially() {
int max = Integer.MIN_VALUE;;
for (int i=start;; i<end;; i++)

max = Math.max(max, nums[i]);;
return max;;

}

public MaxProblem subproblem(int subStart, int subEnd) {
return new MaxProblem(nums, start+subStart, start+subEnd);;

}
}

First attempt: Executor+Future

We can divide the problem into N disjoint subproblems and solve
them independently
Then compute the maximum of the result of all the subproblems
Can solve the subproblems concurrently with invokeAll()

Collection<Callable<Integer>> tasks = ...
for (int i=0;; i<N;; i++)

tasks.add(makeCallableForSubproblem(problem, N, i));;
List<Future<Integer>> results = executor.invokeAll(tasks);;
int max = -Integer.MAX_VALUE;;
for (Future<Integer> result : results)

max = Math.max(max, result.get());;

First attempt: Executor+Future

A reasonable choice of N is Runtime.availableProcessors()
Will prevent threads from competing with each other for CPU cycles

But has inherent scalability limits
Shared work queue in Executor eventually becomes a bottleneck
If some subtasks finish faster than others, may not get ideal utilization

Can address by using smaller subproblems
But this increases contention costs

Code is clunky!
Subproblem extraction prone to fencepost errors
Find-maximum loop duplicated

Point solution: divide and conquer

Divide-and-conquer breaks down a problem into subproblems, solves the
subproblems, and combines the result

Apply recursively until subproblems are so small that sequential solution is
faster

Scales well can keep 100s of CPUs busy
Good for fine-grained tasks

Example: merge sort
Divide the data set into pieces
Sort the pieces
Merge the results
Result is still O(n log n), but subproblems can be solved in parallel

Parallelizes fairly efficiently subproblems operate on disjoint data
Divide-and-conquer applies this process recursively

Until subproblems are so small that sequential solution is faster
Scales well can keep many CPUs busy

Divide-and-conquer

Divide-and-conquer algorithms take this general form
Result solve(Problem problem) {

if (problem.size < SEQUENTIAL_THRESHOLD)
return problem.solveSequentially();;

else {
Result left, right;;
INVOKE-IN-PARALLEL {

left = solve(problem.extractLeftHalf());;
right = solve(problem.extractRightHalf());;

}
return combine(left, right);;

}
}

The invoke-in-parallel step waits for both halves to complete
Then performs the combination step

Fork-join parallelism

The key to implementing divide-and-conquer is the invoke-in-
parallel operation
Create two or more new tasks (fork)
Suspend the current task until the new tasks complete (join)

Naïve implementation creates a new thread for each task
Invoke Thread() constructor for the fork operation
Thread.join() for the join operation

Thread creation is expensive
Requires O(log n) idle threads

Of course, non-naïve implementations are possible
Package java.util.concurrent.forkjoin proposed for JDK 7 offers one
For now, download package jsr166y from

http://gee.cs.oswego.edu/dl/concurrency-interest/index.html

Fork-join libraries: coming in JDK 7

There are good libraries for fork-join decomposition

Scheduled for inclusion in JDK 7
Also can be used with JDK 5, 6 as a standalone library

Solving select-max with fork-join

The RecursiveAction class in the fork-join framework is
ideal for representing divide-and-conquer solutions
class MaxSolver extends RecursiveAction {

private final MaxProblem problem;;
int result;;

protected void compute() {
if (problem.size < THRESHOLD)

result = problem.solveSequentially();;
else {

int m = problem.size / 2;;
MaxSolver left, right;;
left = new MaxSolver(problem.subproblem(0, m));;
right = new MaxSolver(problem.subproblem(m,

problem.size));;
forkJoin(left, right);;
result = Math.max(left.result, right.result);;

}
}

}

ForkJoinExecutor pool = new ForkJoinPool(nThreads);;
MaxSolver solver = new MaxSolver(problem);;
pool.invoke(solver);;

Fork-join example

Example implements RecursiveAction
forkJoin() creates two new tasks and waits for them
ForkJoinPool is like an Executor, but optimized for fork-join

task
Waiting for other pool tasks risks thread-starvation

deadlock in standard executors
While waiting for the results of a task, pool threads find

other tasks to work on
Implementation can avoid copying elements

Different subproblems work on disjoint portions of the data
Which also happens to have good cache locality
Data copying would impose a significant cost

In this case, data is read-only for the entirety of the operation

Performance considerations

How low should the sequential threshold be set?
Two competing performance forces

Making tasks smaller enhances parallelism
Increased load balancing, improves throughput

Making tasks larger reduces coordination overhead
Must create, enqueue, dequeue, execute, and wait for

tasks
Fork-join task framework is designed to minimize per-

task overhead for compute-intensive tasks
The lower the task-management overhead, the lower the

sequential threshold can be set
Traditional Executor framework works better for tasks that

have a mix of CPU and I/O activity

Performance considerations

Fork-join offers a portable way to express many parallel algorithms
Code is independent of the execution topology
Reasonably efficient for a wide range of CPU counts
Library manages the parallelism

Frequently no additional synchronization is required
Still must set number of threads in fork-join pool

Runtime.availableProcessors() is usually the best choice

parallelism
Must also determine a reasonable sequential threshold

Done by experimentation and profiling

Performance considerations

Table shows speedup relative to sequential for various platforms
and thresholds for 500K run (bigger is better)
Pool size always equals number of HW threads

No code differences across HW platforms

introduce some overhead
Reasonable speedups for wide range of threshold

Threshold=500k Threshold=50K Threshold=5K Threshold=500 Threshold=50

Dual Xeon HT (4) .88 3.02 3.2 2.22 .43

8-way Opteron (8) 1.0 5.29 5.73 4.53 2.03

8-core Niagara
(32)

.98 10.46 17.21 15.34 6.49

Under the hood

Already discussed naïve implementation use Thread
Problem is it uses a lot of threads, and they mostly just wait around

Executor is similarly a bad choice
Likely deadlock if pool is bounded standard thread pools are

designed for independent tasks
Standard thread pools can have high contention for task queue and

other data structures when used with fine-grained tasks
An ideal solution minimizes

Context switch overhead between worker threads
Have as many threads as hardware threads, and keep them busy

Contention for data structures
Avoid a common task queue

Work stealing

Fork-join framework is implemented using work-stealing
Create a limited number of worker threads
Each worker thread maintains a private double-ended work

queue (deque)
Optimized implementation, not the standard JUC deques

When forking, worker pushes new task at the head of its deque
When waiting or idle, worker pops a task off the head of its

deque and executes it
Instead of sleeping

tail of the
deque of another randomly chosen worker

Work stealing

Work-stealing is efficient introduces little per-task overhead
Reduced contention compared to shared work queue

No contention ever for head
Because only the owner accesses the head

No contention ever between head and tail access
Because good queue algorithms enable this

Almost never contention for tail
Because stealing is infrequent, and steal collisions more so

Stealing is infrequent
Workers put and retrieve items from their queue in LIFO order
Size of work items gets smaller as problem is divided

generally steals a big chunk!
This will keep it from having to steal again for a while

Work stealing

When pool.invoke() is called, task is placed on a random deque
That worker executes the task

Usually just pushes two more tasks onto its deque very fast
Starts on one of the subtasks

Soon some other worker steals the other top-level subtask
Pretty soon, most of the forking is done, and the tasks are distributed

among the various work queues
Now the workers start on the meaty (sequential) subtasks

If work is unequally distributed, corrected via stealing
Result: reasonable load balancing

With no central coordination
With little scheduling overhead
With minimal synchronization costs

Because synchronization is almost never contended

Example: Traversing and marking a graph

class GraphVisitor extends RecursiveAction {
private final Node node;;
private final Collection<ForkJoinTask> children =

new ArrayList<>();;

GraphVisitor(Node node) {
this.node = node;;

}

protected void compute() {
if (node.mark.compareAndSet(false, true)) {

// Do node-visiting action here
for (Edge e : node.edges()) {

Node dest = e.getDestination();;
if (!dest.mark.get()) {

children.add(new GraphVisitor(dest));;
}

}
ForkJoinTask.invokeAll(children);;

}

}
}

Other applications

Fork-join can be used for parallelizing many types of
problems
Matrix operations

Multiplication, LU decomposition, etc
Finite-element modeling
Numerical integration
Game playing

Move generation
Move evaluation
Alpha-beta pruning

Point solution: parallel collection libraries

One can build on the fork/join approach to add parallel
aggregate operations to collection-like classes

example
Collections will likely acquire bulk data operations in JDK 8

Aim is to enable code that has a functional / query-like
feel

Example: ParallelArray

class Student {
String name;;
int graduationYear;;
double gpa;;

}

ParallelArray<Student> students
= ParallelArray.createUsingHandoff(studentsArray, forkJoinPool);;

double highestGpa = students.withFilter(new Ops.Predicate<Student>() {
public boolean op(Student s) {

return s.graduationYear == 2010;;
}

})
.withMapping(new Ops.ObjectToDouble<Student>() {

public double op(Student student) {
return student.gpa;;

})
.max();;

ParallelArray

Bulk data operations offer opportunities for library-
directed parallelism and laziness
More functional style, code reads more like problem statement
Except that inner classes make it painful

With closures in the language (JDK 8), gets much
better:

double highestGpa
= students.withFilter(#{ s -> s.graduationYear == 2010 })

.withMapping(#{ s -> student.gpa })

.max();;

Point solution: Map / Reduce

Map / Reduce is a distributed generalization of fork/join
Decomposes data queries across a cluster

Designed for very large input data sets (usually distributed)

Map task often runs on node where the data is, for locality

Framework handles distribution, reliability, scheduling

Scales to thousands of nodes
High quality open-source implementations available

(e.g., Hadoop)

Point solution: Actors

Actors are a computing model where state is not
shared all mutable state is confined to actors
Actors communicate by sending messages to each other
To access another actor's state, send it a request, and it sends

a response, containing a read-only copy of the state
-prone

Works well in Erlang and Scala
Possible in Java, but clunkier and requires more discipline

Point solution: Software Transactional
Memory

Some might say oversold

Programmer demarcates transaction boundaries
System figures out what is modified, and prevents interference

Performance of current general-purpose systems is
poor
But...seems to work very well in Clojure
Because Clojure is mostly functional and greatly limits mutable

state

Point solution: GPU computing

GPUs have zillions of simple cores
Great for doing the same operation to lots of data (SIMD)
Designed for graphics, but can be programmed for general-

purpose computations too

Significant latency moving data between CPU / GPU
But enough parallelism makes up for that

Works well on certain types of problems
Widely supported APIs CUDA, OpenCL,

DirectCompute
Java bindings starting to appear jCuda, JOCL

Conclusion

We have not yet identified a general framework for
parallel computing in Java
But there are lots of point solutions that work on specific

problem types
Each point solution introduces a specific style of programming

and program organization

