
An Elastic Platform for Large-scale Assessment of
Software Assignments for MOOCs (EPLASAM)

Michael Walker, Douglas C. Schmidt, and Jules White

Vanderbilt University, Nashville Tennessee, USA
{michael.a.walker.1, douglas.c.schmidt, jules.white}@vanderbilt.edu

1 Introduction

1.1 Emerging trends and challenges

A Massive Open Online Course (MOOC) is a web-based class environment aimed at open large-
scale global participation via the Web (EdX, 2015). In contrast to traditional forms of face-to-face
(F2F) education, MOOCs enable flexible learning styles, where learners can pick and choose
which classes they take, as well as when and where they do their work. Conventional methods
and tools used in F2F education, however, are not ideal for use at scale in MOOCs. F2F methods
and tools are particularly poorly suited to software-intensive MOOCs where the majority of the
assessments focus on design and programming assignments. The following challenges must
therefore be addressed by learning management platforms used for these types of MOOCs:

A. Supporting the scale of MOOCs. The number of learners in MOOCs is typically orders of mag-
nitude greater than even the largest F2F courses (i.e., tens of thousands vs. hundreds). The
tools and techniques for F2F courses are therefore not sufficient to handle the number of
learners and/or assignments to assess. In particular, learning management platforms for soft-
ware design and programming assignments require new tools/techniques to work effectively
at the scale of MOOCs.

B. Alleviating limitations of distance. The distance between teaching staff and learners also in-
creases significantly in MOOCs as compared to F2F classes, which introduces challenges that
traditional F2F courses need not address. For example, it is infeasible for the teaching staff to
meet with learners in software-intensive MOOCs to provide them with meaningful feedback
on their assignments. Therefore, learning management platforms for these types of MOOCs
must alleviate the challenges that distance can cause with respect to personalizing the learn-
ing experience.

C. Providing security for the learning management platform and its users. Security concerns
arise when software submitted by learners is automatically compiled and tested. In particu-
lar, server-side compilation/execution and peer-review of code by other learners must be
handled carefully to avoid security exploits, due either to malicious or accidental harm to the
platform due to software bugs in learner solutions. The learning management platform for
software-intensive MOOCs therefore requires a secure environment in which assignment
submissions can be tested in isolation without harming the evaluation system or other learner
submissions.

D. Minimizing the heterogeneity of system and network environments. Software-intensive
MOOCs that focus on concurrent and distributed applications require multiple instances of

software running in their own networked environments. The architecture of these environ-
ments (e.g., the target architecture, such as mobile devices, embedded, or cloud services,
etc.) may be heterogeneous and thus not identical to the assessment platform (e.g., x86 vs.
ARM processors). The learning management platform should therefore support customiza-
ble target hardware architectures and dynamic virtual network topologies.

E. Reducing operational overhead. Various operational issues must be addressed by learning
management platforms for software-intensive MOOCs, including information technology (IT)
infrastructure tasks, such as logging and auditing of system execution and stability, load bal-
ancing, and data loss prevention strategies. Other operational issues relate to (1) transferring
learner submissions from the front-end MOOC hosting server(s) to the learning manage plat-
form and returning result(s) back to the front-end servers and (2) handling robust and secure
peer-evaluation of learner submissions.

1.2 Solution approach → An Elastic Platform for Large-scale Assessment of
Software Assignments for MOOCs (EPLASAM)

To address the challenges listed above, we are developing EPLASAM, which is both a learning
management platform and method aimed at supporting the needs of learners and teaching staff
in software-intensive MOOCs. EPLASAM is based on our experiences teaching the Mobile Cloud
Computing with Android (MoCCA) MOOC course sequence, which is the first trans-institutional
Specialization offered on the Coursera platform (Coursera, 2015). Over 400,000 learners have
taken the MOOCs in the MoCCA Specialization over the past several years.

EPLASAM provides several contributions to R&D on learning management platform support for
software-intensive MOOCs:

• It employs a model-based method of creating assignments, which addresses the challenges
of (A) Supporting the scale of MOOC courses and (B) Alleviating limitations of distance listed
above via various capabilities, such as (1) personalized assignment creation for different
learner cohorts to minimize the impact of plagiarism and enable controlled experiments on
different teaching methods, (2) testing-at-scale to evaluate learner submissions for correct-
ness in an automated manner, and (3) meaningful evaluation and feedback to personalize
learner experiences.

• It provides a scalable, secure, and customizable learning management platform for compiling,
testing, executing, and assessing software-intensive assignments, which addresses the chal-
lenges of (C) Providing security for the learning management platform and its users, (D) Min-
imizing the heterogeneity of system and network architectures, and (E) Reducing operational
overhead listed list above via various capabilities, such as (1) securely testing submitted code
to ensure a robust process of compiling, executing, and assessing learner assignments, (2)
standardizing the development and runtime environments to eliminate potential discrepan-
cies in learner configurations, and (3) supporting assignments that require customizable hard-
ware and network configurations.

Together, these contributions enable EPLASAM to enhance the delivery of meaningful feedback
to learners, while simultaneously decreasing workload of the teaching staff in software-intensive
MOOCs.

The remainder of this paper is organized as follows: Section 2 provides more detailed coverage
of key challenges and design concerns confronting learners and teaching staff in software-inten-
sive MOOCs; Section 3 describes the solutions applied in EPLASAM to resolve these challenges
and design concerns; Section 4 compares our work on EPLASAM with related work on Learning-
at-Scale; and Section 5 presents concluding remarks and outlines future work.

2 Key Challenges Facing Learners and Teaching Staff in Software-Intensive MOOCs

This section expands on the discussions in Section 1 related to the challenges of scale, distance,
security, heterogeneity, and operational overhead facing learners and teaching staff in software-
intensive MOOCs. Figure 1 shows a taxonomy of the design concerns we identified in each chal-
lenge area.

Figure 1. Taxonomy of Challenges and Design Concerns for Software-Intensive MOOCs.

2.1 Supporting the Scale of MOOCs

The number of learners in MOOCs is orders of magnitude greater than even the largest F2F
courses. Conventional tools and techniques devised for F2F courses are therefore often not ade-
quate to handle differences in scale. For example, traditional F2F education has a much lower
ratio of teaching staff to learners, so it is often feasible (and desirable) for the staff to individually
assess each assignment of—and even individually meet with—every learner throughout the
course. In contrast, it is infeasible for the teaching staff to individually assess each assignment in a MOOC
with tens or hundreds of thousands of learners distributed around the world.

A particularly vexing challenge faced by software-intensive MOOCs involves scalably assessing
assignment submissions from learners. Some types of courses lend themselves to questions (such
as short answer, multiple choice, or fill-in-the-blank questions) that can be assessed automati-
cally and scalably with high precision. These types of questions are often relevant in certain en-
gineering and mathematics courses, where learners are tested on the proper application of for-
mulas or algorithms via a range of randomized input values for questions asked of each learner.
Likewise, short answer problems can be evaluated via regular expression checking for keywords

and multiple choice, matching, and fill-in-the-blank questions whose pass/fail states can be
checked automatically.

Conversely, the assessment of software-intensive solutions—especially solutions to design-ori-
ented software assignments—is hard to automate via conventional learning platforms available
for MOOCs. In particular, since software-intensive assignments do not conform to the assess-
ment categories outlined earlier they face challenges that other types of assignments do not
when applied in MOOCs. We therefore identified three goals associated with creating assign-
ments for software assignments: (1) creating assignments in a scalable manner, (2) facilitating
meaningful feedback to the learners, and (3) deterring cheating. As shown in Figure 2, it is hard
to achieve all of these goals simultaneously.

Figure 2. Assignment Creation Goals.

The following are design concerns that must be resolved to address the challenge of scale in
software-intensive MOOCs:

• Automating assignment creation. Software-intensive assignments in F2F classes often have
similar correct implementations, so it is hard to create assignments that both help deter
cheating and are reusable for subsequent courses. This challenge becomes even more pro-
nounced in a software-intensive MOOC, where the subject matter has a limited number of
correct solutions, such as deadlock-free concurrency or robust distribution. An efficient
means of creating assignments that deters cheating among learners is therefore needed for
these types of MOOCs. For example, generating different variants of an assignment for each
cohort of learners in a MOOC offering helps deter “cut-and-paste” plagiarism from assign-
ments given in previous MOOC offerings. Automating the assignment creation process is es-
sential to free the teaching staff from having to continuously and manually update learner
assignments, which is not scalable without devoting substantial human resources.

• Automating the generation of assignment solutions. Creating unique assignment variations
for learner cohorts helps deter plagiarism, but without the corresponding assignment solu-
tions it is infeasible to automatically assess assignments at scale. Certain considerations

therefore must be taken into account when generating assignments, such as storing the as-
sociated solutions to each learner cohort’s unique assignments, as well as ensuring that all
created assignments have valid solutions that can be assessed automatically.

• Automating testing at scale. Each assignment submitted by learners should be assessed in-
dividually, ideally in a private workspace that does not affect other learner submissions.
Moreover, assessing the quality of software designs in a MOOC environment is hard since the
appropriate choices of component design and implementations often involve subjective cri-
teria, such as “understandability” and “extensibility,” which are hard to automate. Software-
intensive solutions can also be hard to analyze automatically if learners have improperly im-
plemented portion(s) of a known design or have chosen to apply a poor design.

• Providing private virtual networks. Assignments containing network communication create
additional challenges for a scalable learning management platform attempting to host and
automatically assess MOOC assignments. Firstly, the platform must support not only a private
workspace for each component, but also a virtual network between workspaces. Handling
this networking infrastructure at scale requires complex resource management to satisfy
quality-of-service (QoS) requirements and prevent degradation of other assignment pro-
cessing due to resource limitations, such as network link speeds.

Sections 3.1, 3.2, 3.4, and 3.5 describe how EPLASAM addresses the design concerns associated
with the scale challenge via the use of assignment randomization and assessment, Linux contain-
ers, and a container distribution manager.

2.2 Alleviating Limitations of Distance

The increased distance between teaching staff and learners also increases significantly when
transitioning from F2F courses to MOOCs, which introduces challenges that traditional F2F
courses often need not address. For example, it is infeasible for the teaching staff to meet per-
sonally with all learners in a MOOC. The following are design concerns that must be resolved to
address the challenge of distance in software-intensive MOOCs:

• Providing meaningful evaluation and feedback. The need to create meaningful feedback
for learners has always existed, but with F2F courses it has been possible to individualize
the feedback, often creating it on-demand when questioned by a learner. This level of per-
sonalized feedback is not possible in MOOCs due to the inability to meet and assist every
learner. Moreover, it is hard to provide learners with feedback on their work in an informa-
tive manner that is neither so overly-constrained that learners lack sufficient information to
gain insight from further analysis or so extensive that learners can derive the correct an-
swer(s) without having to conduct deeper analysis on their own, on the other hand. While
these issues occur in traditional F2F courses, they are exacerbated in MOOCs due to the in-
creased scale and distance between learners and teaching staff, which motivates the need
for meaningful automated evaluation and feedback.

• Minimizing the impact of heterogeneous development and runtime environments. Soft-
ware development and design courses, even F2F ones, face challenges with software devel-
opment tool standardization and compatibility. Traditionally these challenges have been
surmountable due to the relative small number of learners in a course. Moreover, each
learner receives personalized assistance from teaching staff, who can help install the neces-
sary software and/or help learners debug obscure configuration problems. Software devel-
opment in MOOCs, however, is complicated due to the heterogeneous learning configura-
tion space and subtle interactions between different variants of operating systems, middle-
ware, software development kits (SDKs), programming language compilers, software library
versions, etc.

Sections 3.3 and 3.4 describe how EPLASAM addresses the design concerns associated with the
distance challenge via the use of automating and standardizing tooling used for building, testing,
and assessing programming assignments.

2.3 Providing Security for the Learning Management Platform and Its Users

Security concerns arise when testing untrusted software logic submitted by learners. For exam-
ple, submissions should be considered untrusted at all points to prevent malicious or faulty
logic from harming the evaluation system or interfering with other learner's. The following are
design concerns that must be resolved to address the challenge of security in software-inten-
sive MOOCs:

• Ensuring security while testing untrusted learner-submitted code. For programming assign-
ments that require both compilation and execution of untrusted (and possibly malicious)
code, steps must be taken to prevent learner-submitted code from interfering with the auto-
mated testing system as a whole and/or with other learner submissions.

• Enable peer-grading while maintaining security. To support peer-grading as a learning tool,
mechanisms are needed to prevent peer assessors (both human and machine) from exposing
their own personal system to potential security threats.

• Securely uploading and downloading of assignments. Secure authentication is needed to
protect the integrity and privacy of learners by encrypting transmission of all assignments to
and from the learner, the learning management platform, and any other MOOC servers (such
as forums, grade book, etc.). Moreover, the learning management platform should be inte-
grated with the compilation build environment and associated analysis tools to select only
the desired files for assessment.

Sections 3.1, 3.2, and 3.3 describes how EPLASAM addresses the design concerns associated with
the security challenge via the use of Linux containers, a distribution manager to securely auto-
mate container processing, and secure submission of assignments via the compilation tooling.

2.4 Minimizing the Heterogeneity of System and Network Environments

Software-intensive MOOCs that focuses on concurrent and distributed applications require mul-
tiple instances of software running in their own networked private environments. The private
environments and system architectures (e.g., ARM, x86, AVR/Arduino) may be heterogeneous

and thus not identical to the assessment platform (e.g., x86_64). In this case, the learning man-
agement platform must support efficient and scalable execution of emulators.

Even if the architecture is the same for both development and assessment platforms, the need
for networked separate environments still exists. Complicating the matter, user-definable net-
work topologies will be required. Custom network designs not only require customizable topolo-
gies, but must be repeatable with customizable background network traffic and QoS settings. In
addition, the communication infrastructure should support dynamic configurations that can sim-
ulate either changing network or physical conditions. These features are needed to develop and
test network-based code that can adapt to changing network conditions.

The following are design concerns that must be resolved to address the challenge of heteroge-
neity in software-intensive MOOCs:

• Support multiple virtual architectures. To enable adaptability in the learning management
platform, multiple architectures should be supported. A wide variety of architectures are in
use today and with the advent of the Internet of Things (IoT), the need to support an even
wider range of heterogeneous architectures will increase.

• Support multiple virtual network types. The ability to configure and adapt to the communi-
cation infrastructure is also required. While the processing of the learners’ assignments is
typically handled in a cloud environment, it may be necessary to simulate network connec-
tions of different types, such as 100mbps Ethernet, 10gbps Ethernet, 802.11N wireless, and
Near Field Communication (NFC).

• Dynamically add/remove nodes in network. The learning management platform will need to
create and remove nodes dynamically to simulate real world events, such as devices moving
away from each other, going offline/online, and new resources being added to the network.

• Networked software and middleware. Development and analysis of networked software—
especially concurrent and distributed middleware—requires scalable environments for ex-
perimental evaluation. These environments should be able to isolate a group of private virtual
networks together and provide realistic communication between each virtual network based
on targeted channel capabilities, such as wireline or wireless channels. A Learning manage-
ment platform therefore requires the ability to create repeatable virtual networks between
unique workspaces that have learner submitted code executing. These virtual networks must
also ensure end-to-end QoS requirements (e.g., for latency and bandwidth) and have the abil-
ity to handle configurable network traffic and topologies.

• Environment standardization. If the development environment (which consists of compilers,
operating systems, and associated programming and testing tools) is not defined in a stand-
ard manner, various compilation and compatibility issues can arise, which are hard for the
teaching staff to assist individuals with at scale. Even minor differences between develop-
ment environments can yield significant differences in the generated results that increase the
amount of effort required by the (often limited) MOOC teaching staff. The learning manage-
ment platform should therefore standardize these potential incompatibilities to lessen the
burden on the teaching staff while the MOOC is live.

Sections 3.1, 3.2, and 3.3 describe how EPLASAM addresses the design concerns associated with
the heterogeneity challenge via Linux containers that can run isolated emulators to provide sup-
port for additional architectures, a distribution manager to handle all communication-related is-
sues (such as virtual private networks), and Linux containers and compilation tooling providing
environment standardization.

2.5 Reducing Operational Overhead

Numerous operational challenges arise when developing a learning management platform for
software-intensive MOOCs, including traditional information technology (IT) tasks, such as log-
ging and auditing of system execution and stability, load balancing, and data loss prevention
strategies. There are other desired features that conventional learning management platforms
either do not support or do not support in the domain of software-intensive MOOCs, including
private virtual networks and secure peer review. The following are design concerns that must be
resolved to address the challenge of logistics in software-intensive MOOCs:

• Support for A/B testing. Validation of teaching methods, practices, and hypothesis can be
supported via a platform that generates assignments for MOOC learners. Two-sample hy-
pothesis testing (often known as A/B Testing) allows statistical analysis of hypothesis with
two variants. A similar approach, called split testing, can be applied with more than two var-
iants. To reduce teaching staff overhead during the MOOC, the learning management plat-
form should be able to configure certain criteria for partitioning learners, learner assign-
ments, peer-reviewers, and other possible criteria into either two or more groupings auto-
matically.

• Support for peer assessment. Peer assessment helps reduce the overhead of teaching staff
grading at-scale, as well as improving learner abilities to, read, judge, and improve each
other’s’ code. The learning management platform must therefore automatically facilitate var-
ious aspects of peer assessment, such as peer review (e.g., grading others’ code by applying
a rubric) and peer evaluation (e.g., having peers compile, execute, and evaluate each other’s
assignments).

• Reproducible virtual network configuration(s). Certain types of software design and pro-
gramming assignments (e.g., peer-to-peer file sharing, network discovery protocols) require
various types of network topologies, bandwidth, QoS settings, and background traffic. If any
of these conditions change the results may vary. The learning management platform must
therefore reproducibly create the same virtual network so that individual learner submissions
can be tested under the consistent conditions.

Sections 3.1, 3.2, and 3.3 describes how EPLASAM addresses the design concerns associated with
the logistics challenge via the use of Linux containers, a distribution manager, and compilation
tooling to provide an automated system with low operational overhead.

3. The Structure and Functionality of EPLASAM

EPLASAM consists of several interchangeable hierarchies and parts, each providing a specific por-
tion of its overall capabilities. Linux containers provide individualized, secure, and potentially cus-
tomized runtime environments for code compilation, testing, and evaluation. EPLASAM handles

the distribution of Linux containers to different hosts. It also uses interchangeable command-line
build-tools to run each step of the compilation, testing, and evaluation. Finally, it provides gen-
erators that automatically produce assignments that are customized for learner cohorts. The re-
mainder of this section describes each of these capabilities and outlines how they address the
challenges presented in Section 2.

3.1 Linux Containers

The technology for general purpose OS-Level Virtualization for Linux has existed as open-source
software since 2005 with OpenVZ. OS-Level virtualization is a technique where virtual private
instances of the same OS as the server are provided to virtualized application(s) running on the
host server. This approach offers many advantages over other virtualization technologies, such
as hypervisors and full VM emulations. In particular, it enables Virtual Private Server (VPS) in-
stances, each of which runs its own copy of an OS and enables users to install almost any software

that runs on that OS.

Figure 3. Diagram of Docker Container Deployment and Management.

A VPS differs from a hypervisor or fully emulated virtual machine technologies in several ways
that make them attractive for use in EPLASAM. Figure 3 shows how EPLASAM employs OS-level
virtualization to provide a VPS to each learner application submission. We manage each VPS via
a central workload distribution manager and Docker, which automates the deployment of appli-
cations by providing an additional layer of abstraction and automation of OS-level virtualiza-
tion on Linux (Docker, 2014).

Two key ways in which a VPS differs from the other virtualization options are the startup-time
and resource overhead of each instance. For example, the time for a VPS instance to start is sig-
nificantly shorter than for an entire OS to boot, as is the case for hypervisor and full virtual ma-
chine emulation technologies. In particular, the base OS in a VPS has already been instantiated,
so only the portions required for the VPS to instantiate must be started. Moreover, the resource
overhead of VPS is significantly lower than a full virtual machine emulation instance.

VPS does have several drawbacks, however. For example, the host machine’s kernel must sup-
port OS-Level virtualization at the OS kernel level. Likewise, the OS type on the host machine
must be the same OS type on the virtualized instance.

Until recently, distribution of OS-level virtualization, also called “software containers,” were not
easily automated and therefore required a high degree of skill and knowledge to configure
properly. The broad adoption of Docker, however, enables automated deployment of applica-
tion(s) in these containers in networked configurations, thereby simplifying ease of use and re-
ducing deployment time.

A key improvement to Linux container technology provided by Docker is the creation and use of
a central server hosting images (which is called a Registry) and the build scripts required to create
those images called DockerFiles. We apply Docker in a partially closed-source environment, i.e.,
where answers to assignments are kept secret, which leverages its ability to host a private Reg-
istry.

The central workload distribution manager mentioned above stores the deployment strategies
EPLASAM uses to create the rules for container deployment and virtual network configuration.
Existing tools, such as Shipyard (Shipyard, 2014), handle the low-level migration, monitoring, and
management of Docker servers and Docker images. Shipyard can easily be controlled via a public
API, thereby enabling the use of EPLASAM’s custom Domain-Specifc Modeling Language (DSL)
tools provided by the Distribution Manager to manage physical servers, container deployment
and execution, handling of assignment files, and setting up of virtual networks.

The abilities that Docker containers give the EPLASAM platform help address concerns from sec-
tions 2.1, 2.3, 2.4, and 2.5. Specifically, it gives the ability to provide private networks of virtual
machines at scale from section 2.1. The VPS design provides separation of each student's virtual
environment from section 2.3. Containers help to standardize student submission environments,
supports multiple virtual networks and architectures via emulators from section 2.4. They also
provide support for reproducible virtual networks by providing easily reproducible environments
from section 2.5.

3.2 Distribution Manager

The design of EPLASAM requires a means to automate the distribution of containers to the re-
quired hosts, as well as the distribution of submitted assignments to these servers for processing.
Figure 3 shows how Docker is used along with a Workload Distributor to distribute the processing
of assignments. Currently EPLASAM can use multiple server host machines and multiple Docker
VPS per host, though the distribution of assignment workloads must be determined manually.
Automating this distribution is an area we are looking at for future work.

We observed two general approaches in Docker management: (1) either have the deployment
management system itself manage container deployment strategies or (2) allow users to manu-
ally deploy containers where they choose. In our initial experiments we opted for manually de-
ploying containers and have used Shipyard since it offers the most feature from amongst the
myriad of software solutions comprising the Docker software ecosystem. In particular, Shipyard
has an HTTP/REST-based API—unlike many alternatives, such as Kubernetes (Kubernetes, 2015)
—that allows finer control of which server(s) specific container(s) are executed. This capability
helps EPLASAM configure the virtual private networks used to connect containers.

Shipyard works via an installed controller on each host machine that is configured with Docker.
It requires configuring a single central Shipyard instance to manage all the hosts that Shipyard is

responsible for. It then connects to a private repository of DockerFiles describing each container
image, after which point management of all VPSs and containers can begin.

The management of the physical servers, container deployment and execution, handling of as-
signment files, and setting up of virtual networks are handled by EPLASAM’s custom Domain
Specific Language (DSL) and tool-chain. This custom DSL interacts with different levels of the plat-
form, multiple custom applications, and other DSLs. For clarity, we call the top-level DSL that
interacts with the other layers/DSLs within the platform the “Platform-DSL” and call the DSLs for
assignments the “Assignment-DSLs.” The Platform-DSL is designed to allow hierarchical compo-
sition of multiple assignment-DSL model instances, thereby allowing EPLASAM to handle simul-
taneous assessment of multiple different assignments and adjust to handle complex interactions
between different assignments. For example, one adjustment involves distributing network-
bound and a CPU-bound processes across the available hardware to minimize interference. The
Assignment-DSL likewise needs to support multiple container definitions, expected container
runtime requirements and profiles, assignment variations, and virtual network requirements.
EPLASAM is designed via a multi-layered approach, where each component has well-defined
interaction with the overall platform, to facilitate adoption since it is easier to add new/modify
features or components.

Existing distribution managers, such as Shipyard, provide the EPLASAM platform the ability to
address concerns from sections 2.1, 2.3, 2.4, and 2.5. A distribution manager provides the ability
to automate assignment grading at scale from section 2.1. It also facilitates the secure transfer
of assignment submissions between different servers in the process of grading from section 2.3.
A Distribution Manager addresses the concerns of dynamically adding/removing network nodes
and supporting multiple virtual network types from section 2.4. In addition, it also addresses the
concern of reproducible virtual networks from section 2.5.

3.3 Compilation Tooling

EPLASAM does not require any specific project build tool or integrated development environ-
ment (IDE). Since Linux containers are only executable via the command-line, the use of an auto-
mated build tool is an integral part of the overall framework we have developed. The grading of
programmatic questions is decomposed into two phases: compilation and testing. Both phases
may have sub-phases that will depend upon the problem and code being evaluated, though
EPLASAM just focuses on these two phases for now (the specifics of sub-phases will be addressed
by both the choice of build-tools chosen and the desired evaluation techniques chosen by the
staff of a course).

Although EPLASAM is build-tool agnostic, support for each tool/tool-chain must be integrated
into the platform. This requirement enables the proper handling of both the specific starting
commands and reading of results from the compilation and testing framework execution. We
adopted Gradle as the default build tool for EPLASAM. Other build automation tools, such as
Maven, Ant, and Make, were considered, but Gradle was selected since it is the build system
utilized in the material our MOOCs are covering. The specific build system chosen will depend
upon the programming language being tested, its conventions, and the personal choice of the
MOOC staff.

Currently, EPLASAM contains manual script implementations to launch and evaluate compilation
results, unit testing, and integration testing results. Future work will expand these abilities to
operate via a plugin system that enables the use of other tool/tool-chains, such as Gradle, Make,
and Ant. Future work will also provide an automated and secure method for assignment transfer
via the chosen tool/tool-chains to/from the learner and EPLASAM.

Automated build tools help to address the concerns from sections 2.2, 2.3, 2.4, and 2.5. Auto-
mating build tools helps to provide meaningful evaluation and feedback, even at a distance, and
reducing the impact heterogeneous development and runtime environments. Which address
concerns from section 2.2. Automated build tools also help to address the concern of providing
security for testing submitted code from section 2.3. They also help to address the concern of
environment standardization from section 2.4. The use of automated build tools also helps to
reduce the overall operational overhead concern from section 2.5.

3.4 Programming Assignment Assessment

Assessing programming assignments yields additional challenges not faced by commonly asked
question types, such as multiple choice or true/false questions. In particular, how can the teach-
ing staff craft a validation method for an assignment that is both effective and provides learners
with meaningful feedback. If a suite of unit tests for an assignment returns a number of passed
tests, but has no feedback as to what or even why a test was not passed, then it will fail the
’Alleviating Limitations of distance’ challenge shown in Figure 2.

To address this issue, EPLASAM employs advanced built tools, such as Gradle, to automate the
entire process of compiling, unit testing, and integration testing. Gradle currently supports C,
C++, and Java and is on the road map to become the official build script for Android. We therefore
chose it as our standard automation script. Since EPLASAM is designed in a modular manner,
however, if Gradle does not support the programming language the teaching staff intends to use
for a course or assignment it is relatively straightforward to integrate the desired command-line
build system in its place. This modularity adds flexibility to EPLASAM to support languages and
features beyond the scope of a single build system. It also provides the ability to use additional
testing frameworks, such as Junit or SureLogic, that best fits a specific assignment type.

The use of custom code-analysis tools in addition to testing-frameworks is supported with both
Gradle and Maven, but we also plan to support individualized command-line executions to sup-
port for custom evaluation and grading techniques. This customizability will further enhance
EPLASAM’s flexibility by allowing the application of more advanced analysis tools and techniques.

In our experience teaching MOOCs, we found it helpful to withhold some tests from learners,
thereby providing a multi-tiered grading process. The teaching staff is responsible for selecting
which tests, if any, to keep from learners. This capability enables the teaching staff to create their
own grading criteria and methodologies or to create a series of questions/assignments that re-
veal more of the tests to learners over time to help refine and improve their understanding of
the material.

The design of EPLASAM helps to address the concerns from section 2.1 and 2.2. Assignment cre-
ation techniques help to address the concerns of assignment and solution automation from sec-
tion 2.1. Automated assignment and solution creation, helping address the concern of providing
meaningful evaluation feedback from section 2.2.

3.5 Assignment Randomization

Assignment creation techniques aimed at preventing cheating and facilitating the potential reuse
of assignments in a MOOC environment face challenges that traditional educational situations
do not. In particular, the geographic distance between the teaching staff and learners makes it
harder to detect certain types of cheating. Some problem types (such as short answer, multiple
choice, and fill-in-the-blank) have exactly one correct answer or answer combination. These
problems can be pre-created and a random subset can be given to each learner to help address
the needs of cheating prevention and facilitate question reuse. Essays or short answer-based
questions can use statistical analysis methods to detect (and thereby prevent) cheating. The ’cor-
rect’ answers to these types of problems need not be determined exactly. Instead, keywords/or-
der input can be entered into a regular expression parser to check validity/uniqueness.

Software-based assignments are often have structurally similar solutions, depending on the as-
signment specification. Thus, if a single correct solution leaks to the learner community, the ques-
tion cannot be reliably reused in future offerings due to the likelihood that learners will find this
solution online and apply it without having to do the work themselves. Therefore, to address the
issues that software-based questions have with respect to similarity of assignment solutions be-
tween learner cohorts—and to help prevent reuse of solutions between offerings—EPLASAM ap-
plies a model-based approach to individualized assignment generation.

Our initial work for this approach has yielded a generator that takes a model as input and outputs
the full source code and all files required to compile a data-centric Create, Read, Update, & De-
lete (CRUD) based Android application. This generator is given the desired model file as input and
uses custom template groups to define the output files. It is possible to turn individual templates
from within a group on or off, giving the teaching staff the ability to choose what code they wish
to generate. This feature allows the creation of variants of assignments, which can be used for
either subsequent assignments or for creating different versions for A/B Testing.

The input model for the custom code generator is an XML file describing the data-centric view of
the information to store in the desired application, along with some meta-data. Figure 4 shows
the application specific section of a sample model. This model describes the application, its un-
derlying database table, and the fields to store in the table. All components of the model have a
’name’ value used for variable name and string construction for use in different locations within
the application. These locations range from the underlying database to the user interface. Field
values have a ’type’ that describes the type of data to store. The default value of a field is config-
urable via the ‘default_val’ property. The base data types supported currently are those of the
Java primitive types, with the addition of String and byte[], which are referred to as STRING and
BLOB, respectively. Future work will expand these options to include more complex data types,
such as images, audio, and video.

 Figure 4. Sample Application Definition Model.

EPLASAM’s focus on Android for the initial code to generate with our custom DSL code-generator
tool stems from the component-based architecture of the Android platform, which allows us to
remove portions of code from the list of templates to generate. This feature, in turn, helps nar-
row the code that is given learners at any one time to test them on the material being covered.
It also allows the use of the same code to teach multiple concepts, thereby allowing the teaching
staff to create exercises that reinforce each other.

Assignment randomization helps to address the concerns of automated assignment & assess-
ment creation from section 2.1. In particular it helps to allow the re-use of created assignments
in subsequent offerings of the same course.

4 Related Work

This section compares EPLASAM with related work that focuses on three areas: (1) the use of
Linux containers for virtualization, (2) generation of assignments, and (3) automated generation
of grading and meaningful feedback for programming assignments. These areas are relevant
since developing a platform for automated grading of software-intensive assignments in a MOOC
environment requires effective resource management at the cloud infrastructure-level, as well
as the ability to scale both assignment creation and evaluation with the addition of (potentially
many) new learners.

4.1 Related Work on Linux Containers

The Docker (Docker Inc. official site) open-source project we utilize in EPLASAM automates the
deployment of applications via software containers utilizing operating system (OS)-level virtual-
ization. Docker is not an OS-level virtualization solution; rather it uses interchangeable execution
environments such as Linux Containers (LXC) and its own libcontainer library to provide container
access and control.

Previous work exists on the creation (Menage, 2007) and benchmark testing (Soltesz, Pötzl, Fiu-
czynski, Bavier, & Peterson, 2007) of generic Linux-based containers, shows that Linux containers
are a more lightweight means of virtualization compared to traditional hypervisors. Similarly, re-
lated work uses containers as a means to provide isolation and a lightweight replacement to hy-
pervisors in specific use cases. For example, High Performance Computing (HPC), reproducible
network experiments, and peer-to-peer testing environments focus on different aspects of Linux
containers that they leverage. Xavier et al. (Xavier et al., 2013) show that in the domain of HPC
that containers provide an excellent lightweight hypervisor replacement, but at the time the so-
lutions available were immature and unable to provide effective isolation. Handigol et al. (Handi-
gol, Heller, Jeyakumar, Lantz, & McKeown, 2012) discuss the creation of reproducible network
experiments via container-based emulation, which is intended to spur other researchers to pub-
lish runnable versions of their experiments. They leverage the ability to package, distribute, and
run containers. Bardac et al. (Bardac, Deaconescu, & Florea, 2010) show how peer-to-peer testing
environments can be developed using Linux containers. The focus on EPLASAM in this paper is
on the scalability and limitations of networked applications in a container-based testing environ-
ment.

Both the papers from Bardac et al. and Handigol et al. use Linux containers to provide reproduc-
ible network-based application testing. However, the focus in each paper differs slightly. In par-
ticular, Bardac et al. are concerned with repeatability, whereas Handigol et al. are concerned with
the scalability of network-based applications, particularly peer-to-peer applications. In contrast
to these efforts, our work on EPLASAM uses all three of these aspects, i.e., lightweight, isolation,
and ease of distribution. Moreover, EPLASAM leverages some of Docker’s features to create cus-
tom containers and share them in a manner that’s more straightforward than possible in prior
work.

4.2 Related Work on Generation

This section compares EPLASAM with related work in the areas of generating assignments in a
learning-at-scale environment and generating automated feedback to programming assign-
ments.

4.2.1 Assignment Generation

With the advent of MOOCs, the interest in automatically generating assignments at scale has
grown. Automating Exercise Generation (Sadigh, Seshia, & Gupta, 2012) describes using a tem-
plate-based generator together with mutation and satisfiability solving to automatically generate
assignment problems, valid solutions, and grading of submitted solutions. The problems they tar-
get are a subset of problems from an embedded systems class textbook, which they found had
problems that did not fit well into their platform.

In addition to automatic assignment generation, related work has focused on creating Domain
Specific Languages (DSL) for code generation of mobile and cloud-based applications. PhoneApps
(Mannadiar & Vangheluwe, 2010) is a custom DSL built to help simplify the creation of stand-
alone mobile applications using Statecharts with modular components at different levels of ab-
straction. Manjunatha et al. design an approach for creating MobiCloud (Manjunatha, Ranabahu,
Sheth, & Thirunarayan, 2010), which is a DSL for creating Cloud Mobile Hybrid applications via an
agnostic Model-View-Controller (MVC) code generation pattern, treating both the cloud and mo-
bile portions of an application as single entity. MobiCloud supports multiple target mobile device
and cloud hosting platforms but requires a custom code generator that accepts the custom Mod-
iCloud-DSL model as input, for each target platform. The MVC pattern is also used by Buck et al.
the Objektgraph IDE (Buck, Diethelm, & Sheneman, 2013), which uses a graphical UML editor to
generate Java applications, and anticipates Android and Google Web Toolkit support.

EPLASAM is similar to MobiCloud and Objektgraph in that it uses the MVC pattern with templates
to generate our targets. In addition, however, EPLASAM can build a standard DSL interface that
simplifies swapping of future generator components. This interface provides flexibility to the
overall platform and simplifies adoption allowing the use of custom code generation tools.

4.2.2 Meaningful Feedback Generation

In addition to automated generation of assignments and mobile applications, related work has
focused on generating meaningful feedback to MOOC learners on their programming assign-
ments. Singh et al. describe a technique for automated feedback generation of introductory pro-
gramming assignments (Singh, Gulwani, & Solar-Lezama, 2013). Their technique requires a cor-
rect reference implementation and a set of rules in a custom error model language (EML) that
define errors (and corresponding corrections) that learners are likely to produce. These EML rules
are used to define a space of candidate programs that will be generated from the learner sub-
mission and then searched for the minimal number of corrections required to transform the sub-
mission to match the reference program.

Carbunescu et al. present their results and experiences from using a framework they designed
for auto-grading of parallel code for the 2013 and 2014 XSEDE Parallel Computing Course (Car-
bunescu et al., 2014). Their platform used a C program to verify the output results and a Python
script to manage file handling, job processing, and final grade calculations. Grades are based
upon runtime performance for a variety of input sizes for each of three assignments in the course
to evaluate both strong and weak potential scalability. They present the concessions and modifi-
cations they made when designing each assignment’s implementation, such as how verification
of non-deterministic simulations can be hard to validate.

This related work shows the extent to which trial and error can be applied to create tests with
meaningful feedback. These results led us to design EPLASAM so that it is agnostic with respect
to specific tests and testing methodologies it supports. The goal is to provide an environment for
flexibility creating and evaluating new techniques and approaches.

5 Concluding Remarks
This paper presented the motivations, challenges, and solutions related to EPLASAM, which is a
platform for software-intensive MOOC assignment creation and grading. We discussed the

EPLASAM design goals and the related challenges associated with creating meaningful software
programming assignments that deter cheating. We show how the overall platform is split into
two major portions: (1) the server portion, which acts as the infrastructure, and (2) the tools
portion, which facilitates teaching staff creating new assignments that are automatically gener-
ated and assessed at scale. We then explain how EPLASAM accomplishes its design goals and
explain why various technical choices were made. Finally, we compared EPLASAM with related
work to show how our approach builds upon and extends previous work to leverage our experi-
ences teaching software-intensive MOOCs.

Three main categories of future work stem from our work on EPLASAM:

 Enhanced platform analysis and development. We are currently integrating EPLASAM into
our Mobile Cloud Computing with Android (MoCCA) Specialization. Measurements and anal-
ysis of its performance and scalability will be conducted to evaluate its effectiveness. We an-
ticipate that additional software capabilities will be needed to create the DSL(s) and related
tools required to manage the platform logistics of container management and deployment,
particularly in a heterogeneous hosting scenario where the platform utilizes multiple cloud
services, such as Amazon EC2, Microsoft Azure, DigitalOcean, RackSpace, etc.

 Applying the platform in Learning-at-Scale environments and analyzing its impact on learn-
ers. Using EPLASAM our MoCCA Specialization will provide an opportunity for research into
the science of education on software-intensive design and programming topics. For example,
the ability to assess A/B group learners at the scale of tens-to-hundreds of thousands of learn-
ers will enable us to refine our current teaching and testing techniques and explore new ones.
With tighter coupling between the testing framework and other course material, it will be
possible to test things such as which order of introducing topics leads to better overall results.
It will also be possible to explore variations in both the number and difficulty of programming
assignments and determining which combinations provide the best overall result. Future
work will be possible on the analysis of learner learning results based on the quality and quan-
tity of meaningful feedback they receive from the build system, e.g., using the assignment
submissions to adapt and enhance auto-grading tools. Improvements in accuracy, quality
feedback, runtime efficiency, and breadth of testing coverage are metrics by which differing
approaches can be evaluated to identify effective methods.

 Using the platform for research on advanced middleware and networked applications. Fu-
ture work in the area of middleware development and analysis will be enabled by EPLASAM.
The platform, with its dynamic virtual networking and repeatable experiments, will assist in
addressing the challenges Chaqfeh et al. concerning Internet-of-Things enabled middleware
(Chaqfeh & Mohamed, 2012). The ability to simulate both variable networking conditions and
resource constraints allows better development and analysis into specialized network-based
middleware. Two important industries that are ever increasing are video games (Correa,
2013), which has been larger than Hollywood for more than a decade (Yi, 2004), and con-
sumer mobile devices. Both these domains have specialized requirements that EPLASAM can
assist with in terms of middleware development and analysis, such as strict timing constraints
or minimum levels of robustness that EPLASAM can simulate. In addition, both video games
and mobile devices are popular topics that can serve as a basis for future MOOCs that teach
additional core computer science principles, methods, and tools.

References

Bardac, M., Deaconescu, R., & Florea, A. M. (2010). Scaling peer-to-peer testing using linux con-
tainers. In Roedunet international conference (roedunet), 2010 9th (pp. 287–292). Retrieved
from http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5541555

Buck, D., Diethelm, I., & Sheneman, S. (2013). Objektgraph: why code when mvc applications
can be generated with uml-based diagrams? In Proceedings of the 2013 companion publication
for conference on systems, programming, & applications: software for humanity (pp. 25–26).
Retrieved from http://dl.acm.org/citation.cfm?id=2514576

Carbunescu, R., Devarakonda, A., Demmel, J., Gordon, S., Alameda, J., & Mehringer, S. (2014).
Architecting an autograder for parallel code. In Proceedings of the 2014 annual conference on
extreme science and engineering discovery environment (pp. 68:1–68:8). New York, NY, USA:
ACM. Retrieved from http://doi.acm.org/10.1145/2616498.2616571 doi:
10.1145/2616498.2616571

Chaqfeh, M. A., & Mohamed, N. (2012). Challenges in middleware solutions for the internet of
things. In Collaboration technologies and systems (cts), 2012 international conference on (pp.
21–26). Retrieved from http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6261022

Correa, C. (2013, April). Why video games are more addictive and bigger than movies will ever
be. http://www.forbes.com/sites/christophercorrea/2013/04/11/why-video-games-are-addic-
tive-and-bigger-than-movies-will-ever-be/. (Accessed: 2014-10-24)

Coursera - Free Online Courses From Top Universities. (n.d.). Retrieved February 23, 2015, from
https://www.coursera.org/specialization/mobilecloudcomputing2/36

Docker inc. official site. (n.d.). http://docker.com. (Accessed: 2014-10-24)

Handigol, N., Heller, B., Jeyakumar, V., Lantz, B., & McKeown, N. (2012). Reproducible network
experiments using container-based emulation. In Proceedings of the 8th international confer-
ence on emerging networking experiments and technologies (pp. 253–264). Retrieved from
http://dl.acm.org/citation.cfm?id=2413206

How It Works. (2013, November 13). Retrieved February 15, 2015, from
https://www.edx.org/how-it-works

Kubernetes by Google. (n.d.). Retrieved January 25, 2015, from http://kubernetes.io/ . (Ac-
cessed: 2014-10-24)

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5541555
http://dl.acm.org/citation.cfm?id=2514576
http://doi.acm.org/10.1145/2616498.2616571
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6261022
http://www.forbes.com/sites/christophercorrea/2013/04/11/why-video-games-are-addictive-and-bigger-than-movies-will-ever-be/
http://www.forbes.com/sites/christophercorrea/2013/04/11/why-video-games-are-addictive-and-bigger-than-movies-will-ever-be/
https://www.coursera.org/specialization/mobilecloudcomputing2/36
http://docker.com/
http://dl.acm.org/citation.cfm?id=2413206
https://www.edx.org/how-it-works
http://kubernetes.io/

Manjunatha, A., Ranabahu, A., Sheth, A., & Thirunarayan, K. (2010). Power of clouds in your
pocket: An efficient approach for cloud mobile hybrid application development. In Cloud com-
puting technology and science (cloud-com), 2010 ieee second international conference on (pp.
496–503). Retrieved from http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5708492

Mannadiar, R., & Vangheluwe, H. (2010). Modular synthe-sis of mobile device applications from
domain-specific mod-els. In Proceedings of the 7th international workshop on model-based
methodologies for pervasive and embedded software (pp.21–28). Retrieved from
http://dl.acm.org/citation.cfm?id=1865879

Menage, P. B. (2007). Adding generic process containers to thelinux kernel. In Proceedings of
the linux symposium (Vol. 2,pp. 45–57). Retrieved from https://www.ker-
nel.org/doc/ols/2007/ols2007v2-pages-45-58.pdf

Sadigh, D., Seshia, S. A., & Gupta, M. (2012). Automating exer-cise generation: A step towards
meeting the mooc challenge forembedded systems. In Proceedings of the workshop on embed-
ded and cyber-physical systems education (p. 2). Retrieved from http://dl.acm.org/cita-
tion.cfm?id=2530546

Shipyard. (2014). http://shipyard-project.com/. (Accessed: 2014-10-24)

Singh, R., Gulwani, S., & Solar-Lezama, A. (2013). Automatedfeedback generation for intro-
ductory programming assignments.In Proceedings of the 34th acm sigplan conference on
program-ming language design and implementation (pp. 15–26). NewYork, NY, USA: ACM.
Retrieved from http://doi.acm.org/10.1145/2491956.2462195
doi:10.1145/2491956.2462195

Soltesz, S., Pötzl, H., Fiuczynski, M. E., Bavier, A., & Peterson, L.(2007). Container-based op-
erating system virtualization: a scal-able, high-performance alternative to hypervisors. In
Acm sigops operating systems review (Vol. 41, pp. 275–287). Retrieved from
http://dl.acm.org/citation.cfm?id=1273025

Xavier, M. G., Neves, M. V., Rossi, F. D., Ferreto, T. C., Lange, T.,& De Rose, C. A. (2013). Per-
formance evaluation of container-based virtualization for high performance computing en-
vironments. In Parallel, distributed and network-based processing(pdp), 2013 21st eu-
romicro international conference on (pp.233–240). Retrieved from http://ieeex-
plore.ieee.org/xpls/abs_all.jsp?arnumber=6498558 (Accessed: 2014-10-24)

Yi, M. (2004, December). They got game / stacks of new releases for hungry video game en-
thusiasts mean it’s boom time for an industry now even bigger than hollywood.
http://www.sfgate.com/news/article/THEY-GOT-GAME-Stacks-of-new-releases-for-hun-
gry-2663371.php. (Accessed: 2014-10-24)

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5708492
http://dl.acm.org/citation.cfm?id=1865879
https://www.kernel.org/doc/ols/2007/ols2007v2-pages-45-58.pdf
https://www.kernel.org/doc/ols/2007/ols2007v2-pages-45-58.pdf
http://dl.acm.org/citation.cfm?id=2530546
http://dl.acm.org/citation.cfm?id=2530546
http://shipyard-project.com/
http://doi.acm.org/10.1145/2491956.2462195
http://dl.acm.org/citation.cfm?id=1273025
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6498558
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6498558
http://www.sfgate.com/news/article/THEY-GOT-GAME-Stacks-of-new-releases-for-hungry-2663371.php
http://www.sfgate.com/news/article/THEY-GOT-GAME-Stacks-of-new-releases-for-hungry-2663371.php

