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Abstract 12 
Significant effort is required to recruit and validate patients for research studies. Researchers are 13 
typically limited to patients that they have a physical touchpoint with (e.g., patients at VUMC). This 14 
physical access limitation reduces the research attention that patients with rare diseases with little 15 
geographic concentration and poorer patients in rural areas receive. This paper explores the use of 16 
mobile computing and blockchain technology to provide validation of research studies and their data 17 
usage, advertisement of research studies, collection of research data, and sharing of data across 18 
studies. The paper presents key challenges of using blockchains and mobile computing to solve these 19 
issues, competing architectural approaches, and the benefits/trade-offs of each approach. 20 

1 Introduction 21 
A critical component of healthcare research is finding and recruiting participants in research studies 22 
and ensuring that researchers have sufficient data to make decisions regarding patient qualification to 23 
participate in a study. For example, simple information, such as the drugs that a patient is allergic to 24 
or if they have a specific health condition in their medical record, is essential to making recruitment 25 
decisions. If a single piece of important information is missing, it can lead researchers to make 26 
inappropriate decisions regarding participant selection. 27 
 28 
As a consequence of the need for access to detailed patient information, patient recruitment typically 29 
begins in clinical settings, such as hospitals, where researchers have direct access to detailed medical 30 
record information. For example, researchers may work with a specific clinic within a medical center 31 
and educate providers about their study and the types of patients that they are looking for as 32 
participants. The clinic will have detailed medical record information and a face-to-face touchpoint 33 
with patients to facilitate recruitment of patients that meet the participation eligibility criteria of the 34 
study. 35 
 36 
An emerging architectural model that is gaining interest is putting patients at the center of the 37 
stewardship of their medical data [1]. Patients already have the right to see and move their data 38 
between providers, so it seems a natural fit that they should have mechanisms to see and move the 39 
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electronic copies of their medical data, rather than only printed copies. With a patient-centered 40 
stewardship model, patients always have direct access to their own data from all providers and can 41 
delegate access at any time. This architecture is fundamentally different from the current model [2] 42 
where patients do not have direct access to the totality of their data and must individually request 43 
portions of the data from each provider, assemble the necessary portfolio, and then deliver the 44 
combined pieces to another provider. 45 
 46 
An early manifestation of this patient-centered stewardship model is the ability for Apple’s HealthKit 47 
[3] to import medical records from Epic [4], which is one of the most widely used electronic medical 48 
record systems in the US, into a user’s mobile device. HealthKit directly imports data using the FHIR 49 
standard [5] into a patient’s Apple mobile device. Once on a patient’s mobile device, a patient can 50 
choose to share their health records with additional apps on the device, which may in turn deliver the 51 
data to other medical providers or researchers.  52 
 53 
A key question that arises in this new patient-centered data stewardship model is if there are 54 
opportunities to expand how patients are recruited into research studies. In particular, given that 55 
patients now have direct control over electronic copies of their medical records and the ability to 56 
share this access with apps on their devices, can researchers recruit patients directly through those 57 
apps? With this model, researchers would produce an app that can read medical record data directly 58 
from a patient’s HealthKit records and determine if a patient potentially meets the eligibility criteria 59 
for a study. If a patient matches a research study, they could be notified of the match and given the 60 
option to directly communicate with researchers conducting the study to determine if they can 61 
participate. Moreover, they could directly transmit needed medical record information from 62 
HealthKit to the researchers to further assist their participant selection decision. 63 
 64 
If successful, this patient-centered model could help facilitate research study recruitment in terms of 65 
recruiting cost, data management cost, and research time beyond the typical settings, such as clinics, 66 
that have access to the needed medical records to perform the preliminary stage of filtering to match 67 
patients to research studies. There are several published studies that analyze the effectiveness of 68 
recruitment for medical researches, such as [6]-[8], and they each focused on different research 69 
purposes, which created a wide variance of the cost for recruitment stage. Generally, computerized 70 
support systems would help save significant recruiting cost compared to traditional clinic-based 71 
approaches [9]. In addition, computerized support systems have considerable potential for reducing 72 
the timeline and increase efficiency of data management process of medical research studies [10]. 73 
Another trend that is impacting patient care is the rise in production of non-traditional health-related 74 
data, such as records of self-reported meals, step counts from fitness trackers, and momentary 75 
assessments of mood or pain from patients. This data, which is typically not part of the medical 76 
record today, is increasingly demonstrating value to researchers in understanding diagnostic and 77 
disease management processes. For example, meal logs can aid researchers in understanding how 78 
effectively patients are self-managing chronic conditions, such as diabetes. 79 
 80 
Whereas traditional medical records are directly captured through the provider in the electronic 81 
medical record system, this newer exercise tracker and other non-traditional data is typically captured 82 
through mobile devices, IoT devices in the home (e.g., wifi scales), and through online services (e.g., 83 
social networks). The data collection mechanisms span a vast array of apps, devices, and services, 84 
few of which are trusted or certified by any healthcare entities. 85 
 86 
Now, with the new patient-centered data stewardship model, this non-traditional data is accessible 87 
side-by-side within HealthKit with traditional medical record data. This combining of both types of 88 
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data in a single location offers the potential for supporting many types of innovative research, such as 89 
research on patient reported outcomes or large-scale studies of lifestyle on health.  90 
 91 
A second interesting question related to research studies and this new patient-centered data 92 
stewardship model is if the current research data sharing and reuse model can be expanded to both 93 
incorporate this non-traditional data and put patients in control of how the data is shared with other 94 
researchers. With the current research data ownership model, patients typically do not have the 95 
ability to easily access and share the research data from them with other researchers. The lack of 96 
control of their data limits the impact that patient’s research data can have on other research studies 97 
and keeps researchers, rather than patients, in control of the data.   98 
 99 
Since patients now have access to both their traditional health records and non-traditional health-100 
related data on the same device, patients can potentially join research studies with little or no face-to-101 
face interaction with researchers. In the new model, patients would feed their medical records and 102 
non-traditional data to researchers through the HealthKit conduit. Although detailed clinical studies 103 
requiring high-fidelity, close physician monitoring of health, and administration of new medications 104 
or interventions may not be possible, studies that focus on the impact of non-traditional data on 105 
health or vice-versa could be feasible without direct contact with the participant.  106 
 107 
Moreover, if participants use HealthKit to capture and provide their medical record and non-108 
traditional health data with researchers, it is feasible that they could simultaneously share this data 109 
with multiple research studies or redistribute previously captured data to new research studies that 110 
could benefit from it. There are certainly many studies where access to the details of how the data 111 
was collected, such as how lab tests were performed, would render this type of model from 112 
ineffective. However, we posit that there are many studies, such as observational studies that research 113 
how diet affects a person’s blood sugar level or how sleep affects one’s mood, where this model is 114 
not only feasible but offers unique new research opportunities. 115 
 116 
In this paper, we explore key research challenges to realizing this vision, although we fully 117 
acknowledge the presence of many other types of challenges. Through our detailed analysis of the 118 
research challenges, we have found that Distributed Ledger Technology possesses attributes that 119 
make it a promising solution to realizing this new model for research study recruitment and sharing 120 
of research data across studies. After careful analysis of the research challenges and promising 121 
attributes of distributed ledgers, we propose an initial open architecture for study participant 122 
recruitment and data sharing in the emerging patient-centered data stewardship model. 123 
 124 
The remainder of this paper is organized as follows. Section 2 provides a motivating healthcare 125 
research example to demonstrate the need for and trends toward a patient-centric data stewardship 126 
model. Section 3 presents key challenges in clinical research recruitment today. Section 4 proposes a 127 
decentralized architecture based on Distributed Ledger Technology for facilitating data sharing in the 128 
research participant recruitment process. Section 5 discusses related research on platforms for 129 
improving the recruitment process for research studies and work that leverages distributed ledger 130 
technology to felicitate healthcare data sharing. Section 6 presents concluding remarks and 131 
summarizes our key lessons learned.   132 

2 Motivating Healthcare Research Example 133 
As a motivating example for the exploration, we use an example of the management of a serious 134 
chronic condition that most commonly manifests in adolescent patients, namely, Type 1 Diabetes 135 
Mellitus (T1DM). T1DM is an autoimmune disease where the pancreas produces little or no insulin, 136 
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which is critical to help the human body manage blood sugar levels. The treatment of this condition 137 
relies on patients to perform self-management tasks, such as self-measurement of blood glucose and 138 
self-administration of insulin, to avoid life-threatening complications [11]. 139 
 140 
Despite physiological traits like blood glucose levels and carbohydrates intake that are commonly 141 
used as clinical indicators of how T1DM is controlled, recent studies [12] have shown that 142 
psychosocial behavior in adolescent patients with T1DM can significantly affect the adherence to 143 
diabetes regimen in this population. As a result, much more diverse data, such as fatigue level, mood, 144 
location, and social context, can be collected to observe the behavior or further analyzed to provide 145 
timely intervention to poor self-management behavior [13]. These data can easily be collected in or 146 
near real-time using Internet of Things (IoT) devices like smartphones, Bluetooth-powered glucose 147 
meters, and environmental sensors. They can complement traditional electronic health records (EHR) 148 
to provide a more comprehensive view of patient health status by including potentially influential 149 
variables from outside clinical settings [14]. 150 
 151 
Unlike EHR systems that have served healthcare for decades, emerging IoT-based systems that 152 
record health-related activities (such as self-observed behavior data or sensor-recorded environmental 153 
triggers) have not yet been rigorously tested and certified to integrate with high-fidelity data like 154 
provider-documented EHRs. There is a lot of distrust towards mobile app/IoT providers from 155 
physicians and certified EHR system vendors, causing delays in the data integration process. In the 156 
case of adolescents with T1DM, patients often have to maintain a journal that logs their daily 157 
diabetes management routine. The journal may locate separately from, for instance, an app that 158 
monitors daily psychosocial/behavioral traits for the same patient. It is highly likely that neither the 159 
journal nor the app data would be linked to the patient’s health records, which can create potential 160 
problems, such as inconsistencies in the medical history or misinformation, particularly when that 161 
patient changes provider. 162 
 163 
Current healthcare systems are known to be provider-centric as forced by vendor-locked systems. 164 
These systems operate and only enable cross-system communications upon the establishment of trust 165 
relationships between vendors and providers. In the modern society where a lot of healthcare efforts 166 
are gradually becoming decentralized thanks to IoT technologies, the centralization model that is 167 
trust-dependent will become less effective and create more overhead for patients to manage care [15]. 168 

3 Challenges in Recruitment for Clinical Research 169 
Despite the importance of clinical research and continuous efforts to increase clinical research 170 
participation, many challenges exist in the recruitment process and are multi-faceted, creating 171 
barriers for researchers to complete their studies. This section discusses four such challenges, 172 
including recruiting costs, participant discovery of research studies, data reuse, and data ownership 173 
distribution. 174 
 175 

3.1 Recruiting Costs 176 

Medical research is a long-term investment. Depending on the scope of the research, the timeline will 177 
vary. DiMasi and Grabowski estimated the average length of time from the start of clinical testing to 178 
marketing is 90.3 months in the pharmaceutical sector and 97.7 months for the biotechnology sector 179 
[16]. Lengthy timelines directly impact the cost of capital for the medical projects and increase the 180 
financial burden for researchers and investors because it is considered as opportunity costs associated 181 
with foregone investments over the researching period.  182 
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 183 
The recruitment process alone accounts, on average, for nearly 30% of total clinical trial time (around 184 
30 months) [17]. During this process, resources required to recruit and enroll participants must be 185 
sustained, including but not limited to recruitment and coordinating staff, equipment, facilities, 186 
advertisements, etc., all of which contribute to significant recruiting costs. Recruiting a large enough 187 
pool of participants to validate the statistical result of medical research has always been a difficult 188 
task for healthcare researchers. More than 81% of clinical trials are delayed because researchers 189 
cannot recruit enough participants for the studies [18].  In particular, when analyzing 374 cases at 190 
Oregon Health & Science University, 31% of clinical research studies enrolled 0–1 subject before 191 
being terminated, which creates a waste of over $1 million per year [19].  192 
 193 
More recently however, computerized support systems have proven to be advantageous in recruiting 194 
participants on a large scale at a lower cost. A study involving healthy volunteers among different 195 
recruiting methods has shown that costs per enrolled subject were lower for the EHR patient portal 196 
($113) than letters ($559) or phone calls ($435) [20].  In addition, another study in Australia tested 197 
the effect of leveraging a technical platform (social media) in healthcare recruiting process. The 198 
results showed that the technical platform was more cost-effective, especially in the earlier stages of 199 
the studies (the cost to obtain a screened respondent: AUD$22.73 vs AUD$29.35; cost to obtain an 200 
eligible respondent: AUD$37.56 vs AUD$44.77) [21]. These analyses show that integrating 201 
technology that can accelerate the recruitment process of medical research, which would in turn save 202 
the recruiting costs and total costs of the studies tremendously. 203 
 204 

3.2 Participant Discovery of Research Studies  205 

Recruitment of patients with a physical touchpoint leads to an institution-centric advertising model. 206 
Because clinical studies are controlled by separated institutions, participants need to put in 207 
considerable effort to find the studies that match their health status and relate to a medical condition 208 
they want to involve in. Popular resources include the website of National Institutes of Health (NIH) 209 
[22], third-party “search engine” for proprietary market research [23], and other tools that are not 210 
specifically designed for clinical research recruitment (e.g., Amazon Mechanical Turk [24]).  211 
Most of these resources are spread across multiple information channels aiming to improve the 212 
publicity of research studies, but the distributed information may become scattered and outdated or 213 
cause confusion to potential research volunteers. Furthermore, the eligibility criteria to participate in 214 
a study can contain complex clinical terminologies that are hard to interpret by participants without 215 
advanced clinical knowledge. It is also impractical for volunteers to reach out to clinical experts for 216 
every trial they are interested in due to the large number of ongoing trials. As a result, potential 217 
volunteers may be discouraged to inquire about or participate in research studies.  218 

3.3 Data Reuse Challenges 219 

Reusing and aggregating clinical data have been proven effective for facilitating the discovery of new 220 
knowledge and the processes of healthcare [25-26]. Recognizing these benefits, some governmental 221 
organizations including NIH [27] and the National Science Foundation (NSF) [28] have started to 222 
support data sharing and openness in clinical research. In contrast, data sharing is not a popular 223 
practice in reality as it should be. There are many concerns related but not limited to the ownership of 224 
reused data, the quality of the data, and legal compliance. As the cost of recruiting patient and 225 
acquiring the data is high, researchers usually prioritize clinical workflow support, legal compliance, 226 
and their research purposes over the quality of the data for reuse. Documenting how data is acquired 227 
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and transformed, storing data in a universal format, and finding accessible repositories to share the 228 
data are very time-consuming. 229 
 230 
According to a study on biomedical data sharing [29], research subjects’ privacy is the most common 231 
reason why researchers are reluctant to share data. Other factors include publication competition, 232 
unnecessary data/manuscript audit and misuse/misinterpretation of the data. In addition, there is 233 
currently no proper mechanism to accredit researchers who contribute or share the data. In some 234 
cases, these researchers will either be included as a co-author on a publication, get recognition in the 235 
acknowledgement section of the publication, or be cited in the bibliography. Some researchers may 236 
not receive any acknowledgement for sharing their data at all.  237 
 238 
Another data sharing concern is the loss of information and data context. Compared to the enormous 239 
number of variables present in clinical research, especially on the metadata level, data warehouses 240 
store only a fraction of the total data collected. Moreover, acquiring the core dataset alone may not be 241 
sufficient for other researchers to understand and reuse the data effectively. Although current EHR 242 
systems are designed for ease of use by researchers, many data fields still exist in unstructured format 243 
that hinder effective data sharing, and there has not been a highly reliable approach to explore this 244 
data.  At the same time, inconsistency in data standards and formats in structured data also prevent 245 
researchers from sharing and learning from other data [30]. 246 
 247 
For researchers who do participate in data sharing, they are required to obtain consent from enrolled 248 
subjects for all studies. In this case, researchers may choose to request additional consent to sharing 249 
data. In practice, however, this is hard to implement as researchers are not able to foresee the purpose 250 
and results of secondary analysis that may come up much later than the time consent is obtained. In 251 
contrast to researchers’ legal compliance, patients and volunteers are much more open to data 252 
sharing. According to a study, 93% patients were very or somewhat likely to allow their own data to 253 
be shared with university scientists, and 82% were very or somewhat likely to share with scientists in 254 
for-profit companies [31]. 255 

3.4 Distributing Control Over Data Ownership 256 

According to health information policies and regulations, patients possess the ownership of their 257 
health data and should be requested for consent when their data is used for secondary analysis. In 258 
current practice, patients may provide consent by physically signing a paper form or electronically 259 
signing a document online. Electronic consent forms can be used to more efficiently identify the 260 
original patient providing the consent if the forms are associated with a patient in the database. Paper-261 
based consent forms, on the other hand, require much more effort to store (e.g., scanning and upload 262 
an electronic copy of the physical forms and manually entering data into the system) and may be lost 263 
or illegible along the process, making re-consent more difficult to establish [32].  264 
 265 
It is therefore important to create a platform that values privacy and is able to easily trace back to the 266 
appropriate patient to re-consent, which may further encourage sharing and reuse of research data. It 267 
is also critical to ensure that data is shared and reused responsibly. Mechanisms like peer review or 268 
patient review of proposals for reusing research data can protect the subjects and the original 269 
researchers who acquired the data. With a careful design, it is possible to incorporate these desired 270 
features into the data sharing platform to allow a more flexible and direct way to obtain consent for 271 
data sharing. 272 
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4 A Distributed Ledger Architecture for Research Participant Recruitment and Research 273 
Data Sharing 274 

How do we leverage the potential trend towards patient-centric stewardship of medical data to 275 
improve research matching, control of research data, and incorporation of non-traditional data 276 
sources accessible to mobile devices? We present an architecture that publishes or redirects research 277 
studies into a public distributed ledger that is used by researchers and research participants for 278 
finding mutual matches. The goal of this ledger for research studies is to have a virtually centralized 279 
location for hosting and discovering research studies that is accessible from mobile apps and reduces 280 
recruitment costs. The expectation is that marketing and other costs to engage patients with the ledger 281 
would be amortized across the thousands of studies published there and help address Challenges 3.1 282 
and 3.2. 283 
 284 
A second component of the approach is that individual users would download the catalog of studies 285 
and match against them directly on their mobile devices. This model would facilitate scaling up 286 
matching by not requiring researchers to already have a clinical relationship with the user and still be 287 
able to match against clinical data. Further, the patient can prospectively discover and match against 288 
studies privately, helping to address Challenge 3.2.  289 
 290 
A final key component of the approach is that patients directly discover studies and disseminate their 291 
data to these studies. Through this model, patients control dissemination of their data, which allow 292 
them to send their data to as many studies as they wish in a self-direct manner and flat structure, 293 
enabling greater potential research data reuse. For example, a patient can provide the same set of data 294 
to ten studies that desire it without relying on the first researcher that they provide the data to share it 295 
with the other nine studies. The decision of how data, owned by the participant, is subsequently 296 
distributed is up to the participant and not the researcher that receives the data. Further, later studies 297 
that publish requests for the same data as a prior study have the potential to be matched against the 298 
same set of original participants from an earlier study and receive the original data if the participants 299 
self-provide consent. 300 
 301 
The remainder of this section provides an overview of the key attributes of distributed ledgers and 302 
then provides an architecture for exploiting properties of distributed ledgers to design these 303 
components. The section covers both the benefits and trade-offs of the architecture. 304 

4.1 Distributed Ledger Technology Overview 305 

Distributed Ledger Technology (DLT) as implemented with a Blockchain data structure was first 306 
considered by Haber and Stornetta in 1991 within their landmark paper, “How to Time-Stamp a 307 
Digital Document,” as an approach consisting of a chained data structure and a node-based 308 
distribution network [33].  Faced with a future where an overwhelming majority of media would 309 
become digitized, they considered the ease with which creation and modification dates could be 310 
tampered with.  As a result, a proposal was made to develop a data structure whereby a “...chain of 311 
time-stamps…”  [33] consisting of the utilization of cryptographically strong hash functions would 312 
be utilized along with a consensus-based mechanism for verification within a trustless environment.  313 
This “chain” served as a starting point for the most popular data structure implementation of the 314 
Ledger called Blockchain.  Along with foundational principles in peer-to-peer distribution, this also 315 
provided a framework for what was to come in 2008 when an as-yet-unidentified individual known 316 
by the name Satoshi Nakamoto distributed what would become Blockchain’s most popular 317 
implementation in the form of the paper entitled, “Bitcoin: A Peer-to-Peer Electronic Cash System” 318 
[34].   At its heart, DLT consists of two primary components: a blockchain data structure and a peer-319 
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to-peer network.  In order to more fully understand these components, we will break down each in 320 
turn providing more relevant details along the way. 321 
 322 
Within DLT, the blockchain data structure serves to represent the Ledger.  As an illustrating 323 
example, Alice records a piece of data containing her name and other personal information to a text 324 
document and saves the file afterwards.  She would like to ensure that the information in this file is 325 
not altered by anyone with proof.  Given the ease with which a digital file can be copied and 326 
modified, how might Alice certify in some provable way that her file is the original file owned by 327 
her?  To expand on this scenario, another person Bob may want to perform this same task but with 328 
his name and information stored in the file.  How can both versions of the document be protected 329 
against tampering and proven that they represent two distinct states entered at different points in 330 
time?  This is where a blockchain data structure is useful for the purposes of creating a tamper-proof 331 
Ledger. 332 
 333 
Blockchain consists of n nodes that are linked together in a cryptographically protected manner.  334 
During the formation of the chain, each node consists of data provided by some client application 335 
(such as a name or other personal data) and a cryptographic hash of the data in the node that precedes 336 
it (except for the case of the root node, where no data precedes it). The hash algorithm, also called 337 
“the workhorses of modern cryptography,” [35] is fundamental to this technology. Hashing 338 
algorithms have several key traits, including an input that can be of an arbitrary size, a fixed-size 339 
output space, and efficiency [36] with respect to computation.    340 
 341 
Together, these properties use the information stored in the Ledger (and whatever other data might be 342 
relevant at the time of hashing - such as a timestamp) to produce a long string of letter and number 343 
combinations that represents a snapshot of that data that is computationally infeasible to reverse and 344 
also proves mathematically that the data is unaltered.  If the same long string representation is 345 
embedded into the next link in the chain (along with the important source data), by hashing those bits 346 
together, a cryptographically irreversible bond can be produced from one record to another. 347 
Within DLT, the distributed nature is commonly implemented through a peer-to-peer networking 348 
structure.  More specifically, the blockchain data structure described above that serves to form the 349 
Ledger is distributed among p number of peers for the purpose of independent validation of the data 350 
in the blockchain in order to establish mathematically provable trust within an otherwise trustless 351 
environment. 352 
 353 
Given the often-times decentralized nature of the distribution network, node identities are largely 354 
anonymous.  As a result, there is a challenge in establishing trust with an anonymous party whose 355 
transactions within the Ledger look identical no matter if they are a bad or good actor.  Trust is an 356 
important factor within any network whereby verifiable truth must be established that a specified bit 357 
of data has been recorded into a Ledger and has not been tampered with.  As the blockchain-based 358 
Ledger has been distributed among some number of peer nodes, each individual peer holds the same 359 
exact version of that Ledger.  How to establish trust within this anonymous space?  What prevents 360 
bad-actors from colluding to tamper with the data in the Ledger and still certifying its original 361 
veracity?  Why is it important to distribute the Ledger in the first place?  The answer to these 362 
questions lies within a specific activity that typically occurs within a decentralized distribution 363 
network; namely, consensus. 364 
 365 
Consensus mechanisms are designed to achieve agreement with respect to the veracity as it pertains 366 
to a particular activity within a system.  This has been identified as “a fundamental problem of fault-367 
tolerant distributed computing” [37] – to achieve reliability in distributed systems, protocols are 368 
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needed that enable the system as a whole to continue to function despite the failure of a limited 369 
number of components.  For a Distributed Ledger, the reliability of the system is directly related to 370 
the trust within that system.  The failure in the system directly relates to bad actors whose primary 371 
goal is to undermine that trust in return for personal gain.  In order to achieve trust through 372 
consensus, several algorithms have been designed for this purpose including Proof of Work [34], 373 
Proof of Stake [38], and Practical Byzantine Fault Tolerance [39].  Each algorithm achieves 374 
consensus through different mechanisms, which have both positive and negative attributes to them 375 
[40], leaving the choice of which algorithm to use to the architects of the system and their stated 376 
goals. 377 
 378 
DLT allows a user to record data in an immutable manner through the use of a blockchain data 379 
structure while also obtaining verification of that fact through the use of decentralized and distributed 380 
consensus algorithms.  As a result of these two broad properties, this technology presents a 381 
compelling architecture with respect to maintaining robust transactional integrity for our solution 382 
described herein. 383 

4.2 A DLT-Based Architecture for Research Participant Recruitment and Research Data 384 
Sharing 385 

Figure 1 shows an architecture for a patient-centric stewardship model of research study matching 386 
and clinical data sharing. The goals of this architecture are to: (1) allow patients to perform research 387 
study matching using their health data on their local devices, (2) create immutable public descriptions 388 
of research studies and the data they consume, (3) provide patients with the ability to directly send 389 
their health data from clinical and non-traditional data sources (e.g., apps) to researchers, and (4) 390 
allow patients to control and acknowledge the sharing of their research data. 391 
 392 
The key emerging change in the healthcare market that makes this architecture feasible is the move 393 
towards patient-centric stewardship of data on their mobile devices. As shown in Step 1 of Figure 1, 394 
patients can directly import their health data from a provider onto their mobile phone. Apple devices 395 
provide the HealthKit API and access to Epic EHRs via FHIR.  396 
 397 
The rest of the architecture shown in Figure 1 focuses on enabling devices to discover research 398 
studies and find researchers in need of their data. The core idea is that patients have the ultimate 399 
control of where their data goes and when it may be reused in other research studies. The distributed 400 
ledger component of the architecture facilities the discovery of research studies by creating a public 401 
record of all studies and a precise description of the data consumed by each study. In order to gain 402 
access to research participant health data, researchers must publish the description of their study 403 
(Step 2) into the ledger where it can be discovered by patient devices (Steps 3 & 4). Based on the 404 
data description, participants choose from the lists of studies that they potentially match or that would 405 
benefit from data that they have already provided to a research study in the past to share data with 406 
(Step 5). 407 
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 408 
Figure 1. An Architecture for Enabling Patient-Centric Stewardship of Research Data Using a 409 

Distributed Ledger 410 

4.3 Distributed Ledgers and Research Participant Privacy 411 

Using a public distributed ledger for an application that facilitates both the recruitment of research 412 
participants, as well as the sharing of research data offers a number of advantages. Those advantages 413 
can be grouped into three distinct categories: data security, transaction control, and reliability. When 414 
contemplating data security for a research participant use case, it is important to note that in a public 415 
ledger, the records of all transactions are public and immutable. That is not to say that the underlying 416 
medical data is public, but simply that the descriptions recording the access of data are public. Once a 417 
blockchain operation occurs and the transaction is recorded, that record is immutable and will 418 
propagate to all the peer nodes in the decentralized network. A study published into the blockchain 419 
cannot be retracted and will provide a permanent clear record of the data it consumed. If a research 420 
study is completed, however, it will be flagged as completed and will not be used for participant 421 
matching. 422 
 423 
One architectural possibility would be to have research participants directly record study enrollment 424 
directly in the blockchain. An individual who agreed to participate in a research study would have a 425 
permanent record of any and every study that accessed the participant's data. Likewise, a study would 426 
be able to see what studies a participant has joined. For research studies however, having a public 427 
record of participation is problematic because it violates privacy rules regarding research 428 
participation. To overcome this challenge, the architecture shown in Figure 1 leverages the 429 
distributed ledger only for advertising studies and recording the data that those studies consume. As 430 
shown in Step 2 of Figure 1, researchers publish a description of the study into the ledger, but 431 
participation in studies is handled completely outside of the blockchain.  432 
 433 
With patients stewarding their own medical data, they have the freedom to determine whether to 434 
participate in each research study. Within each study, a patient who is willing to participate would 435 
also be able to decide exactly which data to share with a particular study. This gives patients 436 
complete control over the use of their medical data. One approach would be to use the blockchain to 437 
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facilitate the transfer of the data itself, but this is problematic for the same reason as recording 438 
participation in the blockchain – it would inevitably violate research participant privacy. 439 
 440 
In the architecture shown in Figure 1, all joining of studies and sending of data is performed outside 441 
of the blockchain and directly between the participant and researcher. Step 5 directly sends data to a 442 
research data management platform, such as REDCap [41]. In other work, we have relied on direct 443 
submission of data from participants’ devices to REDCap. The key problem that this architecture 444 
overcomes is finding participants and solving the technical challenges of getting their clinical data 445 
into REDCap from their provider. Further, this architecture allows submission of data from IoT or 446 
other sources accessible to the device (e.g., Bluetooth Glucometers, Wifi Scales, etc.).  447 
 448 
Although a participant may match a study based on an analysis done on the patient’s device, 449 
researchers may still have other criteria that are difficult or impossible to publish into the blockchain 450 
for matching. During the direct communication between the participant and the researcher, the 451 
researcher may choose not to use the participant’s data. In these cases, the data collected from the 452 
participant would need to be discarded by the researcher. A downside of the architecture is that there 453 
is no way to enforce destruction of participant data – although this is also the case in current practice. 454 
The architecture still relies on institutional controls, such as policies and Institutional Review Boards 455 
[42], to ensure researchers act ethically. 456 
 457 
The nature of blockchain networks provides a third important aspect: reliability. Participants and 458 
study providers must be able to trust that the chain of published research studies is valid and will not 459 
disappear. Since blockchains are a network of independent nodes, there is not a single point of 460 
failure, nor is one node able to control the entire network. Before transactions are recorded, they must 461 
be validated according to the consensus mechanism for that network. Once a transaction is validated, 462 
it is recorded and propagated to the individual nodes such that the loss of one or more nodes, or 463 
control of one or more nodes will not impact the validity of the transaction records on the entire 464 
network.  465 

4.4 Research Study Descriptions and Matching Criteria 466 

All research studies added to the blockchain include a request for participants who have a particular 467 
set of medical characteristics. Patients are notified of the availability of the study by their device and 468 
can choose to validate their medical data against the requested characteristics. If validation is 469 
successful, patients can choose to submit the validation (along with additional participation data) to 470 
the study to initiate their participation, as shown in Step 5 of Figure 1. The study provider would see 471 
a transaction indicating a successful match, along with the participation data necessary to include the 472 
patient in the study and validate the match. This chain of transactions could also include the ability 473 
for participants to monetize the use of their data, or generally for their participation, if such were a 474 
requirement. All these transactions take place directly between the participant’s device and the 475 
researcher using a standard platform, such as REDCap. 476 
 477 
In order to expedite the matching process, studies are defined by three sets of characteristics that may 478 
be matched against: boolean conditions (ex: asthma, hypertension), enumerated characteristics (ex: 479 
hair color, relationship status), and ranged characteristics (ex: desired age range, desired weight 480 
range, how long a condition has been diagnosed). These characteristics are provided by researchers 481 
conducting the studies. These simplifications allow for primitive boolean tests to decide whether the 482 
criteria for a study match the healthcare data provided by a given patient. In order for a patient to 483 
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qualify for a given study, they must have a complete (100%) satisfaction of study criteria via a simple 484 
iterative key-value boolean loop. 485 
 486 
Because each study adheres to the same language of matching criteria, relationships can be formed 487 
between the studies. A key benefit of the matching language is that it facilitates condensing the 488 
matching rules across multiple research studies into a single network of rules using the Rete 489 
algorithm [43]. The Rete algorithm is designed to take in a knowledge base of facts (e.g., the 490 
participants’ clinical and IoT data) and efficiently determine which rules from a set should fire (e.g., 491 
which research studies match). Each rule is defined by a set of matching conditions and an action. In 492 
the proposed architecture, the conditions are the research study matching criteria and the action is 493 
proposing to the user a possible research study is matched. The algorithm shares conditions between 494 
rules in a directed acyclic graph so that conditions are only evaluated once regardless of how many 495 
rules include the condition. For example, the condition of the participant having blood pressure above 496 
a threshold would be evaluated once, regardless of how many research studies relied on the same 497 
matching condition. 498 
 499 
The entire body of published studies can be used to collect matching conditions and build an acyclic 500 
matching graph using Rete. A graph analyzes the necessary conditions of one study in conjunction 501 
with the sufficient conditions of another, allowing for the elimination of more complex study 502 
matching should a patient’s data deem them unqualified for a simpler study with a subset of the 503 
matching criteria. For example, if a patient fails to qualify for Study A, which requires participants to 504 
be aged 30-40, then the graph will immediately eliminate Study B which requires participants aged 505 
33-37 with hypertension. In this way, consideration of a simple study can cascade the elimination of 506 
countless nodes/studies in the graph, drastically improving performance on patient-study matching. 507 
The drawback of the dependency graph is the time required to generate the graph. A few 508 
considerations mitigate this cost. First, the graph need only be generated on the server, thus each 509 
mobile device does not have individual time expensed for the graph. This generation of the graph 510 
server-side is captured in Step 4 of Figure 1. Second, the proposed generation of the dependency 511 
graph is to trigger a new server-side build of the graph once daily (optimally during non-peak usage 512 
hours) to update the graph with new studies added to the blockchain and completed studies marked as 513 
no longer recruiting. As such, the dependency graph method best optimizes average-user 514 
performance - and very clearly increases scalability of the matching algorithm. The dependency 515 
graph need only be built once, and then can be shared amongst all mobile device sessions. 516 

4.5 Mediating Mobile Device Blockchain Access 517 

Although there is significant discussion on enabling patient data sovereignty using blockchains, very 518 
few of these discussions address a major fundamental problem – access to the blockchain. Interacting 519 
with a blockchain requires the setup of a node in the distributed ledger, which can be a complicated 520 
endeavor. For example, most Bitcoin [34] users rely on a third-party wallet service [44] to hold their 521 
cryptocurrency, run the required distributed ledger node, and perform trades on their behalf. Despite 522 
the appearance of complete decentralization and control by the user, the user is actually dependent on 523 
the wallet service for access and is not completely in control. 524 
 525 
A similar problem arises in using a blockchain to publish research studies. Blockchains are difficult 526 
to access from a mobile device without an intermediate service, equivalent to a wallet service for 527 
Bitcoin. Directly accessing and validating transactions on a blockchain is both time and energy 528 
consuming, which makes downloading the entire ledger and validating it on a mobile device 529 
problematic. 530 
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 531 
The architecture shown in Figure 1 handles this access issue by introducing a Study Aggregator as 532 
shown between Steps 3 & 4. The study aggregator manages access to the distributed ledger and 533 
watches for the publication of new studies into the ledger. When new studies are published, it 534 
validates and aggregates them into a comprehensive catalog of available studies. 535 
A further function of the study aggregator is to use the Rete algorithm to build the acyclic research 536 
study matching graph described in Section 5.4. Both interacting with the blockchain and constructing 537 
this acyclic graph are potentially expensive operations that are isolated on the server-side aggregator, 538 
where power consumption and processing power are much less problematic. Furthermore, 539 
aggregation and graph construction costs can be paid once and amortized across all mobile device 540 
accesses rather than paid on each individual device. 541 
 542 
The downside of this approach is that it introduces a potential central point of failure and control in 543 
the system. However, there are two key reasons that this is not a significant concern. First, any 544 
number of study aggregators can be run independently by arbitrary organizations. There is no need 545 
for a single study aggregator in the system. Each research institution can run their own study 546 
aggregator and provide aggregation services to research participants’ mobile devices.  547 
Second, the failure of an aggregator only temporarily cuts off access to the study catalog for the 548 
mobile devices currently relying on that specific aggregator. A mobile device can use multiple 549 
aggregators for redundant access or consensus. Even if one aggregator fails, a participant can 550 
discover and use other aggregators. Since the aggregator only produces a derived copy of the 551 
research matching graph, the original research study data is still immutably and reliably stored in the 552 
distributed ledger despite aggregator failures. 553 

4.6 Scalability & Privacy Trade-offs for On-device Matching 554 

An additional consideration of the study aggregator is how it impacts trust, scalability, and privacy 555 
[45]. Any time that trust in the aggregator is reduced, it improves privacy at the expensive of 556 
scalability. The critical privacy and scalability tuning of the system is done in how trust relationships 557 
are established with study aggregators and how much work is offloaded to the aggregator. 558 
 559 
The proposed architecture does not dictate how trust is established in a particular study aggregator. 560 
Our belief is that research institutions already manage the establishment of trust with research 561 
participants and are likely the best conduit to establish these trust relationships. For example, 562 
research institutions could create a trust aggregator and advertise its address on their existing 563 
websites or through face-to-face interactions with clinicians. Alternatively, non-profits organized 564 
around specific interests, such as diseases (e.g., American Cancer Society), could operate and publish 565 
aggregators.  566 
 567 
Mobile devices rely on the acyclic matching graphs produced by the study aggregators. There is an 568 
opportunity to improve scalability and performance on the mobile device by pruning the acyclic 569 
graph at the aggregator to reduce the data transfer to the mobile device and the amount of work 570 
matching against the graph. Any pruning of the graph at the aggregator reduces the workload on the 571 
mobile device, which will be the limiting factor in the scalability of the system if the entire matching 572 
graph for every published study needs to be transferred to each mobile device. 573 
 574 
To improve scalability, mobile devices can either: 1) send a subset of their data to an aggregator to 575 
perform intelligent pruning or 2) subscribe to aggregators that publish graphs pruned to a specific set 576 
of interests. For example, a device can send a limited set of less-sensitive and semi-anonymous data, 577 
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such as age and weight, to the server and receive a pruned subset of the graph that has potentially 578 
viable studies that can be determined with further matching on the device.  The benefit of this 579 
approach is that matching can be more easily scaled. The downside is that the approach inherently 580 
reduces the overall privacy of the system by requiring some set of data from the mobile device. 581 
An alternative approach to improve scalability is to subscribe to an aggregator that publishes a 582 
pruned graph that only contains studies relevant to a specific interest. For example, an aggregator 583 
might only publish studies relevant to a specific disease. This approach also has a privacy trade-off in 584 
that subscription to the aggregator implies interest in a disease or set of diseases, which may have 585 
privacy implications (e.g., interest in cancer implies a cancer diagnosis).  586 
 587 
In either approach, it is expected that once a match is made, the mobile device will begin direct 588 
communication with the study organization to verify the match. As part of this process, an important 589 
secondary verification will be performed, which is that the mobile device will download a description 590 
of the matching criteria directly from the research organization to ensure that the matching graph 591 
from the aggregator was accurate. If there is any discrepancy between the matching logic for the 592 
study published by the aggregator or the research study site, which would indicate tampering by one 593 
of the two entities, the mobile device will discard the match and not continue. This secondary 594 
matching is not full-proof and does indicate possible benefits to use a different aggregator than the 595 
organization operating a given study. 596 
 597 
We performed an initial analysis of the scalability issues regarding research study matching on 598 
participants’ devices versus on the server in terms of time and data transfer. The key scalability 599 
limitation that we found for on-device matching is shown in Figure 2. As the number of studies 600 
grows, the amount of data that has to be transmitted to the mobile device also grows. The analysis 601 
was conducted by randomly generating matching graphs representing varying numbers of studies and 602 
calculating their total size in kilobytes. We developed a compact representation of the graphs – 603 
although it is certainly possible to improve efficiency – and measured the overall amount of data that 604 
would need to be transmitted to the mobile device. As shown in the figure, the overall size of the 605 
matching graph is proportional to the number of research studies, which are expected to continually 606 
grow over time. With our test graph representation, 20,000 studies required transmitting roughly 48 607 
megabytes to a client. Real-world studies may have more overlap in the matching conditions and 608 
there may be much more efficient representations that could lead to smaller graph sizes. This size, 609 
however, is similar in size to an average app download on a mobile device. 610 
 611 
Figure 2 also shows the significant scalability improvement that can be achieved by sending data to 612 
the server and performing matching there. The bars labeled “Server” show the total data transfer 613 
required if the mobile device completely trusts the aggregator to perform matching on its behalf and 614 
sends data needed for matching to the server. As shown in the results, there are multiple orders of 615 
magnitude of overhead added when the mobile device does not trust the aggregator to perform 616 
matching versus when it does.  617 
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 618 
Figure 2. Matching Criteria Graph Size vs. Total Studies 619 

 620 
The potential to have aggregators publish a pruned graph also illustrates a potential security issue. 621 
The mobile devices rely on the aggregator to publish an accurate graph of the studies in the 622 
blockchain. If an aggregator lies, they have the potential to perform a number of attacks from their 623 
trusted position. One potential way to overcome this issue is to use cryptographic signing of studies 624 
so that mobile devices can verify the authenticity of the study before beginning a direct interaction 625 
with a research due to a possible match. However, like any approach that relies on public key 626 
infrastructure, key distribution and trust is a significant issue. Indubitably, a set of trusted roots will 627 
be needed to provide signing chains that can be used to prove that a specific research study originated 628 
with a specific institution and researcher. The precise architecture of this distribution model is left to 629 
future work but is expected to look similar to how SSL certificates are issued for websites [46]. 630 
 631 
Although the architecture has focused on scalability regarding matching, a secondary scalability 632 
concern is the metadata regarding research studies. Each research study includes data on the 633 
organization running the study, the matching criteria, the data collected by the study, and the purpose 634 
of the study. This data is not accounted for in Figure 2 and could be substantial. There are several 635 
architectural approaches to handling the scalability issues surrounding metadata that each have their 636 
own privacy-scalability trade-offs. 637 
 638 
Our approach to handling metadata is to publish a non-blockchain address for retrieving the metadata 639 
directly from the organization hosting the study. For example, an academic institution could host web 640 
pages for each study with the metadata describing the study and include the URL for the metadata in 641 
the study description published to the blockchain. This approach eliminates the need for the 642 
aggregator to publish the catalog of metadata and reduces the data transfer to the mobile device. The 643 
aggregator only publishes the URL to retrieve the metadata and a signed hash of the study metadata 644 
that it read from the blockchain. The mobile device would compare the signed hash to the hash that it 645 
calculates for the metadata after retrieving it from the provided URL. Again, a key distribution 646 
mechanism would be needed and is not covered in the current work.  647 

5 Related Work 648 
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This section presents prior research on the architectures and platforms designed to improve research 649 
study recruitment and summarizes recent work on using DLT and related technologies to enable data 650 
sharing in the healthcare space.  651 

5.1 Research Participant Recruitment 652 

To date, there has been a number of efforts on providing patients, volunteers, and researchers with 653 
resources and information on clinical studies covering a large number of conditions and diseases. 654 
ClinicalTrials.gov [47], a web-based, centralized clinical trial repository, is one of the most popular 655 
platforms where researchers register their trials publicly so that participants can easily access the 656 
study information. It is the largest clinical trial registry in the U.S. with over 300,000 trials reported. 657 
It does not contain all clinical studies, however, because some studies are not required to be 658 
registered. ResearchMatch.org [48] is another web-based, centralized platform for matching 659 
volunteers with actively recruiting trials and therefore maintains a subset of trials from 660 
ClinicalTrials.gov. ResearchMatch.org has a large number of volunteer users with their self-reported 661 
information, such as conditions and medications, that is used to provide basic trial recommendations 662 
based on a trial’s primary conditions targeted. Besana et al. [49] proposed a domain-specific semantic 663 
ontology to represent data from patient health records and to evaluate patients’ eligibility to clinical 664 
trials. Another increasingly popular strategy to improve recruitment is the use of clinical trial alert 665 
tools that automatically apply eligibility criteria to EHRs in order to identify potential participants 666 
proactively [50]. 667 

5.2 DLT-Based Healthcare Data Sharing Frameworks 668 

Due to the increasing popularity of DLT given its unique properties, many based healthcare data 669 
sharing frameworks based on distributed ledgers have been introduced in literature [51]. For 670 
example, the MedRec system [52] was proposed as a blockchain implementation of a healthcare data 671 
warehouse that facilitates clinical data sharing. The FHIRChain framework [53] was designed to 672 
enable data sharing between various healthcare data sources using the FHIR protocol and 673 
incorporated a number of key technical requirements of an interoperable healthcare service. Peterson 674 
et al. [54] presented a healthcare blockchain with a single centralized source of trust for sharing 675 
patient data, introducing "Proof of Interoperability" based on conformance to the FHIR protocol as a 676 
means to ensure network consensus. More recently, Xia et al. [55] described a blockchain-based 677 
system called “MeDShare” for enabling medical data sharing among cloud service providers. 678 
OpTrak, a DLT-based architecture used for exchanging and tracking opioid prescriptions is also 679 
proposed in [56]. 680 

6 Concluding Remarks 681 
Given the fundamental importance of capturing a complete picture of a patient’s healthcare history, 682 
why do researchers and medical institutions not have a universal system to share the needed research 683 
data? Currently, healthcare information is generally captured using electronic medical records by 684 
each individual provider. However, a variety of factors, ranging data format incompatibility, differing 685 
approaches to labs, and challenges in identifying patients has led to a model where healthcare data 686 
does not flow freely between all providers. 687 
 688 
Overcoming the challenges of healthcare data exchange are going to require allowing patients to 689 
easily control and move their data between providers and to get their non-traditional data from apps 690 
and other sources into their medical record. However, moving to a patient-centered medical data 691 
stewardship model faces immense challenges if all of the data stewardship falls solely on the medical 692 
institutions, ranging from the existing issues with data formats and labs, to additional barriers to how 693 
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all patients, not just the most technically sophisticated, can durably store and authorize access to their 694 
data in a secure way. The underlying healthcare networks are inherently decentralized, so there is 695 
also a challenge of figuring out how to move to provider a patient-centered model without a central 696 
authority to mediate exchange and mandate decisions.  697 
 698 
Doctors also face the daunting challenge of trying to diagnose patients from a combination of 699 
symptoms and medical history. A patient’s medical record provides essential clues to a provider that 700 
help, both to diagnose patients more accurately and also help eliminate possibilities and often 701 
associated diagnostics or procedures that may expose patients to additional risk. Whenever medical 702 
information is missing, the impact can be longer, less accurate, and more risking diagnostic 703 
processes. 704 
 705 
This paper explores the conflicting forces that make achieving a patient-centered stewardship hard 706 
and investigates how the emerging capabilities of decentralized ledgers may help to alleviate some of 707 
these conflicts. A key goal of the work is to understand where DLT can serve a role in a patient-708 
centered model, what problems it solves, what new problems it introduces, and what problems still 709 
remain unaddressed. Further, through the investigation, the paper analyzes distributed ledger 710 
architectural options and how they resolve conflicting forces at different levels.  711 
The final component of the paper is a prototype architecture for using distributed ledgers to facilitate 712 
a patient-centered data stewardship model. The architecture draws insights from the detailed 713 
exploration and architectural trade-offs analysis to prescribe a set of proposed standards for using 714 
DLT in this domain.  715 
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