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Introduction
This article examines the transformative potential of generative artificial intelligence (AI) in redefining 
software engineering and acquisition practices. Distinguished by the ability to create new content 
from vast datasets, generative AI promises increased productivity and innovation that is particularly 
relevant for the Department of Defense (DoD). However, adopting generative AI poses both opportu-
nities and challenges. This article delves into the nature of generative AI, focusing on large language 
models (LLMs) that produce text-based content and highlighting their application for tasks like code 
generation, document summarization and discrepancy analysis, and decision support. However, the 
potential pitfalls of AI, such as overfitting and biased outputs, necessitate robust validation methods 
and human oversight. We advocate integrating generative AI with human expertise to navigate the 
challenges and fully leverage its potential in software engineering and acquisition.

Demystifying Generative AI and LLMs
Generative AI is only one form of AI, which also includes machine learning, expert systems, neural 
networks, fuzzy logic, evolutionary algorithms, and reinforcement learning [1]. Understanding what 
makes generative AI different from other forms of AI is crucial for understanding how it can best be 
applied to solve software engineering and acquisition problems. For example, machine learning and 
generative AI both rely on training sophisticated models, but these models excel at different tasks. 
Machine learning typically focuses on classification problems (e.g., recognizing an object within an 
image), whereas generative AI differs in its ability to create new content (e.g., generating answers to 
user questions). 

A large language model is a form of generative AI that creates text-based content and has many 
potential applications in software engineering and acquisition, both of which are domains with exten-
sive text-based content. At its core, an LLM is a sophisticated neural network trained on enormous 
repositories of data encompassing books, code, articles, and websites. Through this training, an LLM 
grasps the intricate patterns and interconnections within the input it’s trained upon. The probabilis-
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tic and randomized selection of the “next token” when generating outputs can provide users with an 
impression of correctness and style. Consequently, LLMs can produce coherent output, including 
grammatically accurate sentences and passages that closely resemble human-generated content, as 
well as syntactically and semantically precise software code segments. 

Challenges and Considerations
AI models are distinct from other types of models (e.g., simulation models) that encode precise 
mathematical or physics-based rules for a domain. AI models are statistically based, and they learn 
patterns from training on large data corpora. While this training allows AI models to discover rela-
tions that humans may not recognize, the statistical nature of AI models can also yield errors. Conse-
quently, AI models face several pitfalls that include overfitting to specific datasets or failing to adapt 
to new and diverse data scenarios. These pitfalls underscore the need for robust validation methods 
to ensure these tools are enhancing, rather than compromising, the quality and reliability of software 
products. 

LLMs, for example, are generally adept at parsing and generating nuanced text, which is valuable 
for generating documentation, commenting on code, and facilitating conversational interfaces within 
development tools [2]. The application of LLMs is not without challenges, however, since they can 
misrepresent context or yield biased output based on the data they were trained on. Consequently, 
careful human review and oversight is needed to align the text output of LLMs with software develop-
ment standards, governance policies, and ethical norms.

Opportunities
Despite these issues, incorporating generative AI—particularly LLMs—into software engineering and 
acquisition processes can yield a number of benefits. For example, LLMs can enhance problem-solv-
ing capabilities, streamline the creation and management of technical documentation, and foster 
adaptive information-centric workflows. Naturally, generative AI must be applied judiciously, with care-
ful attention to potential biases, error margins in novel situations, the clarity of user query interpreta-
tion, and the ethical implications of their deployment. 

The synergy between human expertise and generative AI in software engineering and acquisition is 
essential to leverage the full potential of these technologies. As generative AI continues to progress, it 
should not supplant human involvement but rather complement it, ensuring that AI-augmented out-
puts are understandable and ethically sound. It is vital to maintain human oversight to validate the 
reliability and accuracy of outputs produced by generative AI. 

While the generative AI discussion in this paper focuses on a single modality (text) in conjunction with 
LLMs, applications in other modalities are maturing quickly. Generative AI can already create images, 
audio, and video based on text input, each of which creates additional opportunities for the applica-
tion of this technology. For example, generative AI can be used to: 

1. Create prompt-based prototypes [3]

2. Simulate user interface designs

3. Create educational videos that demonstrate the use of new software tools or features

4. Automate the production of training materials based on acquisition documents

5. Generate realistic audio-visual scenarios for testing software interoperability
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6. Craft visualizations that help stakeholders understand the impli-
cations of different software architectures.

Generative AI in Software Engineering
The integration of generative AI presents various opportunities in software engineering tasks, such as 
code generation, configuration deployment, and testing support, as summarized below:

• It can generate boilerplate code, significantly enhancing software development workflows by 
reducing manual coding errors and increasing developer productivity. 

• It can generate setup and provisioning files for software environments, ensuring consistency 
and accuracy across configurations of multiple deployments. 

• It can generate tests for edge cases, increasing the coverage and reliability of software testing 
processes.

Used appropriately, tools that incorporate generative AI can help developers significantly accelerate 
the development of experimental defense capability by enabling rapid prototyping and simulation. An 
ongoing challenge, however, involves defining success criteria for the many emerging uses of genera-
tive AI in software engineering [4]. Our experience at the Carnegie Mellon University (CMU) Software 
Engineering Institute (SEI) —a DoD federally funded research and development center (FFRDC)—
indicates that integrating generative AI into the software development lifecycle (SDLC) requires a 
measured approach, balancing concerns like disclosure, accuracy, and ethical use [5][6][7]. Success 
hinges on developing organizational policies for such concerns and adapting to evolving governance 
and regulations. 

An empirical understanding of workflow alterations and data collection helps inform decisions about 
the success of new approaches. For instance, by tracking the time required for automated code 
generation versus manual coding practices, organizations can assess productivity gains and deter-
mine the optimal integration of AI-augmented methods within their development lifecycles. Moreover, 
traditional practices, such as code reviews with customized checklists, may even regain prominence, 
providing humans in the loop with the tools and methods to ensure the reliability and testability of 
code and systems developed with the assistance of generative AI. 

Figure 1. Taxonomy 
of AI Augmentation for 

System Operations and 
the Software Devel-
opment Lifecycle.
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Figure 1 expands upon the vision presented in our 2021 book, Architecting the Future of Software 
Engineering: A National Agenda for Software Engineering Research & Development, to codify oppor-
tunities for applying AI augmentation in both system operations and the SDLC, ranging from conven-
tional methods to fully AI-augmented methods [8][9]. Use of generative AI is a driver of the degree of 
AI-augmentation in the SDLC axis in the scope of our discussion in this paper, but use of AI technolo-
gies in operations or the SDLC is not limited to generative AI. 

Each quadrant in Figure 1 is summarized below:
• Conventional systems built using conventional SDLC techniques—This quad-

rant represents a low degree of AI augmentation for both system operations and the SDLC, 
which is the baseline of most software-reliant projects today. An example is an avionics mis-
sion computing system that uses distributed object computing middleware and rate monotonic 
scheduling and is developed using conventional SDLC processes without any AI-augmented 
tools or methods.

• Conventional systems built using AI-augmented techniques—This quadrant rep-
resents an emerging area of research, development, and practice in the software engineering 
community, where system operations have a low degree of AI augmentation, but AI-augmented 
tools and methods are used in the SDLC. An example is a website hosting service where the 
content is not AI augmented, but the development process employs AI-based code generators 
(such as GitHub Copilot), AI-based code review tools (such as Codiga), and/or AI-based test-
ing tools (such as DiffBlue Cover).

• AI-augmented systems built using conventional SDLC techniques—This quad-
rant represents a high degree of AI augmentation in systems, especially in their runtime oper-
ations, but uses conventional methods in the SDLC. An example is a recommendation engine 
in an e-commerce platform that employs machine learning algorithms to personalize recom-
mendations, but the software itself is developed, tested, and deployed using conventional Agile 
methods and the React.js and Node.js frameworks.

• AI-augmented systems built using AI-augmented techniques—This quadrant 
represents the pinnacle of AI augmentation, with a high degree of AI-augmentation for both 
systems operations and the SDLC. An example is a self-driving car system that uses machine 
learning algorithms for navigation and decision making while also using AI-driven code genera-
tors, code review and repair tools, unit test generation, and DevOps tools for software develop-
ment, testing, and deployment.

Applying generative AI for AI-augmented methods in software engineering is likely to change many 
processes across the SDLC. Further work is needed to address potential errors unique to genera-
tive AI (e.g., new tools for detecting and addressing these errors) and methods for measuring the 
impact of generative AI use (e.g., on feature delivery rates and data protection). Software engineer-
ing research to date has largely focused on demonstrating application of LLMs to improve routine 
software engineering tasks, demonstrating improvements along building conventional systems using 
AI-augmented SDLC techniques. Examples include:

• Using LLMs in test automation [10]
• Converting requirements to machine readable formats [11]
• Auto code completion [12]
• Code comment generation [13]
• Program repair [14]
• Code review [15] 

Works such as these, focusing on improving tasks using LLM approaches, need to be complemented 
by approaches which look at end to end workflows and how to complement LLMs with other automa-
tion. 
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Moreover, research is needed to develop specialized AI models for domains and technologies that 
are uncommon outside of the DoD. For example, commercial generative AI will likely favor current 
technologies (such as service-oriented architectures and mobile cloud computing) and popular pro-
gramming languages (such as Python and Rust). Consequently, it may be hard for DoD programs to 
leverage generative AI capabilities in less common settings, such as maintenance and modernization 
of systems that use older programming languages, such as Fortran, Jovial, or even Cobol.   

Generative AI in Acquisition
The application of generative AI to DoD acquisition is a potentially transformative shift, offering oppor-
tunities to streamline processes, enhance strategic decision making, and optimize use of limited 
expertise and resources in DoD acquisition [16]. In the highly complex, heavily regulated, and securi-
ty-sensitive domain of DoD acquisition, generative AI can perform several pivotal tasks, including the 
following:

• It can summarize voluminous policy documents (e.g., DoD directives, instructions, memo-
randa, and guidance) and assist in updating the documentation to increase consistency.

• It can sift through extensive regulatory policies and standards to identify the most relevant 
areas for a specific acquisition or system context and assist in monitoring regulatory compli-
ance throughout the system lifecycle.

• It can assist in identifying potential risks or threats within the acquisition process, for example 
from cyber threats or supply chain compromises. This proactive and ongoing identification 
allows for the implementation of robust security measures and risk mitigation strategies.

Success in applying generative AI within defense acquisition can be evaluated via several criteria, 
including the enhancement of national security, the efficiency of procurement processes, the regula-
tory compliance of acquired defense systems, and the effectiveness of risk management. Measur-
able outcomes include the reduction of development and procurement timelines, improvements in 
the quality and performance of defense capabilities, and higher mission resilience through regulatory 
compliance and risk mitigation.

The application of generative AI in defense acquisition workflows similarly includes multiple risks and 
considerations. The reliance on generative AI to inform decision-making processes necessitates clear 
process and scrutiny to reduce biases and ensure data integrity. Moreover, there’s the challenge of 
ensuring that AI-generated solutions comply with international laws and ethical standards related 

Figure 2. Taxonomy 
of AI Augmentation for 

System Operations and 
Acquisition Activities.
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to defense acquisition. To mitigate these risks, a well-balanced approach that combines generative 
AI with human expertise and oversight is crucial to ensuring defense acquisition processes remain 
secure, efficient, and aligned with strategic objectives.

Figure 2 depicts opportunities for applying AI augmentation in both system operations and acquisition 
activities, ranging from conventional to fully AI-augmented methods. Use of generative AI is a driver 
of the degree of AI-augmentation in the acquisition activities axis in the scope of our discussion in this 
paper, but use of AI technologies in operations and the SDLC is not limited to generative AI. 

Each quadrant in Figure 2 is summarized below.
• Conventional systems acquired using conventional acquisition methods—

This quadrant represents a low degree of AI augmentation (if used at all) for both system oper-
ations and acquisition, which is the baseline of the vast majority of software-reliant acquisition 
programs today. An example is a military-grade GPS satellite system that uses traditional data 
transmission and encryption for operations and is developed using conventional acquisition 
processes without any AI-augmented tools or methods.

• Conventional systems acquired using AI-augmented acquisition methods—
This quadrant represents an emerging area of research in the acquisition community in which 
system operations have a low degree of AI augmentation, but AI-augmented tools and meth-
ods are used in the acquisition activities. An example is a GPS-guided munition where the 
content is not AI-augmented, but the acquisition activities employ AI-assistance in identifying 
and analyzing relevant regulations, standards, and potential security risks.

• AI-augmented systems acquired using conventional acquisition methods—
This quadrant represents a high degree of AI augmentation in systems, especially in opera-
tions, but uses conventional methods in the acquisition. An example is a radar system that 
employs machine learning to identify and prioritize possible targets, but the system is acquired 
using conventional methods.

• AI-augmented systems acquired using AI-augmented acquisition methods—
This quadrant represents the pinnacle of AI augmentation, with a high degree of AI-augmen-
tation for both systems operations and the acquisition. An example is an autonomous vehicle 
or platform that employs AI to navigate while also using AI-augmented acquisition processes, 
methods, and tools, such as text summarization and semi-automated regulatory compliance.

It is important to recognize that applying advanced tool support to acquisition tasks—especially gen-
erative AI-based techniques—is still in its infancy. Further work is needed, therefore, on developing 
more sophisticated generative AI models that can: 

1. Understand and interpret large and complex acquisition documents
2. Enhance the data analytics capabilities to forecast project outcomes and risks more accurately

3. Create more intuitive interfaces for human-AI interaction to facilitate decision making

4. Conduct comprehensive studies on the long-term impacts and 
ethics of AI integration into the acquisition process

Moreover, acquisition professionals must be trained to manage and collaborate with AI-augmented 
processes and systems effectively to enable the seamless integration of AI tools within existing acqui-
sition workflows, as discussed in the “Essential Generative AI Skills for the Workforce of Tomorrow” 
section on page 36.
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Example Software Engineering and 
Acquisition Use Cases 

The ability of LLMs to generate plausible content for text and code applications in software engineer-
ing has motivated steadily increasing experimentation by researchers and practitioners. For example, 
a literature review of 229 research papers written between 2017-2023 on the application of LLMs to 
software engineering problems finds applications spanning requirements, design, development, test-
ing, maintenance, and management activities, with development and testing being the most common 
[2].

Based on our work with many government organizations, the SEI has adopted a broader perspective 
and formulated several dozen ideas for using LLMs in common software engineering and acquisition 
activities (see Table 1 for examples) [5]. Two important observations emerged from this activity. First, 
most use cases represent human-AI partnerships in which an LLM or generative AI service could be 
used to help humans complete tasks more quickly (as opposed to replacing humans). Second, decid-
ing which use cases would be most feasible, beneficial, or affordable is a non-trivial decision for those 
organizations just getting started with LLMs. A discussion on developing use cases and assessing the 
suitability of generative AI is available in the SEI report on Assessing Opportunities for LLMs in Soft-
ware Engineering and Acquisition [5].

Software 
Engineering Use 

Cases

Acquisition Use 
Cases

SE1. A developer uses an LLM to find vulnerabil-
ities in existing code, hoping that the exercise will 
catch additional issues not already found by static 
analysis tools.

A1. A new acquisition specialist uses an LLM to 
generate an overview of relevant federal regula-
tions for an upcoming RFP review, expecting the 
summary to save time in background reading.

SE2. A developer uses an LLM to generate code 
that parses structured input files and performs 
specified numerical analysis of its inputs, expect-
ing it to generate code with the desired capabili-
ties.

A2. A chief engineer uses an LLM to generate a 
comparison of alternatives from multiple propos-
als, expecting it to use the budget and schedule 
formulas from previous similar proposal reviews 
and generate accurate itemized comparisons.

SE3. A tester uses an LLM to create functional 
test cases, expecting it to produce a set of text 
test cases from a provided requirements docu-
ment.

A3. A contract specialist uses an LLM to generate 
ideas for an RFI solicitation given a set of con-
cerns and a vague problem description, expect-
ing it to generate a draft RFI that is at least 75% 
aligned with their needs.

SE4. A developer uses an LLM to generate soft-
ware documentation from code to be maintained, 
expecting it to summarize its functionality and 
interface.

A4. A CTO uses an LLM to create a report sum-
marizing all uses of digital engineering technol-
ogies in the organization based on internal doc-
uments, expecting it can quickly produce a clear 
summary that is at least 90% correct.

Table 1. Sample Software Engineering and Acquisition Use Cases.
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Table 1. Sample Software Engineering and Acquisition Use Cases.

SE5. A software engineer who is unfamiliar with 
SQL uses an LLM to generate a SQL query 
from a natural language description, expecting 
it to generate a correct query that can be tested 
immediately.

A5. A program office lead uses an LLM to eval-
uate a contractor’s code delivery for compliance 
with required design patterns, expecting that it will 
identify any instances in which the code fails to 
use required patterns.

SE6. A software architect uses an LLM to vali-
date whether code that is ready for deployment is 
consistent with the system’s architecture, expect-
ing that it will reliably catch deviations from the 
intended architecture.

A6. A program manager uses an LLM to summa-
rize a set of historical artifacts from the past six 
months in preparation for a high visibility program 
review and provides specific retrieval criteria 
(e.g., delivery tempo, status of open defects, and 
schedule), expecting it to generate an accurate 
summary of program status that complies with the 
retrieval criteria.

SE7. A developer uses an LLM to translate sev-
eral classes from C++ to Rust, expecting that the 
translated code will pass the same tests and be 
more secure and memory safe.

A7. A program manager uses an LLM to gener-
ate a revised draft of a statement of work given 
a short starting description and a list of concerns 
(e.g., cybersecurity, software delivery tempo, 
and interoperability goals). The program man-
ager expects it to generate a structure that can 
be quickly refined and that includes topics drawn 
from best practices that they may not think to 
request explicitly.

SE8. A developer uses an LLM to generate syn-
thetic test data for a new feature being devel-
oped, expecting that it will quickly generate syn-
tactically correct and representative data.

A8. A requirements engineer uses an LLM to 
generate draft requirements statements for a pro-
gram upgrade based on past similar capabilities, 
expecting them to be a good starting point.

SE9. A developer provides an LLM with code that 
is failing in production and a description of the 
failures, expecting it to help the developer diag-
nose the root cause and propose a fix.

A9. A contract officer Is seeking funding to con-
duct research on a high priority topic they are not 
familiar with. The contract officer uses an LLM to 
create example project descriptions for their con-
text, expecting it to produce reasonable descrip-
tions.

Deciding When (and When Not) to 
use Generative AI 

As generative AI continues to reshape day-to-day tasks in the software engineering and acquisition 
ecosystems, a key question to consider is when generative AI should and should not be used. Some 
transformative opportunities exist that boost productivity, such as coding, testing, simulation, doc-
ument analysis, and data synthesis. However, challenges like “hallucinations” (which are incorrect 
information generated by an LLM) and data disclosure necessitate a measured approach. 

Determining the suitability of generative AI for any given task depends on assessing the nature and 
complexity of the task against concerns like data disclosure, accuracy, and ethical use, especially 
in sensitive contexts like DoD acquisition programs. Recognizing such concerns and deciding how 
to address each helps decision makers make more informed choices. Multiple perspectives should 
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therefore be considered before adopting generative AI since it sometimes produces incorrect results. 
Figure 3 depicts this perspective based on the following two questions: 

• How much time and effort are needed for users to recognize that results from generative AI are 
incorrect? 

• What are the consequences of users acting on mistaken results? 

Figure 3. Two Ways of Evaluating Concerns 
with the Generation of Incorrect Results.

Figure 3 shows a 
notional placement 
of the use cases 
from Table 1. The 
actual placement 
would require refine-
ment of these use 
cases for specific 
application contexts, 
but the notional 
placement on these 
two questions pro-
vides insights into 
the opportunities 
for applying LLMs 
to a range of use 
cases. The upper-
right (green) quad-
rant is ideal since 
mistakes have small 
consequences and 

users can detect them with minimal effort. Use cases in this quadrant are thus a good place for orga-
nizations to begin experimenting with generative AI adoption. In contrast, the lower-left quadrant 
represents the least favorable use cases for applying generative AI since mistakes have large conse-
quences and require extensive time and effort for users to detect. 

Software development organizations and acquisition programs can employ several strategies to 
manage concerns about the use of generative AI. The following sections describe local deployment, 
use of domain-specific models, and the establishment of ethical use guidelines as three candidate 
strategies relevant to government use cases, as well as use cases for other high-stakes domains, 
such as healthcare, finance, and law.

Local Deployment to Mitigate Data Disclosure Challenges 
Use of commercial generative AI services often requires users to share data they operate on (e.g., 
prompts, code being generated, and documents being summarized) with the service provider 
because the models are hosted remotely. While not all use cases require sharing sensitive data, 
many do, which is unacceptable for defense systems, defense software engineering, and defense 
acquisition. For example, uploading proprietary or controlled unclassified information (CUI) doc-
uments to a generative AI service violates data disclosure rules since those documents would be 
ingested into the generative AI service and therefore accessible to unauthorized individuals.

Strategies for handling sensitive data disclosure in the DoD and other high-stakes domains may 
involve the use of synthetic data to address disclosure concerns, although this approach has limita-
tions [17]. New approaches for security classification adherence are also needed to ensure appro-
priate handling of classified and unclassified data. Human oversight remains vital for task-specific 
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applications, with continuous human involvement ensuring that data is only disclosed as permitted by 
policy and regulations.

One way to significantly mitigate this risk is to rely on LLMs that are hosted on trusted networks and 
share no information with the model’s owner. Local LLMs can include models that are trained locally, 
open-source models that are deployed locally, or commercial offerings that are deployed locally (e.g., 
complying with FedRAMP guidance). Although local LLMs may not be as powerful or up-to-date as 
their remote counterparts, they may be viable choices for many applications based on the success 
criteria, evaluation criteria, and risk concerns of each use case.

Use of Domain-Specific Models to Enhance Generative AI 
Accuracy

Exploring the role of domain-specific models may aid the use of generative AI in specialized envi-
ronments. Domain-specific LLMs are trained on data from a specific geographical or organizational 
context, which can capture nuances and patterns relevant to that particular environment [18]. These 
models contribute to improved accuracy and relevance in generating outputs tailored to local require-
ments, ensuring that the generated content aligns closely with the specific needs of the intended 
users or stakeholders. In the context of software engineering and acquisition, domain-specific models 
can be trained to understand and generate content that is deeply intertwined with the unique prac-
tices, terminology, and challenges of these fields. 

For instance, within software engineering, domain-specific models could predict how changes to 
one part of a system might affect the rest or suggest software patterns that are most appropriate for 
a given requirement. In software acquisition, these models could simulate the project management 
lifecycle to forecast potential risks and outcomes, generate documentation that aligns with legal and 
industry standards, or optimize the allocation of resources. This tailored application of generative AI to 
the intricacies of software development and procurement processes can lead to more precise require-
ment analyses, better cost estimations, and improved strategic decision making, thereby enhancing 
the overall quality and reliability of software products and the efficiency of acquisition processes.

Domain-specific models for software engineering can also be trained on a vast repository of code 
unique to a specific programming language or framework. This specialization allows generative AI 
to offer more accurate and contextually relevant code suggestions, aiding developers in their coding 
tasks. Investing in domain-specific models for defense applications helps align their capabilities with 
the unique needs of hyperspectral imaging, radio frequency sensing, and other modalities. 

Domain-specific models also come with challenges, however, including assembling enough quality 
training data and verifying output behaviors. These challenges should be evaluated carefully, so that 
the net benefit to the system is an improvement in productivity, capability, or some other relevant 
metric. Nevertheless, the incorporation of domain-specific models in generative AI has the potential to 
ensure a more tailored and context-aware application of AI technologies.

Establishing Responsible and Ethical Use Guidelines
The responsible use of generative AI in tomorrow’s workforce is critical to mitigate the potential risks 
and ethical concerns associated with this technology. Responsible and ethical development and 
use of generative AI is an area of concern that spans multiple activities, including (but not limited to) 
data collection and preparation, model development, and use of generative AI tools and services. 
Challenges include the perpetuation of biases inherent in training data, the necessity for consistent 
monitoring and updates to prevent misuse, and the complexities surrounding the explainability of 
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sophisticated models. Addressing these challenges requires an ongoing commitment to research, col-
laboration, and transparency to foster an equilibrium between innovation, development, and responsi-
ble use. It is critical to establish the scope of activities for intended use and clarify the guidelines that 
are most applicable to stakeholders. 

The capabilities of generative AI models are evolving rapidly, so it is essential to educate users on 
their responsible use. There is an emerging consensus among developers and users that the most 
effective generative AI tools are those that empower users with control over data privacy, model train-
ing parameters, and content generation constraints [19]. Usage patterns across software engineer-
ing and acquisition reveal a consistent interactive cycle that includes prompting the AI, executing an 
action based on its response, and then proceeding with further prompts. 

AI-augmented methods should keep humans in the loop for multiple reasons, one of which is to be 
a safeguard and take responsibility for the outcome. Generative AI does make mistakes, so humans 
should operate with that assumption and compensate. This iterative, human-in-the-loop approach 
underscores the critical need for guidelines on the appropriate use of generative AI, accentuating the 
pivotal role of users. Some guidelines will be straightforward (such as simply reminding users of the 
organization’s data privacy and information disclosure policies) whereas others may require strategies 
that include limiting use of generative AI services for particular use cases. 

The landscape of responsible and ethical AI development and application is expanding, with numer-
ous frameworks emerging to mitigate AI’s unintended impacts, including those from generative AI. 
For instance, the Defense Innovation Unit (DIU) has formulated Responsible AI (RAI) guidelines to 
streamline the evaluation process for those involved in AI project development, such as program 
managers, commercial vendors, or government collaborators [20]. These guidelines cover a broad 
spectrum of considerations, including legal, procurement, technical, and operational aspects. They 
offer directives for both AI tool developers and users; for instance, outlining the extent of technical 
transparency required while safeguarding proprietary data. Organizations are encouraged to augment 
these guidelines with their specific procedures and data-sharing policies, ensuring alignment with 
their domain-specific requirements.

The broad adoption of responsible AI in software engineering and acquisition is also contingent on 
legal maturity. As service providers begin to indemnify outputs from generative AI tools against intel-
lectual property infringements, we anticipate the formation of a trusted ecosystem. This ecosystem 
will be critical in fostering responsible use and ensuring that generative AI is leveraged to enhance, 
rather than compromise, the quality and reliability of software products and services.

Essential Generative AI Skills for the 
Workforce of Tomorrow

Generative AI will augment, rather than replace, the capabilities of software engineers and acquisition 
professionals for the foreseeable future. Consequently, workers in both professions must maintain 
expertise in their respective domains. Software engineers will need proficiency with requirement anal-
ysis, software design, programming languages, testing practices, and deployment. Likewise, acqui-
sition professionals will need proficiency with acquisition regulations, acquisition pathways, and their 
application to different system contexts [21].

To unlock the potential of generative AI, however, software engineers and acquisition professionals 
should cultivate new skills, such as those visualized in Figure 4. For example, both should learn 
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prompt engineering and how to apply prompt patterns to elicit effective results from generative AI 
[22]. Likewise, both should master decomposing complex issues into manageable components and 
assessing which of these issues generative AI can help solve. Above all, users who responsibly exer-
cise curiosity, experimentation, and a willingness to learn new skills will guide the DoD in successfully 
adapting to the dynamic landscape of generative AI. 

Figure 4. Representative Skillsets for Soft-
ware Engineers and Acquisition Pro-

fessionals Using Generative AI.

When skillsets are visu-
ally summarized (as seen 
in Figure 4), it becomes 
clear that generative AI 
does not replace software 
and acquisition profes-
sionals, but rather aug-
ments their effectiveness 
through new skills, such 
as prompt engineering 
and problem decomposi-
tion. Individual effective-
ness in utilizing genera-
tive AI may vary based 
on skills, experience, 
and adaptability. Some 
individuals may naturally 
excel in leveraging these 
tools for code generation, 
problem-solving, and 
documentation, whereas 
others may require more 
extensive training. Either 
way, continuous learning 
and adaptability are key. 

Given generative AI’s tendency to make mistakes, validating the outputs of generative AI is an essen-
tial activity for both the software engineering and acquisition communities. The specific skills needed 
to validate output will vary with nature of the task and data, but two questions should always be con-
sidered: Is the information in the output correct, and is any information missing from the output?  Here 
are some examples:

• Generating source code for specific requirement—Users can write unit tests to 
confirm that computations performed by generated code are correct. Likewise, users can 
inspect the generated code to confirm that it does not performing any unnecessary work.

• Summarizing document contents from a specific stakeholder perspective—
Users can request a summary of main points from a document relevant for a specific stake-
holder (e.g., a software safety engineer, reliability engineer, cybersecurity analyst, etc.) and 
fact check the summary by searching the source material for relevant facts. Users can review 
the source material to confirm that essential and relevant points are included in the summary.

Incorporating generative AI tools into the software engineering educational curricula will help the 
emerging workforce [23]. Of course, existing software engineers must stay abreast of advancements 
throughout their career because changes happen quickly. Generative AI tools can also assist the 
acquisition workforce in keeping current with updates to acquisition regulations. However, acquisition 
professionals are responsible for codifying significant shifts in best practices and new system types, 
pending the availability of adequate new data to train generative AI tools.
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Organizations offering training for acquisition professionals, such as Defense Acquisition Univer-
sity, will also need to incorporate generative AI into their curricula. While generative AI itself may not 
replace jobs, those who excel in using generative AI tools might surpass others in the job market. As 
the landscape of system development evolves, adapting to change and acquiring skills in the use of 
generative AI will be crucial for staying competitive in the dynamic and exciting future envisioned by 
the software engineering community. 

Conclusion: We Must Learn to Nav-
igate an AI-augmented Future for 

Software Engineering and Acquisition
The initial adoption phase of generative AI in software engineering and acquisition will likely be tumul-
tuous as users navigate the applicability and utility of these tools to different tasks. Some ideas will 
be highly successful, whereas others will prove disappointing. This exploratory phase is crucial as we 
collectively learn the potential of generative AI to shape future research and application throughout 
the DoD.

Software engineers across the globe are already applying generative AI in software engineering 
today, demonstrating practical applications in code generation for routine tasks. This early adoption 
has the potential to grow into more impactful applications, including accelerating software moderniza-
tion (e.g., by resolving technical debt and repairing critical errors) and quickly assembling prototypes 
(e.g., by crawling software repositories to identify compatible candidate software elements). Similarly, 
application of generative AI to acquisition activities has potential to improve the efficiency of summari-
zation and document generation of acquisition artifacts.   

Generative AI significantly lowers the barrier to entry for content generation, with potentially mixed 
implications. These technologies are empowering users without formal software engineering back-
grounds to solve complex problems using natural language interfaces, which opens access to the 
ideas and imagination of a much larger population. This empowerment also brings challenges, how-
ever, especially in terms of ensuring the quality of generated content when users lack the deep tech-
nical knowledge traditionally associated with software engineering roles. The impact of incorporating 
generated content without the benefit of conventional engineering review on system stability, security, 
and operational accuracy are unknown. It is important to recognize that generative AI services are 
tools to assist users, they do not replace expertise in software engineering and acquisition. 

The educational landscape for software engineering and acquisition must evolve to integrate genera-
tive AI, preparing students and professionals alike to harness these tools effectively while also under-
standing their limitations and inherent biases. This curriculum development will facilitate a new breed 
of software engineers and acquisition professionals skilled in generative AI use and critical evaluation, 
ensuring their ability to innovate responsibly while maintaining ethical standards. These future-fo-
cused educational strategies are essential as generative AI increasingly becomes integral to many 
disciplines and domains, emphasizing a blend of technical proficiency with a thorough grasp of AI’s 
ethical and practical implications. This balanced approach will foster professionals who can navigate 
the complexities of using generative AI and contribute to its ethical advancement.

In conclusion, navigating the future AI-augmented software engineering and acquisition is a tapestry 
of opportunity and responsibility, weaving together advancements in AI with the need for ethical stew-
ardship and thoughtful integration into high-stakes DoD socio-technical systems.
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