
Applying Large Language Models to Enhance the
Assessment of Java Programming Assignments

Skyler Grandel
skyler.h.grandel@vanderbilt.edu

Vanderbilt University
Nashville, Tennessee, USA

Douglas C. Schmidt
dcschmidt@wm.edu
William & Mary

Williamsburg, Virginia, USA

Kevin Leach
kevin.leach@vanderbilt.edu

Vanderbilt University
Nashville, Tennessee, USA

Abstract
The assessment of programming assignments in computer science
(CS) education traditionally relies on manual grading, which strives
to provide comprehensive feedback on correctness, style, efficiency,
and other software quality attributes. As class sizes increase, how-
ever, it is hard to provide detailed feedback consistently, especially
when multiple assessors are required to handle a larger number of
assignment submissions. Large Language Models (LLMs), such as
ChatGPT, Claude, and Gemini, offer a promising alternative to help
automate this assessment process in a consistent, scalable, and fair
manner.

This paper explores the efficacy of ChatGPT-4 and other popu-
lar LLMs in automating programming assignment assessment. We
conduct a series of studies within multiple Java-based CS courses
at Vanderbilt University, comparing LLM-generated assessments to
those produced by human graders. The analysis focuses on key met-
rics, such as accuracy, precision, recall, efficiency, and consistency,
to identify programming mistakes based on predefined rubrics. Our
findings demonstrate that LLMs improve grading objectivity and
efficiency with appropriate prompt engineering and feature selec-
tion, serving as a valuable complementary tool to human graders
in undergraduate and graduate CS education.

CCS Concepts
• Software and its engineering → Software maintenance tools; •
Applied computing→ Computer-assisted instruction.

Keywords
ChatGPT, Education, Generative AI, Large LanguageModels, Prompt
Engineering, Automated Grading

ACM Reference Format:
Skyler Grandel, Douglas C. Schmidt, and Kevin Leach. 2025. Applying
Large Language Models to Enhance the Assessment of Java Programming
Assignments. In 33rd ACM International Conference on the Foundations of
Software Engineering (FSE Companion ’25), June 23–28, 2025, Trondheim,
Norway. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3696
630.3727236

This work is licensed under a Creative Commons Attribution 4.0 International License.
FSE Companion ’25, Trondheim, Norway
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1276-0/2025/06
https://doi.org/10.1145/3696630.3727236

1 Introduction
Motivating the need for more effective and scalable CS pro-
gram assessment tools. The assessment of programming assign-
ments in CS education traditionally demands substantial time and
effort from instructors and graders. As CS class sizes continue to
grow, this process becomes increasingly hard due to the risk of
human error and subjectivity [29]. These issues are exacerbated
when multiple graders are involved, leading to inconsistencies
known as the inter-rater reliability problem [10, 29]. To address
these challenges—and to improve the efficiency and objectivity of
programming assessment—this paper investigates the potential of
LLMs to automate and enhance the evaluation of student programs.

Conversational LLMs such as ChatGPT-4 [26] have demonstrated
promising capabilities in diverse domains, including code genera-
tion and analysis [42]. These LLMs are particularly valuable when
human expertise and AI tools can collaborate to address software-
related challenges more efficiently and reliably [8, 41]. Such ad-
vances are increasingly applicable to educational contexts, particu-
larly in fields where automated or assisted analysis of textual and
programming content is beneficial [27, 34, 36].

To manage the challenges posed by large-scale classes, auto-
mated grading tools are commonly employed to assess various
aspects of programming assignments. These tools often behave
similarly to unit and integration test suites, focusing on functional
correctness [7, 9, 29]. However, conventional auto-graders are inher-
ently limited in their ability to evaluate other critical software qual-
ity attributes, such as coding style, efficiency, and broader software
engineering principles like modularity, readability, and maintain-
ability. Moreover, their reliance on strict structures may constrain
student creativity, forcing submissions into overly rigid frameworks
and pre-provided code “skeletons.”

To complement functional assessments, “linter” tools are often
used to enforce style guides and encourage the application of soft-
ware engineering best practices [16]. However, conventional linters
have notable limitations. For example, they do not holistically assess
documentation quality, code readability, or stylistic coherence.

In contrast, LLMs offer a more versatile and qualitative approach
to programming assessment, capable of evaluating functionality,
coding style, efficiency, and other quality attributes in an automated
and scalable manner. More broadly, the integration of generative AI
tools into CS education has the potential to revolutionize pedagogi-
cal practices. For example, LLMs can provide personalized, adaptive
feedback that goes beyond the capabilities of conventional auto-
graders and test suites, fostering enhanced learning experiences
for students [3, 7, 9, 29].

https://doi.org/10.1145/3696630.3727236
https://doi.org/10.1145/3696630.3727236
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3696630.3727236


FSE Companion ’25, June 23–28, 2025, Trondheim, Norway Grandel et al.

Solution approach→TheGreAIter LLM-based auto-grading
tool. To evaluate the effectiveness of generative AI at helping hu-
man graders locate faults and generate accurate/meaningful feed-
back for students in CS courses, we developed an LLM-based auto-
grading tool known as “GreAIter.” GreAIter converses effectively
with ChatGPT-4 and other LLMs via prompts [42], which are nat-
ural language instructions provided to an LLM that customize it
and/or enhance/refine its capabilities, thereby influencing its be-
havior. In turn, these prompts are guided by prompt patterns [41],
which are a structured means of programming LLMs guided by
experience [40, 44] with applying LLMs effectively.

This paper presents the results of case studies that applied GreAIter
in the following CS courses:

• Parallel Functional Programming (https://www.dre.va
nderbilt.edu/~schmidt/cs253, which focuses on modern Java
parallel streams and reactive programming assignments in
Java,

• Scalable Microservices (https://www.dre.vanderbilt.edu
/~schmidt/cs891), which focuses on modern Java reactive
concurrency assignments in Java and the Spring WebMVC
and WebFlux frameworks, and

• Programming and Problem Solving (https://as.vanderb
ilt.edu/advising/caspar/academics/computer_science.php),
which is an introductory CS1 [14] course that uses Java.

These case studies explore applying GreAIter to assess and grade
programming assignments via a semi-automated grading methodol-
ogy using ChatGPT-4 and other LLMs that supplement and enhance
conventional auto-graders and traditional manual grading and code
analysis.

GreAIter defines rubrics via JSON with specific grading crite-
ria and communicates this method to LLMs. For each criterion
contained in the rubric, GreAIter instructs the LLM to

(1) Output the code from each student submission that is rel-
evant to that criterion along with a grade of “correct” or
“incorrect” and then

(2) Compile a summary of all mistakes made by each student
and outputs suggested feedback for students based on their
submission and the mistakes therein.

The results of this assessment are reviewed by human graders to
produce the final grade, thereby yielding an efficient, accurate, and
fair grade by collaborating between humans and GreAIter.

To evaluate our approach, we analyzed GreAIter’s performance
in assessing programming assignments and compared its results
with human graders. Specifically, we measured GreAIter’s accuracy
and efficiency in assessing student submissions using predefined
rubrics. To identify limitations, we examined GreAIter’s false posi-
tive and negative rates using precision and recall metrics. This anal-
ysis pinpointed GreAIter’s shortcomings and evaluated its potential
for automating the workflow of grading programming assignments.

We also investigated GreAIter’s grading effort reductions and
identified student mistakes it detected that human graders over-
looked initially. This analysis highlighted the improvements en-
abled by AI-assisted grading and the common pedagogical over-
sights made by human graders in code evaluation. To ensure our
approach generalized, we extended our evaluation to multiple LLMs
to determine if GreAIter’s effectiveness was LLM-specific.

This paper makes the following contributions to the field of
AI-assisted programming assignment assessment:

• Empirical evidence demonstrating the utility of LLMs as tools
for assisting in the assessment of programming assignments
across both introductory and advanced computer science
topics.

• Insights into the accuracy and effectiveness of LLMs in ed-
ucation, laying the groundwork for broader adoption of AI-
assisted grading and further advances in this field.

This work builds upon our prior workshop publication [13],
extending its scope and rigor in several key aspects:

• We generalize our original methodology to encompass a
broader range of Java-based courses and LLMs, thereby en-
hancing the applicability and robustness of our findings.

• We include a detailed evaluation in a CS1 course, a foun-
dational component of computer science education [14], to
(1) demonstrate the efficacy of our approach in a critical
and widely relevant context and (2) provide new insights
into common human grading errors in CS1 and show how
GreAIter mitigates these issues.

• We refine our assessment of GreAIter’s intra-model consis-
tency and repeatability, offering a more comprehensive anal-
ysis of its reliability.

• We expand the discussion and interpretation of our results,
providing deeper insights and more robust conclusions re-
garding the role of AI-assisted grading in CS education.

Paper organization. The remainder of this paper is organized
as follows: Section 2 describes our methodology, encompassing
the design of our GreAIter auto-grading tool and the prompting
strategies used to achieve our results; Section 3 explains the experi-
ment we designed to assess the performance of our methodology in
grading programming assignments in our three courses; Section 4
evaluates the results of our GreAIter grading tool using ChatGPT-4
and other popular LLMs; Section 5 explores the limitations and
threats to the validity of our work; Section 6 compares our research
with related work on AI-assisted programming assignment evalu-
ation; and Section 7 presents lessons learned from our study and
outlines future work.

2 Study Methodology
GreAIter is an LLM-based auto-grading tool that leverages advanced
prompt engineering techniques and whose operation is supervised
by human graders to ensure reliability and accuracy. This section
describes the methodology underlying GreAIter and outlines the
ethical considerations employed in this study.We adopt the method-
ology from our earlier workshop publication [13] and gather addi-
tional data following this methodology to compare directly with
data collected earlier (Section 3 explains the additional courses,
LLMs, and metrics we consider).

2.1 Overview of GreAIter and our AI-assisted
Grading Process

Figure 1 depicts the steps involved in the GreAIter grading process,
which begins with a student submission (1) and the evaluation
rubric being input (2) into an LLM. This LLM then conducts an in-
termediate analysis (3) consisting of a detailed evaluation for each
criterion in the rubric. The LLM then summarizes its assessment

https://www.dre.vanderbilt.edu/~schmidt/cs253
https://www.dre.vanderbilt.edu/~schmidt/cs253
https://www.dre.vanderbilt.edu/~schmidt/cs891
https://www.dre.vanderbilt.edu/~schmidt/cs891
https://as.vanderbilt.edu/advising/caspar/academics/computer_science.php
https://as.vanderbilt.edu/advising/caspar/academics/computer_science.php


Applying Large Language Models to Enhance the
Assessment of Java Programming Assignments FSE Companion ’25, June 23–28, 2025, Trondheim, Norway

(1) Student Submission (2) Subtractive Rubric

LLM




0
1
0
...




(5)
Binary Grade For
Each Rubric Item

(3)
Intermediate
Analysis

(4)
Human
Grader

Figure 1: GreAIter’s AI-Assisted Grading Process.

and a human grader reviews the output (4), verifying and adjust-
ing the LLM’s evaluations as needed. The final output from the
human grader (5) consists of a binary grade (i.e., pass/fail) for each
criterion in the rubric, indicating the performance of the student’s
programming assignment submission against each criterion. This
binary grade format was used for ease of calculating our evaluation
metrics. In practice, however, the human grader does not need to
be limited by this output structure and would be free to interpret
the LLM’s grade and student feedback in the way that best fits the
course.

GreAIter bridges generative AI and education by helping instruc-
tors use LLMs to assess student work efficiently and objectively,
aligning its outputs with human grading via rubric-based automa-
tion. It leverages rubric-based evaluation [17], where each criterion
is clearly defined via a structured format. This format provides an
LLM with the parameters needed to assess student submissions and
ensure consistency across multiple evaluations, helping alleviate
the inter-rater reliability problem [10].

Although GreAIter contains no features specific to a given pro-
gramming assignment, we recommend certain steps when integrat-
ing it into a CS course.1 For example, a reliable and structured rubric
is needed for effective results. ChatGPT-4 has been shown [45] as
an adequate prompt engineer proxy, so we leveraged it to gener-
ate rubrics used by GreAIter to prompt the LLMs.2 In particular,
ChatGPT-4 can generate a usable rubric given a (1) list of potential
mistakes, (2) an “answer key” (i.e., the desired Java assignment so-
lution), and (3) the JSON shown in Figure 2. We used this approach
to generate rubrics for our experiments, while manually verifying
each rubric criterion ChatGPT-4 outputs to ensure the quality of its
description, as well as correct and incorrect examples. The rubrics
given to GreAIter were produced by converting the original course
rubrics and answer keys to the JSON shown above.

1GreAIter is available to instructors of CS programming courses upon request. See
Section 8
2We use ChatGPT-4 to refine our prompts, though other LLMs can perform these tasks.

Figure 2: Example JSON that GreAIter Provides as a Rubric
to the LLM.

Initial tests showed ChatGPT-4 sometimes generated flawed
code for incorrect examples in rubric criteria that didn’t match
the types of mistakes students actually made. For example, we
instructed ChatGPT-4 to ensure students use Java method refer-
ences rather than lambda expressions, so a good solution might
be “.map(this::aMethod),” whereas ChatGPT-4 would generate
“.map(item -> { })” instead of “map(item -> aMethod(item)),”
which is semantically equivalent to the correct answer.We therefore
provided examples of incorrect code via prompts to generate these
rubrics and verified incorrect examples to ensure they exhibited
realistic mistaken behaviors.

2.2 Prompt Engineering and Human-AI
Collaboration

While GreAIter can operate fully autonomously, we applied a semi-
autonomous method due to limitations with conventional LLMs [6,
40–42]. Despite their advanced capabilities, LLMs can generate er-
rors (referred to as “hallucinations”), where they confidently assert
inaccurate or nonsensical information [6]. This tendency is prob-
lematic for educational assessments, where the stakes of incorrect
evaluations are high since they may impact a student’s learning
trajectory and academic record.

Given a programming assignment and rubric, GreAIter gener-
ated feedback for human graders to review. As a final sanity check,
human graders then manually checked the relevant segment(s) of
student code identified by GreAIter to verify that issues it flagged
were indeed mistakes (rather than false positives). In practice, hu-
man graders inspect and score each student appropriately and
review GreAIter’s feedback before returning results to students via
a FERPA-compliant course website or classroom code repository.

Integrating a human-in-the-loop introduced a crucial verifica-
tion step. Human graders review the AI-generated assessments,
ensuring the final output’s reliability. This safeguard reinforces the
educational value of the grading process. Human grader oversight
ensures that feedback is pedagogically appropriate and contextually
relevant to student learning needs.

Our semi-automated approach also aligns with ethical guide-
lines [15], promoting responsible AI use by mitigating risks asso-
ciated with unverified autonomous AI operation in high-stakes



FSE Companion ’25, June 23–28, 2025, Trondheim, Norway Grandel et al.

application domains, such as primary, secondary, and higher edu-
cation. Our approach respects the sophistication of the AI while
prudently managing its limitations and balancing the efficiency of
automation without foregoing the expertise of humans. The result
is a hybrid model that aims for high-quality, scalable assessment
mechanisms that educators and students alike can rely upon.

GreAIter’s functionality stems from prompt engineering [41],
which is the intentional design of prompts that guide LLMs in per-
forming their tasks. Prompts for GreAIter are crafted carefully to
elicit specific behaviors from the LLM, enabling it to understand
and apply grading rubrics accurately. We encoded the rubrics using
JSON (as shown in Figure 2) since LLMs handle this format accu-
rately. Each rubric was defined as a JSON array, where each element
contained an object representing a rubric criterion. Each rubric cri-
terion contained entries for the criterion’s title, description, and a
correct and incorrect example.

The following prompt instructed the LLM how to use this rubric:
You are a grader for the [course name] course taught
in Java. I will give you a JSON rubric and student Java
code. For each item in the rubric, you will first output
the method in the student’s code that is relevant to
that item and then you will output a score of “correct”
or “incorrect”. Alternative answers to the correct code
are permissible if they have the same functionality
and do not apply poor Java style conventions.

The rubric and the student’s code followed this prompt. The next
prompt instructed the LLM to compile a comprehensive summary
of errors or misalignments with rubric expectations, along with
suggested feedback for the student based on their specific mistakes.

This sequence of prompts forced the LLM to consider each in-
dividual criterion in the rubric. A chain-of-thought3 prompting
strategy was then employed by instructing the LLM to output the
relevant code before making a judgment about its correctness. This
process helped minimize LLMs’ tendencies to hallucinate, skip
rubric criteria, and/or consider irrelevant parts of student code.

During this study, we found it was crucial to include both correct
and incorrect examples in the rubric since it enabled few-shot learn-
ing[23] that trains an LLM from only a few examples. Few-shot
learning typically performs better than for a 0-shot approach [39]
by providing context, clarifing edge cases, and alleviating poten-
tially ambiguous instructions. Likewise, these examples aided the
LLM in providing specific feedback to students by comparing their
solutions with the desired solution.

2.3 Assessment Process and Ethical
Considerations

GreAIter’s assessment process began with an LLM receiving each
student’s code and the associated rubric via our prompts, as shown
by step (1) in Figure 1. The LLM then systematically evaluated
the code, criterion-by-criterion, referencing specific code segments
from the student’s submission as evidence for its assessments. Our
prompts were designed to ensure that the LLM’s evaluation was
not merely keyword-based but contextually rooted in the logic and
syntax required by the rubric.

3Chain-of-thought prompting [40] instructs an LLM to explain its “thought process”
before giving an answer to improve answer quality.

Our experiments obtained IRB approval for use of student data,
which was de-identified prior to any contact with any LLM. In
addition, we used a university-hosted private Azure instance of
each LLM to minimize the risks of data leaks. Assignments were
passed to this private instance via an API similar to the OpenAI API
and the LLM was instructed to grade each criterion in the given
rubric as it applied to each student’s code.

After GreAIter completed assessing each criterion, it aggregated
individual assessments into a final summary. This summary con-
veyed areas where the student excelled and areas that required
further improvement. This summary also provided a foundational
tool for human graders to either validate the results of GreAIter’s
grading process or provide additional insights where necessary.

To ensure assessment integrity, the outputs generated byGreAIter
were cross-examined by human graders. This hybrid approach fine-
tuned the assessment process and established a comprehensive
feedback system that benefited student learning experiences [5, 31].
Our goal was to harness the computational precision and scalability
of LLMs while retaining the nuanced judgment of humans, striving
for an equilibrium that augmented the grading process within our
university and similar educational environments.

3 Experiment Design and Evaluation
To evaluate our methodology described in Section 2, we designed an
experiment to empirically determine how well GreAIter performed
in its assessment of student assignments. This experiment evaluated
the performance of our GreAIter automated code assessor against
human graders in terms of accuracy, efficiency, and objectivity. The
experimental setup described in this section measured the efficacy
of GreAIter by comparing its assessment outcomes to those of
experienced human graders.

Assignments and student submissions for this experiment were
obtained from the following three courses at our institution, all
taught in Java, but varying in assignment size and topics covered:

• The Parallel Functional Programming course consisted
of 26 undergraduate and graduate students in the fall semes-
ter of 2023 and had four assignments covering functional
paradigms in Java, as well as topics in parallel and asynchro-
nous programming.

• The Scalable Microservices course consisted of 44 under-
graduate and graduate students in the spring semester of
2024 and had two assignments covering efficient network-
ing, database querying, and data processing in microservice
environments using Java’s Spring frameworks.

• The Programming and Problem Solving course consisted
of 168 undergraduate students in the spring of 2024. We
evaluate nine assignments covering topics like Java structures
and syntax, handling I/O, and basic problem solving.

For each assignment, every student submission was graded using
our semi-automated approach and student mistakes identified by
GreAIter were recorded. We initially intended to use final student
grades on the assignments as the “ground-truth” human-graded
benchmark and compare them to GreAIter’s output for the same
student assignments. However, since each assignment was graded
using our semi-automated approach, we encountered instances
where human graders missed student mistakes. We thus recorded
these human grader mistakes and used the corrected scores as



Applying Large Language Models to Enhance the
Assessment of Java Programming Assignments FSE Companion ’25, June 23–28, 2025, Trondheim, Norway

ground-truth for comparison. Our experiment considered the fol-
lowing three research questions:
RQ1: Performance. Can GreAIter perform correctly by identi-

fying mistakes in student program submissions?
RQ2: Efficiency. What is the reduction in the amount of manual

grading that must be done when using GreAIter compared
against traditional manual grading?

RQ3: Consistency. How consistent is GreAIter across multiple
grading attempts of the same programming assignments?

Section 4 discusses our recommendations for integratingGreAIter
as a semi-automated grader in CS classes. For this experiment, how-
ever, we assessed GreAIter’s performance in isolation to provide
evidence for our recommendation, except where we considered
the time saved by our methodology compared with conventional
manual grading. While GreAIter could fully automate grading, we
designed the experiments described below to identify GreAIter’s
failure modes, evaluate its efficacy, and determine how its output
can be verified in an AI-assisted grader process. Unless otherwise
specified, these results applied ChatGPT-4 as our subject LLM (ex-
periments involving other LLMs can be found in Section 3.3).

3.1 RQ1: Performance
Building upon the experimental design described above, we used
three performance metrics to evaluate GreAIter rigorously.

3.1.1 Accuracy. GreAIter’s accuracy was quantified as the percent-
age of student mistakes (i.e., missed rubric criteria) correctly identi-
fied by GreAIter in alignment with the ground-truth grades. High
accuracy results helped validate GreAIter as a reliable evaluator of
code quality and correctness. In turn, this motivated its integration
into the grading process to reduce the grading load on instructors
and graders, while maintaining high assessment standards.

3.1.2 Precision. GreAIter’s precision was quantified as the extent
to which it incorrectly marked a correct code segment as erroneous.
High precision indicated GreAIter rarely marked correct code as
erroneous, preventing undue penalties on students and minimizing
human oversight. High precision also indicated GreAIter’s meticu-
lousness, ensuring its feedbackwas constructive and based on actual
student errors, thus building student trust in its assessment. While
poor precision impacts GreAIter’s ability to operate autonomously
in isolation, this problem can be mitigated with more human grader
intervention in the overall GreAIter assessment process.

3.1.3 Recall. GreAIter’s recall was quantified as its ability to iden-
tify all incorrect code present. A high recall rate indicated GreAIter
could effectively detect most—if not all—errors in student submis-
sions, which is critical because identifying mistakes demonstrates
its ability to assist human graders. In contrast, a low recall rate
would require so much human oversight that GreAIter would not ac-
celerate assessments significantly as class sizes increase. GreAIter’s
ability to provide comprehensive feedback for educational purposes
would be enhanced if it exhibited high recall, i.e., if it consistently
identified mistakes that human graders could be verified quickly.

3.1.4 Summary of Performance Metrics. A summary of results for
GreAIter’s performance metrics is shown in Table 1, which depicts
the results of our AI grading methodology versus human graders,

Table 1: GreAIter Performance Metrics.
Accuracy, Precision, and Recall are depicted as percentages.

Assign. TP FP TN FN Sum Acc. Prec. Rec.
PFP1 15 32 811 0 858 96.27 31.91 100
PFP2 29 16 345 0 390 95.90 64.44 100
PFP3 4 0 698 0 702 100 100 100
PFP4 6 4 510 0 520 99.23 60.00 100
SM1 103 29 1,144 0 1,276 97.73 78.03 100
SM2 10 13 391 0 414 96.86 43.48 100

P&PS1 48 7 1,289 0 1,344 99.48 87.27 100
P&PS2 63 9 1,248 0 1,320 99.32 87.50 100
P&PS3 99 11 2,695 0 2,805 99.61 90.00 100
P&PS4 59 35 2,530 0 2,624 98.67 62.77 100
P&PS5 126 24 1,969 0 2,119 98.87 84.00 100
P&PS6 145 43 2,947 0 3,135 98.63 77.13 100
P&PS7 116 94 2,190 0 2,400 96.07 55.24 100
P&PS8 56 29 1,056 0 1,141 97.46 65.88 100
P&PS9 93 46 988 0 1,127 95.92 66.91 100
Total 972 392 20,811 0 22,175 98.23 71.26 100

broken down by course and assignment. We use abbreviations
for course titles: PFP stands for Parallel Functional Programming,
SM stands for Scalable Microservices, and P&PS stands for Pro-
gramming and Problem Solving (the introductory CS1 course). The
aggregated results are displayed in the final bolded row.

We benchmarked GreAIter’s performance against the corrected
original grades for each course, yielding the following results:

• True Positives (TP): 4.38% - The percentage of instances
where GreAIter correctly identified errors that were also
recognized by the TA grader.

• False Positives (FP): 1.77% - The percentage of instances
where GreAIter marked correct code segments as erroneous.

• True Negatives (TN): 93.85% - The percentage of instances
where GreAIter correctly identified correct code segments,
aligning with the TA grader’s assessments.

• False Negatives (FN): 0% - The percentage of instances
where GreAIter marked erroneous code segments as correct.

• Accuracy (Acc.): 98.23% - The proportion of correct assess-
ments made for all grading decisions.

Minimizing false positives and false negatives is a crucial aspect
of ensuring fair and constructive feedback. The precision and recall
of GreAIter reflect its ability in these regards, as follows:

• Precision (Prec.): 71.26% - GreAIter’s ability to correctly
identify student mistakes without over-penalizing correct
aspects of their submissions.

• Recall (Rec.): 100% - The comprehensiveness of GreAIter
in detecting errors present in the student submissions.

These results show that GreAIter can enable human graders of
programming assignments to catch additional mistakes they might
miss otherwise. In particular, graders in the CS1 course (Program-
ming and Problem Solving) often missed mistakes, likely because
they were less experienced undergraduate students, who may also
be overworked considering the high number of students in this
class. While testing GreAIter to obtain our performance metrics,
we found 519 mistakes that were missed by the original human



FSE Companion ’25, June 23–28, 2025, Trondheim, Norway Grandel et al.

graders. These mistakes are broken down by topic in Table 2 to
inform pedagogical research about this problem.
Table 2: Mistakes Missed by Human Graders in P&PS (CS1)

Type Comments Constants Readability
Count 355 24 54
Type Variable Naming Modularity Functionality
Count 31 30 25

Specifically, these topics refer to poorly descriptive or missing
comments, misuse of constants, misuse of whitespace or other
readability concerns, poorly descriptive variable names, poor mod-
ularity among methods (i.e., placing all code in the main method
or creating several nearly identical methods without appropriate
code reuse), and general mistakes in code functionality. While code
functionality mistakes can be resolved via unit tests, these mistakes
constitute edge cases that testing did not account for (e.g., one sub-
mission used System.exit() to exit a loop, which halts the entire
program).

These types of mistakes show that the original human graders
for the P&PS course achieved an accuracy of 97.12%, which is
1.11% lower than GreAIter without human oversight. Since GreAIter
caught the mistakes made by human graders in the P&PS course,
we conclude that human graders using GreAIter in CS1 courses will
be more accurate, as well as expending less effort when compared
to strictly manual grading.

3.1.5 Analysis of Performance Metric Results. The results of apply-
ing our semi-automated GreAIter tool yielded several observations.
Our high overall accuracy rate indicates a strong foundational reli-
ability of ChatGPT-4 in evaluating Java programming assignments.
Interestingly, the seemingly low true positive rate of 4.38% indi-
cates we had somewhat skewed data, with considerably more true
negatives than true positives. This result is not unexpected, how-
ever, since student grades on programming assignments in these
courses tended to average over 90%. Nevertheless, it does render our
true positive rate somewhat meaningless, so we focus on accuracy,
precision, and recall instead.

A precision of 71.26% indicates a tendency towards false posi-
tives, where GreAIter incorrectly marks valid code as erroneous.
Although GreAIter is thorough, it may be overly critical or prone
to hallucinations, i.e., perceiving errors that are not there. More
optimistically, GreAIter exhibited perfect recall in this experiment,
as it never missed a mistake made by a student.

Overall, these results suggest that while GreAIter shows promise
in terms of high accuracy and recall, it should be managed carefully
due to its propensity for false positives. The strong recall indicates
that GreAIter can serve as an effective initial filter in identifying
potential errors in student submissions, potentially even improving
upon human grader accuracy. However, GreAIter’s precision under-
scores the necessity of human oversight to confirm LLM findings
and to provide the final judgment on the student’s work, which
substantiates our focus on a semi-automated grading approach.

3.2 RQ2: Efficiency
To address the second research question, we focused on evaluating
the efficiency of GreAIter’s LLM-based grading system compared

to traditional manual grading methods. We defined efficiency as (1)
the time investment required for grading, (2) the number of rubric
criteria a grader must assess, and (3) the volume of code that must
be reviewed for each submission. We summarize the results of these
experiments in Table 3, which shows the reduction in time to grade,

Table 3: Time and Effort Reductions Achieved by GreAIter

Class Time Rubric Criteria Code Volume (SLOC)

PFP 82.59% 95.71% 96.37%
SM 78.84% 90.83% 96.55%
P&PS 52.36% 93.48% 91.75%
Total 75.82% 93.85% 93.21%

as well as the reduction in rubric criteria and source lines of code
to check. We show the reductions for each course individually and
the broader results since these three different courses cover a range
of topics and project sizes.

3.2.1 Time Investment. Based on our experience applying GreAIter
throughout our experiments, we found that its semi-automated
grading process was notably faster than manual grading. In partic-
ular, we observed that GreAIter’s runtime averaged 51 seconds per
student submission due largely to the request latency of our API.
However, GreAIter could simultaneously assess all submissions for
a given assignment, so it could run as a background process while
human grader(s) reviewed the results. The runtime of GreAIter thus
had a negligible effect on overall grading efficiency.

The time needed to grade each submission is a critical measure
of efficiency. We tracked the duration it took our semi-automated
GreAIter method to complete the grading process for all student
submissions in a given assignment and calculated the time to grade
a single student submission averaged over all assignments. Our
observations indicated that GreAIter substantially reduced the time
required per submission, i.e., the average time taken by a human
grader using GreAIter for a single student submission was roughly
87 seconds.

For comparison, we measured the time needed to grade 10 stu-
dent submissions manually for each assignment to calculate the
average time needed to grade each assignment without AI assis-
tance. This task was performed independently by two researchers
without overlapping assignments, so 20 submissions were graded
for each assignment to mitigate concerns regarding a single subjec-
tive grader’s experience and skill. These assignments were chosen
via random stratified sampling based on the students’ final cor-
rected grades on the assignment to ensure that the subset was
representative of the overall set.

In contrast to the GreAIter-based approach, the manual graders
spent an average of ∼360 seconds (i.e., ∼6 minutes) per submission.
GreAIter thus reduced overall grading time by ∼75.82%, highlight-
ing its ability to accelerate grading efficiency in educational set-
tings. This increased efficiency is more pronounced in much larger
CS classes requiring multiple human graders and also addresses
the inter-rater reliability problems arising with multiple human
graders.

3.2.2 Number of Rubric Criteria. Another dimension of efficiency
we investigated was the number of rubric criteria a grader must



Applying Large Language Models to Enhance the
Assessment of Java Programming Assignments FSE Companion ’25, June 23–28, 2025, Trondheim, Norway

check. In the traditional manual method, each grader must assess
each criterion for every submission. In contrast, GreAIter’s ability
to identify correct code segments quickly reduced the number of
criteria requiring detailed human review.

We quantified the average number of rubric criteria the human
grader had to assess in-depth for each submission compared to
those GreAIter flagged for further review. Our findings showed
that a human grader using GreAIter only needed to review roughly
0.8 rubric criteria per student submission on average, which was
substantially less than the average of 13 criteria for the human
grader alone. Overall, this result constituted a substantial decrease
of 93.85% due to GreAIter’s high recall, low false negatives, and
high true negatives.

3.2.3 Volume of Code. Finally, we evaluated efficiency in terms of
the total number of lines of code a human grader needed to check
to grade a submission. GreAIter’s capability to target relevant code
segments precisely for each rubric criterion reduced the overall
volume of code that needs in-depth review, due to its ability to
locate the relevant Java method to each rubric criterion within
student code. GreAIter thus only needed to check Java methods
that an LLM highlighted as relevant to a rubric criterion that a
student missed.

We conclude that a human grader without AI assistance must
review nearly every line of code in a submission. In contrast, a
human grader using GreAIter only needs to check the Java method
identified as having a defect. We therefore compared the average
number of lines of code requiring review (under this assumption)
per submission by a grader with and without GreAIter.

In this experiment we counted Source Lines of Code (SLOC) for
comparison, i.e., lines of code not including blank lines, comments,
and imports [25].4 Overall, GreAIter required a grader to review an
average of 7.2 lines of code per student submission. In contrast, a
grader without AI assistance needed to review an average of 106
lines of code, constituting a 93.21% decrease in volume for GreAIter.

Our experiment results indicate a substantial improvement in
grading efficiency when using ChatGPT-4 as the LLM for GreAIter.
Grading workload dropped significantly thanks to GreAIter’s faster
review times, fewer rubric criteria needing deep evaluation, and less
code to inspect per submission. Moreover, this efficiency increase
does not degrade grading quality since GreAIter still adhered to our
rubric grading standards. By freeing up time and effort, moreover,
human graders using GreAIter focused more on providing quality
feedback, engaging in interactive teaching, and developing better
course content, thereby enriching the overall student educational
experience.

3.3 RQ3: Consistency
To assess GreAIter’s reliability, we implemented a repeatability test
that measured its consistency over time. We defined consistency as
GreAIter’s ability to produce the same results when presented with
the same inputs under similar conditions. This ability is vital for
its deployment in educational settings and ensures that GreAIter
grades fairly between submissions.

4We exclude imports because the imports for these assignments were given to students,
and were thus not considered while grading.

3.3.1 Intraclass Correlation Coefficient Metric. The primary metric
for success in our repeatability test is the Intraclass Correlation
Coefficient (ICC) [20]. Specifically, we use McGraw and Wong’s
two-way random effects, consistency, and single rater formulation
of ICC [22]. This formulation measures the consistency between
ratings based on the grade produced by a single “rater” (i.e., a sin-
gle instance of ChatGPT-4). A high ICC indicates that GreAIter
is stable and reliable in both its grading and feedback and ex-
hibits minimal inter-rater reliability bias, which is essential for
any (semi-)automated grading tool used in academia.

To conduct this experiment, we sampled 20 representative stu-
dent submissions via random stratified sampling and used GreAIter
to produce AI-generated grades for each of the student submissions
six times (including the initial round of grading used to produce
the results in RQ1). We then calculated the ICC between the six
grading results.

The ICC we observed was 0.80, with a 95% confidence inter-
val of [0.68, 0.9] and a p-value less than 0.001, indicating “good
reliability” [20]. However, all identified disagreements were false
positives, e.g., in one trial GreAIter hallucinated a problem while
it did not hallucinate (or hallucinated a different problem) in the
other trial. This finding highlights the stability of GreAIter and its
minimization of grader bias.

This consistency metric indicates the repeatability of GreAIter’s
performance. Although its rate is not perfect, it is substantial and
shows how GreAIter can reliably reproduce its grading decisions
across multiple iterations. The inconsistencies we observed arose
from false positives, reinforcing our earlier observation that GreAIter
tends to over-diagnosis errors. GreAIter’s inconsistencies are thus
consistent with our previous findings that underscore the necessity
of human oversight to confirm GreAIter’s findings and provide the
final judgment on student programming submissions.

3.3.2 GreAIter’s Consistency Across Multiple LLMs. We investi-
gated the consistency of GreAIter across multiple LLMs to quantify
the impact of choosing a particular LLM. We tested four LLMs on a
representative subset of 40 student submissions, sampled through
random stratified sampling in the same way as the intra-LLM con-
sistency and timing tests. We used the same prompts for each LLM
and graded each submission using our methodology, varying only
the LLM used. The results using each LLM are shown in Table 4.

Table 4: A Comparison of LLMs Using GreAIter.

Model TP FP TN FN Acc. Prec. Rec.

GPT-4 30 22 468 0 0.9577 0.5769 1.0000
GPT-4o 30 11 479 0 0.9788 0.7317 1.0000
Claude 25 10 480 5 0.9712 0.7143 0.8333
Mistral 25 26 464 5 0.9404 0.4902 0.8333

This table shows the True Positives (TP), False Positives (FP),
True Negatives (TN), False Negatives (FN), Accuracy (Acc.), Preci-
sion (Prec.), and Recall (Rec.) for various LLMs, including GPT-4,
GPT-4o, Claude Opus [1], and Mistral Large 2 [24]. The best perfor-
mance in each metric is highlighted in bold. These results show that
GPT-4o performs best based on our metrics. In contrast, Claude
Opus and Mistral Large 2 do not achieve perfect recall, likely be-
cause our prompts were not fine-tuned for these LLMs.



FSE Companion ’25, June 23–28, 2025, Trondheim, Norway Grandel et al.

Table 4’s results show the LLM’s impact on GreAIter’s grading
accuracy. Our evaluations depict how LLMs exhibit varying lev-
els of accuracy, precision, and recall, which highlights the need
to select an LLM carefully to ensure GreAIter’s reliability. More-
over, while baseline prompts were used uniformly across LLMs,
optimizing these prompts for specific LLMs could improve perfor-
mance consistency, especially for Claude Opus and Mistral Large 2
that exhibited lower recall. These results show how choosing an
LLM and fine-tuning prompts are critical factors in maximizing the
effectiveness of GreAIter’s semi-automated grading process.

4 Analysis of Results
This section analyzes the results of our semi-automated GreAIter
tool, focusing on the implications of its performance metrics, its
potential role and integration within educational settings, and con-
siderations for its future application. Table 5 summarizes our exper-
imental results using the corrected grader outcomes as the ground
truth, as discussed in Section 3.

Table 5: Summary of Results.

Performance Accuracy Precision Recall
98.23% 71.26% 100%

Effort Reduction Time Rubric Criteria Code Volume
75.82% 93.85% 93.21%

Consistency Intraclass Correlation Coefficient
0.80

Performance metrics and efficiency gains. GreAIter’s high
overall accuracy (98.23%) and recall (100%) indicate its utility as
a tool for assessing programming assignments. Its effectiveness
in correctly identifying correct code submissions significantly re-
duced grader workload by filtering out submissions that required
no further review. However, its precision of 71.26% raises concerns
regarding its number of false positives, which reflects the limita-
tions of ChatGPT-4 that misinterpret complex instructions or code
nuances, leading to the incorrect identification of errors.

This outcome led us to apply semi-automated grading and feed-
back by using GreAIter to find candidate mistakes in student code
for later human grader review. GreAIter shows the relevant code
for each mistake. Human graders can quickly validate candidates,
which (1) accelerates grading and reduces human effort, as shown
in Section 3.2 and (2) maintains human intervention to mitigate any
student concerns of AI-based assessment accuracy and fairness.

According to our inter-LLM consistency study, however, the
perfect recall achieved by GPT-4 and GPT-4o does not extend to
other LLMs in the absence of prompt fine-tuning for those LLMs.
In particular, Mistral Large 2 may not be well suited to this task
with our current prompting, though Claude Opus’s performance is
comparable to GPT-4o (recall notwithstanding). While the training
methodologies for the Claude and GPT models are opaque, we
suspect they prefer longer and more detailed responses, but their
means of achieving greater length are different.

In our experience thus far, GPT-4 prefers finding as many mis-
takes in the student’s code as possible to achieve a longer output,
often leading to harsher grading or hallucinated mistakes. In con-
trast, Claude Opus prefers lengthening its output by detailing the

positive aspects of a student’s code. In the specific cases of the
Claude Opus’s false negatives that we observe, we find that this
model will give lengthy discussions, often in several paragraphs,
describing ways the student was correct. We therefore conclude
that while GPT-4 and GPT-4o are better suited for this task, Claude
Opus might be preferred for other grading applications, such as
generating feedback for student submissions.

Repeatability and semi-automation. The ICC of 0.80 sug-
gests that while GreAIter achieves “good reliability,” there are some
variations in its grading across iterations. This variability can be
problematic in CS courses, where consistency in assessing pro-
gramming assignments is essential to fairness and grading process
credibility. However, because disagreement between trials stems
entirely from false positives, GreAIter can help focus human grader
attention on reducing bias and improving grading efficiency by
decreasing grading time by up to 75.82%.

Our results also show how GreAIter contributes to the grad-
ing process via initial assessments and identification of clear-cut
cases of correct code. Its high accuracy in these instances enable
instructors to focus on providing in-depth feedback where it is
most needed, thereby enhancing student educational experience.
Nevertheless, GreAIter’s propensity for false positives necessitates
a semi-automated approach where human graders perform a sec-
ondary review of its grading decisions. This approach leverages the
strengths of GreAIter in rapidly processing and evaluating submis-
sions while mitigating its weaknesses through human oversight.

Overall, our semi-autonomous “augmented intelligence” approach
(i.e., where GreAIter provides a first pass and humans verify) of-
fers a balanced solution, combining the thoroughness and speed
of LLMs like ChatGPT-4 with the discernment and expertise of
human graders. This hybrid strategy helps streamline the grading
process, reduce workload for instructors and graders, and maintain
the integrity and fairness expected of academic evaluations.

5 Limitations and Threats to Validity
This section explores limitations with the GreAIter AI-assisted
grader described in Section 2 and threats to validity of our experi-
ments described in Section 3.

Generalizability across languages and paradigms. Although
our study is extensive, it has limitations. In particular, we developed
and evaluated GreAIter within three courses and one programming
language (Java), which may limit our finding’s generalizability.
The topics covered by these classes and their use of Java may incur
unique challenges and patterns not representative of other curricula,
programming languages, or paradigms.

Subjectivity in ground truth and precision concerns. We
comparedGreAIter’s performancewith the corrected original graders
from each course. This evaluation may introduce a degree of subjec-
tivity into the ground-truth against which GreAIter’s performance
was measured. In particular, different graders may have different
thresholds for correctness and error severity, potentially influenc-
ing the evaluation benchmarks. In addition, our corrections to these
grades were made only in egregious cases, so the original grades
and our corrections could have a degree of subjectivity to them.

For instance, our recall metrics may be affected if human graders
overlook errors in student code. To address this, we only counted
cases where GreAIter flagged a mistake that human graders missed,



Applying Large Language Models to Enhance the
Assessment of Java Programming Assignments FSE Companion ’25, June 23–28, 2025, Trondheim, Norway

i.e., false negatives. In such cases, GreAIter correctly identified a
potential issue and it was up to human graders to decide whether it
warranted a deduction. It’s therefore reasonable to treat GreAIter as
accurate when it flags a possible error. To strengthen our findings,
however, it would be prudent to validate results across more graders
and courses, and to compare human inter-grader reliability.

The false positives reported in GreAIter’s outcomes reflect an-
other limitation since false positives in code review tasks can lead
to user frustration and tool abandonment [18, 28]. While GreAIter’s
recall was perfect (indicating it missed no errors) its precision was
lower, suggesting it sometimes identified errors too zealously.While
this over-detection erred on the side of caution, it triggered unnec-
essary manual reviews, diminishing GreAIter’s efficiency gains.

Consistency and repeatability concerns. Another threat to
study validity is our reliance on API latency, which may affect
grading speed results. Likewise, our consistency measure assumes
LLMs don’t learn or adapt over time, which doesn’t account for
continuous enhancements to their underlying models. However,
this metric simply verifies the consistency of grades within a single
cohort for a single assignment, so base model updates should not
vary within a single assignment.

Despite these issues, our study provides insights into the capa-
bilities and limitations of using LLMs for assessing programming
assignments. GreAIter’s high accuracy and recall indicate its po-
tential utility in CS courses. Likewise, its Intraclass Correlation
Coefficient is promising, though imperfect. The careful design of
our study, the systematic approach to data collection and analysis,
and the critical evaluation of results all contribute to the robustness
of our findings. These limitations provide a clear framework for
understanding the context within which the findings are applicable.

6 Related Work
AI-assisted education is a rapidly evolving field that shapes our
approach to automating programming assignment assessment us-
ing LLMs and prompt engineering patterns. This section places
our work within the broader landscape of prompt engineering and
AI-powered educational tools. Moreover, this paper is an exten-
sion of a previous workshop publication [13] with a much more
extensive evaluation methodology and discussion, among other
improvements summarized in Section 1.

Prompt engineering to improve LLM reasoning. Past stud-
ies explored how prompt engineering enhances LLM performance,
ranging from simple prompt strategies [2] to more sophisticated
methods [41, 44]. Wei et al. [40] introduced “chain-of-thought”
prompting, a technique we incorporate in our work to improve the
reasoning capabilities of LLMs. Building on this, Yao et al. [44] pro-
posed a more advanced framework that integrates action plan gen-
eration and external resource lookup to refine LLM performance.

Similarly, White et al. [41] developed prompt patterns—–which
are analogous to software patterns—–that structure and enhance
LLM outputs. Their subsequent work demonstrated the effective-
ness of these patterns in improving code quality specifically [42].
In parallel, research on common failure modes of LLMs [6] has
provided insights that guide mitigations to improve robustness and
reliability, which we consider in our study.

LLMs in educational assessment. The application of AI in ed-
ucation has been explored extensively in prior work. Of particular

relevance is a study by Schneider et al. [34] on automated grading
of short-answer questions using LLMs. Their findings highlight the
importance of human oversight in achieving reliable outcomes, a
key consideration in our own evaluation. This work extended an
earlier study [33] that employed fine-tuned transformer models,
which achieved superior accuracy compared to traditional auto-
mated methods. Broader discussions on the benefits and challenges
of AI in education [3, 15, 30, 36, 43] further underscore the need
for careful evaluation and integration of LLMs into pedagogical
practices, which our study addresses.

We also align our work with recommendations for the respon-
sible use of LLMs in education by van Dis et al. [38]. This work
advocated for approaches that “embrace the benefits of AI” while
retaining “human verification.” Following these principles, we pro-
pose a semi-automated assessment methodology that leverages AI
capabilities while maintaining human oversight to ensure accuracy
and fairness.

Additional research highlights educational applications of LLMs,
including the detection of AI-generated submissions [27], genera-
tion of programming exercises and explanations [32], and support
for medical education [21]. These studies demonstrate the versatil-
ity of LLMs in enhancing pedagogy, providing a foundation for our
exploration of LLMs in programming assignment assessment.

Limitations of traditional grading tools. Automated grading
systems for have a long-standing tradition in CS education. Test
suites and linters are widely used to evaluate functional correct-
ness and enforce style guidelines [9, 12, 29]. While these tools are
effective for functional assessment, they often lack the ability to
evaluate qualitative aspects of code, such as documentation qual-
ity, holistic readability, and efficiency. Our work leverages LLMs
to address these limitations, enabling a more comprehensive and
flexible assessment methodology.

Our study advances the growing body of research in prompt
engineering, AI-assisted education, and automated grading systems.
By applying sophisticated prompt engineering techniques to LLMs,
we introduce a novel methodology for assessing programming
assignments. This approach not only improves grading efficiency
and reduces bias but also highlights the broader potential of AI to
enhance learning experiences in computer science education.

7 Concluding Remarks
This paper presented the results of our study that applied LLMs to
create GreAIter. GreAIter is an AI-assisted tool that helps automate
key portions of the grading process for programming assignments
to better assess students’ code and its alignment with software en-
gineering best practices. Our findings codify both the potential and
limitations of AI-assisted grading, as well as yielded the following
lessons learned that inform our future work.

1. ChatGPT-4 can accurately identify correct code submis-
sions.We demonstrate how GreAIter achieved a high accuracy rate
(98.23%) and perfect recall. These results suggest that LLMs can play
an important role in assisting with grading tasks, particularly in
filtering out rubric criteria that are likely correct for a given submis-
sion, thereby reducing human grader workload. Ironically, when
ChatGPT-4 did not accurately identify correct code submissions,
we interacted with it to explain how we could craft future prompts
to elicit more accurate results from it. The ability to engage in such



FSE Companion ’25, June 23–28, 2025, Trondheim, Norway Grandel et al.

a “Socratic dialogue” with LLMs was quite refreshing compared
with traditional means of refining queries with conventional static
analysis tools.

2. Theneed for humanoversight remains critical.GreAIter’s
precision of 71.26% (marked by many false positives) points to limi-
tations with the current state of LLMs in understanding and evalu-
ating complex programming tasks. Despite GreAIter’s perfect recall,
human oversight thus remains necessary due to LLM tendencies to
over-flag student code segments as erroneous. By integrating in-
sights from previous work with GreAIter, we extend the capabilities
of LLMs in educational contexts and set the stage for future research
in AI-assisted education. As with previous work [4, 8, 35, 41], the
synergy of LLMs and human expertise demonstrated in this study
showcases the potential of LLMs in enhancing educational method-
ologies and outcomes.

3. Due to ChatGPT-4’s limitations, we stress the benefits
of a semi-automated grading approach. Our study underscored
the importance of human-AI collaboration, which is commonly
known as “augmented intelligence” rather than “artificial intelli-
gence.” While GreAIter is powerful, it cannot yet replace human
judgment in tasks requiring nuanced understanding. Our semi-
automated approach—where ChatGPT-4 performed an initial assess-
ment and humans provide final verification and feedback—strikes
a balance that leverages the strengths of both. We found our ap-
proach reduced grading workloads, constituting a 93.21% decrease
in code volume to review and a 75.82% decrease in grading time. We
also found GreAIter yielded an ICC of 0.80, indicating that while
LLMs can exhibit consistent, relatively unbiased tendencies, their
performance can vary and should be checked for accuracy.

4. GreAIter can be integrated into actual classroom set-
tings to improve grader efficiency and reliability. Through
careful planning and systematic analysis of the accuracy, precision,
recall, efficiency, and repeatability metrics covered in this paper, we
showed how GreAIter improves traditional manual grading. We val-
idated the feasibility of integrating GreAIter into actual classrooms
to optimize the grading process.

While GreAIter provides a high degree of accuracy, its current
limitations underscore the need for a semi-automated approach
that combines the speed and consistency of LLMs with the criti-
cal thinking and expertise of human graders. As LLMs evolve, so
too will strategies for integrating it more effectively to enhance
quality and fairness of the grading process for CS courses. Our
future work will thus investigate LLMs that have emerged since
our experiments began, including ChatGPT o3 and o4, as well as
DeepSeek, Grok, and Gemini. Following these experiments, we may
need to reassess whether these LLMs can be “trusted” to perform
more autonomously if they achieve near-perfect precision.

5. The promise of LLMs in education extends beyond grad-
ing efficiency, i.e., LLMs can reshape how feedback is delivered,
how learning is assessed, and how education is ultimately con-
ducted. Our work, along with several others [11, 19, 37, 43], has
shown the potential LLMs have to aid student learning. While LLMs
are not yet mature enough to replace human graders, they provide
an important resource to aid educators, particularly in disciplines
like CS characterized by ever-growing class sizes.

As with previous research [41, 42], we found collaboration be-
tween human users and AI tools results in rapid and reliable soft-
ware solutions, and we leveraged this collaboration for a more
efficient and effective educational process. As LLMs become more
sophisticated, we anticipate the need to refine these powerful tools
to improve educational systems. Our results provide a foundation
upon which future work can build, contributing to the evolving
field of LLMs in CS education and the development of more reliable
and efficient AI-assisted graders.

Looking ahead, the integration of LLMs into grading CS pro-
gramming assignments requires considering the trade-offs between
efficiency and accuracy. False positive rates must be reduced to
make AI-augmented tools like GreAIter more autonomous and
trustworthy.5 Our future work will focus on fine-tuning LLMs on
larger and more diverse datasets of code submissions and rubrics,
potentially improving their understanding and reducing the rate of
false positives. Many false positives result from the same rubric cri-
teria, so investigations into prompting strategies for specific rubric
criteria are also likely to improve precision.

While our case study is bound by these limitations for now, our
methodology and the GreAIter’s overall performance in several
key metrics support the validity of our findings. By advancing the
tools used to assess code quality, GreAIter thus lays the foundation
for CS education to produce more skilled and productive software
engineers.

8 Data Availability
All data and scripts, along with our implementation of GreAIter
are available at https://osf.io/xy69w/?view_only=9a71d5fdec
10447d8c85ac7e3da9b1fa. This repository includes comprehen-
sive documentation to facilitate replication and extension of our
research.

References
[1] Anthropic. 2024. Claude Opus. https://claude.ai/
[2] Simran Arora, Avanika Narayan, Mayee F Chen, Laurel Orr, Neel Guha, Kush

Bhatia, Ines Chami, Frederic Sala, and Christopher Ré. 2022. Ask me anything: A
simple strategy for prompting language models. arXiv preprint arXiv:2210.02441
(2022).

[3] David Baidoo-Anu and Leticia Owusu Ansah. 2023. Education in the era of
generative artificial intelligence (AI): Understanding the potential benefits of
ChatGPT in promoting teaching and learning. Journal of AI 7, 1 (2023), 52–62.

[4] Som Biswas. 2023. Role of ChatGPT in Computer Programming. Mesopotamian
Journal of Computer Science 2023 (2023), 9–15.

[5] Alasdair Blair and Samantha McGinty. 2010. It’s good to talk? Developing
feedback practice. Gateway Papers 1 (2010).

[6] Ali Borji. 2023. A categorical archive of chatgpt failures. arXiv preprint
arXiv:2302.03494 (2023).

[7] Julio C Caiza and Jose M Del Alamo. 2013. Programming assignments automatic
grading: review of tools and implementations. INTED2013 Proceedings (2013),
5691–5700.

[8] Anita Carleton, Mark Klein, John Robert, Erin Harper, Robert Cunningham,
Dionisio de Niz, John Foreman, John Goodenough, James Herbsleb, Ipek Ozkaya,
Douglas Schmidt, and Forrest Shull. 2021. Architecting the Future of Software
Engineering: A National Agenda for Software Engineering Research & Development.
Accessed: 2023-Dec-7.

[9] Brenda Cheang, Andy Kurnia, Andrew Lim, and Wee-Chong Oon. 2003. On
automated grading of programming assignments in an academic institution.
Computers & Education 41, 2 (2003), 121–131.

5In practice, we found that students quickly identified any remaining false positives
that slipped past GreAIter and the human graders since they were eager to improve
their grades!

https://osf.io/xy69w/?view_only=9a71d5fdec10447d8c85ac7e3da9b1fa
https://osf.io/xy69w/?view_only=9a71d5fdec10447d8c85ac7e3da9b1fa
https://claude.ai/


Applying Large Language Models to Enhance the
Assessment of Java Programming Assignments FSE Companion ’25, June 23–28, 2025, Trondheim, Norway

[10] Binglin Chen, Sushmita Azad, Rajarshi Haldar, Matthew West, and Craig Zilles.
2020. A validated scoring rubric for explain-in-plain-english questions. In Pro-
ceedings of the 51st ACM Technical Symposium on Computer Science Education.
563–569.

[11] Eason Chen, Ray Huang, Han-Shin Chen, Yuen-Hsien Tseng, and Liang-Yi Li.
2023. GPTutor: a ChatGPT-powered programming tool for code explanation. In
International Conference on Artificial Intelligence in Education. Springer, 321–327.

[12] Chase Geigle, ChengXiang Zhai, and Duncan C Ferguson. 2016. An exploration
of automated grading of complex assignments. In Proceedings of the Third (2016)
ACM Conference on Learning@ Scale. 351–360.

[13] Skyler Grandel, Douglas C Schmidt, and Kevin Leach. 2024. Applying Large
LanguageModels to Enhance the Assessment of Parallel Functional Programming
Assignments. In Proceedings of the 1st International Workshop on Large Language
Models for Code. 102–110.

[14] Matthew Hertz. 2010. What do" CS1" and" CS2" mean? Investigating differences
in the early courses. In Proceedings of the 41st ACM technical symposium on
Computer science education. 199–203.

[15] Wayne Holmes, Kaska Porayska-Pomsta, Ken Holstein, Emma Sutherland, Toby
Baker, Simon Buckingham Shum, Olga C Santos, Mercedes T Rodrigo, Mutlu
Cukurova, Ig Ibert Bittencourt, et al. 2021. Ethics of AI in education: Towards
a community-wide framework. International Journal of Artificial Intelligence in
Education (2021), 1–23.

[16] Stephen C Johnson. 1977. Lint, a C program checker. Bell Telephone Laboratories
Murray Hill.

[17] Anders Jonsson and Gunilla Svingby. 2007. The use of scoring rubrics: Reliability,
validity and educational consequences. Educational research review 2, 2 (2007),
130–144.

[18] Anant Kharkar, Roshanak Zilouchian Moghaddam, Matthew Jin, Xiaoyu Liu, Xin
Shi, Colin Clement, and Neel Sundaresan. 2022. Learning to reduce false positives
in analytic bug detectors. In Proceedings of the 44th International Conference on
Software Engineering. 1307–1316.

[19] Lucas Kohnke, Benjamin Luke Moorhouse, and Di Zou. 2023. ChatGPT for
language teaching and learning. Relc Journal 54, 2 (2023), 537–550.

[20] Terry K Koo and Mae Y Li. 2016. A guideline of selecting and reporting intraclass
correlation coefficients for reliability research. Journal of chiropractic medicine
15, 2 (2016), 155–163.

[21] Tiffany H Kung, Morgan Cheatham, Arielle Medenilla, Czarina Sillos, Lorie
De Leon, Camille Elepaño, Maria Madriaga, Rimel Aggabao, Giezel Diaz-Candido,
James Maningo, et al. 2023. Performance of ChatGPT on USMLE: Potential for
AI-assisted medical education using large language models. PLoS digital health 2,
2 (2023), e0000198.

[22] Kenneth O McGraw and Seok P Wong. 1996. Forming inferences about some
intraclass correlation coefficients. Psychological methods 1, 1 (1996), 30.

[23] Grégoire Mialon, Roberto Dessì, Maria Lomeli, Christoforos Nalmpantis, Ram
Pasunuru, Roberta Raileanu, Baptiste Rozière, Timo Schick, Jane Dwivedi-Yu, Asli
Celikyilmaz, et al. 2023. Augmented language models: a survey. arXiv preprint
arXiv:2302.07842 (2023).

[24] Mistral AI. 2024. Mistral Large 2. https://mistral.ai/
[25] Vu Nguyen, Sophia Deeds-Rubin, Thomas Tan, and Barry Boehm. 2007. A SLOC

counting standard. In Cocomo ii forum, Vol. 2007. Citeseer, 1–16.
[26] OpenAI. 2022. ChatGPT. https://chat.openai.com/
[27] Michael Sheinman Orenstrakh, Oscar Karnalim, Carlos Anibal Suarez, and

Michael Liut. 2023. Detecting llm-generated text in computing education: A
comparative study for chatgpt cases. arXiv preprint arXiv:2307.07411 (2023).

[28] Chris Parnin and Alessandro Orso. 2011. Are automated debugging techniques
actually helping programmers?. In Proceedings of the 2011 international symposium
on software testing and analysis. 199–209.

[29] James Perretta,WestleyWeimer, and AndrewDeOrio. 2019. Human vs. automated
coding style grading in computing education. In 2019 ASEE Annual Conference &
Exposition.

[30] Junaid Qadir. 2023. Engineering education in the era of ChatGPT: Promise and
pitfalls of generative AI for education. In 2023 IEEE Global Engineering Education
Conference (EDUCON). IEEE, 1–9.

[31] D Royce Sadler. 1989. Formative assessment and the design of instructional
systems. Instructional science 18, 2 (1989), 119–144.

[32] Sami Sarsa, Paul Denny, Arto Hellas, and Juho Leinonen. 2022. Automatic
generation of programming exercises and code explanations using large language
models. In Proceedings of the 2022 ACM Conference on International Computing
Education Research-Volume 1. 27–43.

[33] Johannes Schneider, Robin Richner, and Micha Riser. 2023. Towards trustworthy
autograding of short, multi-lingual, multi-type answers. International Journal of
Artificial Intelligence in Education 33, 1 (2023), 88–118.

[34] Johannes Schneider, Bernd Schenk, Christina Niklaus, and Michaelis Vlachos.
2023. Towards LLM-based Autograding for Short Textual Answers. arXiv preprint
arXiv:2309.11508 (2023).

[35] Nigar M Shafiq Surameery and Mohammed Y Shakor. 2023. Use chat gpt to
solve programming bugs. International Journal of Information Technology and
Computer Engineering 31 (2023), 17–22.

[36] Kehui Tan, Tianqi Pang, and Chenyou Fan. 2023. Towards Applying Powerful
Large AIModels in ClassroomTeaching: Opportunities, Challenges and Prospects.
arXiv preprint arXiv:2305.03433 (2023).

[37] Ahmed Tlili, Boulus Shehata, Michael Agyemang Adarkwah, Aras Bozkurt,
Daniel T Hickey, Ronghuai Huang, and Brighter Agyemang. 2023. What if
the devil is my guardian angel: ChatGPT as a case study of using chatbots in
education. Smart learning environments 10, 1 (2023), 15.

[38] Eva AM Van Dis, Johan Bollen, Willem Zuidema, Robert van Rooij, and Claudi L
Bockting. 2023. ChatGPT: five priorities for research. Nature 614, 7947 (2023),
224–226.

[39] YaqingWang, Quanming Yao, James T Kwok, and Lionel M Ni. 2020. Generalizing
from a few examples: A survey on few-shot learning. ACM computing surveys
(csur) 53, 3 (2020), 1–34.

[40] JasonWei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia,
Ed Chi, Quoc Le, and Denny Zhou. 2023. Chain-of-Thought Prompting Elicits
Reasoning in Large Language Models. arXiv:2201.11903 [cs.CL]

[41] JulesWhite, Quchen Fu, SamHays, Michael Sandborn, Carlos Olea, Henry Gilbert,
Ashraf Elnashar, Jesse Spencer-Smith, and Douglas C Schmidt. 2023. A prompt
pattern catalog to enhance prompt engineering with chatgpt. Proceedings of the
30th Conference on Pattern Languages of Programs (2023).

[42] Jules White, Sam Hays, Quchen Fu, Jesse Spencer-Smith, and Douglas C Schmidt.
2024. Chatgpt prompt patterns for improving code quality, refactoring, require-
ments elicitation, and software design. In Generative AI for Effective Software
Development. Springer, 71–108.

[43] Yuankai Xue, Hanlin Chen, Gina R Bai, Robert Tairas, and Yu Huang. 2024. Does
ChatGPT Help With Introductory Programming? An Experiment of Students
Using ChatGPT in CS1. In Proceedings of the 46th International Conference on
Software Engineering: Software Engineering Education and Training. 331–341.

[44] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan,
and Yuan Cao. 2023. ReAct: Synergizing Reasoning and Acting in Language
Models. arXiv:2210.03629 [cs.CL]

[45] Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis,
Harris Chan, and Jimmy Ba. 2022. Large language models are human-level
prompt engineers. arXiv preprint arXiv:2211.01910 (2022).

https://mistral.ai/
https://chat.openai.com/
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2210.03629

	Abstract
	1 Introduction
	2 Study Methodology
	2.1 Overview of GreAIter and our AI-assisted Grading Process
	2.2 Prompt Engineering and Human-AI Collaboration
	2.3 Assessment Process and Ethical Considerations

	3 Experiment Design and Evaluation
	3.1 RQ1: Performance
	3.2 RQ2: Efficiency
	3.3 RQ3: Consistency

	4 Analysis of Results
	5 Limitations and Threats to Validity
	6 Related Work
	7 Concluding Remarks
	8 Data Availability
	References

