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Abstract

Multi-processing is a promising technique for improving the
performance, scalability, and cost effectiveness of communi-
cation subsystems. Improving performance is becoming in-
creasingly important to alleviate bottlenecks resulting from
network transmission speeds that now often exceed the pro-
cessing capacity of end-systems. This paper describes a
modular framework for developing and experimenting with
process architectures for bus-oriented, shared memory multi-
processors. A process architecture binds units of communi-
cation protocol processing (such as layers, functions, con-
nections, and messages) with one or more processing ele-
ments. This paper describes several alternative process ar-
chitectures supported by ADAPTIVE and outlines techniques
used to perform controlled experimentation with these alter-
natives.

1 Introduction

Advances in VLSI and fiber optic technology are shifting
performance bottlenecks from the underlying networks to
the transport system [1]. A transport system consists of
protocol functions (such as connection management, end-
to-end and layer-to-layer flow control, remote context man-
agement, segmentation/reassembly, demultiplexing, mes-
sage buffering, error protection, and presentation conver-
sions), operating system services (such as message buffer-
ing, asynchronous event invocation, and process manage-
ment), and hardware devices (such as high-speed network
adapters) that support distributed applications. Developing
high-performance transport systems is essential to support
the increasingly demanding throughput and delay require-

1This material is based upon work supported by the National Science
Foundation under Grant No. NCR-8907909. This research is also supported
in part by grants from the University of California MICRO program, Nippon
Steel Information and Communication Systems Inc. (ENICOM), Hitachi
Ltd., Hitachi America, and Tokyo Electric Power Company.

ments of bandwidth-intensive and constrained-latency mul-
timedia applications (such as interactive video conferencing,
medical imaging, and scientific visualization [2]). In gen-
eral, multi-processing has the potential to increase protocol
processing rates and reduce delay, for individual sessions, as
well as for aggregate end-system performance [3].

Despite a significant increase in the availability of operat-
ing system (OS) and hardware platforms that support multi-
processing [4, 5, 6, 7], developing transport systems that
effectively utilize multi-processing remains a complex and
challenging task. This complexity emanates from several
application, network, and OS factors. For instance, devis-
ing a universally applicable strategy for implementing com-
munication protocols via multiple processing elements (PEs)
is complicated by the increasing diversity of application re-
quirements (e.g., high-bandwidth, constrained latency, mul-
timedia data streams, etc.) and network characteristics (e.g.,
various sizes of packet frames, different channel speeds,
etc.). Likewise, designing and implementing robust, flexi-
ble, and efficient concurrent software in tightly constrained
OS kernel environments remains difficult, due to primitive
debugging tools [8], limited memory resources, and subtle
synchronization and timing interactions [9].

A wide range of models have been proposed for apply-
ing multi-processors to communication protocols [3, 10, 11,
12, 13, 14]. However, existing research has generally not
controlled for relevant confounding factors (such as platform
architecture, operating system, protocol implementation, ap-
plication requirements, and network characteristics) that in-
fluence the selection and implementation of suitable multi-
processor models. One method for systematically measur-
ing these factors is to devise process architectures that orga-
nize and simplify the development of multi-processor-based
transport systems [15]. Process architectures represent a
binding between various units of communication protocol
processing (such as layers, functions, connections, and mes-
sages) and various configurations of OS processes2 (which
are abstractions of hardware PEs).

The process architecture is one of several factors [15]
that influence transport system performance (other factors

2The term “process” is used in this paper to refer to a flow of control exe-
cuting within an address space (which may be shared with other processes).
Other systems use different terminology (such as lightweight processes [4]
or threads [7]) to denote the same basic concepts.
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include protocol design and implementation, along with bus,
memory, and network interface characteristics). In general,
the policies and mechanisms offered by a process architec-
ture significantly affect key sources of application perfor-
mance overhead such as memory-to-memory copying and
data manipulation, process management, and synchroniza-
tion [12, 16]. In addition, the choice of process architecture
also influences demultiplexing strategies [17] and protocol
programming techniques [18].

Selecting an appropriate process architecture is an impor-
tant design decision in domains other than transport sys-
tems. For example, event-driven applications (particularly
those that route or process messages on the basis of “con-
nection” information) often perform non-communication-
related tasks that benefit from a structured approach to multi-
processing [19]. However, our research focuses upon the
impact of process architectures on transport system perfor-
mance since communication protocol behavior and function-
ality is well-understood and relatively well-defined. More-
over, a large body of literature exists with which to compare
our results.

This paper examines a framework for investigating pro-
cess architecture policies and mechanisms that effectively
utilize multi-processors to support applications running on
high-speed networks. This framework is part of the ADAP-
TIVE system [20], which provides an integrated set of tools
and resources that simplify and automate certain transport
system development and experimentation steps [19]. The
paper is organized as follows: Section 2 outlines several al-
ternative process architecture models supported by ADAP-
TIVE and classifies related work according to the models
presented; Section 3 describes how ADAPTIVE implements
these process architectures by building upon existing trans-
port system components such as STREAMS [21] and multi-
processor versions of UNIX [4, 5]; and Section 5 discusses
concluding remarks.

2 Alternative Process Architectures

Three of the primary components in a multi-processor-based,
event-driven transport system are processing elements (PEs),
which are the underlying protocol execution agents, data and
control messages, which are sent and received from mul-
tiple applications and network devices, and protocol pro-
cessing tasks, which are the protocol-related functions per-
formed upon messages as they arrive and depart. Two fun-
damental process architecture categories, Task-based and
Message-based, may be discerned by examining the alter-
native methods they adopt for structuring and combining the
primary transport system components. For example, the var-
ious Task-based models discussed below structure multiple
PEs according to units of protocol functionality, whereas the
Message-based models structure the PEs according to the
protocol control and data protocol messages received from
applications and network interfaces.

Although it is possible to implement any protocol with
any model, the process architectures in each category exhibit

different structural and performance characteristics. For in-
stance, process architectures exhibit structural characteristics
that difference in terms of (1) the granularity of the commu-
nication protocol processing unit (e.g., layer, function, con-
nection, message) that executes in parallel, (2) the degree of
PE scalability (i.e., fixed versus dynamically scalable), (3)
invocation semantics (e.g., synchronous vs. asynchronous)
and (4) the effort required to design and implement proto-
cols and services via a process architecture [22]. Likewise,
different application, OS and hardware platform, and net-
work environment configurations may interact with different
process architectures to yield significantly different perfor-
mance results [23]. For example, certain process architec-
tures described below exhibit different levels of data move-
ment and context switching overhead.

The remainder of this section summarizes the general pro-
cess architecture categories, classifies related work accord-
ingly, and identifies several key factors that influence process
architecture performance.

2.1 Task-based Process Architectures

Task-based process architectures associate processes with
protocol layers or protocol functions. Two Task-based pro-
cess architectures supported in ADAPTIVE are Layer Par-
allelism and Functional Parallelism. The primary difference
between these two models involve the granularity of the pro-
tocol processing tasks (i.e., layers are typically more coarse-
grained than functions).

2.1.1 Layer Parallelism

Layer Parallelism is a “coarse-grained” Task-based process
architecture that associates a separate process with each layer
(e.g., the presentation, transport, and network layers) in a
protocol stack. Certain protocol header and data fields in
each incoming and outgoing message may be processed in
parallel as they flow through the “layer pipeline” (shown in
Figure 1 (1)). The following pseudo-code illustrates the gen-
eral structure of a process in the Layer Parallelism model:

procedure layer_n_service is
begin

loop
receive next message from queue
perform layer processing
if additional processing is needed then

pass message either up or down
to the next process via IPC

end loop
end

An actual implementation generally contains a fixed amount
of processes (typically limited by the number of protocol lay-
ers) that operate in a “producer/consumer” manner by per-
forming protocol processing and passing messages via inter-
process communication (IPC) mechanisms between the layer
pipeline stages.

Strict Layer Parallelism is often characterized by poten-
tially high process management and communication over-
head (particularly on a uni-processor, due to costs associated
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Figure 1: Task-based Process Architectures

with context switching [24]), and minimal support for load
balancing (since processes are dedicated to specific protocol
layers). Intra-layer buffering, inter-layer flow control, and
stage balancing3 are also typically necessary since process-
ing activities in each layer may not execute at the same rate.
Few transport systems utilize pure Layer Parallelism due to
the performance overhead, although the XINU TCP/IP im-
plementation [26] uses this approach to simplify the design
and implementation of its networking subsystem. In addi-
tion, an empirical study of various software architectures for
efficiently performing Layer Parallelism is presented in [23].

2.1.2 Functional Parallelism

Functional Parallelism is a “fine-grained” Task-based pro-
cess architecture that utilizes one or more processes to ex-
ecute multiple protocol functions (such as header compo-
sition, acknowledgement, retransmission, segmentation, re-
assembly, and routing) in parallel. Figure 1 (2) illustrates
the general Functional Parallelism approach, where protocol
functions (or clusters of protocol functions) are encapsulated
in parallel finite-state machines that communicate by passing
control and data messages to each other [27]. This behavior
is typically characterized as follows:
procedure function_n_service is
begin

loop
receive next message from queue
perform protocol function processing
if more processing is necessary then

pass the message to the next
appropriate process(es) via IPC

end loop
end

Several variants of the general Functional Parallelism
3Stage balancing involves clustering protocol functions in order to equal-

ize the time spent at each process in a pipeline [25]. In general, strict ad-
herence to the layer boundaries specified by conventional communication
models (such as the ISO OSI reference model) complicates stage balancing.

model are illustrated in Figure 1 (3) and Figure 1 (4). Fig-
ure 1 (3) illustrates a configuration with temporal parallelism
[25], where several processes cooperate as a pipeline to ex-
ecute clusters of protocol functions on messages flowing
through the sender-side of a protocol session. A process in
this configuration is generally structured as follows:
procedure temporal_parallelism_service is
begin

loop
receive next message from queue
perform protocol function processing
if more processing is necessary then

pass message to next process
in the pipeline via IPC

end loop
end

Figure 1 (4) illustrates another Functional Parallelism
variant involving spacial parallelism, where multiple proto-
col functions (such as retransmission, flow control, conges-
tion control, and presentation conversions) are performed in
parallel on fields in each message (the final results may be
discarded if errors are detected at intermediate stages). The
Horizontally-Oriented Protocol Structure (HOPS) architec-
ture [3] and the Multi-Stream Protocol (MSP) [13] exem-
plify this latter approach, which may be characterized by the
following pseudo-code:
procedure spacial_parallelism_service is
begin

loop
receive next message from queue
cobegin

execute protocol functions 1..n
on appropriate portions of the
message

coend
if more processing is necessary then

pass message to next
process(es) via IPC

end loop
end

The selection of variants such as temporal or spacial paral-
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lelism is highly dependent upon characteristics of the multi-
processor hardware platform and the structure of the com-
munication protocol.

Functional Parallelism is often associated with “de-
layered” communication models [3, 10] that simplify stage
balancing by relaxing conventional layering boundaries and
enabling more propitious clustering of protocol functions.
Within a cluster of functions executing within a single pro-
cess, control flow is typically transferred as a consequence
of the hardware updating a program counter to reference
the next executable protocol function or instruction. Mech-
anisms for transferring control between processes, on the
other hand, depend on the underlying process architecture,
operating system, and hardware platform. For instance, IPC
mechanisms may be necessary to transfer control between
functions in different clusters that are executing on separate
processing elements in a non-shared memory platform. Con-
versely, if several clusters are executing concurrently on sep-
arate threads in a shared address space, control may be trans-
ferred between functions by simply traversing a pointer link
to the next cluster. Depending on the underlying process
architecture and hardware platform, synchronization primi-
tives may be necessary to protect resources shared between
concurrently executing threads of control.

Performance experiments indicate that Task-based process
architectures appear poorly suited for platforms where the
number of prototocol task clusters exceeds the number of
PEs [23]. This situation results is high levels of context
switching overhead incurred during protocol processing. In
general, careful protocol design and implementation, along
with contention-free memory [12], may be necessary to min-
imize overhead resulting from communication and synchro-
nization between functions executing in separate processes.
For example, sophisticated message management facilities
[28] may be required on multi-processor platforms to ac-
count for cache affinity interactions [29] when exchanging
messages between PEs with separate instruction and data
caches. Another potential limitation is the fixed amount of
available parallelism, which is restricted by the number of
layers or functions (this may not be a serious disadvantage
if only a small number of PEs are available). On the other
hand, Task-based approaches based on pipelining are rela-
tively simple to design and implement. For instance, they
typically map directly onto conventional layered commu-
nication models using well-structured “producer/consumer”
designs where concurrency control within a layer is straight-
forward [22]. Likewise, Task-based approaches appear well-
suited for multi-processor architectures (such as transputers
[10]) that lend themselves to efficient pipelined interconnec-
tions of multiple PEs.

2.2 Message-based Process Architectures

Message-based process architectures associate processes
with connections or messages rather than protocol layers or
functions. Two message-based process architectures sup-
ported by ADAPTIVE are Connectional Parallelism and

Message Parallelism. The primary difference between these
approaches involve the granularity with which messages are
demultiplexed onto processes. In particular, Connectional
Parallelism demultiplexes all messages bound for the same
connection to the same process, where as Message Paral-
lelism typically demultiplexes messages to any suitable pro-
cess (various scheduling disciplines such as round-robin [12]
and adaptive load balancing [30] techniques may be used to
determine an approach process).

2.2.1 Connectional Parallelism

Connectional Parallelism is a coarse-grained Message-based
process architecture that associates a separate process with
every open connection. Figure 2 (1) illustrates this approach,
where connections C1, C2, C3, and C4 are each bound to
separate processes that execute the requisite protocol func-
tions on all messages associated with their connection. The
following pseudo-code illustrates the general technique:

procedure connection_service is
begin

while connection open loop
receive next message from queue
if outgoing message

call write.put routine
else if incoming message

call read.put routine
end loop

end

The general structure of a put routine is designed as fol-
lows:

procedure put is
begin

perform protocol function processing
if more processing is necessary then

pass message to next put
routine via function call

end

Depending on the number of layers and/or functions in-
volved in the protocol processing, there may be several put
routines invoked to process each message sent to a connec-
tion. For the outgoing direction, it relatively easy to de-
termine the appropriate connection service process
where a particular message belongs. For the incoming di-
rection, however, a device driver or packet filter typically
must perform a demultiplexing operation to determine which
process a message is destined for. In general, Connec-
tional Parallelism is well-suited for protocols that demulti-
plex early in their protocol stack since it is difficult to main-
tain a strict process-per-connection association across multi-
plexing boundaries [31, 32].

Connectional Parallelism is relatively simple to implement
if an OS allows multiple activities (such as system calls, de-
vice interrupts, daemon processes) to proceed in parallel.
Moreover, Connectional Parallelism exhibits low communi-
cation, synchronization, and process management overhead
[14], as long as the number of PEs is greater than or equal to
the number of connections. For instance, since all protocol
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Figure 2: Message-based Process Architectures

context information may be associated with a process, mes-
sages may be passed between protocol layers via procedure
calls, rather than using more complicated and costly inter-
process communication (IPC) mechanisms. However, Con-
nectional Parallelism only utilizes multi-processing to im-
prove aggregate end-system performance, i.e., each individ-
ual connection still executes sequentially.

Figure 2 (2) illustrates a variation of Connectional Paral-
lelism called Directional Parallelism that associates a sepa-
rate process with the sender-side and the receiver-side of a
single connection [33, 34] in order to improve the utilization
of available PEs. The general process architecture structure
of this approach is as follows:

procedure directional_service is
begin

while connection open loop
receive next message from queue
call put routine

end loop
end

Note that this approach requires some external agent (e.g., a
device driver, packet filter, or application interface layer) to
separate the incoming and outgoing messages.

In general, the Directional Parallelism model requires a
high degree of independence between the sender and re-
ceiver portions of a protocol [35], as well as bi-directional
flow of application data [27]. A limitation with both the
Connectional and Directional process architectures is that
load balancing across multiple processes is difficult with
Connectional Parallelism since a highly active connection
may swamp its process with messages, leaving other pro-
cesses tied up at less active or idle connections. In addi-
tion, the Connectional Parallelism approach only applies to
connection-oriented protocols.

2.2.2 Message Parallelism

Message Parallelism is a fine-grained Message-based pro-
cess architecture that associates a separate process with every

incoming or outgoing message. As illustrated in Figure 2 (3),
a process receives a message from an application or network
interface and performs most or all of the protocol process-
ing functions on that message. The following pseudo-code
characterizes the work performed by each process:
procedure message_service is
begin

loop
receive next message from queue
call put routine

end loop
end

The general structure of a put routine is designed as fol-
lows:
procedure put is
begin

perform protocol function processing
if more processing is necessary then

pass message to next put
routine via function call

end

Unlike Connectional Parallelism, the device driver does not
perform demultiplexing according to connection-related in-
formation in a message.

A large degree of potential parallelism exists with this ap-
proach, depending on the number of messages exchanged,
rather than the number of connections, layers, or functions.
Moreover, processing loads may be balanced more evenly
among processes since each incoming message may be dis-
patched to an available process. The primary disadvantages
of Message Parallelism involve the overhead resulting from
(1) resource management and scheduling support necessary
to associate a process with each message, (2) maintaining
proper sequencing for events that must not be processed out-
of-order [36], (3) synchronization and mutual exclusion op-
erations that also serialize access to resources (such as pro-
tocol control blocks that store information such as round-trip
time estimates, retransmission queues, and addressing infor-
mation) shared between messages destined for the same ses-
sion. Synchronization becomes particularly complicated if
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efficient access to shared memory is not available (such as
in certain transputer environments). For connection-oriented
protocols (such as TCP or TP4), this synchronization over-
head may significantly reduce throughput and increase vari-
ance in message processing delay [14]. On the other hand,
Message Parallelism appears quite suitable for connection-
less or request-response protocols, where minimal interde-
pendencies exist between consecutively arriving or departing
messages. A number of projects have discussed, simulated,
or utilized Message Parallelism as the basis for their process
architecture structure [12, 11, 18, 14].

Compared with the Task-based approaches, Message-
based process architectures are characterized by more dy-
namic use of processes, which may enable them to scale-up
to utilize larger numbers of PEs effectively. On the other
hand, this scalability may be of limited value if a platform
possesses a small number of PEs, which is typically the case
for modern workstations and PCs. In addition, the increased
dynamism also entails more sophisticated resource alloca-
tion and management facilities.

2.3 Hybrid Process Architectures

Hybrid process architectures may be formed by combin-
ing certain features discussed above. For instance, Func-
tional/Connectional Parallelism (shown in Figure 3 (1)) asso-
ciates multiple processes with each connection. The general

structure of this process architecture is as follows:

procedure layer_n_service is
begin

loop
get message from queue
perform protocol function processing
if more processing is necessary then

pass message to next process via IPC
end

As with Connectional Parallelism, some external agent must
demultiplex the messages onto the appropriate process to ini-
tiate the protocol processing.

2.4 Process Architecture Performance Fac-
tors

The performance of the process architectures described
above is influenced by various external and internal factors
(shown in Figure 4). External factors generally treat the
transport system as a “black box,” and are useful for evaluat-
ing end-to-end performance without knowledge of, or mod-
ification to, a transport system’s implementation. External
factors that affect process architecture performance include
(1) application characteristics – e.g., the number of simul-
taneously active sessions, the class of service required by
applications (such as reliable/non-reliable and real-time/non-
real-time [1]), direction of data flow (i.e., uni-directional vs.
bi-directional), and the type of traffic generated by applica-
tions, (2) protocol characteristics – e.g., the class of pro-
tocol (such as connectionless, connection-oriented, and re-
quest/response) used to implement application services, and
(3) network characteristics – e.g., attributes of the underly-
ing network environment (such as frame-size and channel-
speed).

Internal factors, on the other hand, represent hardware-
and software-dependent policies and mechanisms that char-
acterize a transport system’s implementation such as:

• Degree of Parallelism: Message-based process architec-
tures may utilize a large number of processing elements ef-
fectively, whereas the Task-based approaches possess lim-
itations that restrict their scalability. Conversely, certain
alternatives (such as pipelined Functional Parallelism) do
not function efficiently without multiple processing elements
due to factors such as process management overhead.

• Process Management Overhead: process architectures
exhibit different context switching and scheduling costs that
depend on factors such as the number of available PEs, the
type of scheduling policies employed (e.g., preemptive vs.
non-preemptive), and the protection domain (e.g., user-mode
vs. kernel-mode) in which the protocols execute.

• Synchronization Overhead: implementing communi-
cation protocols that execute concurrently often requires se-
rializing access to shared objects (such as messages, mes-
sage queues, protocol context records, and demultiplexing
tables). Certain protocol and process architecture combina-
tions (such as implementing connection-oriented protocols
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Figure 4: External and Internal Factors Influencing Process Architecture Performance

via Message Parallelism) may incur significant synchroniza-
tion overhead due to the cost of managing locks that serialize
access to shared objects [14]. In addition to reducing overall
throughput, synchronization bottlenecks resulting from lock
contention lead to un-predictable response time that compli-
cates the delivery of constrained-latency multimedia services
[37]. Other sources of synchronization overhead involves
contention for shared hardware resources such as I/O buses
and global memory [38]. In general, hardware contention
represents a hard upper limit on the benefits that may be ac-
crued from multi-processing [23].

• Communication Overhead: Task-based process archi-
tectures generally require IPC to exchange messages be-
tween protocol processing components executing on sepa-
rate PEs. Communication overhead results from memory-to-
memory copying, message manipulation operations (such as
checksum calculations and compression), and message pass-
ing costs incurred from synchronization and process man-
agement. In general, techniques for minimizing communi-
cation overhead utilize (1) sophisticated buffer management
schemes that minimize data copying [39, 40, 41], (2) inte-
grated layer processing techniques [42, 31], and (3) single-
copy network/host interface adapters [43].

• Load Balancing: certain process architectures (such as
Message Parallelism) strive to utilize multiple PEs equitably,
whereas others (such as Connectional, Layer, or Functional
Parallelism) may underutilize or overutilize the available
PEs under various circumstances involving network traffic
patterns and application characteristics. Depending on the
scheduling policies employed, process architectures that bal-
ance PE load generally help to alleviate processing bottle-
necks [12].

3 Process Architecture Support in
ADAPTIVE

Given the diversity of external and internal factors described
in the previous section, it appears unrealistic to expect a
single process architecture to be appropriate for all appli-
cation/OS/network hardware and software configurations.
Therefore, ADAPTIVE provides an integrated framework of
resources and tools [44] to support the development of, and
experimentation with, a variety of process architectures. By
controlling for confounding factors (such as platform archi-
tecture, operating system, protocol implementation, applica-
tion requirements, and network characteristics), ADAPTIVE
enables precise measurement of how a particular process ar-
chitecture impacts application and transport system perfor-
mance. The goal is to identify the circumstances where dif-
ferent process architectures result in significant performance
improvements or degradations. This section focuses primar-
ily on ADAPTIVE’s process architecture support; other as-
pects of ADAPTIVE are described in [20, 19, 45].

The primary components of ADAPTIVE are designed to
enhance both communication service flexibility and perfor-
mance. To enhance service flexibility, ADAPTIVE main-
tains a collection of reusable “building block” protocol func-
tions (such as acknowledgment, retransmission, segmenta-
tion, reassembly, sequencing, checksumming, and routing)
in a protocol resource pool [44]. These functions may be
composed together to generate application-tailored protocol
machines that are customized for different application ser-
vice classes [1] (shown in Figure 5 (1)). A protocol machine
contains a collection of functions that provide the minimal
set of functionality required to perform a particular appli-
cation service (such as transferring voice, video, text, and
image data). A protocol machine configuration describes the
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functional characteristics of a protocol machine, where as a
protocol machine instantiation is an executable representa-
tion containing platform-dependent protocol resources (such
as object code and data) that may be optimized to run effi-
ciently on a particular target platform [19].

To support complex applications (such as teleconferenc-
ing), multiple protocol machines may be consolidated to
form a session. A session manager coordinates a set of
related protocol machines by generating and interpreting
session control information and performing various man-
agement tasks such as adding, modifying, or deleting data
streams dynamically. Figure 5 (2) depicts the relationships
between these various entities during execution. In this fig-
ure, application A maintains two sessions: session 1 contains
two outgoing data streams and one incoming data stream
and session 2 contains a single outgoing data stream. Each
data stream is implemented by a different protocol machine,
which is coordinated by a session manager in each session.
ADAPTIVE utilizes a de-layered communication model that
demultiplexes messages onto protocol machines as soon as
possible (e.g., at the data link or network layer) to (1) reduce
or eliminate unnecessary or replicated functionality (such
as per-layer demultiplexing and error checking) and (2) in-
crease the amount of parallelism available to the transport
system.

To enhance performance, application-tailored protocol
machines contain synchronization and mutual exclusion ob-

jects necessary to execute efficiently and correctly on multi-
processor platforms. ADAPTIVE is targeted for coarse-
grained (i.e., 4 to 30 PEs), symmetric shared memory multi-
processor platforms running general-purpose operating sys-
tems (such as UNIX [4], MACH [46], and NT [6]). These
operating systems generally utilize a multi-threaded kernel
that executes multiple system calls and device interrupts in
parallel [5]. To provide a realistic environment for experi-
mentation, ADAPTIVE’s protocol implementations execute
within the OS kernel, rather than in user-space [47]. Im-
plementing protocols in the kernel helps reduce scheduling,
context switching, and protection-domain boundary crossing
overhead [48] and often allows more predictable response
time due to the use of “wired” (rather than paged) memory.

3.1 Process Architecture Components

To avoid redeveloping device drivers, message buffering
schemes, and other transport system infrastructure compo-
nents, ADAPTIVE is hosted within the STREAMS frame-
work. STREAMS offers a modular and portable set of sys-
tem calls, data structures, and utility routines that imple-
ment bi-directional, kernel-resident character-based I/O sub-
systems [21]. Contemporary implementations of STREAMS
[4, 5, 49, 50] utilize shared memory, symmetric multi-
processing capabilities within a multi-threaded kernel ad-
dress space.4

The STREAMS framework contains the standard com-
ponents (e.g., STREAM heads, modules, multiplexors, and
drivers) shown in Figure 6. A STREAM head provides a
queueing point where application data is segmented and re-
assembled into discrete messages that conform to the max-
imum size of a “transport interface data unit” (which rep-
resents the largest message an application may pass to a
Stream) [51]. These messages are passed “downstream”
from a STREAM head through zero or more modules and/or
multiplexers to a driver, where they may be transmitted via
a network interface to the appropriate underlying network.
Likewise, drivers receive incoming messages from network
interface attachments. These messages may be passed “up-
stream” through modules and/or multiplexors to the appro-
priate STREAM head. The STREAM head coalesces these
messages into buffers provided by the receiver and notifies
the recipient application process that data has arrived.

ADAPTIVE uses STREAM module and multiplexor com-
ponents to cluster protocol functions. A module is linked to-
gether with its adjacent upstream and downstream modules
via a single pair of read and write queues. A multiplexor,
on the other hand, contains a set of queue pairs that may
be linked above and below the multiplexor in essentially ar-
bitrary configurations to form multiplexed internetworking
protocol suites. In addition to maintaining a link to its adja-
cent module, each of the queues in an open Stream may store

4In the following discussion, the term “STREAMS” indicates the overall
framework, whereas the term “Stream” refers to a cooperating set of data
structures and subroutines that link an individual application session in user-
space with optional protocol processing components and a network device
driver in the kernel.
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a list of control and data messages that are sorted in “priority-
order.” Read queues store messages arriving from network
devices; write queues store messages generated by applica-
tions. The overhead of passing messages between modules
and multiplexors is minimized by passing pointers to mes-
sages rather than copying data as the messages are processed
and exchanged between modules and/or multiplexors.

Queues also contain several standard subroutines that
perform (1) Stream initialization and termination activities
(such as allocating and releasing per-session protocol con-
trol blocks, respectively) and (2) immediate and/or deferred
protocol processing functions on messages flowing through
a Stream. Immediate processing is performed by a queue’s
put subroutine when a message arrives at a queue. Proto-
col processing operations that must be invoked immediately
(such as handling high-priority TCP “urgent data” messages)
are typically performed by put. Deferred processing is per-
formed by a queue’s service subroutine. A service
subroutine typically implements protocol operations that do
not execute in short, fixed amounts of time (such as perform-
ing a three-way handshake to establish an end-to-end net-
work connection) or that will block indefinitely due to layer-
to-layer flow control conditions within a Stream.

To enhance efficiency, the STREAMS components exe-
cute within the OS kernel.5 To enhance flexibility, the mod-
ule and multiplexor components may be linked together dy-
namically by user-level or kernel-level commands to form
complete protocol suites (such as those specified by the Inter-
net, ISO OSI, and F-CSS [44] communication models). To
enhance modularity and reusability, the connectionless and
connection-oriented protocols implemented in ADAPTIVE
conform to the Transport Provider Interface (TPI) [53]. The
TPI provides a message-based service interface to kernel-

5Protocol processing functionality may also be migrated to off-board
processors [52] due to STREAMS’s emphasis on well-defined service inter-
faces and message passing.

resident protocol stacks. This interface shields applications
from the implementation details of a particular communica-
tion protocol. Applications access the underlying TPI com-
ponents via a C++ veneer [54] to the Transport Layer In-
terface (TLI) [55]. This C++ veneer contains classes and
operations that provide local context management, connec-
tion establishment and termination, data transfer, and option
handling.

In general, the modularity of the STREAMS components
facilitates experimentation with different process architec-
tures by controlling confounding factors such as platform
architecture, operating system, and protocol implementa-
tion. For example, the process architecture alternatives de-
scribed in Section 2 may be implemented via STREAMS
by associating processes with different module and multi-
plexor configurations. As described in the following sec-
tion, the STREAMS-based version of ADAPTIVE supports
Layer Parallelism, Functional Parallelism, Connectional Par-
allelism, and Message Parallelism, as well as several hybrid
process architectures.

4 Implementing Alternative Process
Architectures

This section illustrates the implementation of several process
architectures via a combination of STREAMS components
and multiple processes operating in kernel-mode.6 These ex-
amples are based upon STREAMS implementations of the
data transfer and reception portions of a non-proper sub-
set of TCP and UDP. A particular process architecture may
be selected implicitly by ADAPTIVE’s higher-level tools
and/or explicitly by developers [19]. For example, devel-
opers typically instrument protocol machines with various
synchronization objects (such as mutex and condition vari-
ables, counting semaphores, and readers/writer locks [56]).
This instrumentation process is facilitated by several features
of the C++ language such as (1) abstract base classes, in-
heritance, and dynamic binding, (2) parameterized types, (3)
transparently extensible free store management, (4) condi-
tional compilation, and (5) member function inlining [57].
For example, protocol machines developed with reusable
protocol mechanism objects ADAPTIVE’s protocol resource
pool may be instrumented automatically with synchroniza-
tion stubs. Depending on the process architecture, these pro-
tocol mechanism objects are conditionally compiled to acti-
vate the mutual exclusion code required to synchronize in-
teractions between objects at run-time. The intent is to de-
couple the operations that implement the protocol functions
from the operations and synchronization objects required to
implement the process architecture framework [14]. When
combined with the module and multiplexor STREAMS com-
ponents, these synchronization objects enable the flexible
configuration of protocol machines that execute via one or

6The current implementation uses the kernel-level threads [4] available
within the SunOS 5.2 operating system.
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more process architectures with a minimal amount of rede-
velopment effort.

4.1 Example 1: Connectional and Directional
Parallelism

The protocol machines for Connection C1 and C2 depicted
in Figure 7 illustrate two related variants of the Connec-
tional Parallelism process architecture. Connection C1 as-
sociates a separate process with the protocol machines im-
plemented via its write and read queues. The write queue’s
wput subroutine performs all outgoing protocol processing
operations on messages sent from an application before pass-
ing the messages to the network interface. Likewise, the read
queue rput subroutine performs all incoming protocol pro-
cessing operations on messages received from the network
before passing them up to an application. Note that demul-
tiplexing is performed at the network interface, and once a
process begins execution all the context information for this
protocol session is directly available. This enables a pro-
cess to operate on its connection’s messages without incur-
ring much additional demultiplexing, synchronization, and
process management overhead.

ADAPTIVE’s modular architecture enables controlled
measurement of the performance impact that results from re-
configuring a process architecture. For example, the Con-
nectional Parallelism implementation (shown in Connection
C1) may be modified to use a process architecture that asso-
ciates separate processes with the sender-side and receiver-
side of each connection (shown in Connection C2). This Di-
rectional Parallelism approach utilizes additional parallelism
without modifying most of the other STREAMS components
and protocol machine functions.
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4.2 Example 2: Functional/Connectional Par-
allelism

The protocol machines illustrated in Figure 8 utilize a hy-
brid Functional/Connectional Parallelism process architec-
ture that associates separate processes (each executing clus-
ters of protocol functions) with a particular connection.
As shown in the figure, processes cooperate in a pro-
ducer/consumer manner, operating in parallel on the header
and data fields of multiple incoming and outgoing messages.
A daemon process is associated with every queue, and de-
pending on the “direction” (i.e., incoming or outgoing) of a
message, each queues’ wsvc or rsvc subroutine performs
certain protocol functions before passing the message to an
adjacent queue accessed via a separate process.

Depending on factors such as the ratio of protocol
functions (which are typically fixed when a protocol ma-
chine is configured) to connections (which may increase
or decrease dynamically at run-time), the hybrid Func-
tional/Connectional Parallelism process architecture may
utilize a larger amount of available parallelism, compared
with the Connectional or Directional Parallelism approaches
described above. As with the Connectional Parallelism ex-
ample, it is possible to modify certain aspects of the protocol
machines to utilize an alternative process architecture. For
instance, rather than associating processes with clusters of
application-tailored protocol functions, the functions may be
configured to form a Layer Parallelism process architecture
that associates processes and functions with the standard OSI
or TCP/IP protocol layers.

4.3 Example 3: Message Parallelism

The preceding examples illustrate STREAMS-based imple-
mentations of a connection-oriented TCP-like protocol. Fig-
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ure 9 illustrates a Message Parallelism implementation of
a connectionless protocol. The sender and receiver proto-
col machines shown in Figure 9 are associated with sepa-
rate daemon processes that handle each arriving or depart-
ing message concurrently and independently. The wput and
rput subroutines implement a lightweight UDP-like con-
nectionless protocol that delivers messages up to applica-
tions or down to networks without attempting to preserve
inter-message ordering.

5 Concluding Remarks

ADAPTIVE provides a framework for developing and exper-
imenting with alternative process architectures to help im-
prove protocol performance, reduce operating system over-
head, and simplify transport system development. To support
accurate and realistic experiments with alternative process
architectures, ADAPTIVE is designed to control for many
confounding transport system factors such as communica-
tion protocol, operating system, and hardware platform. To
facilitate this, ADAPTIVE utilizes a modular architecture
that allows developers to hold certain transport system com-
ponents constant while varying process architecture compo-
nents and measuring the resulting performance impacts.

To experiment with alternative process architectures, we
are developing a prototype implementation of ADAPTIVE
that is written in C++ and hosted in the STREAMS frame-
work on a multi-processor UNIX platform [4]. This multi-
processing STREAMS platform supports the development of
several different process architectures including Functional
Parallelism, Connectional Parallelism, and Message Paral-
lelism. We are currently using ADAPTIVE to implement and
evaluate a number of protocol machines that are customized
for several classes of multimedia applications (such as au-
dio, video, text, and image data) running on several different
networks (such as Ethernet, FDDI, and ATM).
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