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Abstract—Performance forecasting in elite cycling is most
effective when it is personalized and course-specific to account
for the influence of individual and terrain factors. This paper
empirically assesses various personalized and course-specific
performance forecasting models based on random forest, feed
forward neural networks (FFNNs), recurrent neural networks
(RNNs), and long short term memory (LSTM). The mean square
error (MSE) is selected as the metric for model comparison. The
results of our experiments show that the LSTM models have
the lowest MSE on both the heart rate forecasting and speed
forecasting on our test dataset.

Index Terms—Heart rate forecasting, personalization, cycling
course, deep learning

I. INTRODUCTION

A. Background

It is necessary to monitor exercise intensity during elite
cycling training. While insufficient exercise may lead to slow
improvement in athletes performance, over exertion can result
in over-training or even muscle damage. Over-training in
cycling can result in a debilitating syndrome that degrades the
performance of cyclists for several months and may ultimately
result in failure to meet competition goals [1]. Moreover,
over-trained athletes—especially those involved in endurance
sports like cycling—are susceptible to infections and require
significantly longer time for recovery than non-athletes [1],
[2].

Several metrics are available to estimate exercise intensity,
including heart rate, power output, and V̇ O2max. According
to Jeukendrup et al’s study [3], heart rate is a reliable indicator
of exercise intensity in cycling since it is largely independent
of a specific course. However, heart rate can be affected by
terrain factors, such as grade of the hill, which varies on
different riding courses.

Predicting heart rate at different points in time on a cycling
course is hard since heart rate is affected by course-specific
features, as well as other personalized physiological factors.
Research has shown that a cyclist’s heart rate drifts upwards
after exercising for 20 to 60 minutes despite unchanged work
loads [4], [5], which is a condition called “cardiac drift.”

Cardiac drift is associated with an increase of core body
temperature during exercise [6], [7], which may cause athletes

Xiaoxing Qiu is a Graduate Research Assistant in the Dept. of Computer
Science, Vanderbilt University, Nashville, TN 37212 USA (e-mail: xiaox-
ing.qiu@vanderbilt.edu).

Jules White is an Associate Professor in the Dept. of Computer
Science, Vanderbilt University, Nashville, TN 37212 USA (e-mail:
jules.white@vanderbilt.edu).

Douglas C. Schmidt is a Professor in the Dept. of Computer
Science, Vanderbilt University, Nashville, TN 37212 USA (e-mail:
d.schmidt@vanderbilt.edu).

to lower their speed to maintain their heart rate. On the other
hand, higher speed can yield a higher heart rate in a given
condition [5]. Moreover, heart rate responses vary with a
cyclist’s individual factors, such as gender and age [5], as
well as their cadence on different parts of a given course.

It is hard to predict heart rate on a specific point in a
course at a target speed. Training plans therefore focus on
setting target heart rates or power goals (e.g., power applied
to the pedals by the rider) and riding as fast as possible
without exceeding those targets. Ideally, training plans could
be developed where heart rate at a given speed and point
in a course is predicted and riders are given a set of target
speeds to ride instead. Achieving this ideal, however, requires
building heart rate forecasting models that are personalized
and course-specific. A personalized performance forecasting
model for specific courses is vital for cyclists to establish
achievable speed goals at different courses in advance and
maximize training effects without over-training.

Another key benefit of personalized course-specific heart
rate forecasting is the ability for riders to estimate how much
faster they could ride in different sections of the course, yet
still remain within heart rate targets. For example, a rider
who has only ridden a course at 70-80% of max heart rate
could estimate how fast they would ride at a race intensity
of up to 90% of max heart rate. This estimate could give
them a benchmark of what they could currently achieve
without actually riding the course and potentially over-exerting
themselves.

For example, a biker may need to climb up on a steep
uphill road, which requires significantly slower speeds and
greater intensity than a similar climb on smooth ground.
Similarly, a high-speed downhill ride on smooth terrain will
place less stress on a rider’s core muscle groups compared
to the same downhill speed across tree roots. The individual
terrain features, turns, gradients, and other aspects of a course
significantly impact on a rider’s speed and intensity, but current
models are mainly course-independent.

To maximize their efficacy, personalized and course-specific
heart rate models should be easily trainable from limited
data—ideally a single test ride of a course by an athlete. If an
athlete rides a course multiple times at multiple target heart
rates, they are unlikely to need a predictive model since they
already know the course well. Therefore, new courses (i.e.,
where the athlete has limited knowledge) are those where
personalized and course-specific predictive models are most
valuable. Ideal a cyclist should be able to ride a course once
and then predict how different target speeds would impact
heart rate at different points on the course.
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B. Research Question: Which machine learning approaches
perform best for personalized course-specific heart rate pre-
diction from a single ride?

This paper presents our research on comparing personalized
multivariate models to forecast the heart rate of a cyclist on
a specific course using data from a single ride. These models
consider course-specific factors at each part of the course (such
as the grade of road and the altitude), as well as current rider
details (such as the cadence), and then forecast the heart rate
of the athlete based on them. We compare the results of heart
rate and speed forecast by the following models from a single
ride and report which models perform best:

• The first type of model experimented with is random
forest, which is a classical machine learning model.
Forecasting results show that random forest models have
severe overfitting and therefore cannot be utilized in heart
rate forecasting from a single ride.

• To mitigate the random forest overfitting problem, we im-
plement feed forward neural networks (FFNNs). FFNNs
do not exhibit overfitting problems on the dataset, though
their forecasting accuracy leaves room for improvement.
In particular, FFNNs do not consider historical informa-
tion when forecasting heart rate.

• To address the limitations with FFNNs, we also im-
plemented two other types of neural networks: simple
recurrent neural networks (RNNs) and long short term
memory (LSTM) networks.

We empirically compare all these models via experiments in
our testbed. The results of these experiments indicated that the
LSTM models have the lowest error among all neural network
models and produce predictions that closely match the real-
world heart rate sequence.

C. Paper Organization

The remainder of this paper is organized as follows: Sec-
tion II describes prior work on heart rate forecasting; Section
III reviews the data processing methods and all the mod-
els applied in this paper, including basic concepts of each
model and their pros and cons; Section IV describes how we
built Random Forest, feed forward neural network (FFNN),
recursive neural network (RNN), and long short term memory
(LSTM) models to forecast the heart rate of athletes on a
specific route and then compares the best models among these
four types with two course-independent models (FitRec [8]
and Minmin’s LSTM-based model [9]); Section V summarizes
the results from our experiments in Section IV; and Section VI
presents concluding remarks and outlines future work.

II. RELATED WORK

Researchers have built various models to predict the perfor-
mance of elite cyclists. Le et al. [5] proposed a mathematical
model to evaluate athletes’ heart rate response under mod-
erate exercise intensity based on physical and physiological
principles. Lucia et al. [10] analyzed the preferred cadence
of elite cyclists and found that on flat stages they tend to
adopt higher cadences (around 90 rpm) while on mountain

ascents cadences are around 70 rpm. However, their models
focus on laboratory conditions. Course-specific factors such
as the slope of the road in real courses are unfortunately not
taken into consideration which have significant influence on
cyclists’ heart rate response.

Due to the advent of wearable devices, large amounts of
data now can be collected and processed via mobile devices,
which offers an opportunity to build personalized performance
forecasting models. Mohammadzadeh et al. [11] applied a
support vector machine predictor to predict the breathing rate
based on the 3-D accelerations, heart rate, body temperature,
electrodermal activity, humidity etc. in a controlled lab envi-
ronment. Ming et al. [12], [13] used a FFNN to investigate
the relationship between heart rate and physical activity in
daily life with the help of a wearable physical activity recorder
which monitors the 3-D accelerations of the body.

RNNs exhibit sequential correlation and can seamlessly
model problems with multiple inputs. These models are there-
fore widely used in natural language processing and time
series prediction [14]. In athletic performance forecasting,
RNN based models can take personalized factors (such as
blood pressure and running speed during exercise) to make a
heart rate predictions. Ni et al. [8] proposed an LSTM-based
model to learn a user’s heart rate profile during exercise and
offer workout route recommendation and short term heart rate
prediction. Luo et al. [9] also proposed an LSTM-based model
to predict heat rate based on heart rate signal, gender, age,
accelerations and mental state. Bian et al. [4] tracked facial
key points from each frame of facial videos to estimate heart
rate.

In summary, although there are other performance fore-
casting models, most studies focus on the heart rate profile
collected either during daily activities or under laboratory
conditions. There are few models that are course-specific
and personalized to forecast a cyclist’s heart rate and speed.
However, such a model can be beneficial to both cyclists and
coaches.

For example, a cyclist needs a model to set up various speed
goals at different parts of a course before a competition or
predict their heart rate based on given speed goals. A coach can
use such a model to evaluate the heart rate of a given athlete on
a given course at a given speed to ensure the exercise intensity
and avoid over-training. Likewise, when given specific heart
rate goals, these models can be used to predict how fast a
cyclist can/should ride at different parts of a course.

III. METHODOLOGY

To address the limited understanding of personalized and
course-specific heart rate forecasting from a single ride, we
evaluated the performance of prior course/cyclist-independent
models, course/cyclist-specific traditional machine learning
models, and course/cyclist-specific deep learning models on
forecasting rider heart rate on a single ride of a course. These
comparisons allowed us to investigate a number of important
research questions and collect important lessons learned to
guide future research, as discussed in this section.
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A. Key Research Questions

The key research questions we investigated in our study
include the following:

• Are current models that do not consider course-specific
features as good as models that consider specific features,
such as location?

• Do traditional machine learning or deep learning tech-
niques perform better on course-specific heart rate fore-
casting?

• For traditional machine learning models, which features
are most salient for learning?

B. Experimentation Approach

We first surveyed prior work on heart rate forecasting and
then selected and applied both traditional and deep learning
models to a cycling dataset that we collected. Important cyclist
and course-specific factors must be considered for cycling
performance forecasting. It is natural to consider multivariate
models for performance forecasting, e.g., random forest and
neural networks are popular machine learning algorithms be-
cause they can be utilized both for regression and classification
and can handle multiple inputs. The flow chart in Figure 1
outlines key procedures associated with heart rate forecasting.

Fig. 1: Heart Rate Forecasting Procedures

According to Leijnen et al. [15], there are 13 major neural
network architectures used by researchers in performance
forecasting, including feed forward neural networks (FFNN)
[12], [13], basic recurrent neural networks (RNN) [16], and
long short term memory (LSTM) [4], [8] models. We therefore
selected these three neural networks and random forest and
built a personalized model to predict the performance of a
cyclist on a specific routes. LSTM is a special type of RNN,

so to distinguish these two models we call basic RNN models
“simple RNN” models in this paper.

In the performance forecasting problem, an athlete’s perfor-
mance is affected by numerous features, such as temperature
and the grade of course. Not all these factors, however, should
be provided as input to a traditional machine learning model.
For example, random forest models are sensitive to data
variation, so tiny differences in the dataset can cause a large
variance in the prediction.

Pruning irrelevant features to an athlete’s performance can
reduce model overfitting and improve forecasting accuracy.
Neural networks have built-in mechanisms to mitigate over-
fitting and perform feature selection by assigning significant
features larger weights. This process, however, consumes a
large amount of time and requires a large amount of data.
Removing less important factors can accelerate the training
process of neural networks and reduce the amount of data
needed. This paper therefore uses feature selection for both
random forest and neural networks.

In statistics, a correlation coefficient is used to characterize
how strong a relationship is between two variables. This coeffi-
cient is a real number between −1 and +1. The absolute value
of correlation coefficient shows the strength of a relationship.

For example, assume there is a cyclist riding on a plane with
constant velocity and direction. Assume there are two factors,
one is the velocity of the cyclist, denoted as v, and the other
is the color of the bike, denoted as c. Based on the property
of uniform linear motion, the distance d can be described as
the product of cyclist velocity v and time t.

To build a distance forecasting model, v rather than c
should be taken into consideration. The correlation coefficient
between v and d is ρv,d = 1 while that between c and d
is ρc,d = 0, which shows that there is a linear relationship
between v and d while c and d are uncorrelated. By calculating
and comparing correlation coefficients between features and
the target value, significant features can thus be extracted and
irrelevant features can be filtered.

Two common correlation coefficients are widely used: the
Pearson correlation coefficient and the Spearman’s rank cor-
relation coefficient. Pearson’s correlation coefficient assesses
linear correlation [17]. In contrast, Spearman’s rank correlation
coefficient focuses on the monotonic relationship between two
random variables [18].

According to Bishara et al. [19], calculating Spearman’s
correlation coefficient for non-normal data may be an optimal
strategy when the data size is larger than 20. For performance
forecasting, the heart rate and velocity of a cyclist shows
complex non-linear relationships with factors like cadence and
the grade of the road when the total number of data items
is far more than 20. Spearman’s rank correlation coefficient
is more suitable for calculating the correlation coefficient, so
we therefore select this approach to filter the personalized and
terrain factors compared with Pearson’s correlation coefficient.

For Spearman’s rank correlation coefficient, raw data (such
as heart rate, speed, and the grade of course) should be
converted to rank variables. Given a heart rate sequence HR,
where hr is a heart rate in this sequence, the rank variable rhr
of hr is obtained as follows [20]:
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• Sort HR in ascending order and denote the sorted heart
rate sequence as HRs

• The position where hr is in HRs is the rank variable rhr
of hr

For example, given a heart rate sequence over 4 seconds are
{100, 102, 95, 86}, the corresponding rank value for this heart
rate sequence is {3, 4, 2, 1}.

Assume there are two data sequences (e.g., X and Y ) each
of which has n examples. Based on the method described
above, two ranked sequences rgX and rgY can be obtained.
The formula for Spearman’s correlation coefficient [20] is
expressed in Formula 1,

ρrgX ,rgY =
cov(rgX , rgY )

σrgXσrgY
(1)

where cov(rgX , rgY ) is the covariance of ranked sequences
rgX and rgY , while σrgX and σrgY are the standard deviations
of the ranked sequences.

C. Overview of Our Dataset

For heart rate forecasting, the dataset used in this paper
contains the grade of course, speed, heart rate, altitude, ca-
dence, and distance at each second. We are interested in un-
derstanding how course-specific features impacted forecasting
performance. We therefore use mountain biking data from
trails in the Nashville, Tennessee, USA region.

Mountain biking courses have significant terrain-based vari-
ation, ranging from rocks and roots to very steep up-hill
sections, to mud. These variations in terrain lead to large
variation in the physiological demands on the rider. These
variations affect the muscles used, such as core and shoulder
muscle engagement when riding over rocky terrain.

Our dataset was collected on a Ripmo AF mountain bike
instrumented with a Garmin 830 biking computer connected to
a accelerometer-based speed sensor mounted to the front hub
of the bike. The bike’s crank arms included a Quarq Sram XX1
Eagle Dub power meter that used embedded strain gauges
to measure the power applied to the pedals within +/- 2%.
The Quarq power meter directly measured the rider’s pedaling
cadence from accelerometers embedded in the crank arms. The
Garmin 830 included GPS positioning and improved location
tracking using a fusion of wheel rotation, speed, and GPS fix
data. Finally, a Wahoo Tickr elctrode-based chest strap was
used to measure heart rate and communicate the data to the
Garmin 830.

For our study, we selected 8.71 miles of riding on a 10-mile
courses in the Nashville area. The rider was a 40-year old
male weighing approximately 210 pounds.1 In cycling, func-
tional threshold power (FTP) is commonly used to measure
cyclist fitness. FTP estimates the maximum power that can
be sustained by a cyclist for one hour. The FTP for the data
collection cyclist was 240 measured using an indoor cycling
trainer with a ramp testing protocol.

1A weakness of the current work is our focus on a single rider, but we
chose to focus on one rider to maximize understanding of how course-specific
features could be learned since individual riders have been more thoroughly
studied in prior work.

Our dataset and the source code that we used to evaluate
all the models discussed in this paper is available from
github.com/EricXQiu/SportDataProcessing.

D. Feature Selection

The first step in our dataset processing involved selecting
features for model training. Before selecting features, the sig-
nificance of these sequences must be determined. Spearman’s
correlation coefficients (ρ) for each of these sequences are
listed in Table I. This table shows that the grade of course,

Features Spearman correlation coefficient
speed 0.1826

grade of course 0.2524
cadence 0.2389
distance 0.0466
altitude 0.2586

TABLE I: Spearman Correlation Coefficient Between Factors
and Heart Rate

cadence, speed, and altitude significantly influence heart rate
more than the other factors. We therefore selected these four
factors as the features for our heart rate forecasting model.

We measured heart rate data with an electrode sensor on a
chest strap. During cycling, the sensor might situate far apart
from the skin due to motion, which can cause error on heart
rate data. To reduce the error and smooth the heart rate, the
heart rate sequence was therefore processed with a window
average of 60 seconds. The grade of course, cadence, speed,
and altitude features are also processed with the same window
average process to ensure consistency with the heart rate data.

We split the dataset between a training set and test set. By
convention, we used an 80% vs 20% train-test split ratio to
split data into the training set and test set. For the LSTM-
based model, the training set was the first 80% of the data
and the test set was the remaining 20% rather than a random
selection to account for the order dependence in heart rate
data. To compare the results with LSTM-based models, the
same train-test split process was also performed for the random
forest model.

IV. HEART RATE FORECASTING MODEL COMPARISON

This section describes how we applied four learning algo-
rithms (random forest, feed forward neural networks, simple
recurrent neural networks, and long short term memory) to
build heart rate forecasting models that predict an cyclist’s
heart rate on a given course. The results of applying these heart
rate forecasting models are then analyzed. We also compare
the mean squared error (MSE) of all four models to glean
insights into which models perform best and whether they
have severe overfitting. Finally, we compare our models with
other models (Ni’s model [8] and Luo’s model [9]) that are not
course-specific, but which we trained on our dataset described
in Section III-C.

A. Random Forest Heart Rate Models

We used the scikit-learn library [21] to construct the heart
rate forecasting models based on random forest. The criterion
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is MSE and the number of decision tree regressors can be
modified. Table II shows four random forest models with
different numbers of decision trees regressors.

Model Number #Decision Tree Regressors
1 5
2 10
3 15
4 20

TABLE II: Number of Decision Tree Regressors in RF model

Each decision tree regressor uses all factors in regression.
Their MSE on the training set and test set, as well as the
maximum depth of decison tree regressor, are shown in Table
III. For all four models, the MSE on the test set are hundreds

RF Model MSE on Training Set MSE on Test Set Max Depth
Model 1 0.455 125.15 31
Model 2 0.245 120.39 30
Model 3 0.157 130.40 34
Model 4 0.289 128.92 34

TABLE III: MSE and MaxDepth of RF Models on Data Set

of times larger than on the training set, which shows that these
random forest models have severe overfitting. Table III shows
the depth of decision tree regressors are approximately six
times larger than the number of factors. This result indicates
some factors are split multiple times, which increases the com-
plexity of the decision tree, thereby yielding severe overfitting
of the random forest model.

The heart rate forecasting result of model 1 is chosen and
shown in Figure 2a. The predicted value follows the trend of

(a) Forecasting Result (b) Prediction Error

Fig. 2: Heart Rate Forcasting of Random Forest Model 1

the heart rate and shows the model learned some patterns in the
heart rate sequence due to the course. However, the predicted
heart rate shows a large error around time 8,900s. Moreover,
the predicted heart rate remains stable for the time range from
8,600s to 8,700s, whereas the real heart rate shows a sharp
decreasing trend. The error in percentage between predicted
heart rate and real heart rate is shown in Figure 2b, which
shows a similar trend as the forecasting result.

To investigate the structure of random forest model, the Gini
importance2 of each factor is calculated. A factor with large
Gini importance means that more nodes are split by this feature
in the decision tree and therefore this feature is considered
significant.

The average Gini importance of factors in each model is
listed in Table IV. This table shows that speed, time, and

2The Gini importance is the average decrease of variance, which indicates
the probability of whether there is a split on this feature [22].

RF Model Gini Importance of Factors
(Time, Grade, Speed, Cadence, Altitude)

Model 1 0.294, 0.0376, 0.531, 0.028, 0.108
Model 2 0.280, 0.0344, 0.536, 0.029, 0.120
Model 3 0.281, 0.0342, 0.540, 0.030, 0.113
Model 4 0.285, 0.0349, 0.536, 0.028, 0.115

TABLE IV: Gini Importance of Random Forest Models

altitude are three major factors used to split nodes in the
first several layers of decision tree. Likewise, the table also
shows the influence of cadence and grade are less important
in decision tree construction.

We hypothesize that the source of the error may occur for
the following reasons:

• The dataset only indirectly measures course features via
speed and position, so it does not effectively learn course-
specific influences on heart rate.

• There may be some internal rider conditions, such as the
mental activities of the cyclist over time. For example, a
cyclist may be anxious due to the difficulty of the terrain,
thereby increasing their heart rate. All these features can
influence heart rate, though they are hard to measure and
express quantitatively.

• The random forest models may overfit on the training set
and provide erroneous predictions.

B. The FFNN Heart Rate Model

Due to the overfitting problems of the random forest model,
we built feed forward neural network (FFNN) models with
different hyper-parameters. The hyper parameters of the FFNN
models are listed in Table V.

Model Number #Layers #Neurons in Each Layer
1 2 (5, 1)
2 2 (10, 1)
3 3 (5, 5, 1)
4 3 (10, 5, 1)

TABLE V: Hyper-Parameters of FFNN Models

An important phase of training a neural network involves
finding a proper learning rate. To search the learning rate
systematically, we employed Smith’s method [23]. By running
at each learning rate for 10 epochs, the loss vs learning rate
curves are plotted, as shown in Figure 3. According to the
curves, the optimal start learning rate for these four FFNN
models are 3× 10−2.

Figure 4 shows the predicted heart rate and the real heart
rate of these four FFNN models applied to the same sample
as the random forest. The sample shows that FFNN models
can follow the trend of the cyclist’s heart rate on the specific
course. The error and error percentage are plotted in Figure 5
and Figure 6, respectively.

Models 3 and 4 show large errors from 8,500s to 9,000s.
To investigate the error source, MSEs of the training set and
test set are calculated for these four models, as shown in Table
VI. Model 3 shows an obvious overfitting on the training set,
while Models 1 and 2 show large bias on the training set.
Among these four models, Model 4 shows relatively low bias
and variance.
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(a) Model 1 (b) Model 2

(c) Model 3 (d) Model 4

Fig. 3: Learning Rate Search for FFNN Heart Rate Models

(a) Model 1 (b) Model 2

(c) Model 3 (d) Model 4

Fig. 4: Heart Rate Forecasting of FFNN Models

(a) Model 1 (b) Model 2

(c) Model 3 (d) Model 4

Fig. 5: Heart Rate Forecasting Error of FFNN Models

(a) Model 1 (b) Model 2

(c) Model 3 (d) Model 4

Fig. 6: Heart Rate Forecasting Error in Percent of FFNN
Models

Model Number MSE on Training Set MSE on Test Set
1 242.89 405.11
2 238.81 568.08
3 262.47 364.91
4 233.25 402.34

TABLE VI: MSE of FFNN models

Compared with random forest models, the variances of
FFNN models on the training set and test set are much closer,
indicating less overfitting severity. We therefore expect the
FFNN models to generalize better than the random forest
model because they do not incur such severe overfitting.

C. The Simple RNN Model

Unlike FFNNs, recurrent neural networks (RNNs) can uti-
lize heart rate data in the past to forecast the heart rate at the
current moment. Figure 7 shows the architecture of a simple
RNN model for heart rate forecasting. The number of simple

Fig. 7: Structure of Simple RNN Heart Rate Forecasting Model

RNN layers, m, and the number of fully connected layers (also
known as dense layers) n, are two important hyper-parameters
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in a simple RNN heart rate forecasting model. The heart rate
sequence is divided by the maximum heart rate.

Simple RNN Models with different hyper parameters were
built and their hyper-parameters are listed in Table VII. The

Model Number #Dense Layers #Simple RNN Layers
1 1 1
2 1 2
3 2 1
4 2 2

TABLE VII: Hyper-parameters of Simple RNN models

optimal start learning rates were identified via Smith’s method
and an exponential decay learning rate function was utilized
for learning rate searching. The learning rate vs loss curves
are plotted in Figure 8. From the learning rate vs loss curves

(a) Model 1 (b) Model 2

(c) Model 3 (d) Model 4

Fig. 8: Learning Rate Search for Simple RNN Models

shown in Figure 8, the optimal start learning rate was selected
as 2× 10−1.

Table VIII shows the MSEs of four simple RNN models
with different sets of hyper-parameters on the training set and
test set. For Model 3, the MSE on the test set is much larger

Model Number MSE on Training Set MSE on Test Set
1 275.11 248.83
2 628.48 237.68
3 210.31 655.18
4 1245.66 964.61

TABLE VIII: MSE of Simple RNN models

than that on the training set, which indicates overfitting.
The heart rate of the athlete is predicted in Figure 9 and the

error and error in percentage are shown in Figures 10 and 11.
Compared with FFNN models, simple RNN Models 1 and 3

exhibit fewer errors and the forecasting results are closer to
the real heart rate sequence.

D. The LSTM Model

Simple RNN models can suffer from vanishing gradient
problems, which limits their application when the sequence of
input data items is very long. To address this issue, therefore,

(a) Model 1 (b) Model 2

(c) Model 3 (d) Model 4

Fig. 9: Heart Rate Forecasting of Simple RNN Models

(a) Model 1 (b) Model 2

(c) Model 3 (d) Model 4

Fig. 10: Heart Rate Forecasting Error of Simple RNN Models

(a) Model 1 (b) Model 2

(c) Model 3 (d) Model 4

Fig. 11: Heart Rate Forecasting Error in Percent of Simple
RNN Models
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we also implemented LSTM models. The hyper-parameters of
these models are shown in Table IX. The error of the results

Model Number #Dense Layers #LSTM Layers
1 1 1
2 1 2
3 2 1
4 2 2

TABLE IX: Hyper-parameters of LSTM models

for two-layer LSTM models is large, which likely occurs since
models with two LSTM layers are so deep that our current
dataset is insufficient to train them.

The learning rate vs loss function curves that utilize the
optimal learning rate finder are shown in Figure 12. The
optimal start learning rate for models with only one LSTM
layer (i.e., Models 1 and 3) is 1× 10−1 and the optimal start
learning rate for models with two LSTM layers (Models 2 and
4) is 1× 101.

The results for the four LSTM models with different hyper-
parameters are shown in Figure 13. The heart rate error
and error in percentage are shown in Figures 14 and 15,
respectively.

(a) Model 1 (b) Model 2

(c) Model 3 (d) Model 4

Fig. 12: Learning Rate Search for LSTM Models

The MSE on the training set and test set is shown in Table
X. As shown in this table, the models with two LSTM layers

Model Number MSE on Training Set MSE on Test Set
1 141.17 200.50
2 1240.60 1015.87
3 62.47 196.61
4 1480.36 1470.36

TABLE X: MSE of LSTM models

exhibit large MSE over both the training set and test set.
This larger error may occur since our dataset is insufficient
to train a neural network with two LSTM layers. This result
may also indicate that the simple one-dimensional signals of
speed, position, and cadence are insufficient to learn course-
specific heart rate variation.

(a) Model 1 (b) Model 2

(c) Model 3 (d) Model 4

Fig. 13: Heart Rate Forecasting of LSTM Models

(a) Model 1 (b) Model 2

(c) Model 3 (d) Model 4

Fig. 14: Heart Rate Forecasting Error of LSTM Models

(a) Model 1 (b) Model 2

(c) Model 3 (d) Model 4

Fig. 15: Heart Rate Forecasting Error in Percent of LSTM
Models
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E. Comparison with Other Heart Rate Models

Based on the results presented above, it appears that two
LSTM models with only one LSTM layer perform better than
the other three types of model. We therefore also compared
these LSTM models with Luo’s LSTM model [9] and Ni’s
LSTM-based model [8], which are course-independent and
rely only on personalized factors and contextual factors. The
input features to these latter two models were cadence, speed,
altitude, and time.

Since Luo and Ni’s models are not course-specific, the grade
of a biking course is excluded in the input factors. In particular,
only the structure of their models are utilized and some layers
(such as the encoding layers in Ni’s model) are removed since
heart rate forecasting is the main focus. The structure of these
models are shown in Table XI.

Models Layer Structure of Heart Rate Forecasting Model
Ni’s model LSTM + Dense + Dropout

Luo’s model LSTM + Dropout + LSTM + Dropout
LSTM model 1 LSTM + Dense
LSTM model 3 LSTM + Dense + Dense

TABLE XI: Structure of Heart Rate Forecasting Models

These two models were first trained on the same training
set as our heart rate forecasting models with course-specific
factors excluded. They were then tested on the same test set.
The MSE of all four of these models is shown in Table XII.
The forecasted heart rate is shown in Figure 16.

Models MSE on Training Set MSE on Test Set
Ni’s model 1822.23 407

Luo’s model 239.89 157.40
LSTM model 1 141.17 200.50
LSTM model 3 62.47 196.61

TABLE XII: MSE of LSTM models

Fig. 16: Comparison of Different Heart Rate Forecasting
Models

While Ni et al.’s model showed less error on both the
training set and test set, the heart rate it forecasted is close
to constant except for several drop outs. Luo et al.’s model
captures the heart rate pattern at around 170 beats per minute,
but cannot follow the heart rate pattern overall.

V. SUMMARY OF OUR EXPERIMENT RESULTS

This section summarizes the results from our experiments
in Section IV.

A. Summary of Random Forest Model Results

The random forest models presented in Section IV-A exhibit
severe overfitting, likely because these models are based on
decisions from an ensemble of tree regressors, which are data
sensitive. In particular, tiny fluctuations in the input sequence
can result in dramatically different outputs. Data fluctuation is
common and unavoidable in real-world heart rate forecasting
for cycling due to the mechanical vibration and the cyclist’s
movement.

The Gini importance analysis shows that random forest
models value speed, time, and altitude above grade and
cadence, which is responsible for most of the errors. Due
to severe overfitting, therefore, random forest models are
poorly suited for personalized and course-specific heart rate
forecasting in our dataset.

B. Summary of FFNN Model Results

Compared with the random forest models described above,
Feed forward neural networks (FFNNs) did not incur over-
fitting issues. The major error source stems from the time
dependency of heart rate, i.e., the heart rate at t-th second
depends on what happened in the past (e.g., the cyclist rode
up a steep hill). Errors also relate to the heart rate and other
factors at 0, 1, ..., t− 1 seconds. Due to the nature of FFNNs,
however, these models cannot deal with time dependencies
efficiently.

C. Summary of the RNN Model Results

We tested two types of RNN models: a simple RNN model
and an LSTM model. Our results showed that the simple RNN
model captured the main trends of the heart rate sequence. The
error source in the RNN models stemmed from either gradient
vanishing or a gradient explosion, as described below:

• Gradient vanishing occurs in a long sequence, when
the output value is large. In this case, the gradient of
the RNN’s sigmoid activation function is close to zero,
leading to slow or no update to the weight matrices and
bias vectors [24].

• Gradient explosion occurs when an RNN is learning a
long sequence and the gradient rises sharply, resulting in
an unstable neural network.

These two problems may be the error source for simple RNN
models, depending on sequence size.

In all four types of models, LSTM models show decent
performance without severe overfitting. The LSTM has three
gates that reduce the likelihood of vanishing or exploding
gradients. For both simple RNN and LSTM models, however,
models with two RNN/LSTM layers perform poorly since
these two layer models are too deep to train efficiently with
our dataset.
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D. Mapping Our Results Onto Research Questions 1, 2, and
3

For research question 1 in Section III-A both course-
independent models do not capture the heart rate trend of
the cyclist well from 8,000s to 10,000s, as discussed in
Section IV-E. In particular, the LSTM model proposed by
Ni et al. [8] mainly outputs a rectangular heart rate sequence
due to the lack of course-specific factors, such as grade. Ni
et al. [8] state that their model focuses primarily on short-
term predictions (typically in a window of 10 seconds), so a
2,000-second sequence may be too long for their model. Luo’s
model forecasted a somewhat continuous heart rate around 170
beats per minute with small dips around 9000s and 9250s.
In general, our results show that these two models are not
as accurate as our LSTM models since they do not consider
course-specific factors.

For research question 2 in Section III-A, random forest
models exhibit lower MSE on the dataset, but their substantial
difference in MSE on the training set and test set indicates that
they all incur severe overfitting. The maximum depth of each
decision tree regressor in random forest models are all over
six times the number of factors, which means that RF model
split some factors over six times. This splitting dramatically
increases the complexity of the forecasting models and can
result in severe overfitting.

Moreover, as the data size grows larger, the depth of the
decision tree regressors also grows because the output decision
tree regressor will cover all the heart rate cases, including any
erroneous data in the dataset (e.g., due to sensor noise during
collection). As the data set grows larger, the number of erro-
neous readings will unavoidably increase, thereby increasing
the probability of erroneous prediction due to the accumulated
influence of error. As a result, conventional machine learning
models have difficulty on course-specific heart rate forecasting.

For research question 3 in Section III-A speed has the
highest Gini importance, which aligns with prior work on heart
rates for cyclists [5] and is utilized as the splitting factor for
the first layer. The three major factors are speed, time, and
altitude. In contrast, the influence of cadence and grade are
considered less important in decision tree construction.

In summary, our LSTM Models 1 and 3 do not suffer
from overfitting and offer reasonable heart rate forecasting.
Compared with course-independent models, the forecasted
heart rate of our course-specific models are closer to the real-
world heart rate sequence.

VI. CONCLUDING REMARKS

This paper presents an empirical analysis of personalized
and course-specific models to forecast heart rates for cyclists.
In particular, we explored the performance and feasibility of
learning a cyclist’s course-specific heart rate model from a
single ride on a given course. We implemented models using
long short term memory (LSTM), recursive neural network
(RNN), random forest, and previously published architectures
and compared their performance learning a cyclist. We also
compared our model with Ni et al’s [8] and Luo et al.’s [9]
models.

The following are key lessons learned from our research on
single-ride personalized and course-specific heart rate forecast-
ing in cycling:

• Overfitting is a challenge for traditional machine
learning models. Our MSE analysis in Section IV-A
showed the random forest models had severe overfitting,
due to the effect of erroneous data (e.g., noise in com-
modity sensors) in the training set. Likewise, as the data
set grew, erroneous readings introduced poor performance
in the random forest forecasting models.

• Course-specific factors are crucial in heart rate fore-
casting. In Section III-D, the Spearman’s correlation
coefficient showed that the grade of the course (which is
a course-specific factor) was highly correlated with heart
rate. Moreover, Section IV-E showed that two course-
independent models captured heart rate patterns poorly
compared with our course-specific LSTM models.

• Course-specific models offer accurate heart rate fore-
casting. The results from our comparisons indicated that
our LSTM-based models exhibit slightly lower mean
square error (MSE) and mean absolute percentage error
(MAPE) compared with Luo et al.’s model. Likewise,
Jianmu Ni et al’s model does not offer reasonable heart
rate forecasting on the given dataset compared with our
LSTM-based models.

• Personalized and course-specific LSTM models can
be learned for a cyclist to forecast heart rate from a
single ride of a course. More work is needed to validate
this observation, but our initial results are promising. The
heart rate forecasting results in Section IV showed that
the accuracy of the LSTM models outperformed the other
two neural network models and did not have as severe
overfitting as the random forest models. In Section IV-E,
the LSTM course-specific models also performed better
than the two LSTM-based course-independent models.

Our future work focuses on scaling up our validation on
a larger body of cyclists to determine whether these results
hold true across a range of riders. We are also exploring how
imagery of the course can aid in understanding complicated
course features, such as terrain roughness. For personalized
factors, we are evaluating the extent to which learned course-
specific models transfer to other riders of the same gender and
age, as well as bike types. We are also considering dynamic
personalized factors, such as breathing rate.

For course-specific factors, image data and videos are being
collected and analyzed via neural networks. The roughness and
course conditions at different parts of the course are being
analyzed from these images and applied in our heart rate
forecasting model.
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