
IEEE SOFTWARE 1

Productivity Analysis for the Distributed QoS
Modeling Language

Joe Hoffert, Douglas C. Schmidt, and Aniruddha Gokhale
Vanderbilt University
Nashville, TN, USA

{jhoffert, schmidt, gokhale}@dre.vanderbilt.edu

Abstract—Model-driven engineering (MDE), in general, and
Domain-Specific Languages (DSLs), in particular, are increas-
ingly being used to manage the complexity of developing ap-
plications in various domains. Although many DSL benefits
are qualitative, there is a need to quantitatively demonstrate
the benefits of DSLs to simplify comparison and evaluation.
This paper describes how we conducted productivity analysis
for the Distributed Quality-of-Service (QoS) Modeling Language
(DQML). Our analysis shows (1) the significant productivity gain
using DQML compared with alternative methods when config-
uring application entities and (2) the viability of quantitative
productivity metrics for DSLs.

Index Terms—Model-Integrated Computing, Productivity
Analysis, DSL, GME, DQML, QoS Configuration

I. INTRODUCTION

MODEL-DRIVEN Engineering (MDE) helps address the
problems of designing, implementing, and integrating

applications. MDE is increasingly used in domains involv-
ing modeling software components, developing embedded
software systems, and configuring quality-of-service (QoS)
policies. Key benefits of MDE include (1) raising the level
of abstraction to alleviate accidental complexities of low-level
and heterogeneous software platforms, (2) more effectively
expressing designer intent for concepts in a domain, and (3)
enforcing domain-specific development constraints.

Many documented benefits of MDE are qualitative, e.g.,
the use of (1) domain-specific entities and associations that
are familiar to domain experts and (2) visual programming
interfaces where developers can manipulate icons representing
domain-specific entities to simplify development. There is a
lack of documented quantitative benefits for DSLs, however,
that show how (1) developers are more productive using MDE
tools and (2) development using DSLs yields fewer bugs.

Conventional techniques for quantifying the benefits of
DSLs, such as comparing elapsed development time for a
domain expert with and without the use of the DSL [1], involve
labor-intensive and time-consuming experiments. For example,
control and experimental groups of developers may be tasked
to complete a development activity during which metrics are
collected (e.g., number of defects, time required to complete
various tasks). These metrics also often require the analysis
of domain experts who are unavailable in many production
systems.

Even though DSL developers are typically responsible for
showing productivity gains, they often lack the resources to

demonstrate the quantitative benefits of their tools. To address
this issue, we present a lightweight approach to quantitatively
evaluating DSLs via productivity analysis, which measures
how productive developers are and quantitatively explores
factors that influence productivity [2], [3].

While there has been much prior work on domain-specific
technologies, less attention has focused on quantitative produc-
tivity metrics for DSLs. Conway and Edwards [4] quantify
code size improvements, but do not address key benefits of
automatic code generation. Bettin [5] presents productivity
analysis for domain-specific modeling techniques, although the
trade-off of manual coding and modeling efforts is primarily
qualitative. Balasubramanian et al. [6] provide quantitative
productivity analysis of a DSL showing a reduction in the
number of development steps for a particular use case, but do
not address productivity gains over the life of the DSL.

This paper focuses on applying quantitative productivity
measurement on a case study of the Distributed QoS Modeling
Language (DQML), which is a DSL for designing valid
QoS policy configurations and transforming the configurations
into correct-by-construction implementations. Our productivity
analysis of DQML shows significant productivity gains com-
pared with common alternatives, such as manual development
using third-generation programming languages.

II. DISTRIBUTED QOS MODELING LANGUAGE

The Distributed QoS Modeling Language (DQML) is a
DSL that addresses key inherent and accidental complexities
of ensuring semantically compatible QoS policy configu-
rations for publish/subscribe (pub/sub) middleware. DQML
initially focused on QoS policy configurations for the Data
Distribution Service (DDS) (a pub-sub middleware standard
defined by the Object Management Group and summarized
in Sidebar 1), though the approach can be applied to other
pub-sub technologies. DQML has been developed using the
Generic Modeling Environment [7] (GME) which is a meta-
programmable environment for developing DSLs. This section
provides an overview of DQML’s structure and functionality.

A. Structure of the DQML Metamodel

The DQML metamodel constrains the possible set of QoS
policy configuration models that can be generated. The meta-
model includes all 22 QoS policy types defined by DDS, as
well as the DDS entity types that can have QoS policies

IEEE SOFTWARE 2

Sidebar 1: Data Distribution Service (DDS)
Overview

DDS (www.omg.org/dds) defines a standard anonymous pub/-
sub architecture to exchange data in event-based distributed
systems. The data-centric pub/sub (DCPS) layer of DDS
provides a global data store where publishers write and sub-
scribers read data. Its modular structure, power, and flexi-
bility stem from its support for (1) location-independence,
via anonymous publish/subscribe, (2) redundancy, by allowing
any numbers of readers and writers, (3) real-time QoS, via
its 22 QoS policies, (4) platform-independence, by supporting
a platform-independent model for data definition that can be
mapped to different platform-specific models, and (5) interop-
erability, by specifying a standardized protocol for exchanging
data between distributed publishers and subscribers.

Key DCPS entities include topics, which describe the type
and structure of the data to read or write; data readers, which
subscribe to the data of particular topics; and data writers,
which publish data for particular topics. Various properties of
these entities can be configured using combinations of the 22
QoS policies. In addition, publishers manage one or more data
writers while subscribers manage one or more data readers.

DDS provides a rich set of QoS policies as indicated
by the number of QoS policies available. Each QoS policy
has ∼2 attributes, with most attributes having an unbounded
number of potential values, e.g., an attribute of type character
string or integer. The DDS specification defines which QoS
policies are applicable for certain DCPS entities, as well as
which combinations of QoS policy values are semantically
compatible.

associated with them. Along with the entities described in
Sidebar 1, the metamodel also includes support for domain
participants, which create DDS entities within a particular
domain, and domain participant factories, which are used to
generate domain participants.

DQML’s metamodel supports associations between appli-
cable DDS entities, and between entities and applicable QoS
policies. Associations between DDS entities are restricted, i.e.,
not all DDS entities can be associated with any other type of
entity (e.g., an association between a subscriber and a data
writer is invalid since subscribers manage data readers rather
than data writers). DQML enforces the validity of associations
between DDS entities.

Likewise, the metamodel supports associations between
entities and QoS policies. Once again, associations between
entities and QoS policies are restricted, e.g., a time-based filter
QoS policy can only be associated with a data reader since only
the data reader knows if data is being received too quickly.
The DQML metamodel enforces the validity of associations
between entities and QoS policies.

The DDS specification constrains associations between en-
tities and QoS policies with respect to compatibility and
consistency. Compatibility is relevant to a common type of
QoS policy associated with multiple entities (e.g., a reliability
QoS policy associated with a data reader and a reliability QoS
policy associated with a data writer). Consistency is relevant
to multiple QoS policies associated with a single DDS entity
(e.g. a deadline QoS policy and a time-based filter QoS policy
associated with the same data reader).

Constraint definitions in the DQML metamodel enforce
compatibility and consistency within a QoS configuration
model. These constraints are defined using the Object Con-
straint Language (OCL) [8]. Compatibility and consistency
constraint checking can be initiated by DQML users during
application development.

B. Functionality of DQML

DQML allows users to incorporate an arbitrary number of
DDS entity instances from the seven entity types supported
(e.g., any number of data readers), as shown in Figure 1.
DQML also allows users to specify an arbitrary number of
DDS QoS policy instances (e.g., any number of deadline QoS
policies). All DDS QoS policy parameters are supported along
with the appropriate ranges of parameter values, as well as the
default values. Users can modify parameter values as needed.
DQML performs type checking on any modified parameters
and will prohibit any invalid values (e.g., assigning a character
to an integer value). Moreover, for enumeration parameter
types DQML presents only the appropriate enumeration values
and allows the assignment of only one valid value to the
parameter.

DQML allows users to generate associations between the
DDS entities, as well as between entities and QoS policies. It
ensures that users only specify valid associations, i.e., where
it is valid to associate two particular types of entities or
associate a particular DDS entity with a particular type of
QoS policy. DQML allows the association of the same QoS
policy instance with more than one entity, i.e., the entities
“share” a common QoS policy. This DQML feature enforces
correct configurations when identical QoS policy instances are
needed to ensure a valid configuration that is also designed as
intended (e.g., associating a data reader and data writer to the
same reliability QoS policy instance ensures that both entities
will be configured with the same reliability settings).

DQML checks for compatible and consistent QoS policy
configurations. It reports any violations along with detailed
information to aid users in resolving the violations. When no
QoS parameters values are specified by the user, DQML uses
default QoS parameter values to determine QoS compatibility
and consistency. Moreover, DQML will check parameter val-
ues for compatibility and consistency if the values are defaults,
explicitly set by the user, or a combination of both. Addition-
ally, DQML supports transformation from configuration design
to implementation via application-specific interpreters which
is detailed in Section IV-B.

III. DQML CASE STUDY: DDS BENCHMARKING

ENVIRONMENT (DBE)

At least five different implementations of DDS are available,
each with its own set of strengths and market discriminators. A
systematic benchmarking environment is needed to objectively
evaluate the QoS of these implementations. Such evaluations
can also help guide the addition of new features to the DDS
standard as it evolves.

Since DDS has a large QoS configuration space (as outlined
in Sidebar 1) there is an exponential number of testing config-
urations where QoS parameters can vary in several orthogonal

IEEE SOFTWARE 3

Modeling of relevant DDS entities

Modeling of
DDS QoS
policies as
first class
entities

Modeling of relationships between entities & QoS policies

Fig. 1: The Distributed QoS Modeling Language (DQML)

dimensions. For example, evaluation scenarios can involve any
combination of the following subset of QoS policies:

1) Durability to manage data for late arriving subscribers,
2) Time-based Filter to provide inter-arrival data spacing,

e.g., when a fast publisher of data overwhelms a slow
subscriber,

3) Reliability to reliably deliver data or to remove reliabil-
ity overhead and jitter for real-time applications,

4) Ownership to provide failover capability,
5) Resource Limits to provision data resources,
6) Transport Priority to prioritize the transfer of data,
7) Liveliness to determine liveness of an application, sys-

tem, or subsystem,
8) Presentation to order data, e.g., when a causal ordering

of data needs to be preserved, and
9) Deadline to support the timeliness of data.

Manually performing evaluations for each (1) QoS configura-
tion, (2) DDS implementation, and (3) platform incurs signif-
icant accidental complexity. Moreover, the effort to manage
and organize test results also grows dramatically along with
the number of distinct QoS configurations.

The DDS Benchmarking Environment (DBE) tool suite
was developed to examine and evaluate the QoS of DDS
implementations [9]. DBE is an open-source framework for
automating and managing the complexity of evaluating DDS
implementations with various QoS configurations. DBE con-
sists of (1) a repository containing scripts, configuration files,
test ids, and test results, (2) a hierarchy of Perl scripts to
automate evaluation setup and execution, and (3) a shared C++
library for collecting results and generating statistics.

The architecture of DBE supports three levels of execution
to enhance portability, performance, and flexibility, while
minimizing overhead. The top level provides the user interface,
the middle level manages the platform or node, and the
bottom level constitutes the executables (e.g., publishers and
subscribers for each DDS implementation).

DBE deploys a QoS policy configuration file for each data
reader and data writer. As shown in Figure 2, the files contain
simple text with a line-for-line mapping of QoS parameters to
values, e.g., datawriter.deadline.period=10. A file is associated
with a particular data reader or data writer. For DBE to
function properly, QoS policy settings in the configuration files
must be correct to ensure that data flows as expected. If the
QoS policy configuration is invalid, incompatible, inconsistent,
or not implemented as designed, the QoS evaluations will not
execute properly.

The DBE configuration files have traditionally been hand
generated using a text editor, which is tedious and error-prone
since the aggregate parameter settings must ensure the fidelity
of the QoS configuration design as well as the validity, cor-
rectness, compatibility, and consistency with respect to other
values. Moreover, the configuration files must be managed
appropriately, e.g., via unique and descriptive filenames, to
ensure the implemented QoS parameter settings reflect the
desired QoS parameter settings. To address these issues, we
developed an interpreter for DBE within DQML to automate
the production of DBE QoS settings files.

We use DBE as a case study in this paper to highlight the
challenges of developing correct and valid QoS configurations,
as well as to analyze the productivity benefits of DQML.
When applying DQML to generate a QoS configuration for
DBE we model (1) the desired DDS entities, (2) the desired
QoS policies, (3) the associations among entities, and (4)
the associations between entities and QoS policies. After a
initial configuration is modeled, we then perform constraint
checking to ensure compatible and consistent configurations.
Other constraint checking is automatically enforced by the
DQML metamodel as a model is constructed (e.g., listing only
the parameters applicable to a selected QoS when modifying
values, allowing only valid values for parameter types).

We then invoke the DBE interpreter to generate the ap-
propriate QoS settings files. These files contain the correct-

IEEE SOFTWARE 4

Fig. 2: Example Portion of a DBE QoS Settings File

by-construction parameter settings automatically generated by
the interpreter as it traverses the model and transforms the
QoS policies from design to implementation. Finally, we
execute DBE to deploy data readers and data writers using
the generated QoS settings files and run experiments to collect
performance metrics.

Although we are focusing on DBE in our case study,
production DDS-based applications will generally encounter
the same accidental complexities when implementing QoS
parameter settings, e.g., design-to-implementation transforma-
tion fidelity; valid, correct, compatible, and consistent settings.
DDS QoS policy settings are typically specified for a DDS
implementation programmatically by manually creating source
code in a third-generation computer language, e.g., Java and
C++. Manual creation can incur the same accidental complex-
ities as the DBE case study without the integration of MDE
tools like DQML.

IV. DSL PRODUCTIVITY ANALYSIS

This section provides a taxonomy of approaches to devel-
oping quantitative productivity analysis for a DSL. It also
presents a productivity analysis for DQML that evaluates
implementing QoS configurations for the DBE case study from
Section III.

A. Productivity Analysis Approach

When analyzing productivity gains for a given DSL, an-
alysts can employ several different types of strategies, such
as

1) Design development effort, comparing the effort (e.g.,
time, number of design steps [6], number of modeling
elements [10], [11]) it takes a developer to generate a
design using traditional methods (e.g., manually) versus
generating a design using the DSL,

2) Implementation development effort, comparing the
effort (e.g., time, lines of code) it takes a developer
to generate implementation artifacts using traditional
methods, i.e., manual generation, versus generating im-
plementation artifacts using the DSL,

3) Design quality, comparing the number of defects in a
model or an application developed traditionally to the
number of defects in a model or application developed
using the DSL,

4) Required developer experience, comparing the amount
of experience a developer needs to generate a model or

application using traditional methods to the amount of
experience needed when using a DSL, and

5) Solution exploration, comparing the number of viable
solutions considered for a particular problem in a set
period of time using the DSL as compared to traditional
methods or other DSLs.

This article focuses on the general area of quantitative pro-
ductivity measurement—specifically on implementation devel-
opment effort in terms of lines of code. The remainder of this
section compares the lines of configuration code manually
generated for DBE data readers and data writers to the
lines of C++ code needed to implement the DQML DBE
interpreter, which in turn generates the lines of configuration
code automatically.

B. DQML Productivity Analysis

Below we analyze the effect on productivity and the break-
even point of using DQML as opposed to manual imple-
mentations of QoS policy configurations for DBE. Although
configurations can be designed using various methods as
outlined in previous work [12], manual implementation of
configurations is applicable to these other design solutions
since these solutions provide no guidance for implementation.

Within the context of DQML, we developed an interpreter
specific to DBE to support DBE’s requirement of correct QoS
policy configurations. The interpreter generates QoS policy
parameter settings files for the data readers and data writers
that DBE configures and deploys. All relevant QoS policy
parameter settings from a DQML model are output for the
data readers and data writers including settings from default
as well as explicitly assigned parameters.

As appropriate for DBE, the interpreter generates a single
QoS policy parameter settings file for every data reader or
data writer modeled. Care is taken to ensure that a unique
filename is created since the names of the data readers and
data writers modeled in DQML need not be unique. Moreover,
the interpreter’s generation of filenames aids in QoS settings
files management (as described in Section III) since the files
are uniquely and descriptively named.

1) Scope: DBE currently uses DDS data readers and data
writers. Our productivity analysis therefore focuses on these
entities and, in particular, the QoS parameters relevant to them.
In general, the same type of analysis can be performed for
other DDS entities for which QoS policies can be associated.

As shown in Table I, 15 QoS policies with a total of
25 parameters can be associated with a single data writer.

IEEE SOFTWARE 5

QoS Policy # of
Params

Param
Type(s)

Deadline 1 int
Destination
Order

1 enum

Durability 1 enum
Durability
Service

6 5 ints, 1
enum

History 2 1 enum,
1 int

Latency
budget

1 int

Lifespan 1 int
Liveliness 2 1 enum,

1 int
Ownership 1 enum
Ownership
Strength

1 int

Reliability 2 1 enum,
1 int

Resource
Limits

3 3 ints

Transport
Priority

1 int

User Data 1 string
Writer Data
Lifecycle

1 bool

Total
Parameters

25

TABLE I: DDS QoS
Policies for
data writers

QoS Policy # of
Params

Param
Type(s)

Deadline 1 int
Destination
Order

1 enum

Durability 1 enum
History 2 1 enum,

1 int
Latency
budget

1 int

Liveliness 2 1 enum,
1 int

Ownership 1 enum
Reader Data
Lifecycle

1 int

Reliability 2 1 enum,
1 int

Resource
Limits

3 3 ints

Time Based
Filter

1 int

User Data 1 string

Total
Parameters

17

TABLE II: DDS QoS
Policies for
data readers

Likewise, Table II shows 12 QoS policies with a total of
17 parameters can be associated with a single data reader.
Within the context of DBE, therefore, the total number of
relevant QoS parameters is 17 + 25 = 42. Each QoS policy
parameter setting (including the parameter and its value) for a
data reader or writer corresponds to a single line in the QoS
policy parameter settings file.

2) Interpreter development: We developed the DBE in-
terpreter for DQML using GME’s Builder Object Network
(BON2) framework, which provides C++ code to traverse the
DQML model utilizing the Visitor pattern. When using BON2,
developers of a DSL interpreter only need to modify and
add a small subset of the framework code to traverse and
appropriately process the particular DSL model. More specif-
ically, the BON2 framework supplies a C++ visitor class with
virtual methods (e.g., visitModelImpl, visitConnectionImpl,
visitAtomImpl). The interpreter developer then subclasses and
overrides the applicable virtual methods.

We developed the DQML-specific code for the DBE in-
terpreter utilizing ∼160 C++ statements within the BON2
framework. The main challenge in using BON2 is under-
standing how to traverse the model and access the desired
information. After interpreter developers are familiar with
BON2, the interpreter development is fairly straightforward.

Since the BON2 framework relies on the Visitor pattern,
familiarity with this pattern can be helpful. This familiarity
is not required, however, and developers minimally only need
to implement relevant methods for the automatically gener-
ated Visitor subclass. In general, the DQML interpreter code
specific to DBE (1) traverses the model to gather applicable
information, (2) creates the QoS settings files, and (3) outputs
the settings into the QoS settings files.

The hardest aspect of developing DQML’s DBE interpreter
is traversing the model’s data reader and data writer elements
along with the associated QoS policy elements using the
BON2 framework. Conversely, the most challenging aspects
of manually implementing QoS policy configurations are (1)
maintaining a global view of the model to ensure compatibility
and consistency, and (2) verifying the number, type, and valid
values for the parameters of the applicable QoS policies.
When implementing a non-trivial QoS policy configuration,
therefore, development of the DQML-specific C++ code for
the interpreter is no more challenging than manually ensuring
that the QoS settings in settings files are valid, consistent,
compatible, and correctly represent the designed configuration.
Section IV-B3 provides additional detail into what can be
considered a non-trivial QoS policy configuration.

The C++ development effort for DQML’s DBE interpreter
is only needed one time. In particular, no QoS policy configu-
ration developed via DQML for DBE incurs this development
overhead since the interpreter already exists. The development
effort metrics of 160 C++ statements are included only to
be used in comparing manually implemented QoS policy
configurations.

3) Analysis: The development and use of the DBE in-
terpreter for DQML is justified for a single QoS policy
configuration when at least 160 QoS policy parameter settings
are involved. These parameter settings correlate to the 160
C++ statements for DQML’s DBE interpreter. Using the results
for QoS parameters in Tables I and II for data readers and
data writers, Figure 3 shows the justification for interpreter
development. The development is justified with ∼10 data
readers, ∼7 data writers, or some combination of data readers
and data writers where the QoS settings are greater than or
equal to 160 (e.g., 5 data readers and 3 data writers = 160
QoS policy parameter settings).

Table III also shows productivity gains as a percentage
for various numbers of data readers and data writers. The
percentage gains are calculated via dividing the number of
parameter values for the data readers and data writers involved
by the number of interpreter C++ statements, i.e., 160, and
subtracting 1 to account for the baseline manual implementa-
tion. The gains increase faster than the increase in the number
of data readers and data writers (e.g., the gain for 10 data
readers and data writers is more than twice as much for 5
data readers and data writers) showing that productivity gains
are greater when more entities are involved.

of Data Readers and Data
Writers (each)

Total # of
Params

Productivity
Gain

5 210 31%
10 420 163%
15 630 294%
20 840 425%
25 1050 556%

TABLE III: Productivity Gains using DQML’s DBE
Interpreter

The interpreter justification analysis shown relates to im-
plementing a single QoS policy configuration. The analysis
includes neither the scenario of modifying an existing valid

IEEE SOFTWARE 6

Fig. 3: Metrics for Manual Configuration vs. DQML’s Interpreter

configuration nor the scenario of implementing new configu-
rations for DBE where no modifications to the interpreter code
would be required. Changes made even to an existing valid
configuration require that developers (1) maintain a global
view of the model to ensure compatibility and consistency
and (2) remember the number of, and valid values for, the
parameters of the various QoS policies being modified. These
challenges are as applicable when changing an already valid
QoS policy configuration as they are when creating an initial
configuration.

In large-scale DDS systems (e.g., shipboard computing,
air-traffic management, and scientific space missions) there
may be thousands of data readers and writers. As a point
of reference with 1,000 data readers and 1,000 data writers,
the number of QoS parameters to manage is 42,000 (i.e., 17
* 1000 + 25 * 1000). This number does not include QoS
parameter settings for other DDS entities such as publishers,
subscribers, and topics. For such large-scale DDS systems the
development cost of the DQML interpreter in terms of lines
of code is amortized substantially (i.e., 42,000 / 160 = 262.5).

V. CONCLUDING REMARKS

Although MDE and DSLs have become increasingly popu-
lar, quantitative evidence is needed to support the quantitative
evaluation of DSLs. This paper described various approaches
to quantitatively evaluating DSLs via productivity analysis. We
applied one of these approaches to a case study involving the
Distributed QoS Modeling Language (DQML). The following
is a summary of the lessons learned from our experience
applying productivity analysis to DQML:

1) Trade-offs and the break-even point for DSLs must
be clearly understood and communicated. There are
pros and cons to any technical approach including DSLs.
The use of DSLs may not be appropriate for every case
and these cases must be evaluated to provide balanced
and objective analysis.

2) The context for DSL productivity analysis needs
to be well defined. Broad generalizations of a DSL
being “X” times better than some other technology is
not particularly helpful for comparison and evaluation.

A representative case study can be useful to provide a
concrete context for productivity analysis.

3) Provide analysis for as minimal or conservative a
scenario as possible. Using a minimal scenario in
productivity analysis allows developers to extrapolate to
larger scenarios where the DSL use will be justified.

DQML is available as open-source software and can be
downloaded in GME’s XML format along with supporting
files from www.dre.vanderbilt.edu/∼jhoffert/DQML/DQML.
zip.

REFERENCES

[1] J. Loyall, J. Ye, R. Shapiro, S. Neema, N. Mahadevan, S. Abdelwahed,
M. Koets, and D. Varner, “A Case Study in Applying QoS Adaptation
and Model-Based Design to the Design-Time Optimization of Signal
Analyzer Applications,” in Military Communications Conference (MIL-
COM), Monterey, California, Nov. 2004.

[2] B. Boehm, “Improving software productivity,” Computer, vol. 20, no. 9,
pp. 43–57, Sept. 1987.

[3] R. Premraj, M. Shepperd, B. Kitchenham, and P. Forselius, “An empiri-
cal analysis of software productivity over time,” Software Metrics, 2005.
11th IEEE International Symposium, Sept. 2005.

[4] C. L. Conway and S. A. Edwards, “Ndl: a domain-specific language
for device drivers,” in LCTES ’04: Proceedings of the 2004 ACM
SIGPLAN/SIGBED conference on Languages, compilers, and tools for
embedded systems. New York, NY, USA: ACM, 2004, pp. 30–36.

[5] J. Bettin, “Measuring the potential of domain-specific modeling tech-
niques,” in OOPSLA 2002: 17th Annual ACM Conference on Object-
Oriented Programming, Systems, Languages, and Applications, Seattle,
WA, USA, November 2002.

[6] K. Balasubramanian, D. C. Schmidt, Z. Molnar, and A. Ledeczi,
“Component-based system integration via (meta)model composition,”
in ECBS ’07: Proceedings of the 14th Annual IEEE International
Conference and Workshops on the Engineering of Computer-Based
Systems. Washington, DC, USA: IEEE Computer Society, 2007, pp.
93–102.

[7] Ákos Lédeczi, Árpád Bakay, M. Maróti, P. Völgyesi, G. Nordstrom,
J. Sprinkle, and G. Karsai, “Composing domain-specific design envi-
ronments,” Computer, vol. 34, no. 11, pp. 44–51, 2001.

[8] J. Warmer and A. Kleppe, The Object Constraint Language: Getting
Your Models Ready for MDA. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 2003.

[9] M. Xiong, J. Parsons, J. Edmondson, H. Nguyen, and D. C. Schmidt,
“Evaluating Technologies for Tactical Information Management in Net-
Centric Systems,” in Proceedings of the Defense Transformation and
Net-Centric Systems conference, Orlando, Florida, Apr. 2007.

[10] A. Kavimandan and A. Gokhale, “Automated Middleware QoS Con-
figuration Techniques using Model Transformations,” in Proceedings of
the 14th IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS 2008), St. Louis, MO, USA, Apr. 2008, pp. 93–102.

IEEE SOFTWARE 7

[11] J. von Pilgrim, “Measuring the level of abstraction and detail of models
in the context of mdd,” in Second International Workshop on Model Size
Metrics, October 2007, pp. 10–17.

[12] J. Hoffert, D. Schmidt, and A. Gokhale, “A QoS Policy Configuration
Modeling Language for Publish/Subscribe Middleware Platforms,” in
Proceedings of International Conference on Distributed Event-Based
Systems (DEBS), Toronto, Canada, Jun. 2007, pp. 140–145.

Joe Hoffert is a Ph.D. student in the Department of Electri-
cal Engineering and Computer Science at Vanderbilt Univer-
sity. His research focuses on QoS support for the infrastructure
of the Global Information Grid. He previously worked for
Boeing in the area of model-based integration of embedded
systems. He received his B.A. in Math/C.S. from Mount
Vernon Nazarene College (OH) and his M.S. in C.S. from
the University of Cincinnati (OH).

Dr. Douglas C. Schmidt is a Professor of Computer Science
and Associate Chair of the Computer Science and Engineering
program at Vanderbilt University. He has published 9 books
and over 400 papers that cover a range of topics, includ-
ing patterns, optimization techniques, and empirical analy-
ses of software frameworks and domain-specific modeling
environments that facilitate the development of distributed
real-time and embedded (DRE) middleware and applications.
Dr. Schmidt has over fifteen years of experience leading the
development of ACE, TAO, CIAO, and CoSMIC, which are
open-source middleware frameworks and model-driven tools
that implement patterns and product-line architectures for
high-performance DRE systems.

Prof. Aniruddha S. Gokhale is an Assistant Professor of
Computer Science and Engineering in the Dept. of Electrical
Engineering and Computer Science at Vanderbilt University,
Nashville, TN, USA. He received his BE (Computer Eng)
from Pune University in 1989; MS (Computer Science) from
Arizona State University, Tempe, AZ in 1992; and D.Sc
(Computer Science) from Washington University, St. Louis,
MO in 1998. Prior to joining Vanderbilt, he was a Member
of Technical Staff at Bell Labs, Lucent Technologies in New
Jersey. Dr.Gokhale is a member of IEEE and ACM. Dr.
Gokhale’s research combines model-driven engineering and
middleware for distributed, real-time and embedded systems.

