

Evaluating Timeliness and Accuracy Trade-offs of Supervised Machine Learning
for Adapting Enterprise DRE Systems in Dynamic Environments*

Joe Hoffert

†

Electrical Engineering & Computer Science, Vanderbilt University, 2015 16th Avenue S.
Nashville, Tennessee 37212, USA

Douglas C. Schmidt
Electrical Engineering & Computer Science, Vanderbilt University, 2015 16th Avenue S.

Nashville, Tennessee 37212, USA
E-mail: d.schmidt@vanderbilt.edu

www.vanderbilt.edu

Aniruddha Gokhale
Electrical Engineering & Computer Science, Vanderbilt University, 2015 16th Avenue S.

Nashville, Tennessee 37212, USA
E-mail: a.gokhale@vanderbilt.edu

www.vanderbilt.edu

Abstract
Several adaptation approaches have been devised to ensure end-to-end quality-of-service (QoS) for enterprise dis-
tributed systems in dynamic operating environments. Not all approaches are applicable, however, for the stringent
accuracy, timeliness, and development complexity requirements of distributed real-time and embedded (DRE) sys-
tems. This paper empirically evaluates constant-time supervised machine learning techniques, such as artificial
neural networks (ANNs) and support vector machines (SVMs), and presents a composite metric to support quantit-
ative evaluation of accuracy and timeliness for these adaptation approaches.

Keywords: Adaptation, Machine Learning, Distributed Real-time Embedded Systems, Dynamic Environments.

*This work sponsored by NSF TRUST, AFRL, and JFCOM.
†First author email address: jhoffert@dre.vanderbilt.edu

1. Introduction

Emerging trends and challenges. Enterprise distri-
buted real-time and embedded (DRE) systems manage
resources and data that are vital to organizations or
projects. Examples include shipboard computing envi-
ronments, air traffic management systems, and recovery
operations in the aftermath of regional or national dis-
asters. These systems often adjust their operations based
on their external environment. For example, search and
rescue missions as part of disaster recovery operations
can adjust the image resolution used to detect and track
survivors depending on the resources available (e.g.,
computing power, network bandwidth) [1].

Many enterprise DRE systems autonomically mon-
itor their environment and modify their modes as the
environment changes since manual adjustment is too
slow and error prone. For example, a shift in network
reliability can prompt quality-of-service (QoS)-enabled
middleware, such as the OMG Data Distribution Service
(DDS) [2], to change mechanisms (such as the transport
used to deliver data) since some transports provide bet-
ter reliability than others in some environments. Like-
wise, cloud computing applications, where elastically
allocated resources (e.g., CPU speeds and memory)
cannot be characterized accurately a priori, may need to
adjust to available resources (such as compression algo-
rithms optimized for given CPU power and memory) at
system startup. The mission(s) of the system could be
jeopardized if these adjustments take too long.

Joe Hoffert, et al.

One way to adapt enterprise DRE systems auto-
nomically involves the use of policy-based approaches
[3] that externalize and codify logic to determine the
behavior of managed systems. Policy-based approaches
provide deterministic response times to perform appro-
priate adjustments given changes in the environment.
The complexity of developing and maintaining policy-
based approaches for enterprise DRE systems can be
unacceptably high and compromise trustworthiness,
however, since developers must determine applicable
policies for different environmental properties. Moreo-
ver, developers must manage the interaction of policies
to provide needed adjustments.

Machine learning techniques [4, 5] support algo-
rithms that allow systems to adjust behavior based on
empirical data (e.g., inputs from the environment).
These techniques can be used to support autonomic
adaptation by learning appropriate adjustments to vari-
ous operating environments. Unlike policy-based ap-
proaches, however, machine learning techniques can
automatically recognize complex sets of environment
properties and make appropriate decisions accordingly.

Conventional machine learning techniques, such as
decision trees and reinforcement learning, address auto-
nomic adaptation for non-DRE systems [6]. These tech-
niques are not well-suited for enterprise DRE systems,
however, since they do not provide data-independent
bounded times when determining adjustments [7]. Rein-
forcement learning techniques [8] explore the solution
space until an appropriate solution is found, regardless
of the elapsed time. Decision tree techniques have time
complexities dependent upon the specific data and can-
not be determined a priori. Moreover, decision trees
may contain branches that are much longer than others,
making the determination of appropriate adaptations
unpredictable, which is undesirable in DRE systems.

Supervised machine learning techniques use training
data to guide learning [9]. These techniques can provide
constant time complexity along with perfect accuracy in
determining appropriate adaptations for environments
on which they have been trained (i.e., known a priori).
Techniques that trade off generality for specificity with
perfect accuracy (i.e., are specialized for the environ-
ments they have seen and on which they have been
trained) are called “overfitted” [10], which makes the
accuracy equal to policy-based approaches (i.e., 100%
accurate). Moreover, several techniques with constant
time complexity that are not overfitted provide high
accuracy for determining adaptations for environments
unknown until run-time.

Some techniques provide lower response times with
lower accuracy, whereas others provide higher accuracy
and response times. It is hard to manage (1) overfitted

and non-overfitted techniques, (2) the accuracy and re-
sponse times for these constant time techniques, and (3)
the trade-offs between them. Developers must empiri-
cally evaluate the techniques, combine the results of
accuracy and response time manually, and determine the
most appropriate technique.

Solution approach → Integrated supervised ma-
chine learning techniques and composite metrics to
guide trade-offs of accuracy and response times. This
paper describes our timely-integrated machine learning
(TIML) approach to integrating the following tech-
niques: (1) overfitted supervised machine learning to
respond perfectly to environments known a priori, (2)
non-overfitted techniques to respond to environments
unknown until runtime with high accuracy and constant
response times, and (3) a composite metric to evaluate
the accuracy and response time of different techniques
quantitatively. TIML supports low-latency, constant-
time complexity for determining adaptations to operat-
ing environments, 100% accuracy for environments
known a priori, and high accuracy for environments
unknown until runtime. We evaluate techniques for
managing both response times and accuracy.

Our prior work [11, 12, 13] presented an architec-
ture for autonomic adaptation and evaluated machine
learning techniques without pinpointing the fastest re-
sponse times. The work presented in this paper adds
new experimental data and analysis, including fastest
response times, as well as providing a new composite
metric to evaluate accuracy and response time. We (1)
overfit an artificial neural network (ANN) [14] (which
is a technique modeled on interactions of neurons in
human brains) to retain as much information about spe-
cific environment configurations and adjustments as
possible (e.g., greatly increasing the number of connec-
tions between input environment characteristics and
output adjustments used in an ANN), (2) integrate non-
overfitted ANNs and support vector machines (SVMs)
[15] (which generate the boundaries between different
groupings to maximize the differences between group-
ings and aid in classification) to provide low response
times and high accuracy for environments unknown
until runtime, and (3) evaluate the machine learning
techniques using the AccuLate metric that quantitatively
combines accuracy and latency. Our ADAptive Middle-
ware And Network Transports (ADAMANT) frame-
work integrates TIML with the DDS QoS-enabled mid-
dleware to ensure accurate, timely, and predictable
adaptation to dynamic environments.

2. Motivating Example - Search and Rescue
(SAR) Operations for Disaster Recovery

 Machine Learning Timeliness & Accuracy

To motivate the need for integrating machine learning
techniques, this section describes the challenges asso-
ciated with search and rescue (SAR) operations. SAR
operations are part of disaster recovery enterprise DRE
systems which manage relief efforts in the aftermath of
a disaster, such as a hurricane or earthquake. SAR oper-
ations help locate and extract survivors in a large met-
ropolitan area after a regional catastrophe. SAR opera-
tions use unmanned aerial vehicles (UAVs), existing
operational monitoring infrastructure (e.g., building or
traffic light mounted cameras intended for security or
traffic monitoring), and (temporary) datacenters to re-
ceive, process, and transmit event stream data from sen-
sors and monitors to emergency vehicles that can be
dispatched to areas where survivors are identified.

Fig. 1 shows an example SAR scenario where infra-
red scans along with GPS coordinates are provided by
UAVs and video feeds are provided by existing infra-
structure cameras. These infrared scans and video feeds
are then sent to a datacenter, where they are processed
by fusion applications to detect survivors. Once a survi-
vor is detected the application can develop a three di-
mensional view and highly accurate position informa-
tion so that rescue operations can commence.

Fig. 1: Search and Rescue Motivating Example

3. Key Challenges of Enterprise DRE Systems

This section summarizes key challenges that arise when
developing autonomic enterprise DRE systems, such as
the datacenter in the SAR motivating example in Sec. 2.

3.1. Challenge 1: Timely Adaptation in Dynamic
Environments

Due to the dynamic environment inherent in enterprise
DRE systems, application operations (such as image
compression to reduce network traffic or disseminating
data with timeliness and reliability properties) must ad-
just in a bounded—ideally constant time—manner as
the environment changes. Operations that cannot adjust
quickly and in a bounded amount of time will fail to
perform adequately when resources change. For exam-

ple, if resources are lost or withdrawn—or demand for
information increases—operations must be configured
to accommodate these changes with appropriate respon-
siveness to maintain a minimum level of service. If re-
sources increase or demand decreases, operations
should adjust as quickly as possible to provide higher
fidelity or more expansive coverage. Manual modifica-
tion is often too slow and error prone to maintain QoS.

3.2. Challenge 2: Accurate Adaptation to Dy-
namic Environments

Application operations in enterprise DRE systems must
accurately adjust to changes in the environment. As
changes in enterprise DRE systems occur (e.g., in-
creases in networking capability or requests for data
from new senders and receivers), the system should take
advantage of additional resources or provide access to
additional data producers and consumers while main-
taining or increasing QoS. For a given environment con-
figuration, a most appropriate response exists and the
enterprise DRE system must accurately implement ad-
justments to fully leverage existing resources.

3.3. Challenge 3: Flexibility in Trading Off Accu-
racy and Timeliness

Application operations in enterprise DRE systems must
be able to trade-off adaptation accuracy with timeliness.
The situation may demand that finding a less accurate
adaptation in time is better than finding an ideal adapta-
tion too late [16]. For example, selecting an adaptation
that responds more quickly but has a lower probability
of accuracy may be needed when response time is cru-
cial (e.g., failure of critical infrastructure is imminent or
groups of injured survivors must be detected quickly). If
perfect detection of survivors is performed too late, it
may not be possible to rescue the survivors.

4. Solution Approach - Integrating Machine
Learning Techniques and Composite Metrics

Timely-integrated machine learning (TIML) integrates
multiple machine learning techniques to provide both
(1) perfect accuracy and low response latency in deter-
mining appropriate adjustments, such as adjustments to
transport protocols to support QoS in dynamic environ-
ments, for environments known a priori and (2) high
accuracy for environments unknown until runtime. The
AccuLate composite metric provides quantitative guid-
ance for balancing accuracy and response time latency.
This approach enables enterprise DRE systems to adjust
to their environments autonomically and evaluate accu-

Joe Hoffert, et al.

racy and response latency quantitatively. Moreover, we
leverage techniques that provide the constant time com-
plexity assurance needed for enterprise DRE systems.

TIML overfits ANNs to retain a high degree of in-
formation about specific environment configurations
and adjustments, e.g., increasing the number of hidden
nodes used in an ANN. Hidden nodes are the computa-
tional components that provide connections between the
relevant properties of the operating environment (e.g.,
CPU speed, network reliability) with the adjustments
needed for those environments. As the ANN learns, it
strengthens or weakens the connections between inputs,
hidden nodes, and outputs to provide appropriate ad-
justments. Increasing the number of hidden nodes in-
creases the level of detail that the ANN maintains.
Moreover, TIML utilizes SVMs configured with differ-
ent kernels (i.e., approaches to generating additional
features from the environment configurations [17]) to
increase accuracy over ANNs for environments un-
known until runtime. Our approach resolves the chal-
lenges presented in Sec. 3 as described below.
• Machine learning techniques that use a static num-

ber of equations for learning address Challenge 1 in
Sec. 3.1 by providing predictable time complexities
for determining appropriate adjustments. In particu-
lar, we apply overfitted ANNs for environments
known a priori and multiple machine learning tech-
niques for environments unknown until runtime to
support enterprise DRE systems by incorporating the
appropriate QoS-enabled middleware and transport
protocol adjustments based on accuracy and timeli-
ness concerns. When machine learning techniques
are used in an enterprise DRE system, the time
needed to make an appropriate adjustment is
bounded by a constant number of equations.

• Integrating machine learning techniques address
Challenge 2 in Sec. 3.2 by increasing the accuracy
for environments known a priori and increasing the
accuracy for environments unknown until runtime.
Our approach increases the accuracy of determining
appropriate adjustments by using an overfitted ANN
for environments known a priori and integrated ma-
chine learning techniques that provide increased ac-
curacy as compared to overfitted ANNs. Specifi-
cally, overfitting ANNs provides accuracy equal to
policy-based approaches for environments known a
priori, while non-overfitted techniques increase ac-
curacy for environments unknown until runtime.

• Incorporating multiple machine learning techniques
and evaluating accuracy and timeliness simulta-
neously addresses Challenge 3 in Sec. 3.3 by sup-
porting multiple techniques with different levels of
accuracy and response times for environments un-

known until runtime and providing a composite me-
tric to evaluate the trade-offs of these different tech-
niques quantitatively. TIML supports ANNs and
SVMs with various configurations. Integrating these
ANNs and SVMs provides flexibility to support
timeliness and accuracy for systems that need to bal-
ance the two concerns. Moreover, the AccuLate
composite metric described in Sec. 5.3 allows quan-
titative evaluation of these techniques.

5. Experimental Results

The section presents the results of experiments we con-
ducted using ANNs and SVMs to determine timeliness,
accuracy, and the balance between them to show the
SAR datacenter leveraging ADAMANT in selecting an
appropriate transport protocol configuration for a given
operating environment. The experimental input data
used to train the machine learning techniques include
ADAMANT with multiple properties of the operating
environment varied (e.g., CPU speed, network band-
width, DDS implementation, percent data loss in the
network), along with multiple properties of the applica-
tion being varied (e.g., number of receivers, sending rate
of the data), as would be expected with SAR operations.

We collected 394 inputs from previous experiments
[18] where an input consists of data values that deter-
mine a particular operating environment (e.g., CPU
speed, network bandwidth, number of data receivers,
sending rate). We also provided the expected output to
the ANNs and SVMs, i.e., the transport protocol that
provided the best QoS with respect to data reliability,
average latency, and jitter (i.e., standard deviation of the
latency of network packets). An example of one of the
394 inputs is the following: 3 data receivers, 1% net-
work loss, 25Hz data sending rate, 3GHz CPU, 1Gb
network, using the OpenSplice DDS implementation,
and specifying reliability and average latency as the
QoS properties of interest. Based on our experiments,
the corresponding output would be the NAK-based mul-
ticast protocol with a 1 ms retransmission timeout.

5.1. Evaluating the Accuracy of ANNs and SVMs

Our addressed the SAR accuracy requirement by first
training the ANNs and SVMs on the 394 inputs men-
tioned above. We used the Fast Artificial Neural Net-
work (FANN) library [19] as our ANN implementation
due to its configurability, documentation, and open-
source availability. FANN offers extensive configura-
bility for the neural network including the number of
hidden nodes connecting inputs with outputs. For
SVMs, we used the libSVM library [20] due to its confi-
gurability, documentation, and open-source availability.

 Machine Learning Timeliness & Accuracy

To determine the most accurate ANN and SVM we
ran training experiments with the ANNs using different
numbers of hidden nodes and SVMs with different ker-
nels. Only one SVM, however, provided 100% accuracy
for the environment configurations on which they had
been trained (i.e., known a priori). For a given number
of hidden nodes we trained the ANN 10 different times.
The weights of the ANN determine how strong connec-
tions are between nodes. The weights are randomly in-
itialized and these initial values have an effect on how
well and how quickly the ANN learns.

Fig. 2 shows the accuracies for the ANN configured
with 3, 4, 6, and 12 hidden nodes over 10 training runs.
Fig. 2 also shows the effect of random initial weights on
the accuracy of the ANN since the accuracy can vary
across training runs. Accuracy was determined by que-
rying the ANN with the data on which it was trained.

Fig. 2: ANN Accuracy for Known Environments

100% accurate classification was generated at least
once with all hidden node configurations except when
using 3 hidden nodes. The ANN with 12 hidden nodes
provided the best accuracy across all the training runs—
100% accuracy all but 3 times out of 10 which would
make it more likely to provide 100% accuracy for any
single training run. However, we need only a single
100% accurate classification and therefore choose the
ANN with 4 hidden nodes since it has the lowest re-
sponse time as shown in Sec. 5.2. No ANNs with hid-
den nodes fewer than 4 and only one SVM configura-
tion provided 100% accurate classifications. We do not
include the accuracy data for SVMs since the SVM re-
sponse times are an order of magnitude greater than
ANNs as shown in Sec. 5.2. The training data values
had to be scaled from -1 to 1 to achieve 100% accuracy
for the configurations in Fig. 2.

Fig. 3: ANN Accuracy for Unknown Environments

Fig. 3 and Fig. 4 present accuracy results for ANNs
and SVMs respectively for operating environments un-
known until runtime. The ANNs are randomly assigned
initial weights for the connections between nodes which
accounts for variations in accuracy across training runs.
We average the accuracy results across all runs below.
The accuracy for SVMs is dependent upon scaling of
the input and output training data. The different scaling
scenarios are presented in Fig. 4.

To evaluate accuracy with unknown environments
we use 2-fold cross-validation, where 394 environment
configurations are split into two mutually exclusive
training and testing data sets [21]. ANNs and SVMs are
trained using training data and evaluated using testing
data. The highest average accuracy for ANNs across the
10 training runs is produced with 12 hidden nodes (i.e.,
76.09% average accuracy). The second highest average
accuracy is produced with 6 hidden nodes (i.e., 72.84%
average accuracy). SVMs produce higher accuracies,
however, (i.e., 86.29% accuracy for SVMs using either
the RBF or polynomial kernel).

Fig. 4: SVM Accuracy for Unknown Environments

5.2. Evaluating the Timeliness of ANNs and SVMs

As described in Challenge 2 in Sec. 3.2, the datacenter
for SAR operations requires timely configuration ad-

Joe Hoffert, et al.

justments. This section provides timing information for
ANNs and SVMs when queried for an optimal transport
protocol. We used a 3 GHz CPU with 2GB of RAM
running Fedora Core 6 with real-time extensions. Time-
liness was determined by querying the ANNs and SVMs
with all 394 inputs on which they were trained. A high
resolution timestamp was taken before and after each
call to the ANNs and SVMs.

Fig. 5: ANN Average Response Times (μseconds)

Fig. 5 shows the average response times for 10 sepa-
rate experiments where for each experiment we query
the ANN for each of the 394 inputs. The figures show
that ANNs provide timely and consistent responses. As
expected, the response times using more hidden nodes
are slower than response times with fewer hidden nodes.
The increase in latency is less than linear, however (e.g.,
response times using 12 hidden nodes are less than
twice that using 6 hidden nodes).

Fig. 6 shows the response times for SVMs confi-
gured with different kernels and data scaling ap-
proaches. The SVM with the linear kernel tends to have
the lowest response time with the polynomial and RBF
kernels being the next most responsive respectively.
Scaling the environment configuration input data and
the transport protocol output response has an effect on
the response times as well since this scaling affects the
specific kernels that are created for the data.

Fig. 6: SVM Average Response Times (μseconds)

5.3. Evaluating the Trade-offs of Accuracy and
Timeliness for ANNs and SVMs

Deciding which machine learning technique to use for
environments known a priori is straightforward. The
ANN configured with 4 hidden nodes provides a confi-
guration with 100% accuracy (shown in Fig. 2) and the
lowest latency with a 100% accurate configuration
(shown in Fig. 5). It is more challenging, however, to
decide which technique to use for environments un-
known until runtime. ANNs generally provide a lower
response time, while SVMs provide higher accuracy.

Fig. 7: AccuLate Formula

We created the AccuLate composite metric to pro-
vide quantitative evaluation of machine learning tech-
niques when considering both accuracy and response
latency. As shown in Fig. 7, the AccuLate metric mul-
tiplies the inaccuracy percentage of a technique by its
average latency. The number of total samples minus the
number of correct classifications yields the number of
inaccurate classifications. This result is divided by the
number of total samples to produce inaccuracy as a frac-
tion. We multiply the inaccuracy fraction by 100 to get
the inaccuracy percentage. This multiplication by 100
gives the inaccuracy equal weight with the latency when
multiplying the two values (i.e., the inaccuracy values
range from 0 to 100 while the latency values for our
current timing experiments range from single digits to
double digits of microseconds).

We then add one to the inaccuracy percentage to ac-
count for perfect accuracy where the inaccuracy value
would otherwise be zero and making the entire Accu-
Late value zero. Adding one to the inaccuracy percen-
tage allows AccuLate to produce a useful quantitative
value for comparing machine learning techniques even
when the techniques are 100% accurate. The utility of
this adjustment is shown for some machine learning
techniques (e.g., overfitted ANNs) when they are que-
ried against the data on which they have been trained
(i.e., known environments).

We use inaccuracy rather than accuracy as a factor
in the AccuLate formula so that a technique that has
both desirable qualities of high accuracy/low inaccuracy
and low latency will produce a lower AccuLate value
than a technique that has either (1) the same high accu-
racy and higher latency or (2) lower accuracy and the
same latency. The inaccuracy percentage is based on 2-
fold cross-validation as outlined in Sec. 5.1 which gives

 Machine Learning Timeliness & Accuracy

guidance as to how a machine learning technique will
perform given an operating environment configuration
on which it has never been trained. The AccuLate for-
mula can be easily modified to use units of measure-
ment other than microseconds for latency. We use mi-
croseconds since the techniques we evaluated all re-
sponded within 10s of microseconds.

Fig. 8: AccuLate Values for 100% Accuracy Known Envs.

Fig. 8 shows the AccuLate values for the various
machine learning techniques we evaluated for operating
environments known a priori when 100% accuracy was
achieved The ANN configured with 4 hidden nodes
produces the best AccuLate value since it provides
100% accuracy (i.e., for 5 different classification runs)
and the lowest overall latency. These values are equal to
the values shown in Fig. 5 when 100% accuracy is
achieved which highlights AccuLate’s utility in com-
paring techniques when accuracy is equal.

 Fig. 9 shows the AccuLate values for ANNs when
operating environments were unknown until runtime.
This figure shows that when accuracy and latency are
given roughly equal weight (i.e., same order of magni-
tude for values), the ANN with more hidden nodes pro-
vides a better balance of both accuracy and low latency
for deciding an appropriate transport protocol for a giv-
en operating environment. The ANN with 12 hidden
nodes consistently provides the best (i.e., lowest) Accu-
Late values while the ANN with 3 hidden nodes pro-
vides the worst (i.e., highest) values.

 Fig. 9: ANN AccuLate Values for Unknown Envs.

Fig. 10 shows the AccuLate values for SVMs when
operating environments were unknown until runtime.
This figure shows that generally the SVM with the li-
near kernel produces the best (i.e., lowest) AccuLate
value. The figure also highlights that scaling the data
(i.e., the input operating environment and the output
transport protocol) has an effect on the AccuLate values
due to the corresponding change in accuracy.

Fig. 10: SVM AccuLate Values for Unknown Envs.

In particular, when no scaling of the data is done the
SVM with the linear kernel produces the worst (i.e.,
highest) AccuLate values. Scaling the operating
environment data to be between -1 and 1 produces the
best AccuLate values for all the SVMs including the
worst performing SVM using this scaling (i.e., with the
RBF kernel) which produces results better than any
other kernel using a different scaling approach.

AccuLate values can also be useful in evaluating
machine learning techniques within a latency threshold.
These values can aid real-time systems with deadlines
where several techniques may exist that fulfill the tim-
ing requirements (i.e., are within the deadline). Based
on response times shown in Fig. 5 and Fig. 6, if the
average response time must be below 2.5 microseconds
then the relevant techniques are ANNs configured with
3, 4, and 6 hidden nodes. For unknown environments,

 Fig. 9 shows that the ANN with 6 hidden nodes
provides the best (i.e., lowest) AccuLate values relative

Joe Hoffert, et al.

to the required deadline with an average AccuLate value
of 56.22 (as compared to values of 69.26 and 119.22 for
ANNs with 4 and 3 hidden nodes respectively).

6. Concluding Remarks

The results of the experiments presented in this paper
show how integrating ANNs and SVMs help address the
timeliness, accuracy, and trade-offs between them for
adaptive enterprise DRE systems. Below we describe
some lessons learned from our work on TIML:
• ANNs provide perfect accuracy and low latency

for guidance in operating environments known a
priori. Our experiments showed that ANNs accu-
rately determined which protocol supported the de-
sired QoS for operating environments known a pri-
ori. Several different configurations of ANNs were
able to provide perfect accuracy. We chose the
ANN with the least number of hidden nodes that
still provided 100% accuracy since this ANN also
provided the lowest response latency.

• SVMs provide higher accuracy than ANNs for
operating environments unknown until runtime
at a cost of higher response latency. Our experi-
ments showed that SVMs increased accuracy in de-
termining which protocol supported the desired
QoS for operating environments unknown until
runtime. SVMs produced a 13% increase in accu-
racy over ANNs when comparing the most accurate
SVM with the most accurate ANN (i.e.,
86.29/76.09 – 1 = 0.13). ANNs produced a 91% de-
crease in response time over SVMs, however, when
comparing the most responsive SVM to the most
responsive ANN (i.e., 1 - 1.84/21.23 = 0.91).

• Integrating ANNs and SVMs can leverage the
strength of both approaches with the AccuLate
providing quantitative comparisons. When
ANNs and SVMs are integrated together in con-
stant-time, DRE systems in dynamic environments
can leverage the low response time and accuracy of
ANNs for operating environments known a priori
and the accuracy of SVMs for environments un-
known until runtime. When the timeliness con-
straints of the system preclude certain SVMs, the
AccuLate metric can be used to determine which
technique provides the best mix of accuracy and re-
sponse latency.

• Scaling the environment configuration and
transport protocol data affects accuracy. We
were not able to produce an ANN with 100% accu-
racy for environments known a priori if the data
was not scaled. Moreover, SVMs sometimes pro-
duced their most accurate results for environments

known a priori when the data was not scaled while
for environments unknown until runtime scaling the
data produced the best accuracy.

Additional information and code for the technolo-
gies and tests are available in open-source form at
www.dre.vanderbilt.edu/~jhoffert/ADAMANT.

References

1. N. Shankaran et al., Hierarchical control of mul-
tiple resources in distributed real-time and embed-
ded systems, Real-Time Systems 39(1-3) (2007)
237-282.

2. G. Pardo-Castellote, OMG Data-distribution Ser-
vice: Architectural Overview. In Proc. 23rd Intl.
Conf. on Distributed Computing Systems (IEEE
Computer Society, Los Alamitos, 2003), pp. 200-
206.

3. A. Choudhary, Policy based management in the
global information grid. International Journal of
Internet Protocol Technology, 3(1) (2008) 72–80.

4. P. Domingos, Machine learning, in Handbook of
Data Mining and Knowledge Discovery (Oxford
University Press, New York, 2002), pp. 660-670.

5. M. Xue and C. Zhu, A Study and Application on
Machine Learning of Artificial Intelligence. In
Proc. Intl. Joint Conf. on Artificial Intelligence
(IEEE Computer Society, Los Alamitos, 2003), pp.
272-274.

6. A. Hess et al., Principles, Autonomic Adaptation
and Analysis of SIP Headers Using Decision Trees,
in Systems and Applications of IP Telecommunica-
tions, Services and Security for Next Generation
Networks, (Springer, Berlin/Heidelberg, 2008), pp.
69–89.

7. J. Hoffert et al., Adapting and Evaluating Distri-
buted Real-time and Embedded Systems in Dy-
namic Environments, In Proc. 1st Int. Workshop on
Data Dissemination for Large scale Complex Criti-
cal Infrastructures (ACM, New York, 2010), pp.
23–28.

8. X. Bu et al., A Reinforcement Learning Approach
to Online Web Systems Auto-configuration. In
Proc. 29th IEEE Intl. Conf. on Distributed Compu-
ting Systems, (IEEE Computer Society, Los Ala-
mitos, 2009), pp. 2–11.

9. S. B. Kotsiantis, Supervised Machine Learning: A
Review of Classification Techniques. In Proc.
Conf. on Emerging Artificial Intelligence Applica-
tions in Computer Engineering: Real Word AI Sys-
tems with Applications in eHealth, HCI, Informa-
tion Retrieval and Pervasive Technologies, (IOS
Press, Amsterdam), pp. 3-24.

 Machine Learning Timeliness & Accuracy

10. T. Dietterich, Overfitting and Undercomputing in
Machine Learning, ACM Computing Surveys, 27(3)
(1995) 326–327.

11. J. Hoffert et al., Autonomic Adaptation of Pub-
lish/Subscribe Middleware in Dynamic Environ-
ments, (In submission to) International Journal of
Adaptive, Resilient and Autonomic Systems.

12. J. Hoffert et al., Integrating Machine Learning
Techniques to Adapt Protocols for QoS-enabled
Distributed Real-time and Embedded Pub-
lish/Subscribe Middleware, Network Protocols and
Algorithms 2(3) (2010) 37-69.

13. J. Hoffert and D. Schmidt, Evaluating Supervised
Machine Learning for Adapting Enterprise DRE
Systems. In Proc. Intl. Symp. on Intelligence Infor-
mation Processing and Trusted Computing, (IEEE
Computer Society, Los Alamitos, 2010), pp. 5-8.

14. D. Patterson, Artificial Neural Networks: Theory
and Applications (Prentice Hall PTR, Upper Saddle
River, NJ, 1998).

15. D. Meyer, D. Leisch, and K. Hornik, The Support
Vector Machine Under Test, Neurocomputing 55(1-
2) (2003) 169-186.

16. J. Hoffert et al., A Taxonomy of Discovery Ser-
vices and Gap Analysis for Ultra-Large Scale Sys-
tems, In Proc. 45th ACM Southeast Regional Confe-
rence (ACM, New York, 2007), pp. 355-361.

17. S. Theodoridis and K. Koutroumbas, Pattern Rec-
ognition (Academic Press, Orlando, FL, 2006).

18. J. Hoffert et al., Evaluating Transport Protocols for
Real-Time Event Stream Processing Middleware
and Applications. In Proc. OTM Conferences,
(Springer, Berlin/Heidelberg, 2009), pp. 614-633.

19. S. Nissen, Implementation of a Fast Artificial
Neural Network Library (FANN), Technical Re-
port: Department of Computer Science University
of Copenhagen, October 31, 2003.

20. C-H. Lin, J-C. Liu, and C-H. Ho, Anomaly Detec-
tion Using LibSVM Training Tools, In Proc. 2nd
Intl. Conf. on Information Security and Assurance
(IEEE Computer Society, Los Alamitos, 2008),
pp.166-171.

21. Y. Liu, Create Stable Neural Networks by Cross-
Validation. In Proc. Intl. Joint Conf. on Neural
Networks, (IEEE, Los Alamitos, 2006), pp. 3925-
3928.

	1. Introduction
	2. Motivating Example - Search and Rescue (SAR) Operations for Disaster Recovery
	3. Key Challenges of Enterprise DRE Systems
	3.1. Challenge 1: Timely Adaptation in Dynamic Environments
	3.2. Challenge 2: Accurate Adaptation to Dynamic Environments
	3.3. Challenge 3: Flexibility in Trading Off Accuracy and Timeliness

	4. Solution Approach - Integrating Machine Learning Techniques and Composite Metrics
	5. Experimental Results
	5.1. Evaluating the Accuracy of ANNs and SVMs
	5.2. Evaluating the Timeliness of ANNs and SVMs
	5.3. Evaluating the Trade-offs of Accuracy and Timeliness for ANNs and SVMs

	6. Concluding Remarks
	References

