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Abstract 
Several adaptation approaches have been devised to ensure end-to-end quality-of-service (QoS) for enterprise dis-
tributed systems in dynamic operating environments. Not all approaches are applicable, however, for the stringent 
accuracy, timeliness, and development complexity requirements of distributed real-time and embedded (DRE) sys-
tems. This paper empirically evaluates constant-time supervised machine learning techniques, such as artificial 
neural networks (ANNs) and support vector machines (SVMs), and presents a composite metric to support quantit-
ative evaluation of accuracy and timeliness for these adaptation approaches. 
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1. Introduction 

Emerging trends and challenges. Enterprise distri-
buted real-time and embedded (DRE) systems manage 
resources and data that are vital to organizations or 
projects. Examples include shipboard computing envi-
ronments, air traffic management systems, and recovery 
operations in the aftermath of regional or national dis-
asters. These systems often adjust their operations based 
on their external environment. For example, search and 
rescue missions as part of disaster recovery operations 
can adjust the image resolution used to detect and track 
survivors depending on the resources available (e.g., 
computing power, network bandwidth) [1]. 

Many enterprise DRE systems autonomically mon-
itor their environment and modify their modes as the 
environment changes since manual adjustment is too 
slow and error prone. For example, a shift in network 
reliability can prompt quality-of-service (QoS)-enabled 
middleware, such as the OMG Data Distribution Service 
(DDS) [2], to change mechanisms (such as the transport 
used to deliver data) since some transports provide bet-
ter reliability than others in some environments. Like-
wise, cloud computing applications, where elastically 
allocated resources (e.g., CPU speeds and memory) 
cannot be characterized accurately a priori, may need to 
adjust to available resources (such as compression algo-
rithms optimized for given CPU power and memory) at 
system startup. The mission(s) of the system could be 
jeopardized if these adjustments take too long. 
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One way to adapt enterprise DRE systems auto-
nomically involves the use of policy-based approaches 
[3] that externalize and codify logic to determine the 
behavior of managed systems. Policy-based approaches 
provide deterministic response times to perform appro-
priate adjustments given changes in the environment. 
The complexity of developing and maintaining policy-
based approaches for enterprise DRE systems can be 
unacceptably high and compromise trustworthiness, 
however, since developers must determine applicable 
policies for different environmental properties. Moreo-
ver, developers must manage the interaction of policies 
to provide needed adjustments. 

Machine learning techniques [4, 5] support algo-
rithms that allow systems to adjust behavior based on 
empirical data (e.g., inputs from the environment). 
These techniques can be used to support autonomic 
adaptation by learning appropriate adjustments to vari-
ous operating environments. Unlike policy-based ap-
proaches, however, machine learning techniques can 
automatically recognize complex sets of environment 
properties and make appropriate decisions accordingly. 

Conventional machine learning techniques, such as 
decision trees and reinforcement learning, address auto-
nomic adaptation for non-DRE systems [6]. These tech-
niques are not well-suited for enterprise DRE systems, 
however, since they do not provide data-independent 
bounded times when determining adjustments [7]. Rein-
forcement learning techniques [8] explore the solution 
space until an appropriate solution is found, regardless 
of the elapsed time. Decision tree techniques have time 
complexities dependent upon the specific data and can-
not be determined a priori. Moreover, decision trees 
may contain branches that are much longer than others, 
making the determination of appropriate adaptations 
unpredictable, which is undesirable in DRE systems. 

Supervised machine learning techniques use training 
data to guide learning [9]. These techniques can provide 
constant time complexity along with perfect accuracy in 
determining appropriate adaptations for environments 
on which they have been trained (i.e., known a priori). 
Techniques that trade off generality for specificity with 
perfect accuracy (i.e., are specialized for the environ-
ments they have seen and on which they have been 
trained) are called “overfitted” [10], which makes the 
accuracy equal to policy-based approaches (i.e., 100% 
accurate). Moreover, several techniques with constant 
time complexity that are not overfitted provide high 
accuracy for determining adaptations for environments 
unknown until run-time.  

Some techniques provide lower response times with 
lower accuracy, whereas others provide higher accuracy 
and response times. It is hard to manage (1) overfitted 

and non-overfitted techniques, (2) the accuracy and re-
sponse times for these constant time techniques, and (3) 
the trade-offs between them. Developers must empiri-
cally evaluate the techniques, combine the results of 
accuracy and response time manually, and determine the 
most appropriate technique. 

Solution approach → Integrated supervised ma-
chine learning techniques and composite metrics to 
guide trade-offs of accuracy and response times. This 
paper describes our timely-integrated machine learning 
(TIML) approach to integrating the following tech-
niques: (1) overfitted supervised machine learning to 
respond perfectly to environments known a priori, (2) 
non-overfitted techniques to respond to environments 
unknown until runtime with high accuracy and constant 
response times, and (3) a composite metric to evaluate 
the accuracy and response time of different techniques 
quantitatively. TIML supports low-latency, constant-
time complexity for determining adaptations to operat-
ing environments, 100% accuracy for environments 
known a priori, and high accuracy for environments 
unknown until runtime. We evaluate techniques for 
managing both response times and accuracy.  

Our prior work [11, 12, 13] presented an architec-
ture for autonomic adaptation and evaluated machine 
learning techniques without pinpointing the fastest re-
sponse times. The work presented in this paper adds 
new experimental data and analysis, including fastest 
response times, as well as providing a new composite 
metric to evaluate accuracy and response time. We (1) 
overfit an artificial neural network (ANN) [14] (which 
is a technique modeled on interactions of neurons in 
human brains) to retain as much information about spe-
cific environment configurations and adjustments as 
possible (e.g., greatly increasing the number of connec-
tions between input environment characteristics and 
output adjustments used in an ANN), (2) integrate non-
overfitted ANNs and support vector machines (SVMs) 
[15] (which generate the boundaries between different 
groupings to maximize the differences between group-
ings and aid in classification) to provide low response 
times and high accuracy for environments unknown 
until runtime, and (3) evaluate the machine learning 
techniques using the AccuLate metric that quantitatively 
combines accuracy and latency. Our ADAptive Middle-
ware And Network Transports (ADAMANT) frame-
work integrates TIML with the DDS QoS-enabled mid-
dleware to ensure accurate, timely, and predictable 
adaptation to dynamic environments. 

2. Motivating Example - Search and Rescue 
(SAR) Operations for Disaster Recovery 
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To motivate the need for integrating machine learning 
techniques, this section describes the challenges asso-
ciated with search and rescue (SAR) operations. SAR 
operations are part of disaster recovery enterprise DRE 
systems which manage relief efforts in the aftermath of 
a disaster, such as a hurricane or earthquake. SAR oper-
ations help locate and extract survivors in a large met-
ropolitan area after a regional catastrophe. SAR opera-
tions use unmanned aerial vehicles (UAVs), existing 
operational monitoring infrastructure (e.g., building or 
traffic light mounted cameras intended for security or 
traffic monitoring), and (temporary) datacenters to re-
ceive, process, and transmit event stream data from sen-
sors and monitors to emergency vehicles that can be 
dispatched to areas where survivors are identified. 

Fig. 1 shows an example SAR scenario where infra-
red scans along with GPS coordinates are provided by 
UAVs and video feeds are provided by existing infra-
structure cameras. These infrared scans and video feeds 
are then sent to a datacenter, where they are processed 
by fusion applications to detect survivors. Once a survi-
vor is detected the application can develop a three di-
mensional view and highly accurate position informa-
tion so that rescue operations can commence. 

 
Fig. 1: Search and Rescue Motivating Example 

3. Key Challenges of Enterprise DRE Systems 

This section summarizes key challenges that arise when 
developing autonomic enterprise DRE systems, such as 
the datacenter in the SAR motivating example in Sec. 2. 

3.1. Challenge 1: Timely Adaptation in Dynamic 
Environments 

Due to the dynamic environment inherent in enterprise 
DRE systems, application operations (such as image 
compression to reduce network traffic or disseminating 
data with timeliness and reliability properties) must ad-
just in a bounded—ideally constant time—manner as 
the environment changes. Operations that cannot adjust 
quickly and in a bounded amount of time will fail to 
perform adequately when resources change. For exam-

ple, if resources are lost or withdrawn—or demand for 
information increases—operations must be configured 
to accommodate these changes with appropriate respon-
siveness to maintain a minimum level of service. If re-
sources increase or demand decreases, operations 
should adjust as quickly as possible to provide higher 
fidelity or more expansive coverage. Manual modifica-
tion is often too slow and error prone to maintain QoS. 
 

3.2. Challenge 2: Accurate Adaptation to Dy-
namic Environments 

Application operations in enterprise DRE systems must 
accurately adjust to changes in the environment. As 
changes in enterprise DRE systems occur (e.g., in-
creases in networking capability or requests for data 
from new senders and receivers), the system should take 
advantage of additional resources or provide access to 
additional data producers and consumers while main-
taining or increasing QoS. For a given environment con-
figuration, a most appropriate response exists and the 
enterprise DRE system must accurately implement ad-
justments to fully leverage existing resources. 

3.3. Challenge 3: Flexibility in Trading Off Accu-
racy and Timeliness 

Application operations in enterprise DRE systems must 
be able to trade-off adaptation accuracy with timeliness. 
The situation may demand that finding a less accurate 
adaptation in time is better than finding an ideal adapta-
tion too late [16]. For example, selecting an adaptation 
that responds more quickly but has a lower probability 
of accuracy may be needed when response time is cru-
cial (e.g., failure of critical infrastructure is imminent or 
groups of injured survivors must be detected quickly). If 
perfect detection of survivors is performed too late, it 
may not be possible to rescue the survivors. 

4. Solution Approach - Integrating Machine 
Learning Techniques and Composite Metrics 

Timely-integrated machine learning (TIML) integrates 
multiple machine learning techniques to provide both 
(1) perfect accuracy and low response latency in deter-
mining appropriate adjustments, such as adjustments to 
transport protocols to support QoS in dynamic environ-
ments, for environments known a priori and (2) high 
accuracy for environments unknown until runtime. The 
AccuLate composite metric provides quantitative guid-
ance for balancing accuracy and response time latency. 
This approach enables enterprise DRE systems to adjust 
to their environments autonomically and evaluate accu-
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racy and response latency quantitatively. Moreover, we 
leverage techniques that provide the constant time com-
plexity assurance needed for enterprise DRE systems. 

TIML overfits ANNs to retain a high degree of in-
formation about specific environment configurations 
and adjustments, e.g., increasing the number of hidden 
nodes used in an ANN. Hidden nodes are the computa-
tional components that provide connections between the 
relevant properties of the operating environment (e.g., 
CPU speed, network reliability) with the adjustments 
needed for those environments. As the ANN learns, it 
strengthens or weakens the connections between inputs, 
hidden nodes, and outputs to provide appropriate ad-
justments. Increasing the number of hidden nodes in-
creases the level of detail that the ANN maintains. 
Moreover, TIML utilizes SVMs configured with differ-
ent kernels (i.e., approaches to generating additional 
features from the environment configurations [17]) to 
increase accuracy over ANNs for environments un-
known until runtime. Our approach resolves the chal-
lenges presented in Sec. 3 as described below. 
• Machine learning techniques that use a static num-

ber of equations for learning address Challenge 1 in 
Sec. 3.1 by providing predictable time complexities 
for determining appropriate adjustments. In particu-
lar, we apply overfitted ANNs for environments 
known a priori and multiple machine learning tech-
niques for environments unknown until runtime to 
support enterprise DRE systems by incorporating the 
appropriate QoS-enabled middleware and transport 
protocol adjustments based on accuracy and timeli-
ness concerns. When machine learning techniques 
are used in an enterprise DRE system, the time 
needed to make an appropriate adjustment is 
bounded by a constant number of equations. 

• Integrating machine learning techniques address 
Challenge 2 in Sec. 3.2 by increasing the accuracy 
for environments known a priori and increasing the 
accuracy for environments unknown until runtime. 
Our approach increases the accuracy of determining 
appropriate adjustments by using an overfitted ANN 
for environments known a priori and integrated ma-
chine learning techniques that provide increased ac-
curacy as compared to overfitted ANNs. Specifi-
cally, overfitting ANNs provides accuracy equal to 
policy-based approaches for environments known a 
priori, while non-overfitted techniques increase ac-
curacy for environments unknown until runtime. 

• Incorporating multiple machine learning techniques 
and evaluating accuracy and timeliness simulta-
neously addresses Challenge 3 in Sec. 3.3 by sup-
porting multiple techniques with different levels of 
accuracy and response times for environments un-

known until runtime and providing a composite me-
tric to evaluate the trade-offs of these different tech-
niques quantitatively. TIML supports ANNs and 
SVMs with various configurations. Integrating these 
ANNs and SVMs provides flexibility to support 
timeliness and accuracy for systems that need to bal-
ance the two concerns. Moreover, the AccuLate 
composite metric described in Sec. 5.3 allows quan-
titative evaluation of these techniques. 

5. Experimental Results 

The section presents the results of experiments we con-
ducted using ANNs and SVMs to determine timeliness, 
accuracy, and the balance between them to show the 
SAR datacenter leveraging ADAMANT in selecting an 
appropriate transport protocol configuration for a given 
operating environment. The experimental input data 
used to train the machine learning techniques include 
ADAMANT with multiple properties of the operating 
environment varied (e.g., CPU speed, network band-
width, DDS implementation, percent data loss in the 
network), along with multiple properties of the applica-
tion being varied (e.g., number of receivers, sending rate 
of the data), as would be expected with SAR operations. 

We collected 394 inputs from previous experiments 
[18] where an input consists of data values that deter-
mine a particular operating environment (e.g., CPU 
speed, network bandwidth, number of data receivers, 
sending rate). We also provided the expected output to 
the ANNs and SVMs, i.e., the transport protocol that 
provided the best QoS with respect to data reliability, 
average latency, and jitter (i.e., standard deviation of the 
latency of network packets). An example of one of the 
394 inputs is the following: 3 data receivers, 1% net-
work loss, 25Hz data sending rate, 3GHz CPU, 1Gb 
network, using the OpenSplice DDS implementation, 
and specifying reliability and average latency as the 
QoS properties of interest. Based on our experiments, 
the corresponding output would be the NAK-based mul-
ticast protocol with a 1 ms retransmission timeout. 

5.1. Evaluating the Accuracy of ANNs and SVMs 

Our addressed the SAR accuracy requirement by first 
training the ANNs and SVMs on the 394 inputs men-
tioned above. We used the Fast Artificial Neural Net-
work (FANN) library [19] as our ANN implementation 
due to its configurability, documentation, and open-
source availability. FANN offers extensive configura-
bility for the neural network including the number of 
hidden nodes connecting inputs with outputs. For 
SVMs, we used the libSVM library [20] due to its confi-
gurability, documentation, and open-source availability. 
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To determine the most accurate ANN and SVM we 
ran training experiments with the ANNs using different 
numbers of hidden nodes and SVMs with different ker-
nels. Only one SVM, however, provided 100% accuracy 
for the environment configurations on which they had 
been trained (i.e., known a priori). For a given number 
of hidden nodes we trained the ANN 10 different times. 
The weights of the ANN determine how strong connec-
tions are between nodes. The weights are randomly in-
itialized and these initial values have an effect on how 
well and how quickly the ANN learns. 

Fig. 2 shows the accuracies for the ANN configured 
with 3, 4, 6, and 12 hidden nodes over 10 training runs. 
Fig. 2 also shows the effect of random initial weights on 
the accuracy of the ANN since the accuracy can vary 
across training runs. Accuracy was determined by que-
rying the ANN with the data on which it was trained. 

 
Fig. 2: ANN Accuracy for Known Environments 

100% accurate classification was generated at least 
once with all hidden node configurations except when 
using 3 hidden nodes. The ANN with 12 hidden nodes 
provided the best accuracy across all the training runs—
100% accuracy all but 3 times out of 10 which would 
make it more likely to provide 100% accuracy for any 
single training run. However, we need only a single 
100% accurate classification and therefore choose the 
ANN with 4 hidden nodes since it has the lowest re-
sponse time as shown in Sec. 5.2. No ANNs with hid-
den nodes fewer than 4 and only one SVM configura-
tion provided 100% accurate classifications. We do not 
include the accuracy data for SVMs since the SVM re-
sponse times are an order of magnitude greater than 
ANNs as shown in Sec. 5.2. The training data values 
had to be scaled from -1 to 1 to achieve 100% accuracy 
for the configurations in Fig. 2. 

 
Fig. 3: ANN Accuracy for Unknown Environments 

Fig. 3 and Fig. 4 present accuracy results for ANNs 
and SVMs respectively for operating environments un-
known until runtime. The ANNs are randomly assigned 
initial weights for the connections between nodes which 
accounts for variations in accuracy across training runs. 
We average the accuracy results across all runs below. 
The accuracy for SVMs is dependent upon scaling of 
the input and output training data. The different scaling 
scenarios are presented in Fig. 4. 

To evaluate accuracy with unknown environments 
we use 2-fold cross-validation, where 394 environment 
configurations are split into two mutually exclusive 
training and testing data sets [21]. ANNs and SVMs are 
trained using training data and evaluated using testing 
data. The highest average accuracy for ANNs across the 
10 training runs is produced with 12 hidden nodes (i.e., 
76.09% average accuracy). The second highest average 
accuracy is produced with 6 hidden nodes (i.e., 72.84% 
average accuracy). SVMs produce higher accuracies, 
however, (i.e., 86.29% accuracy for SVMs using either 
the RBF or polynomial kernel). 

 
Fig. 4: SVM Accuracy for Unknown Environments 

5.2. Evaluating the Timeliness of ANNs and SVMs 

As described in Challenge 2 in Sec. 3.2, the datacenter 
for SAR operations requires timely configuration ad-
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justments. This section provides timing information for 
ANNs and SVMs when queried for an optimal transport 
protocol. We used a 3 GHz CPU with 2GB of RAM 
running Fedora Core 6 with real-time extensions. Time-
liness was determined by querying the ANNs and SVMs 
with all 394 inputs on which they were trained. A high 
resolution timestamp was taken before and after each 
call to the ANNs and SVMs. 

 
Fig. 5: ANN Average Response Times (μseconds) 

Fig. 5 shows the average response times for 10 sepa-
rate experiments where for each experiment we query 
the ANN for each of the 394 inputs. The figures show 
that ANNs provide timely and consistent responses. As 
expected, the response times using more hidden nodes 
are slower than response times with fewer hidden nodes. 
The increase in latency is less than linear, however (e.g., 
response times using 12 hidden nodes are less than 
twice that using 6 hidden nodes). 

Fig. 6 shows the response times for SVMs confi-
gured with different kernels and data scaling ap-
proaches. The SVM with the linear kernel tends to have 
the lowest response time with the polynomial and RBF 
kernels being the next most responsive respectively. 
Scaling the environment configuration input data and 
the transport protocol output response has an effect on 
the response times as well since this scaling affects the 
specific kernels that are created for the data. 

 
Fig. 6: SVM Average Response Times (μseconds) 

5.3. Evaluating the Trade-offs of Accuracy and 
Timeliness for ANNs and SVMs 

Deciding which machine learning technique to use for 
environments known a priori is straightforward. The 
ANN configured with 4 hidden nodes provides a confi-
guration with 100% accuracy (shown in Fig. 2) and the 
lowest latency with a 100% accurate configuration 
(shown in Fig. 5). It is more challenging, however, to 
decide which technique to use for environments un-
known until runtime. ANNs generally provide a lower 
response time, while SVMs provide higher accuracy. 

 
Fig. 7: AccuLate Formula 

We created the AccuLate composite metric to pro-
vide quantitative evaluation of machine learning tech-
niques when considering both accuracy and response 
latency. As shown in Fig. 7, the AccuLate metric mul-
tiplies the inaccuracy percentage of a technique by its 
average latency. The number of total samples minus the 
number of correct classifications yields the number of 
inaccurate classifications. This result is divided by the 
number of total samples to produce inaccuracy as a frac-
tion. We multiply the inaccuracy fraction by 100 to get 
the inaccuracy percentage. This multiplication by 100 
gives the inaccuracy equal weight with the latency when 
multiplying the two values (i.e., the inaccuracy values 
range from 0 to 100 while the latency values for our 
current timing experiments range from single digits to 
double digits of microseconds). 

We then add one to the inaccuracy percentage to ac-
count for perfect accuracy where the inaccuracy value 
would otherwise be zero and making the entire Accu-
Late value zero. Adding one to the inaccuracy percen-
tage allows AccuLate to produce a useful quantitative 
value for comparing machine learning techniques even 
when the techniques are 100% accurate. The utility of 
this adjustment is shown for some machine learning 
techniques (e.g., overfitted ANNs) when they are que-
ried against the data on which they have been trained 
(i.e., known environments). 

We use inaccuracy rather than accuracy as a factor 
in the AccuLate formula so that a technique that has 
both desirable qualities of high accuracy/low inaccuracy 
and low latency will produce a lower AccuLate value 
than a technique that has either (1) the same high accu-
racy and higher latency or (2) lower accuracy and the 
same latency. The inaccuracy percentage is based on 2-
fold cross-validation as outlined in Sec. 5.1 which gives 
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guidance as to how a machine learning technique will 
perform given an operating environment configuration 
on which it has never been trained. The AccuLate for-
mula can be easily modified to use units of measure-
ment other than microseconds for latency. We use mi-
croseconds since the techniques we evaluated all re-
sponded within 10s of microseconds. 

 
Fig. 8: AccuLate Values for 100% Accuracy Known Envs. 

Fig. 8 shows the AccuLate values for the various 
machine learning techniques we evaluated for operating 
environments known a priori when 100% accuracy was 
achieved The ANN configured with 4 hidden nodes 
produces the best AccuLate value since it provides 
100% accuracy (i.e., for 5 different classification runs) 
and the lowest overall latency. These values are equal to 
the values shown in Fig. 5 when 100% accuracy is 
achieved which highlights AccuLate’s utility in com-
paring techniques when accuracy is equal. 

 Fig. 9 shows the AccuLate values for ANNs when 
operating environments were unknown until runtime. 
This figure shows that when accuracy and latency are 
given roughly equal weight (i.e., same order of magni-
tude for values), the ANN with more hidden nodes pro-
vides a better balance of both accuracy and low latency 
for deciding an appropriate transport protocol for a giv-
en operating environment. The ANN with 12 hidden 
nodes consistently provides the best (i.e., lowest) Accu-
Late values while the ANN with 3 hidden nodes pro-
vides the worst (i.e., highest) values. 

 
 Fig. 9: ANN AccuLate Values for Unknown Envs. 

Fig. 10 shows the AccuLate values for SVMs when 
operating environments were unknown until runtime. 
This figure shows that generally the SVM with the li-
near kernel produces the best (i.e., lowest) AccuLate 
value. The figure also highlights that scaling the data 
(i.e., the input operating environment and the output 
transport protocol) has an effect on the AccuLate values 
due to the corresponding change in accuracy.  

 
Fig. 10: SVM AccuLate Values for Unknown Envs. 

In particular, when no scaling of the data is done the 
SVM with the linear kernel produces the worst (i.e., 
highest) AccuLate values. Scaling the operating 
environment data to be between -1 and 1 produces the 
best AccuLate values for all the SVMs including the 
worst performing SVM using this scaling (i.e., with the 
RBF kernel) which produces results better than any 
other kernel using a different scaling approach. 

AccuLate values can also be useful in evaluating 
machine learning techniques within a latency threshold. 
These values can aid real-time systems with deadlines 
where several techniques may exist that fulfill the tim-
ing requirements (i.e., are within the deadline). Based 
on response times shown in Fig. 5 and Fig. 6, if the 
average response time must be below 2.5 microseconds 
then the relevant techniques are ANNs configured with 
3, 4, and 6 hidden nodes. For unknown environments,  

 Fig. 9 shows that the ANN with 6 hidden nodes 
provides the best (i.e., lowest) AccuLate values relative 
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to the required deadline with an average AccuLate value 
of 56.22 (as compared to values of 69.26 and 119.22 for 
ANNs with 4 and 3 hidden nodes respectively). 

6. Concluding Remarks 

The results of the experiments presented in this paper 
show how integrating ANNs and SVMs help address the 
timeliness, accuracy, and trade-offs between them for 
adaptive enterprise DRE systems. Below we describe 
some lessons learned from our work on TIML: 
• ANNs provide perfect accuracy and low latency 

for guidance in operating environments known a 
priori. Our experiments showed that ANNs accu-
rately determined which protocol supported the de-
sired QoS for operating environments known a pri-
ori. Several different configurations of ANNs were 
able to provide perfect accuracy. We chose the 
ANN with the least number of hidden nodes that 
still provided 100% accuracy since this ANN also 
provided the lowest response latency. 

• SVMs provide higher accuracy than ANNs for 
operating environments unknown until runtime 
at a cost of higher response latency. Our experi-
ments showed that SVMs increased accuracy in de-
termining which protocol supported the desired 
QoS for operating environments unknown until 
runtime. SVMs produced a 13% increase in accu-
racy over ANNs when comparing the most accurate 
SVM with the most accurate ANN (i.e., 
86.29/76.09 – 1 = 0.13). ANNs produced a 91% de-
crease in response time over SVMs, however, when 
comparing the most responsive SVM to the most 
responsive ANN (i.e., 1 - 1.84/21.23 = 0.91). 

• Integrating ANNs and SVMs can leverage the 
strength of both approaches with the AccuLate 
providing quantitative comparisons. When 
ANNs and SVMs are integrated together in con-
stant-time, DRE systems in dynamic environments 
can leverage the low response time and accuracy of 
ANNs for operating environments known a priori 
and the accuracy of SVMs for environments un-
known until runtime. When the timeliness con-
straints of the system preclude certain SVMs, the 
AccuLate metric can be used to determine which 
technique provides the best mix of accuracy and re-
sponse latency. 

• Scaling the environment configuration and 
transport protocol data affects accuracy. We 
were not able to produce an ANN with 100% accu-
racy for environments known a priori if the data 
was not scaled. Moreover, SVMs sometimes pro-
duced their most accurate results for environments 

known a priori when the data was not scaled while 
for environments unknown until runtime scaling the 
data produced the best accuracy.  

Additional information and code for the technolo-
gies and tests are available in open-source form at 
www.dre.vanderbilt.edu/~jhoffert/ADAMANT. 
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