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Abstract—Sensor webs are often composed of servers con-
nected to distributed real-time embedded (DRE) systems that
operate in open environments where operating conditions, work-
load, resource availability, and connectivity cannot be accurately
characterized a priori. The South East Alaska MOnitoring
Network for Science, Telecommunications, Education, and Re-
search (SEAMONSTER) project exhibits many common system
management and dynamic operation challenges for effective,
autonomous system adaptation in a representative sensor web.
These challenges cover both field operation (e.g., power man-
agement through system sleep/wake cycles and reaction to local
environmental changes) and server operation (e.g., system adap-
tation for new/modified goals, resource allocation for a changing
set of applications, and configuration changes for fluctuating
workload). This paper presents the results of integrating and
applying quality-of-service (QoS)-enabled component middle-
ware, dynamic resource management, and autonomous agent
technologies to address these challenges in SEAMONSTER.

I. INTRODUCTION

The advent of sensor webs [1] help scientists study and
predict weather, natural disasters, and climate change. Sen-
sor webs are large-scale systems including both commodity
servers and distributed real-time embedded (DRE) systems
with several interacting subsystems that enable scientific
study of environmental processes, such as weather moni-
toring/forecasting, ecosystem monitoring, and monitoring of
earth’s geological activities, in real-time. Effective sensor webs
also facilitate the real-time analysis and recovery of large
volumes of collected scientific data.

Similar to other DRE systems, such as such as shipboard
computing [2] and fractionated spacecraft [3], sensor webs
must perform sequences of heterogeneous data collection,
manipulation, and coordination tasks to meet specified system
objectives. Moreover, to use their limited resources effectively,
sensor webs must adapt their operation to changing conditions
and objectives.

The use of quality-of-service (QoS)-enabled component
middleware in DRE systems is gaining momentum since it
automates remoting, lifecycle management, system resource
management, deployment, and configuration in these systems.
QoS-enabled component middleware support explicit config-
uration of QoS aspects (e.g., priority and threading models),
and provide many desirable real-time features (e.g., priority
propagation, scheduling services, and explicit binding of net-
work connections). In integrated, adaptive sensor webs, QoS-
enabled component middleware helps address the larger set of
assets and computational resources that must be coordinated

and managed to address weather, climate change, and disaster
management problems.

Sensor web hardware and sensors are also increasingly
configurable and must operate in open environments where
operating conditions, workload, resource availability, and con-
nectivity cannot be accurately characterized a priori. The
challenges presented by such open environments are only
recently being addressed in DRE systems [4]. The combination
of QoS-enabled component middleware with dynamic resource
allocation/control and agents for intelligent, local autonomy
in achieving science objectives provides a powerful solution
approach to many system management and dynamic operation
challenges facing sensor webs.

This paper presents a case study where a combination
of middleware, resource management, and autonomous agent
technologies are applied to the South East Alaska MOnitoring
Network for Science, Telecommunications, Education, and Re-
search (SEAMONSTER) [5], which is a representative sensor
web for monitoring glacial change and watershed effects. Sys-
tem adaptation and management challenges for effective use of
limited resources in SEAMONSTER are presented, including
field operation challenges (e.g., power management through
system sleep/wake cycles and goal-driven reaction to local
environmental changes) and server operation challenges (e.g.,
system adaptation for new/modified goals, resource allocation
for a changing set of applications, and configuration changes
for fluctuating workload).

We then describe how we have addressed the SEAMON-
STER challenges as part of the development of the Multi-
agent Architecture for Coordinated Responsive Observations
(MACRO) [6] platform. MACRO uses QoS-enabled compo-
nent middleware to help automate many system configuration
and management tasks for sensor web applications. Atop
the middleware infrastructure, MACRO’s dynamic resource
management services provide efficient allocation and control
of computational resources, while MACRO agents employ
reasoning and planning to autonomously adapt system func-
tionality to changing science objectives and environmental
conditions. We conclude by summarizing key lessons learned
from our application of the MACRO platform to the SEA-
MONSTER hardware.

II. SENSOR WEB CASE STUDY: SEAMONSTER

A. Overview of SEAMONSTER

SEAMONSTER is a glacier and watershed sensor web in
Alaska [5]. This sensor web monitors and collects data regard-
ing glacier dynamics and mass balance, watershed hydrology,



coastal marine ecology, and human impact/hazards in and
around the Lemon Creek watershed. The collected data is used
to study the correlation between hydrology, glacier velocity,
and temperature variation at Lemon Creek.

The SEAMONSTER sensor web, as illustrated in Figure 1,
includes sensors with weatherized computer platforms that
are deployed on the glacier and throughout the watershed
to collect data of scientific interest. The data collected by
the sensors is relayed to a cluster of servers primarily via
wireless networks for processing, correlation, and analysis.
These data processing applications are being transitioned to
run atop a QoS-enabled component middleware platform con-
sisting of the Component-Integrated ACE ORB (CIAO) [7],
which is open-source QoS-enabled component middleware
that implements the OMG Lightweight CORBA Component
Model (CCM) [8] and Deployment and Configuration [9]
specifications.

The data processing applications (e.g., GPS data analysis
for glacier dynamics and watershed hydrology analysis) are
configured by autonomous sensor web agents on the server
cluster, and individual applications may be added or removed
to/from the server cluster during normal operation. The re-
source utilization by these applications cannot be accurately
characterized a priori since it depends on the input workload
for these applications, which in turn is affected by a plethora
of environmental conditions and activities in the field.

Fig. 1: SEAMONSTER field sensor deployment

For example, during nominal operation of the SEAMON-
STER sensor web, only a subset of the sensors are operational
(primarily for baseline monitoring of the Lemon Creek Glacier
and Lemon Creek watershed area). The input workload of the
applications processing the collected data is therefore minimal.
When evidence is detected that the glacial lake on Lemon
Creek Glacier is draining, however, most or all of the sensors
in the sensor web should be operational and configured to
higher data rates, resulting in much larger quantities of sensor
data being collected to allow in-depth analysis of the effects of
the lake draining through the glacier into Lemon Creek. During
this event, input workload of the data processing applications
are significantly higher than during normal operation.

B. System Adaptation Challenges in SEAMONSTER

Effective sensor web resource management and dynamic
adaptation in SEAMONSTER presents software challenges

in the field and at the servers. In the server cluster, signifi-
cant computational resources are available to direct the tasks
performed by computationally limited field resources. These
servers are shared among the data processing applications,
sensor web agents, and other SEAMONSTER applications,
such as a database and web server. In the field, computational
resources are limited and consequently require software solu-
tions with small footprint and low computational complexity.
The remainder of this section summarizes key field and server
challenges in transforming SEAMONSTER to use its limited
resources effectively by applying component middleware, dy-
namic resource management, and autonomous agents.

1) Field Challenge 1: Local power management with
sleep/wake cycles: SEAMONSTER’s need for power man-
agement is motivated by limited availability of power, due
to variable weather conditions limiting the ability to recharge
the batteries. The available power is often insufficient for
continuous operation of the processor, requiring the system
to periodically power down completely. Moreover, to protect
against “wedging” (which is a situation where the operating
system becomes unresponsive), it is useful to periodically
hard-reset the microservers, which are difficult to physically
access in the field. When a microserver returns from one
of these sleep/wake cycles, i.e. when the boot process com-
pletes, local agents and applications must be correctly re-
deployed and connections between nodes must be correctly
re-established. Section III-A describes how MACRO QoS-
enabled component middleware addresses this challenge.

2) Field Challenge 2: Configuration adaptation to address
changing local conditions: Field nodes in a sensor web often
have a large number of observable phenomena in their area of
interest. The type, duration, and frequency of observation of
these phenomena may change over time, based on changes in
the environment, occurrence of events in the environment, and
changing goals and objectives in the science mission of the
sensor web. Moreover, limited power, processing capability,
storage, and network bandwidth limit the ability of these nodes
to continually perform observations at the desired frequency
and fidelity. Dynamic changes in environmental conditions
coupled with limited resource availability requires individual
nodes of the sensor web to revise current operations and future
plans to make the best use of their resources. To handle these
dynamic changes effectively, the nodes must be capable of
goal-driven, functional adaptation. Section III-B describes how
MACRO field agents address this challenge.

3) Server Challenge 1: Autonomous system adaptation for
new or modified objectives: The scientific inquiries and cor-
responding mission objectives for which a sensor web is
utilized can change over the course of its operation. A system
with static data collection and processing activities requires
significant effort to reconfigure for new or modified mission
objectives. Moreover, the system may have more objectives
than can all be achieved at the same time with its limited
resources. The “best” (i.e., highest utility) set of goals to
achieve at a particular time may vary depending on environ-
mental conditions and transient events. Efficient use of sensor
web resources therefore requires autonomous adaptation of
system configuration and activities in light of current goals
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and conditions. Section III-C describes how MACRO server
agents address this challenge.

4) Server Challenge 2: Online resource allocation to data
processing applications: Data processing applications execut-
ing in the server cluster are resource sensitive, i.e., QoS of
the sensor web is affected significantly if an application does
not receive the required CPU time and network bandwidth
within bounded delay. Moreover, in open DRE systems like the
SEAMONSTER sensor web, input workload affects utilization
of system resources and QoS of applications. Utilization
of system resources and QoS of applications may therefore
vary significantly from their estimated values. Section III-D
describes how MACRO resource management services address
this challenge.

5) Server Challenge 3: Adaptation to fluctuations in input
workload: When applications are deployed and configured
in the server cluster, resources are allocated to application
components based on the estimated resource utilization and
estimated/current availability of system resources. In open
DRE systems, however, actual resource utilization of appli-
cations may differ significantly from the estimated values.
Moreover, for applications executing in these systems, the
relation between input workload, resource utilization, and QoS
cannot be fully characterized a priori. To operate effectively
despite dynamic variations in operational conditions and/or
input workload, the system should be able to gracefully adapt
resource usage. Section III-E describes how MACRO resource
management services address this challenge.

III. ADDRESSING THE SEAMONSTER CHALLENGES

WITH THE MACRO PLATFORM

The Multi-agent Architecture for Coordinated, Responsive
Observations (MACRO) platform provides a powerful com-
putational infrastructure for enabling the deployment, con-
figuration, and operation of large-scale sensor webs that are
composed of many constituent sensor webs. Intelligent au-
tonomy in MACRO is provided primarily through two levels
of agents: (1) the mission level, where agents interact with
users to allocate high-level science tasks to sensor webs and
create scheduled plans to achieve these goals, and (2) resource
level, where local server and field agents translate tasks into
actions and application deployments related to data collection,
analysis, and transmission.

To effectively adapt system functionality, resource-level
agents in MACRO employ novel services, such as the Spread-
ing Activation Partial Order Planner (SA-POP) [10] and
the Resource Allocation and Control Engine (RACE) [11].
MACRO server agents use SA-POP to support dynamic
(re)planning/scheduling and RACE to efficiently manage com-
putational resource for deployed applications. SA-POP and
RACE enable MACRO to achieve the necessary local auton-
omy to efficiently achieve mission goals with limited resources
in a dynamic environment.

The implementation of agents in MACRO is based on
the CIAO [7] QoS-enabled component middleware to ensure
interoperability across heterogeneous computing platforms,
reduce development costs, and improve overall robustness and

Fig. 2: MACRO Architecture

scalability. The agents operate on the CIAO middleware to
ensure that a diverse set of science objectives can be met, as
shown in Figure 2. This architecture helps facilitate real-time,
adaptive data acquisition, analysis, fusion, and distribution.

The remainder of this section describes how MACRO
addresses the sensor web challenges identified in Section II-B.

A. Addressing Field Challenge 1: Correct Re-deployment Af-
ter Reboot

The MACRO approach to resolving this challenge involves
creating all deployments as locality-constrained deployments.
Locality-constrained deployments describe only components
that reside on a single node and describe connections with
components on other nodes with external references. The
locality-constrained approach is in contrast to the use of
a global deployment plan, which describes components de-
ployed to several nodes and describes connections as internal
references, i.e., referring to the connected components directly.
With locality-constrained deployments each node has sufficient
information for the middleware to correctly reconstitute its
agent and other software deployments upon reboot.

B. Addressing Field Challenge 2: Plan Schemas for Local
Reaction

To address the problem of effective reaction to local changes
in environmental conditions and resource availability—while
respecting system-wide science goals—the field nodes must
be capable of intelligent, autonomous adaptation and action.
Since local field agents have limited computational resources,
extensive planning and scheduling is not possible for rapid
reaction to local changes. Instead, field agents are provided
with a set of template plan schemas that cover a range
of conditions and local goals to which they are applicable.
Server-based agents can then provide the field agents with the
current set of local goals to pursue, and the task of the field
agent becomes the simpler choice of an appropriate set of
schemas to follow given current conditions. MACRO’s field
agents therefore select and employ their schemas to resolve
the challenge of configuration adaptation to address changing
local conditions identified in Section II-B2.

C. Addressing Server Challenge 1: Planning and Schema
Production to Achieve Science Objectives

System adaptation for new or modified goals, described as
a set of desired data products and results, is controlled by
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MACRO server-based agents with functional knowledge of
the sensor web system and available software components.
These agents use SA-POP to decompose goals into subgoals
to be achieved at the server or by individual field nodes
and to plan/schedule for their achievement. With information
from field agents about current conditions and local activities,
SA-POP produces scheduled, high expected utility plans to
achieve all subgoals, including both the selection/configuration
of software components for data processing on the server and
actions/reconfiguration at the field nodes.

If the planned set of actions and software deployments
at a field node is already represented in a schema available
to the field node’s agent, the subgoal and scheduling infor-
mation is simply passed to that field agent. Otherwise, the
plan is packaged as a new schema and distributed to the
field agent along with the applicable subgoal and scheduling
information. This process allows the server-based agents to
do extensive planning and optimization for the current set of
science objectives, as well as entirely new objectives, while the
computationally limited field agents can choose among their
pre-packaged schemas to intelligently react to changing local
conditions and resource availability in light of current science
objectives. MACRO’s server-based agents and SA-POP can
therefore resolve the challenge of intelligent system adaptation
for new/modified objectives identified in Section II-B3.

D. Addressing Server Challenge 2: Online Allocation of Com-
putational Resources

As shown in Figure 3, RACE parses the metadata that
describes the application to obtain the resource requirement(s)
of components that make up the application. The Resource

Allocators Controllers
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System
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Application
QoS

System domain with time-varying
resource availability 

QoS-enabled Component Middleware 
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Deploy Components

Effectors

Resource
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Fig. 3: The RACE Architecture

Monitor obtains system resource utilization/availability in-
formation, and using this information along with the estimated
resource requirement of application components captured in
application’s metadata, the Allocators (which implement
resource allocation algorithms, such as single dimension bin-
packing [12] and availability and partitioned breadth first
decreasing [13]) map components onto nodes in the sys-
tem domain based on runtime resource availability. RACE’s
Resource Monitor and Allocators coordinate with
one another to allocate resources to applications executing in

the SEAMONSTER system, thereby addressing the resource
allocation requirement identified in Section II-B4.

E. Addressing Server Challenge 3: Runtime System Adapta-
tion for Resource Management

RACE’s Allocators allocate resources to applications
based on current system resource utilization and applica-
tion’s estimated resource requirements. In open DRE systems,
however, there is often no accurate a priori knowledge of
input workload and the relationship between input workload
and resource requirements of an application. To address this
requirement, RACE’s control architecture employs a feedback
loop shown in Figure 4 to manage system resource and appli-
cation QoS and ensures (1) QoS requirements of applications
are met at all times and (2) system stability by maintaining
utilization of system resources below their specified utilization
set-points. RACE’s control architecture features a feedback
loop that consists of three main components: Monitors,
Controllers, and Effectors.
Monitors are associated with system resources and QoS

of the applications and periodically update the Controller
with the current resource utilization and QoS of applications
currently running in the system. The Controller imple-
ments a particular control algorithm such as EUCON [14],
DEUCON [15], HySUCON [16], or FMUF [17], and computes
the adaptation decisions for each (or a set of) application(s)
to achieve the desired system resource utilization and QoS.
Effectors modify system parameters, which include re-
source allocation to components, execution rates of applica-
tions, and OS/middleware/network QoS setting of components,
to achieve the controller recommended adaptation.

RACE’s monitoring framework, Controllers, and
Effectors coordinate with one another and the aforemen-
tioned entities of RACE to ensure (1) QoS requirements
of applications are met and (2) utilization of system re-
sources are maintained within the specified utilization set-
point set-point(s), thereby addressing the requirements asso-
ciated with runtime end-to-end QoS management identified
in Section II-B5. We empirically validate this capability as it
relates to the other server challenges of SEAMONSTER in
Section IV.

IV. EXPERIMENTAL RESULTS

This section presents the design and results of experiments
that evaluate the adaptive resource management capabilities of
RACE in the context of the SEAMONSTER servers and agents
described in Section II-A. These experiments also validate our
claims in Section III that RACE performs effective end-to-end
adaptation and yields a predictable and scalable DRE system
under varying operating conditions and input workload.

A. Hardware and Software Testbed

Our experiments were performed on the ISISLab testbed
(www.dre.vanderbilt.edu/ISISlab) at Vanderbilt University,
which is a cluster consisting of 56 IBM blades powered by
Emulab software (www.emulab.net). Each blade node contains
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two 2.8 GHz Intel Xeon processors, 1 GB physical memory,
1GHz Ethernet network interface, and 40 GB hard drive. The
Redhat Fedora Core release 4 OS with real-time preemption
patches [18] was used on all nodes. We used five blade
nodes for the experiments to emulate the server cluster of
our prototype SEAMONSTER sensor web. Our middleware
platform was CIAO version 0.5.10.

B. System Implementation and Experiment Design

The set of components making up data processing applica-
tions on our SEAMONSTER sensor web testbed are config-
ured by the server-based MACRO agents and can be classified
as (1) glacier dynamics monitoring, (2) watershed hydrology
analysis, and (3) coastal marine ecology analysis applications.
These applications were periodic (i.e., applications contained
a timer component that periodically triggered the collection
from simulated field nodes, followed by the data filtering
and analysis on the server) and the execution rate of these
applications could be modified at runtime.

As described in section II-B, the SEAMONSTER sensor
web is subject to fluctuations in application workload. To val-
idate our claim that RACE enables the autonomous operation
of open DRE systems, such as the SEAMONSTER sensor
web, by providing effective end-to-end resource management
adaptation to MACRO agents, we evaluated performance of
our prototype SEAMONSTER sensor web performance when
application workloads were varied at runtime. Our experiment
compares the performance of the system that is subjected to
fluctuations input workload when the system is operated with
and without RACE. As execution rates of applications that
executed in this system could be dynamically modified at
runtime, RACE was configured to employ the EUCON [14]
control algorithm to compute system adaptation decisions.

C. Evaluation of RACE’s Adaptive Resource Management
Capabilities

This experiment varied the input workload to data pro-
cessing applications at runtime to demonstrate the adaptive
resource management capabilities of RACE under varying
input workload by comparing system performance with and

without RACE. We use deadline miss ratio, average applica-
tion throughput, and system resource utilization as metrics to
empirically compare the performance of the system under each
service configuration.

# exec. rate (hz) estimated component average resource util.
min max init. util. 1 2 3 4 5

1 15 155 60 0.3 0.15 0.1 0.05 0 0
2 35 165 85 0.1 0.05 0.05 0 0 0
3 10 140 50 0.5 0.2 0.1 0.1 0.05 0.05
4 30 170 80 0.3 0.25 0.05 0 0 0
5 35 180 90 0.45 0.2 0.1 0.1 0.05 0
6 10 140 65 0.35 0.15 0.1 0.05 0.05 0
7 35 170 95 0.35 0.25 0.05 0.05 0 0

TABLE I: Application Configuration

1) Experiment Configuration: At time t = 0, the system
was initialized with the applications specified in table I to
perform glacier dynamics monitoring, watershed hydrology
analysis, and coastal marine ecology analysis. Upon initializa-
tion, applications execute at their initialization rate specified
in table I. Each applications end-to-end deadline is defined
as di = ni/ri(k), where ni is the number of components in
application ti and ri(k) is the execution rate of application ti

in the kth sampling period. Each end-to-end deadline is evenly
divided into sub-deadlines for its components. The resultant
sub-deadline of each component equals its period, 1/r(k). All
applications/components meet their deadlines/sub-deadlines if
the schedulable utilization bound of rate monotonic scheduling
(RMS) [12] is used as the utilization set-point and is enforced
on all the nodes.

The sampling period of the controller was set at 2 seconds
and the utilization set-point for each node was selected to be
0.7, which is slightly lower than the RMS utilization bound.
Table II summarizes the variation of input workload as a
function of time. When the input workload was low, medium,
and high, the corresponding resource utilization by application
components were their corresponding best case, average case,
and worst case values, respectively.

2) Analysis of Experiment Results: When RACE is avail-
able as a service to MACRO agents, it dynamically mod-
ifies the execution rates of applications within the bounds
[min, max] specified in table I to ensure that the resource
utilization on each node converges to the specified set-point
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sampling period input workload
0 - 50 low

50 - 150 medium
150 - 250 high
250 - 350 medium
350 - 400 low

TABLE II: Input Workload as a Function of Time
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Fig. 5: Comparison of Processor Utilizations

of 0.7, despite fluctuations in input workload. When the system
operated without RACE, however, applications executed at
their initialization rates set by MACRO agents for expected
workload conditions and identified in table I.

Figure 5a, Figure 6a, and Table II show the execution of
the system when RACE is employed. During 0 ≤ t ≤ 100,
when the input workload is low, the controller increases the
execution rates of applications such that the processor utiliza-
tion on each node converges to the desired set-point of 0.7.
This behavior ensures effective utilization of system resources.
When RACE is not used, however, figures 5b and 6b show that
the applications must execute at a constant rate (initialization
rate) and system resources are severely underutilized.

When input workload is increased from low to medium,
at t = 100s, the corresponding increase in the processor
utilization can be seen in figure 5. Figures 5a and 6a show

that when RACE is used, although the processor utilization
increased above the set-point, within a few sampling periods
the controller restored the processor utilization to the desired
set-point of 0.7 by dynamically reducing the execution rates
of applications. The deadline miss ratio for the entire duration
of the experiment was observed to be 0.005 and 0.0184 when
the system was operated with and without RACE, respectively.
Figure 5b shows that without RACE, the processor utilization
was below the set-point for all the nodes in the system, except
for node 5.

At t = 300s, the input workload was further increased from
medium to high. As a result, the processor utilization on all
the nodes increased, which is shown in figure 5. Figures 5a
and 6b show that RACE was again able to dynamically modify
the application execution rates to ensure that the utilization
converged to the desired set-point. Figure 5b shows that
without RACE, the processor utilization on most of the nodes
in the system was significantly higher than the set-point under
high workload conditions.
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Fig. 6: Comparison of Application Execution Rates

At t = 500s, when the input workload was reduced from
high to medium, from figure 5 it can be seen that the processor
utilization on all the nodes decreased. When the system was
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operated with RACE, however, RACE restored the processor
utilization to the desired set-point of 0.7 within a few sampling
periods. Without RACE, processor utilization for all nodes
except node 5 remained significantly lower than the set-
point. Similarly, at t = 700s, the input workload was further
reduced from medium to low, and figure 5 shows another
decrease in processor utilization across all nodes. When the
system featured RACE, processor utilization again returned to
the desired set-point within a few sampling periods. Without
RACE, processor utilization remained even further below the
set-point.

Figure 5 shows that system resources may be either signif-
icantly underutilized or over-utilized when operating without
RACE, but are near the set-point when RACE is used. Under-
utilization and/or over-utilization of system resources results
in reduced QoS, which is evident from table III, showing
the overall system QoS.1 In contrast, when the system fea-
tured RACE, the application execution rates were dynamically
modified to ensure utilization on all the nodes converged to
the set-point, resulting in more effective utilization of system
resources and higher QoS.

application Average Throughput (hz)
With RACE Without RACE

1 110.326 59.930
2 160.891 84.903
3 60.532 45.964
4 133.894 76.909
5 124.232 89.599
6 21.476 63.2362
7 37.264 94.896

entire system 92.660 74.445

TABLE III: Comparison of System QoS

3) Summary: This experiment compared system perfor-
mance during input workload fluctuations when the system
was operated with and without RACE. The results show how
RACE (1) ensures system resources are not over-utilized, (2)
improves overall system QoS, and (3) enables the system to
adapt to drifts/fluctuations in utilization of system resources
by fine-tuning application parameters.

V. RELATED WORK

Compared to related research presented in [19], the resource
management framework used in MACRO – RACE – is an
adaptive resource management framework that can be cus-
tomized and configured using model-driven deployment and
configuration tools such as the Platform-Independent Com-
ponent Modeling Language (PICML) [20]. Moreover, RACE
provides adaptive resource and QoS management capabili-
ties more transparently and non-intrusively than Kokyu [21],
QuO [22], and Qoskets [23], [24], [25]. In particular, it allo-
cates CPU, memory, and networking resources to application
components and tracks and manages utilization of various
system resources, as well as application QoS.

The planning service used by MACRO server-based agents
– SA-POP – is a decision-theoretic planner allowing uncer-
tainty both in environmental conditions and action outcome,

1In the SEAMONSTER system, overall QoS is defined as the total
throughput for all active applications.

like C-SHOP [26] that does so with hierarchical planning
and Drips [27] that produces conditional plans. However, to
enable planning with resource constraints, such as those of
sensor webs, many have chosen to separate the planning and
scheduling/resource aspects of the problem. This approach
works well when the resource/time constraints are relatively
loose or there are relatively few alternatives in the planning
process that could use fewer or different resources. However,
with tight resource constraints, as are often present in sensor
webs, others have chosen to integrate planning and scheduling
as SA-POP does. For example, IxTeT [28] uses partial-order
planning like SA-POP and allows interleaving resource con-
flict resolution with the planning process, but does not perform
decision-theoretic planning.

The MACRO field agents use plan schemas (also called
template plans or skeletal plans) [29] as have been used in
other situations where complete planning was too time con-
suming for appropriate responses. Plan schemas have also been
enhanced with scheduling information, such as in [30], and
generated through partial order planning techniques, like [31].
However the combination of MACRO server-based agents
using the SA-POP planning/scheduling service with generated
schemas used by MACRO field agents provides a uniquely
flexible solution for autonomy in sensor webs with a server
cluster connected to DRE field systems.

VI. CONCLUDING REMARKS

This paper presents the results of integrating and applying
the MACRO platform to address these challenges in the
SEAMONSTER sensor web. The lessons learned from our
activities thus far include:
• Maintaining QoS in open DRE systems. To make

the best use of limited resources and achieve high end-to-
end QoS in open DRE systems requires goal-driven func-
tional adaptation of system configuration, adaptive resource
management, and an infrastructure providing a range of real-
time capabilities. QoS-enabled component middleware, such
as CIAO, provide an integrated platform for building these
systems and are emerging as proven operating platform for
these systems. Although CIAO alleviates many challenges in
building DRE systems, it does not addresses the adaptive
resource management challenges and requirements of open
DRE systems. Adaptive resource management solutions, such
as RACE, are therefore needed to ensure QoS requirements of
applications executing atop these systems are met. Moreover,
goal-driven, functional system adaptation in light of current
conditions, such as by autonomous MACRO agents using SA-
POP and plan schemas, is required to maximize system utility
and application QoS with limited sensor web resources.
• Agents with different levels of planning/scheduling

capabilities. The extremely limited computational hardware
on which SEAMONSTER field agents execute prevents them
from effectively using advanced planning and scheduling
techniques. A key requirement for dynamic sensor web op-
eration, however, is rapid reaction to changing environmen-
tal conditions based on functional system knowledge and
science objectives. A simple two-level hierarchy of agents
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with differing capabilities can address these issues in sensor
webs such as SEAMONSTER. In the field, the use of agents
with simple plan schemas allows the necessary autonomy
and rapid local reaction, while production of the applicable
schemas by server-based agents with system-wide knowledge
and advanced planning/scheduling capabilities allows dynamic
adaptation to changing mission objectives.
• Decoupling resource management algorithms from

middleware and agents. Implementing adaptive resource
management algorithms within the middleware tightly couples
the resource management algorithms within particular mid-
dleware platforms. This coupling makes it hard to enhance
the algorithms without redeveloping significant portions of
the middleware. Alternatively, direct execution and resource
management of deployed data analysis applications by agents
is an untenable solution for systems in which computational
resources may be used by applications outside the agents’
control (e.g., databases and web servers that also execute
on the SEAMONSTER server cluster). Adaptive resource
management frameworks, such as RACE, improve flexibility
by decoupling resource management algorithms from either
middleware platforms or agent executors.

RACE, SA-POP, and CIAO are open-source software and
can be obtained from download.dre.vanderbilt.edu.
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