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Abstract 

Large-scale cyber-physical systems (CPS) in mission-
critical areas such as transportation, health care, en-
ergy, agriculture, defense, homeland security, and 
manufacturing, are becoming increasingly intercon-
nected and interdependent.  These types of CPS are 
unique in their need to combine rigorous control over 
timing and physical properties, as well as functional 
ones, while operating dynamically, reliably and afford-
ably over significant scales of distribution, resource 
consumption, and utilization. As large-scale CPS con-
tinue to evolve—and grow in scale and complexity—
they will impose significant and novel requirements for 
a new kind of cloud computing that is not supported by 
conventional technologies. 

Current research on networking, middleware, cloud 
computing, and other potentially relevant technologies 
does not yet adequately address the specific challenges 
posed by large-scale CPS.  In particular, the combina-
tion of (1) geographic distribution, (2) dynamic de-
mand for resources, and (3) rigorous behavioral re-
quirements spanning diverse temporal and physical 
scales motivates a new set of research and develop-
ment (R&D) challenges that must be pursued to 
achieve new foundations for cloud computing that can 
meet the needs of large-scale CPS. 

To pursue these challenges, cloud computing advances 
are needed to establish real-time computing, commu-
nication, and control foundations rigorously at scale. 
Likewise, advances are needed to apply these founda-
tions in a flexible and scalable manner to different re-
al-world large-scale CPS challenge problems. To sup-
port both foundational and experimental R&D, a new 
generation of elastic infrastructure must be designed, 
developed, and evaluated. This paper identifies chal-
lenges, opportunities, and benefits for this work and for 
the large-scale CPS it targets. 

1 Introduction 

Large-scale cyber-physical systems (CPS) are increas-
ingly composed of services and applications deployed 
across a range of communication topologies, compu-
ting platforms, and sensing and actuation devices.  
Examples of these types of CPS include advanced air 
traffic management [1], current generation supervi-
sory control and data acquisition (SCADA) systems 

[2], envisioned next-generation smart power grids 
[3], remote health care delivery systems [4], integrat-
ed air and missile defense systems [5], and electronic 
trading systems [6]. The services and applications in 
large-scale CPS often form parts of multiple end-to-
end cyber-physical flows that operate in mission-or 
safety-critical resource-constrained environments.  In 
such operating conditions, each service within the 
end-to-end cyber-physical flows must process events 
belonging to other services or applications, while 
providing dependable quality of service (QoS) assur-
ance (e.g., timeliness, reliability, and trustworthiness) 
within the constraints of limited resources or with 
the ability to fail over to providers of last resort (e.g., 
a public utility in the case of a SCADA system or smart 
power grid). 

Large-scale CPS have traditionally been designed and 
implemented using resources procured and main-
tained in-house.  Significant fiscal and technological 
constraints, however, are motivating researchers and 
practitioners to consider alternatives that can still 
ensure mission- and safety-critical properties.  In 
particular, the emergence of dependable—and in-
creasingly commodity—computing clouds motivates 
design and operational considerations for large-scale 
CPS that include:  

• offering economic incentives, e,g., pay-as-you-go 
and pay-as-you-grow models that emphasize 
computing as an operating expenditure rather 
than a capital expenditure; 

• consolidating and sharing hardware and software 
components through multi-tenancy to reduce op-
erating expenses, e.g., lower power consumption 
and hardware budget; 

• aggregating and disaggregating behaviors dynami-
cally to reduce risk, e.g., by minimizing contention 
and avoiding single points of failure; and 

• elastically auto-scaling computing, communication, 
and sensing/actuation resources for real-time sys-
tems to ensure that shared system resources are 
used effectively and dependably without incurring 
unnecessary costs when resources are idle. 

Despite the promise held by commodity cloud com-
puting, however, supporting the timing and depend-
ability requirements of large-scale CPS at scale is 

http://en.wikipedia.org/wiki/Air_traffic_control
http://en.wikipedia.org/wiki/Air_traffic_control
http://en.wikipedia.org/wiki/SCADA
http://en.wikipedia.org/wiki/SCADA
http://en.wikipedia.org/wiki/Integrated_care
http://en.citizendium.org/wiki/Integrated_air_defense_system
http://en.citizendium.org/wiki/Integrated_air_defense_system
http://en.wikipedia.org/wiki/Electronic_trading
http://en.wikipedia.org/wiki/Electronic_trading


hard.  This paper discusses a number of technical is-
sues emerging in this context, including: 

• precise auto-scaling of resources within local and 
system-wide constraints; 

• flexible optimization algorithms to balance real-
time constraints with cost, scalability, utilization, 
and other (often conflicting) goals; 

• improved fault-tolerance fail-over to support real-
time requirements; and 

• data provisioning, load balancing, and analysis 
algorithms that rely on—and potentially can be 
used to optimize—physical properties of compu-
tations. 

This paper also explores key technical building blocks 
needed to create a dependable and elastic infrastruc-
ture for large-scale CPS. 

2 The Evolution of CPS in Scale and Complexity 

This section summarizes the evolution of CPS in 
terms of scale and complexity in terms of the dimen-
sions shown in Figure 1.  These dimensions include 

• QoS fidelity, which ranges from low fidelity (e.g., 
“best effort” QoS) to high fidelity (e.g., stringent 
requirements on timeliness and dependability). 

• Degree of asset sharing, which ranges from a low 
degree of sharing (e.g., each application or ser-
vice is allocated a unique set of assets) to a high 
degree of sharing (e.g., assets are pooled amongst 
many applications and services). 

• System scale, which ranges from small scale (e.g., 
a dozen or so system components) to large scale 
(e.g., many thousands of system components). 

 
Figure 1: Visualizing the Design Space 

2.1 Overview of CPS 

A cyber-physical system (CPS) is an integrated set of 
hardware and software that controls physical things 
(and which may nor may not involve humans in the 

loop). CPS have historically involved a tight coupling 
and coordination between a system’s computational 
elements, components written in software, and physi-
cal elements, or components that interact with the 
physical world. Traditional examples of CPS include 
anti-lock braking systems in automobiles [7] and au-
tomated pilot features in aircraft [8].  In terms of the 
taxonomy shown in Figure 1, these types of CPS typi-
cally exhibit high QoS fidelity, a very low degree of 
asset sharing, and a small number of system compo-
nents. 

Many CPS also have been used to control devices 
and/or processes in environments that are discon-
nected from networks.  Although these types of 
stand-alone CPS are common, the next-generation of 
CPS [9][10] increasingly use local area network 
(LAN) and/or wide area network (WAN) processing 
elements to control devices and interactions. These 
interactions may include physical environments 
(such as wind farms or hydro-electric power genera-
tors) or industrial environments (such as chemical 
plants). More sophisticated emerging CPS (such as 
driverless cars [11] and smart power grids [3]) are 
adaptive and intelligent, often solving problems as 
they occur in real time without direct human input. 

Regardless of their scale and connectivity, CPS are 
time-sensitive since the right information or action 
delivered or performed too late results in an incor-
rect outcome. As a consequence, the QoS of a CPS not 
only has a reliability dimension but also a temporal 
one. In particular, system functionality must run in a 
timely manner.   

Large-scale CPS must address requirements and chal-
lenges that aren’t as relevant for traditional stand-
alone CPS, including partial failure, higher latency 
and jitter due to shared communication links, and 
denial of service attacks. Security is an increasingly 
important QoS concern in CPS [12] since delivering 
information in a timely manner is itself essential, but 
may be irrelevant if the information has been tam-
pered with or compromised. In terms of the taxon-
omy shown in Figure 1, today’s large-scale CPS typi-
cally exhibit higher QoS fidelity, a higher degree of 
asset sharing, and a larger number of system compo-
nents than traditional CPS.  

2.2 Overview of Cloud Computing 

Large-scale CPS have been developed in the past, pri-
marily in the aerospace, defense, and power domains. 
These types of CPS, however, have been highly pro-
prietary and expensive to develop and sustain.  In 
recent years, therefore, the enormous commercial 
and government investment in commodity cloud 



computing environments has spurred an interest in 
leveraging these technologies as the basis for large-
scale CPS.  

Cloud computing provides applications with ubiqui-
tous, convenient, and on-demand access to a shared 
pool of configurable computing resources across a 
network. The goal of this paradigm is to treat compu-
ting and communication as utilities. In particular, 
these capabilities are provided to applications as ser-
vices, i.e., enabling the migration and scaling 
up/down of system computing, storage, and commu-
nication resources without requiring explicit in-
volvement from applications. 

 
Figure 2: Characteristics of Cloud Computing 

Figure 2 depicts the key characteristics of cloud com-
puting environments, which typically include the fol-
lowing capabilities 

• On-demand self-service provisioning, which ena-
bles end-users of clouds to unilaterally provision 
computing capabilities, including networks, stor-
age, and servers, which are often virtualized by 
generalizing the physical infrastructure and mak-
ing it available as a set of managed components 
that are easier to use and control automatically. 

• Elastic resource pooling and multi-tenant models 
in which multiple applications can run in the con-
text of shared server and networking resources. 
Achieving these elastic capabilities requires the 
means to automatically and rapidly expand and 
contract the amount of computation and storage 
based on dynamically fluctuating levels of de-
mand without adversely impacting essential QoS 
properties.  

• Managed operations in which resource utilization 
can be controlled via some type of metering ca-

pability. These managed operations essentially 
“outsource” key hardware and software compo-
nents and activities to third-party providers. 

Most applications of commodity cloud computing 
environments focus on web hosting, where low cost 
(e.g., via resource sharing) and high availability (e.g., 
via replication) are critical QoS attributes. A key ben-
efit of cloud computing in this domain lies in the 
economies of scale provided by multi-tenancy and 
elasticity, which involve the ability to have multiple 
applications and services sharing the same compu-
ting infrastructure, as well as the potential to expand 
and contract infrastructure as needed and on-de-
mand. In terms of the taxonomy shown in Figure 1, 
these types of cloud computing environments typi-
cally exhibit low QoS fidelity, a high degree of asset 
sharing, and a large number of system components. 

Although cloud computing is increasingly being 
adopted by individual consumers and by companies 
in certain industries, many classic implementations of 
cloud computing are at odds with CPS requirements, 
such as bounding latency and jitter, and avoiding pri-
ority inversions.  In particular, unless managed care-
fully with respect to timing (e.g. as in [13][14]) and 
other criteria virtualization may become detrimental 
in CPS due to higher overhead and jitter, as well as 
(hidden) scheduling issues.  What is needed, there-
fore, are software and hardware infrastructures that 
can support the needs of next-generation large-scale 
CPS. In terms of the taxonomy shown in Figure 1, 
these new large-scale CPS require high QoS fidelity 
and a high degree of asset sharing, and must support 
a large number of system components. 

3 The Evolution of Design and Operational 
Paradigms for CPS 

Many design and operational paradigms that are rele-
vant to large-scale CPS have come and gone during 
the past ~40 years. This section summarizes the evo-
lution in the paradigms used to design and operate 
CPS at various levels of scale and complexity during 
this time. 

3.1 Early Paradigms 

In the 1970s and 1980s, there was a tendency to 
build CPS via a tightly-coupled design paradigm, 
where most elements of these CPS were proprietary 
and controlled or built by a single system integrator. 
These systems were designed in a stovepipe manner 
with many silos and little reuse or sharing. Likewise, 
they were non-adaptive, e.g., if changes were made to 
requirements or the runtime environment many oth-
er parts of the systems could be adversely affected.  



In general, a key limitation of such a tightly-coupled 
design paradigm for CPS was that small changes 
made to the software or hardware could affect the 
correctness of almost any other part of the system 
[15]. Examples of these problematic changes include 
adjustments to requirements, implementation, infra-
structure, operating systems, programming lan-
guages, middleware, and networks. As a result, these 
large-scale CPS were expensive to sustain and evolve, 
in addition to incurring vulnerabilities due to not be-
ing designed to connect to publically accessible net-
works, such as the Internet. 

This tightly-coupled design paradigm also was prob-
lematic due to the ways in which developers and op-
erators traditionally provisioned, scheduled, and cer-
tified CPS. The operational capabilities and charac-
teristics of traditional CPS were typified by the need 
to obtain all the required resources. If such a provi-
sioning process goes smoothly, traditional CPS usual-
ly work well. If not all of the resources are acquired, 
however, there could be major issues and a CPS simp-
ly might not work as needed. 

The tight-coupling exhibited by such CPS was exacer-
bated by their stringent end-to-end QoS require-
ments, including bounded latency and absence of pri-
ority inversion. To meet these requirements, develop-
ers of traditional CPS typically locked down many 
implementation details, shared limited information 
between different system components, and allocated 
resources statically. While this strategy works for 
small CPS in closed stand-alone environments, it 
simply doesn’t scale up to meet the needs of large-
scale CPS being developed and planned (e.g., based 
on emerging proposed industry standardization ef-
forts, such as the Industrial Internet [16]). Moreover, 
it is not feasible to leverage commodity computing 
clouds as the basis for these types of CPS due to their 
reliance on statically provisioning and aversion to 
sharing. 

3.2 Recent R&D Progress 

Over the past decade, there have been tremendous 
advances in research and development for CPS, as 
well as evolution in the adoption and application of 
newer design paradigms. For example, cutting-edge 
CPS in both military and civilian domains are more 
layered and componentized than those of previous 
decades. In particular, modern large-scale CPS in-
clude layers of network, operating system, middle-
ware, and programming language standardization 
and have become more robust at the infrastructure 
level. Moreover, advances in loosely coupled CPS soft-
ware and system architecture have improved, so that 

when problems arise, properly programmed systems 
are able to cope through on-line adaptation.  

A further benefit of these modern, less tightly coupled 
large-scale CPS is that solutions are potentially more 
cost-effective to evolve and retarget. Developers are 
less apt to have to backtrack and recertify an entire 
CPS when minor changes are made, which is a key 
cost-driver for sustainability in legacy CPS. Conse-
quently, changes can be made to a CPS environment, 
requirements, and aspects of implementation, includ-
ing those that are hidden behind component or mod-
ule boundaries.   

Modern large-scale CPS have also improved from an 
operational point of view. The majority of new loose-
ly coupled large-scale CPS are being constructed via 
data-centric and reusable protocols. Event and mes-
saging buses are more resilient in these types of 
large-scale CPS. When constructed properly, these 
large-scale CPS are designed to work appropriately 
even if they don’t receive all resources in a timely 
manner, which enables dynamic allocation and man-
agement. There is the added benefit of better sharing 
support for resources, especially in environments 
with the ability to describe priorities and importance 
of information flow at multiple levels.  

Some of the operating platforms that have evolved to 
support modern large-scale CPS have much in com-
mon with computing clouds. For example, the total 
ship computing environment developed for the US 
Navy’s DDG-1000 destroyer include advances in dis-
tributed resource management based on many of the 
technologies mentioned throughout this paper (and 
discussed further in [17]). While the scale of a DDG-
1000 destroyer is not nearly as large as envisioned 
large-scale CPS (e.g. based on a continent-wide Indus-
trial Internet), it serves as a good example of how 
metropolitan area network (MAN)-sized large-scale 
CPS can be developed reliably and securely.  

4. R&D Trends and Challenges for Large-scale CPS 

Current trends and challenges within the domain of 
large-scale CPS are a hot topic of discussion. For ex-
ample, the US National Science Foundation (NSF) re-
cently convened stakeholders from academia, indus-
try, and government at a workshop on research and 
implementation challenges at the intersection of 
Cloud Computing and CPS [18], from which a com-
munity report is currently being drafted. Topics dis-
cussed during this workshop included 

• the role of computing clouds in data collection, 
integration, analysis, and mining for CPS,  



• the roles of computing clouds in CPS control sys-
tems,  

• stability, safety, security, privacy, and reliability 
considerations in integrating cloud computing 
with CPS, and  

• programming models and paradigms for compu-
ting clouds that support CPS.  

When considering what is happening in the space 
now, it is useful to be familiar with approaches used 
by developers in the past and the insight those expe-
riences provided when envisioning future directions. 

4.1 The Benefits and Limits of Elastic Hardware 

The CPS space is diverse and complicated, but it is 
reasonable to expect that some of the key answers 
can be found in research conducted on elastic hard-
ware platforms in cloud computing environments. 
Elastic hardware refers to platforms with the ability 
to add or remove CPU capacity within a reasonable 
time frame and price. This technology enables cloud 
providers to add or subtract hardware without the 
need to change underlying business logic or configu-
rations of the software. Since programmers’ time has 
become a precious commodity the flexibility enabled 
by elastic hardware is tremendously valuable. 

One complication of elastic hardware is that most 
platforms have been utilized for hosting web applica-
tions in public cloud environments or data-centers. 
Although those environments have been relatively 
reliable for conventional web hosting services, they 
pale in comparison to the complexities and mission-
criticalities of Industrial-Internet-style applications, 
where support for secure, real-time communications 
and failover are essential.   

Elastic hardware is thus necessary, but not sufficient 
for building elastic applications that possess cyber-
physical properties. There are a number of reasons 
why programming elastic hardware for CPS is hard. 
The first is due to the fact that many programming 
models used by developers are inadequate. Develop-
ers tend to use complicated or obtrusive APIs, which 
are challenging to program. Conversely, there are 
solutions that are simple to program, but tend to have 
problems with respect to scalability and predictabil-
ity. These solutions work well if timeliness is not a 
concern, but they are not a viable solution when time-
liness is paramount.  

Another issue is the general lack of understanding for 
real-time, concurrent network solutions. There are 
many inherent and accidental complexities in this 
area, including race conditions, deadlocks, priority 
inversions, and missed deadlines. The CPS develop-
ment community needs to become more familiar with 

these issues so they can work more effectively at fix-
ing them with the available tools.  

Some operating platforms provide good support for 
multicore solutions, but do not have sufficient sup-
port to seamlessly transition from multicore to dis-
tributed core. When this is the case, the system will 
work well up to ~16 cores, (i.e., the current scale 
supported by high-end Intel or AMD multicore chip 
sets) and then start to degrade significantly when the 
system scales beyond that. 

Finally, there is the long observed issue of inadequate 
support for QoS at scale. In this context, QoS refers to 
the ability to control systematic quality attributes 
(often referred to as “non-functional properties”), 
including prioritization, failover and robustness, and 
system-wide resources in an end-to-end environment 
over various types of networking infrastructure. Ap-
proaches that work well for conventional web-based 
systems often do not work as well in the mission-
critical CPS domain.  

The impediments to programming elastic applica-
tions on elastic hardware described above effect the 
majority of computing systems, though they are par-
ticularly problematic for large-scale CPS. As a result, 
organizations may believe that since the traditional 
Internet works well for their ecommerce or file shar-
ing, it should work just as well for more complex 
large-scale CPS, until they ultimately discover is not 
the case.  

4.2 Key Challenges for Elastic Large-scale CPS 

Large-scale CPS are increasingly being used to con-
nect people, data, and machines to enable access and 
control of mechanical devices in unprecedented ways.  
These types of CPS are often used to integrated so-
phisticated machines embedded with sensors and 
sophisticated software,to other machines (and end 
users) to extract data, make sense of it, and find 
meaning where it did not exist before.  The overarch-
ing theme is that such machines—ranging from jet 
engines to gas turbines to medical scanners—con-
nected via large-scale CPS have the analytical intelli-
gence to self-diagnose and self-correct, so they can 
deliver the right information to the right people de-
pendably at the right time. 

Despite the promise of large-scale CPS, however, 
supporting the end-to-end QoS requirements is fun-
damentally hard and requires new advances in a 
number of key areas, including those discussed below. 

1. Precise auto scaling of resources with an end-to-end 
focus needs to be a feature of CPS. Auto scaling is of-
ten thought about as adding cores when demand ris-



es. Although this is certainly useful, it comes with the 
downside of not working properly from a system-
wide perspective.  Large-scale CPS (such as the Indus-
trial Internet [16]) require ways to scale up schedul-
ing and auto scaling in a broad environment, to sup-
port precise behavior for end-to-end task changes. 
Stability and safety properties within mission-critical 
large-scale CPS require complex analysis to provide 
confidence that they will work as expected. Support-
ing this need calls for analysis examining reachability 
of states in system, which is currently a particularly 
challenging part of the research space.  

2. Optimization algorithms that balance real-time con-
straints with cost and other goals must be in place. 
Often these problems can be solved by additional 
hardware, but not all developers have those re-
sources available to them. Although deployment and 
configuration algorithms—along with services and 
infrastructure—are key to successful large-scale CPS, 
implementing these algorithms effectively is hard in 
domains where the cost commodity marginal basis is 
driven down. For example, the automotive industry 
needs to sell in volume, and thus cannot afford to 
spend thousands of dollars on high-end hardware in 
low-end to mid-level cars because the costs will not 
be recouped.  

Another essential component for large-scale CPS is 
creating the means to co-schedule or perform admis-
sion control and eviction of assorted task sets de-
ployed on shared computing and communication re-
sources to ensure that high priority operations take 
place at the appropriate time. These requirements 
are not typically met in conventional cloud compu-
ting environments, i.e.., when these systems get over-
loaded, the QOS degrades and there is no clear way to 
prioritize between tasks.   

Improved fault-tolerance fail-over that supports real-
time requirements, which is crucial in environments 
with high probability of failures and attacks. One way 
to do this is semi-active replication [19], which is 
used so that running systems  can fail-over rapidly 
and predictably.   This replication style is designed to 
have some of the benefits of both the active replica-
tion and passive replication styles, including predict-
able fail over times and predictable behavior during 
program execution. 

3. Finer-grained and faster allocation of resources to 
enable CPS to be precisely scaled to meet demands 
driven by real-world phenomena. Current elastic re-
source allocation approaches focus entirely on virtual 
machines as the sole unit of resource allocation. Vir-
tual machines, while providing excellent isolation and 
resource jailing properties, have significant allocation 

and startup costs associated with them. A single vir-
tual machine in a cloud may take tens of seconds to 
minutes to allocate and initialize for a CPS. CPS are 
influenced by a wide array of physical phenomena 
that science has not developed accurate or fast pre-
dictive models for. For example, predicting the exact 
load in a financial market even within a few minutes 
time is not considered a solved problem. Because it is 
difficult to predict how the physical world will drive a 
CPS, it is hard to forecast far into the future the pre-
cise resource allocations that will be needed to meet 
a CPS QoS goals. 

When limited physical world predictability is com-
bined with slow resource allocation, ensuring that 
CPS are provided with needed resources becomes 
extremely challenging. Either more precise predictive 
models are needed or cloud computing resource allo-
cation must become more nimble to adequately sup-
port real-time and other QoS requirements. Consid-
ering the challenge of producing fast and accurate 
predictive models for all physical world systems that 
drive CPS, research on faster and finer-grained re-
source allocation beyond virtual machines is needed.  

4. Data provisioning and load balancing algorithms 
that can take into account a variety of properties, in-
cluding geo-physical, when deciding where to mi-
grate work. Cloud computing is generally considered 
as so flexible that there is little difference to where 
computation takes place and storage resides, which 
makes sense when there are no real-time QOS needs. 
As real-time QOS needs arise, however, the location 
where parts of the system will run becomes more 
important. In these cases, affinity should be empha-
sized to reduce latency and jitter.  

Storage is a key factor in CPS, as it does not do much 
good to virtualize storage if it then takes too long to 
move data from one node to another. At the same 
time, rebalancing and replication also need to happen. 
Taking physical dimensions into account in the con-
text of load building is beneficial and not practiced as 
often as it needs to be. Developers must also discover 
a way to exploit physical characteristics of data and 
computation to better distribute work throughout 
clouds.  

In short, developers of large-scale CPS need a holistic 
approach. Advances in this area will be particularly 
challenging because many researchers work in isola-
tion, while most product companies work on projects 
one or two layers at a time. Success will thus require 
approaches from a research point of view, as well as a 
product point of view that span the layers of these 
projects and can work end-to-end.  



4.3 Next-generation Challenges: Larger-Scale CPS  

Although some organizations have had greater suc-
cess developing large-scale CPS over the past decade, 
there’s also been a countervailing trend toward at-
tempting to develop highly complex large-scale CPS. 
Systems in this context are evolving towards ultra 
large-scale, i.e., they are pushing far beyond the size 
of even today's large-scale CPS by every measure, 
including lines of code, amount of data stored, ac-
cessed, manipulated, and refined, number of connec-
tions and interdependencies, number of hardware 
elements, number of computational elements, num-
ber of system purposes and user perception of these 
purposes, number of routine processes, interactions, 
and “emergent behaviors,” number of (overlapping) 
policy domains and enforceable mechanisms, and 
number of people involved in some way (see [20] for 
further discussion). Examples of these ultra-large-
scale CPS are evolving in smart grid, Industrial Inter-
net, and air traffic management domains. 

Ultra-large-scale CPS have dynamic behavior in 
which transient overloads can occur. There are nu-
merous time critical tasks, and many resources de-
pend on the environment for use. Often there are 
trade-offs and conflicts between the aforementioned 
resources. One of the most prominent challenges ob-
served is integration with legacy systems and sub-
systems.  

The technologies historically used by system integra-
tors to develop and sustain large-scale CPS have 
themselves incurred many challenges stemming from 
accidental and inherent complexities.  For example, 
these technologies have tended to be highly hetero-
geneous in terms of programming languages, operat-
ing systems, middleware, and tooling. Likewise, tech-
nologies implemented several years ago may now be 
unusable in some environments due to rapid ad-
vances in the solution space.  

Not surprising, it is tedious and error-prone to map 
problems and requirements from the problem space 
to the technologies that exist in the solution space. 
System integrators are ultimately responsible for try-
ing to make these connections. These problems have 
recently become even harder to address because 
their requirements exceed the capabilities provided 
in today’s commodity computing clouds.  

Adding further complication, the U.S. government, 
which has been a major player in funding for large-
scale CPS, has been forced to cut back significantly on 
research and development due to the fiscal con-
straints arising from sequestration. Winston Church-
ill is attributed to the quote, “Gentleman, we’ve run 

out of money—it’s time to start thinking,” which 
serves as an accurate metaphor for what is happen-
ing in ultra-large-scale CPS domains today.  

5 A Vision for Software Infrastructures for Large-
Scale and Ultra-Large-Scale CPS 

This section outlines emerging research solutions 
and approaches for architecting large-scale CPS sys-
tems. The architecture covers the core components 
needed for CPS and specific technologies that can fill 
these gaps, such as the OMG’s DDS. 

5.1 Key Requirements for Large-scale CPS Soft-
ware Infrastructure  

Meeting the challenges of large-scale CPS—including, 
but not limited to, approaches that are being dis-
cussed in the context of proposed industry standards, 
such as the Industrial Internet—requires rethinking 
basic properties and principles commonly ascribed to 
cloud computing.  Whatever the future of elastic 
cyber-physical systems software infrastructure may 
be, it must include support for the following require-
ments:  

• Systems must be flexible, as they must be able to 
replace, reuse, analyze, distribute, paralyze in iso-
lation, and then compose these pieces back to-
gether in a dependable way. 

• Systems need to be open so that programmers do 
not program themselves into a corner with a solu-
tion that only works with commitment to a single 
vendor.  

• Systems need to be uniform with respect to treat-
ing multicore and distributed core in a common 
way. Uniformity keeps these two components 
transparent from the applications and services 
they run.  

• Systems must be scalable as the demand for ever-
increasing scope rises. Solutions such as load bal-
ancing algorithms take advantage of elastic hard-
ware resources at the infrastructure level.  

One of the most important considerations for meet-
ing these requirements of large-scale CPS is middle-
ware, which resides between applications and the 
underlying operating systems, networks, and hard-
ware.  Middleware provides key services that are es-
sential to design and operate large-scale CPS at scale.  
Below we discuss the key layers of large-scale CPS 
software infrastructure. 

5.2 Key Layers of Large-Scale CPS Infrastructure 

Anyone who has taken a networking course knows 
that there are seven layers in the OSI stack and four 
layers in the Internet stack. In general, however, 



there’s less familiarity of the layers within the mid-
dleware stack, which is essential for success in devel-
oping next-generation software infrastructure for 
large-scale CPS.  Figure 3 illustrates the key layers, 
which are described briefly below. 

Operating systems and communication protocols are 
essentially a hardware abstraction layer that allow 
higher-level services and applications to ignore dif-
ferences in the underlying computing and network-
ing hardware. Host infrastructure middleware is an 
operating system abstraction later that abstracts 
away from the operating system and removes acci-
dental complexities of the system’s APIs. It amplifies 
programming software in a portable way. Examples 
of host infrastructure middleware include Java, Real-
time Java, and Microsoft CLR.  

 
Figure 3: Middleware and System Infrastructure Layers 

The next level is distribution middleware, which al-
lows for decoupling and abstracting the fact that 
there is a network between the sender and receiver 
of messages. Distribution middleware provides the 
ability to communicate across address and host 
boundaries in a way that is unobtrusive to the appli-
cation. Examples of this type of middleware include 
SOAP, Web Services, CORBA and DDS. Common mid-
dleware services comprise the next layer.  

Once distribution middleware is implemented, it be-
comes easier to program across a network. The next 
challenge is deciding how to build reusable services 
that name the information, discover services, detect 
presence, send events to subscribers in a predictable 
way, monitor health, provide information durability, 
historical data, record data floes and transactions, 
perform failover operations, etc. These all fall within 
the realm of common middleware services.  

Domain-specific middleware services are perhaps the 
most important layer. These middleware services 
involve intellectual property or value added in a par-
ticular domain such as avionics, SCADA, C4ISR, air 
traffic management and healthcare. This area is 
where the bulk of the industrial Internet lies, and 
where the next generation of standards and capabili-
ties must be researched and transitioned into prac-
tice. 

5.3 Promising Foundations Towards Elastic CPS 
Middleware: Data Distribution Service (DDS) 

The Object Management Group’s (OMG) Data Distri-
bution Service (DDS) [22] possesses many of the cri-
teria for large-scale CPS software infrastructure men-
tioned above, i.e., it is flexible, open, uniform, and 
scalable. DDS supports a pattern language that allows 
loosely coupled, heterogeneous, evolvable, scalable, 
and dependable large-scale CPS. DDS is used widely 
throughout this domain because it provides a power-
ful software infrastructure for building large-scale 
CPS.  

DDS supports different types of information modeling, 
including relational. Relational modeling uses a data-
centric publish-subscribe abstraction in which events 
and their relationships to each other may be assigned. 
It also supports object-oriented information model-
ing with its data local reconstruction layer.  

  
Figure 4: Key Elements in DDS 

DDS reinforces the idea of a global data space, which 
enables publishers and subscribers the ability to read 
and write topic data asynchronously, anonymously, 
and decoupled in time and space, as shown in Figure 
4. It allows production and consumption of data in 
the global data space in many ways. DDS also permits 
control of the way in which information flows 
through a space, which is a powerful capability in 
large-scale CPS.  

DDS is well suited for large-scale CPS in part because 
of its rich set of QoS policies. QoS policies allow for 



the control of variables essential to delivering infor-
mation in a timely and dependable manner. There are 
about two-dozen QoS policies in DDS that handle pri-
orities, deadlines, data durability, replication and re-
dundancy, history, resource utilization and more, as 
shown in Figure 5.  

QoS policies that are particularly relevant to large-
scale CPS include the ability to indicate latency, laten-
cy bounds, and reliability bounds. Likewise, these 
QoS policies also support the ability to manage co-
herency issues and resource constraints. There are 
various actions that can be implemented in this space 
to gain greater control of large-scale CPS.  

 
Figure 5: A Summary of DDS QoS Policies 

DDS allows matching of publishers and subscribers in 
terms of QoS policies that are requested/offered 
(RxO). This distributed matching capability allows 
DDS implementations to decide on an optimal way 
connecting end-to-end flows of producers and con-
sumers, as shown in Figure 6. When this capability is 
integrated on top of intelligent communication infra-
structure, it is able to provide control over the net-
work core. 

 
Figure 6: The Request/Offered QoS Model of DDS 

Since large-scale CPS do not exist in a vacuum, the 
ability to bridge different components together is 
crucial. DDS provides many ways to bridge other 
technologies through the DDS data bus, which ena-
bles communication with web services, Java messag-
ing service, and other protocols in a way that can plug 
and play seamlessly with legacy and new systems. 
There are also a number of standards available with-
in the DDS ecosystem, such as Java, C++, and UML, 
and it can also take advantage of other standards, 
including mappings to RESTful web services. 

When integrating large-scale CPS, no single vendor is 
sufficient. The potential to interwork and connect 
between parties using a heterogeneous selection of 
middleware is both valuable and necessary. Interop-
erability protocols supported by DDS make it possi-
ble for different vendors to interoperate.  There is 
also currently a vibrant research community focused 
on DDS [21], which further motivates its potential 
applicability as a context within which further re-
finement of policies and mechanisms for enforcing 
CPS semantics can be prototyped, explored, evalu-
ated , and potentially deployed.  

6 Concluding Remarks 

Despite advances in elastic hardware, it is still hard to 
deploy CPS in cloud environments, making it neces-
sary to investigate further advances in the state of the 
art for elastic software infrastructure. It is unlikely 
that public clouds will serve as the basis of mission-
critical large-scale CPS. It is more likely that private 
clouds will be used, but that does not mean those sys-
tems will not benefit from standards and other tech-
nologies.  

What is likely to matter most in computing clouds for 
CPS is how a fundamental tension between multi-ten-
ancy and elasticity on the one hand, and precision in 
the resulting CPS properties on the other hand, can 
be addressed. Virtualization may be beneficial if it 
can be afforded, but an alternative approach could be 
to run on the bare hardware using powerful integra-
tive middleware technologies, such as those provided 
by (or perhaps evolved from) successful software 
infrastructure standards, such as DDS.  

DDS is a particularly intriguing venue for further in-
vestigation of large-scale CPS because it is standards-
based and includes a number of open-source solu-
tions that facilitate the mixing and matching of capa-
bilities and the ability to build infrastructure for de-
pendable cyber-physical systems. Although great 
progress has been made, there remain many research 
challenges surrounding CPS. Despite these challenges, 
DDS is still the most closely connected and capable of 



providing off-the-shelf solutions that address these 
challenges.  Many hard research challenges remain, 
however, as discussed in the forthcoming report from 
the NSF Workshop on Cloud Computing for Cyber-
Physical Systems [18]. 
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