
Elastic Infrastructure to Support Computing Clouds
for Large-scale Cyber-Physical Systems

Douglas C. Schmidt and C. Jules White
Vanderbilt University, Nashville, TN

Christopher D. Gill
Washington University, St. Louis, MO

Abstract

Large-scale cyber-physical systems (CPS) in mission-
critical areas such as transportation, health care, en-
ergy, agriculture, defense, homeland security, and
manufacturing, are becoming increasingly intercon-
nected and interdependent. These types of CPS are
unique in their need to combine rigorous control over
timing and physical properties, as well as functional
ones, while operating dynamically, reliably and afford-
ably over significant scales of distribution, resource
consumption, and utilization. As large-scale CPS con-
tinue to evolve—and grow in scale and complexity—
they will impose significant and novel requirements for
a new kind of cloud computing that is not supported by
conventional technologies.

Current research on networking, middleware, cloud
computing, and other potentially relevant technologies
does not yet adequately address the specific challenges
posed by large-scale CPS. In particular, the combina-
tion of (1) geographic distribution, (2) dynamic de-
mand for resources, and (3) rigorous behavioral re-
quirements spanning diverse temporal and physical
scales motivates a new set of research and develop-
ment (R&D) challenges that must be pursued to
achieve new foundations for cloud computing that can
meet the needs of large-scale CPS.

To pursue these challenges, cloud computing advances
are needed to establish real-time computing, commu-
nication, and control foundations rigorously at scale.
Likewise, advances are needed to apply these founda-
tions in a flexible and scalable manner to different re-
al-world large-scale CPS challenge problems. To sup-
port both foundational and experimental R&D, a new
generation of elastic infrastructure must be designed,
developed, and evaluated. This paper identifies chal-
lenges, opportunities, and benefits for this work and for
the large-scale CPS it targets.

1 Introduction

Large-scale cyber-physical systems (CPS) are increas-
ingly composed of services and applications deployed
across a range of communication topologies, compu-
ting platforms, and sensing and actuation devices.
Examples of these types of CPS include advanced air
traffic management [1], current generation supervi-
sory control and data acquisition (SCADA) systems

[2], envisioned next-generation smart power grids
[3], remote health care delivery systems [4], integrat-
ed air and missile defense systems [5], and electronic
trading systems [6]. The services and applications in
large-scale CPS often form parts of multiple end-to-
end cyber-physical flows that operate in mission-or
safety-critical resource-constrained environments. In
such operating conditions, each service within the
end-to-end cyber-physical flows must process events
belonging to other services or applications, while
providing dependable quality of service (QoS) assur-
ance (e.g., timeliness, reliability, and trustworthiness)
within the constraints of limited resources or with
the ability to fail over to providers of last resort (e.g.,
a public utility in the case of a SCADA system or smart
power grid).

Large-scale CPS have traditionally been designed and
implemented using resources procured and main-
tained in-house. Significant fiscal and technological
constraints, however, are motivating researchers and
practitioners to consider alternatives that can still
ensure mission- and safety-critical properties. In
particular, the emergence of dependable—and in-
creasingly commodity—computing clouds motivates
design and operational considerations for large-scale
CPS that include:

• offering economic incentives, e,g., pay-as-you-go
and pay-as-you-grow models that emphasize
computing as an operating expenditure rather
than a capital expenditure;

• consolidating and sharing hardware and software
components through multi-tenancy to reduce op-
erating expenses, e.g., lower power consumption
and hardware budget;

• aggregating and disaggregating behaviors dynami-
cally to reduce risk, e.g., by minimizing contention
and avoiding single points of failure; and

• elastically auto-scaling computing, communication,
and sensing/actuation resources for real-time sys-
tems to ensure that shared system resources are
used effectively and dependably without incurring
unnecessary costs when resources are idle.

Despite the promise held by commodity cloud com-
puting, however, supporting the timing and depend-
ability requirements of large-scale CPS at scale is

http://en.wikipedia.org/wiki/Air_traffic_control
http://en.wikipedia.org/wiki/Air_traffic_control
http://en.wikipedia.org/wiki/SCADA
http://en.wikipedia.org/wiki/SCADA
http://en.wikipedia.org/wiki/Integrated_care
http://en.citizendium.org/wiki/Integrated_air_defense_system
http://en.citizendium.org/wiki/Integrated_air_defense_system
http://en.wikipedia.org/wiki/Electronic_trading
http://en.wikipedia.org/wiki/Electronic_trading

hard. This paper discusses a number of technical is-
sues emerging in this context, including:

• precise auto-scaling of resources within local and
system-wide constraints;

• flexible optimization algorithms to balance real-
time constraints with cost, scalability, utilization,
and other (often conflicting) goals;

• improved fault-tolerance fail-over to support real-
time requirements; and

• data provisioning, load balancing, and analysis
algorithms that rely on—and potentially can be
used to optimize—physical properties of compu-
tations.

This paper also explores key technical building blocks
needed to create a dependable and elastic infrastruc-
ture for large-scale CPS.

2 The Evolution of CPS in Scale and Complexity

This section summarizes the evolution of CPS in
terms of scale and complexity in terms of the dimen-
sions shown in Figure 1. These dimensions include

• QoS fidelity, which ranges from low fidelity (e.g.,
“best effort” QoS) to high fidelity (e.g., stringent
requirements on timeliness and dependability).

• Degree of asset sharing, which ranges from a low
degree of sharing (e.g., each application or ser-
vice is allocated a unique set of assets) to a high
degree of sharing (e.g., assets are pooled amongst
many applications and services).

• System scale, which ranges from small scale (e.g.,
a dozen or so system components) to large scale
(e.g., many thousands of system components).

Figure 1: Visualizing the Design Space

2.1 Overview of CPS

A cyber-physical system (CPS) is an integrated set of
hardware and software that controls physical things
(and which may nor may not involve humans in the

loop). CPS have historically involved a tight coupling
and coordination between a system’s computational
elements, components written in software, and physi-
cal elements, or components that interact with the
physical world. Traditional examples of CPS include
anti-lock braking systems in automobiles [7] and au-
tomated pilot features in aircraft [8]. In terms of the
taxonomy shown in Figure 1, these types of CPS typi-
cally exhibit high QoS fidelity, a very low degree of
asset sharing, and a small number of system compo-
nents.

Many CPS also have been used to control devices
and/or processes in environments that are discon-
nected from networks. Although these types of
stand-alone CPS are common, the next-generation of
CPS [9][10] increasingly use local area network
(LAN) and/or wide area network (WAN) processing
elements to control devices and interactions. These
interactions may include physical environments
(such as wind farms or hydro-electric power genera-
tors) or industrial environments (such as chemical
plants). More sophisticated emerging CPS (such as
driverless cars [11] and smart power grids [3]) are
adaptive and intelligent, often solving problems as
they occur in real time without direct human input.

Regardless of their scale and connectivity, CPS are
time-sensitive since the right information or action
delivered or performed too late results in an incor-
rect outcome. As a consequence, the QoS of a CPS not
only has a reliability dimension but also a temporal
one. In particular, system functionality must run in a
timely manner.

Large-scale CPS must address requirements and chal-
lenges that aren’t as relevant for traditional stand-
alone CPS, including partial failure, higher latency
and jitter due to shared communication links, and
denial of service attacks. Security is an increasingly
important QoS concern in CPS [12] since delivering
information in a timely manner is itself essential, but
may be irrelevant if the information has been tam-
pered with or compromised. In terms of the taxon-
omy shown in Figure 1, today’s large-scale CPS typi-
cally exhibit higher QoS fidelity, a higher degree of
asset sharing, and a larger number of system compo-
nents than traditional CPS.

2.2 Overview of Cloud Computing

Large-scale CPS have been developed in the past, pri-
marily in the aerospace, defense, and power domains.
These types of CPS, however, have been highly pro-
prietary and expensive to develop and sustain. In
recent years, therefore, the enormous commercial
and government investment in commodity cloud

computing environments has spurred an interest in
leveraging these technologies as the basis for large-
scale CPS.

Cloud computing provides applications with ubiqui-
tous, convenient, and on-demand access to a shared
pool of configurable computing resources across a
network. The goal of this paradigm is to treat compu-
ting and communication as utilities. In particular,
these capabilities are provided to applications as ser-
vices, i.e., enabling the migration and scaling
up/down of system computing, storage, and commu-
nication resources without requiring explicit in-
volvement from applications.

Figure 2: Characteristics of Cloud Computing

Figure 2 depicts the key characteristics of cloud com-
puting environments, which typically include the fol-
lowing capabilities

• On-demand self-service provisioning, which ena-
bles end-users of clouds to unilaterally provision
computing capabilities, including networks, stor-
age, and servers, which are often virtualized by
generalizing the physical infrastructure and mak-
ing it available as a set of managed components
that are easier to use and control automatically.

• Elastic resource pooling and multi-tenant models
in which multiple applications can run in the con-
text of shared server and networking resources.
Achieving these elastic capabilities requires the
means to automatically and rapidly expand and
contract the amount of computation and storage
based on dynamically fluctuating levels of de-
mand without adversely impacting essential QoS
properties.

• Managed operations in which resource utilization
can be controlled via some type of metering ca-

pability. These managed operations essentially
“outsource” key hardware and software compo-
nents and activities to third-party providers.

Most applications of commodity cloud computing
environments focus on web hosting, where low cost
(e.g., via resource sharing) and high availability (e.g.,
via replication) are critical QoS attributes. A key ben-
efit of cloud computing in this domain lies in the
economies of scale provided by multi-tenancy and
elasticity, which involve the ability to have multiple
applications and services sharing the same compu-
ting infrastructure, as well as the potential to expand
and contract infrastructure as needed and on-de-
mand. In terms of the taxonomy shown in Figure 1,
these types of cloud computing environments typi-
cally exhibit low QoS fidelity, a high degree of asset
sharing, and a large number of system components.

Although cloud computing is increasingly being
adopted by individual consumers and by companies
in certain industries, many classic implementations of
cloud computing are at odds with CPS requirements,
such as bounding latency and jitter, and avoiding pri-
ority inversions. In particular, unless managed care-
fully with respect to timing (e.g. as in [13][14]) and
other criteria virtualization may become detrimental
in CPS due to higher overhead and jitter, as well as
(hidden) scheduling issues. What is needed, there-
fore, are software and hardware infrastructures that
can support the needs of next-generation large-scale
CPS. In terms of the taxonomy shown in Figure 1,
these new large-scale CPS require high QoS fidelity
and a high degree of asset sharing, and must support
a large number of system components.

3 The Evolution of Design and Operational
Paradigms for CPS

Many design and operational paradigms that are rele-
vant to large-scale CPS have come and gone during
the past ~40 years. This section summarizes the evo-
lution in the paradigms used to design and operate
CPS at various levels of scale and complexity during
this time.

3.1 Early Paradigms

In the 1970s and 1980s, there was a tendency to
build CPS via a tightly-coupled design paradigm,
where most elements of these CPS were proprietary
and controlled or built by a single system integrator.
These systems were designed in a stovepipe manner
with many silos and little reuse or sharing. Likewise,
they were non-adaptive, e.g., if changes were made to
requirements or the runtime environment many oth-
er parts of the systems could be adversely affected.

In general, a key limitation of such a tightly-coupled
design paradigm for CPS was that small changes
made to the software or hardware could affect the
correctness of almost any other part of the system
[15]. Examples of these problematic changes include
adjustments to requirements, implementation, infra-
structure, operating systems, programming lan-
guages, middleware, and networks. As a result, these
large-scale CPS were expensive to sustain and evolve,
in addition to incurring vulnerabilities due to not be-
ing designed to connect to publically accessible net-
works, such as the Internet.

This tightly-coupled design paradigm also was prob-
lematic due to the ways in which developers and op-
erators traditionally provisioned, scheduled, and cer-
tified CPS. The operational capabilities and charac-
teristics of traditional CPS were typified by the need
to obtain all the required resources. If such a provi-
sioning process goes smoothly, traditional CPS usual-
ly work well. If not all of the resources are acquired,
however, there could be major issues and a CPS simp-
ly might not work as needed.

The tight-coupling exhibited by such CPS was exacer-
bated by their stringent end-to-end QoS require-
ments, including bounded latency and absence of pri-
ority inversion. To meet these requirements, develop-
ers of traditional CPS typically locked down many
implementation details, shared limited information
between different system components, and allocated
resources statically. While this strategy works for
small CPS in closed stand-alone environments, it
simply doesn’t scale up to meet the needs of large-
scale CPS being developed and planned (e.g., based
on emerging proposed industry standardization ef-
forts, such as the Industrial Internet [16]). Moreover,
it is not feasible to leverage commodity computing
clouds as the basis for these types of CPS due to their
reliance on statically provisioning and aversion to
sharing.

3.2 Recent R&D Progress

Over the past decade, there have been tremendous
advances in research and development for CPS, as
well as evolution in the adoption and application of
newer design paradigms. For example, cutting-edge
CPS in both military and civilian domains are more
layered and componentized than those of previous
decades. In particular, modern large-scale CPS in-
clude layers of network, operating system, middle-
ware, and programming language standardization
and have become more robust at the infrastructure
level. Moreover, advances in loosely coupled CPS soft-
ware and system architecture have improved, so that

when problems arise, properly programmed systems
are able to cope through on-line adaptation.

A further benefit of these modern, less tightly coupled
large-scale CPS is that solutions are potentially more
cost-effective to evolve and retarget. Developers are
less apt to have to backtrack and recertify an entire
CPS when minor changes are made, which is a key
cost-driver for sustainability in legacy CPS. Conse-
quently, changes can be made to a CPS environment,
requirements, and aspects of implementation, includ-
ing those that are hidden behind component or mod-
ule boundaries.

Modern large-scale CPS have also improved from an
operational point of view. The majority of new loose-
ly coupled large-scale CPS are being constructed via
data-centric and reusable protocols. Event and mes-
saging buses are more resilient in these types of
large-scale CPS. When constructed properly, these
large-scale CPS are designed to work appropriately
even if they don’t receive all resources in a timely
manner, which enables dynamic allocation and man-
agement. There is the added benefit of better sharing
support for resources, especially in environments
with the ability to describe priorities and importance
of information flow at multiple levels.

Some of the operating platforms that have evolved to
support modern large-scale CPS have much in com-
mon with computing clouds. For example, the total
ship computing environment developed for the US
Navy’s DDG-1000 destroyer include advances in dis-
tributed resource management based on many of the
technologies mentioned throughout this paper (and
discussed further in [17]). While the scale of a DDG-
1000 destroyer is not nearly as large as envisioned
large-scale CPS (e.g. based on a continent-wide Indus-
trial Internet), it serves as a good example of how
metropolitan area network (MAN)-sized large-scale
CPS can be developed reliably and securely.

4. R&D Trends and Challenges for Large-scale CPS

Current trends and challenges within the domain of
large-scale CPS are a hot topic of discussion. For ex-
ample, the US National Science Foundation (NSF) re-
cently convened stakeholders from academia, indus-
try, and government at a workshop on research and
implementation challenges at the intersection of
Cloud Computing and CPS [18], from which a com-
munity report is currently being drafted. Topics dis-
cussed during this workshop included

• the role of computing clouds in data collection,
integration, analysis, and mining for CPS,

• the roles of computing clouds in CPS control sys-
tems,

• stability, safety, security, privacy, and reliability
considerations in integrating cloud computing
with CPS, and

• programming models and paradigms for compu-
ting clouds that support CPS.

When considering what is happening in the space
now, it is useful to be familiar with approaches used
by developers in the past and the insight those expe-
riences provided when envisioning future directions.

4.1 The Benefits and Limits of Elastic Hardware

The CPS space is diverse and complicated, but it is
reasonable to expect that some of the key answers
can be found in research conducted on elastic hard-
ware platforms in cloud computing environments.
Elastic hardware refers to platforms with the ability
to add or remove CPU capacity within a reasonable
time frame and price. This technology enables cloud
providers to add or subtract hardware without the
need to change underlying business logic or configu-
rations of the software. Since programmers’ time has
become a precious commodity the flexibility enabled
by elastic hardware is tremendously valuable.

One complication of elastic hardware is that most
platforms have been utilized for hosting web applica-
tions in public cloud environments or data-centers.
Although those environments have been relatively
reliable for conventional web hosting services, they
pale in comparison to the complexities and mission-
criticalities of Industrial-Internet-style applications,
where support for secure, real-time communications
and failover are essential.

Elastic hardware is thus necessary, but not sufficient
for building elastic applications that possess cyber-
physical properties. There are a number of reasons
why programming elastic hardware for CPS is hard.
The first is due to the fact that many programming
models used by developers are inadequate. Develop-
ers tend to use complicated or obtrusive APIs, which
are challenging to program. Conversely, there are
solutions that are simple to program, but tend to have
problems with respect to scalability and predictabil-
ity. These solutions work well if timeliness is not a
concern, but they are not a viable solution when time-
liness is paramount.

Another issue is the general lack of understanding for
real-time, concurrent network solutions. There are
many inherent and accidental complexities in this
area, including race conditions, deadlocks, priority
inversions, and missed deadlines. The CPS develop-
ment community needs to become more familiar with

these issues so they can work more effectively at fix-
ing them with the available tools.

Some operating platforms provide good support for
multicore solutions, but do not have sufficient sup-
port to seamlessly transition from multicore to dis-
tributed core. When this is the case, the system will
work well up to ~16 cores, (i.e., the current scale
supported by high-end Intel or AMD multicore chip
sets) and then start to degrade significantly when the
system scales beyond that.

Finally, there is the long observed issue of inadequate
support for QoS at scale. In this context, QoS refers to
the ability to control systematic quality attributes
(often referred to as “non-functional properties”),
including prioritization, failover and robustness, and
system-wide resources in an end-to-end environment
over various types of networking infrastructure. Ap-
proaches that work well for conventional web-based
systems often do not work as well in the mission-
critical CPS domain.

The impediments to programming elastic applica-
tions on elastic hardware described above effect the
majority of computing systems, though they are par-
ticularly problematic for large-scale CPS. As a result,
organizations may believe that since the traditional
Internet works well for their ecommerce or file shar-
ing, it should work just as well for more complex
large-scale CPS, until they ultimately discover is not
the case.

4.2 Key Challenges for Elastic Large-scale CPS

Large-scale CPS are increasingly being used to con-
nect people, data, and machines to enable access and
control of mechanical devices in unprecedented ways.
These types of CPS are often used to integrated so-
phisticated machines embedded with sensors and
sophisticated software,to other machines (and end
users) to extract data, make sense of it, and find
meaning where it did not exist before. The overarch-
ing theme is that such machines—ranging from jet
engines to gas turbines to medical scanners—con-
nected via large-scale CPS have the analytical intelli-
gence to self-diagnose and self-correct, so they can
deliver the right information to the right people de-
pendably at the right time.

Despite the promise of large-scale CPS, however,
supporting the end-to-end QoS requirements is fun-
damentally hard and requires new advances in a
number of key areas, including those discussed below.

1. Precise auto scaling of resources with an end-to-end
focus needs to be a feature of CPS. Auto scaling is of-
ten thought about as adding cores when demand ris-

es. Although this is certainly useful, it comes with the
downside of not working properly from a system-
wide perspective. Large-scale CPS (such as the Indus-
trial Internet [16]) require ways to scale up schedul-
ing and auto scaling in a broad environment, to sup-
port precise behavior for end-to-end task changes.
Stability and safety properties within mission-critical
large-scale CPS require complex analysis to provide
confidence that they will work as expected. Support-
ing this need calls for analysis examining reachability
of states in system, which is currently a particularly
challenging part of the research space.

2. Optimization algorithms that balance real-time con-
straints with cost and other goals must be in place.
Often these problems can be solved by additional
hardware, but not all developers have those re-
sources available to them. Although deployment and
configuration algorithms—along with services and
infrastructure—are key to successful large-scale CPS,
implementing these algorithms effectively is hard in
domains where the cost commodity marginal basis is
driven down. For example, the automotive industry
needs to sell in volume, and thus cannot afford to
spend thousands of dollars on high-end hardware in
low-end to mid-level cars because the costs will not
be recouped.

Another essential component for large-scale CPS is
creating the means to co-schedule or perform admis-
sion control and eviction of assorted task sets de-
ployed on shared computing and communication re-
sources to ensure that high priority operations take
place at the appropriate time. These requirements
are not typically met in conventional cloud compu-
ting environments, i.e.., when these systems get over-
loaded, the QOS degrades and there is no clear way to
prioritize between tasks.

Improved fault-tolerance fail-over that supports real-
time requirements, which is crucial in environments
with high probability of failures and attacks. One way
to do this is semi-active replication [19], which is
used so that running systems can fail-over rapidly
and predictably. This replication style is designed to
have some of the benefits of both the active replica-
tion and passive replication styles, including predict-
able fail over times and predictable behavior during
program execution.

3. Finer-grained and faster allocation of resources to
enable CPS to be precisely scaled to meet demands
driven by real-world phenomena. Current elastic re-
source allocation approaches focus entirely on virtual
machines as the sole unit of resource allocation. Vir-
tual machines, while providing excellent isolation and
resource jailing properties, have significant allocation

and startup costs associated with them. A single vir-
tual machine in a cloud may take tens of seconds to
minutes to allocate and initialize for a CPS. CPS are
influenced by a wide array of physical phenomena
that science has not developed accurate or fast pre-
dictive models for. For example, predicting the exact
load in a financial market even within a few minutes
time is not considered a solved problem. Because it is
difficult to predict how the physical world will drive a
CPS, it is hard to forecast far into the future the pre-
cise resource allocations that will be needed to meet
a CPS QoS goals.

When limited physical world predictability is com-
bined with slow resource allocation, ensuring that
CPS are provided with needed resources becomes
extremely challenging. Either more precise predictive
models are needed or cloud computing resource allo-
cation must become more nimble to adequately sup-
port real-time and other QoS requirements. Consid-
ering the challenge of producing fast and accurate
predictive models for all physical world systems that
drive CPS, research on faster and finer-grained re-
source allocation beyond virtual machines is needed.

4. Data provisioning and load balancing algorithms
that can take into account a variety of properties, in-
cluding geo-physical, when deciding where to mi-
grate work. Cloud computing is generally considered
as so flexible that there is little difference to where
computation takes place and storage resides, which
makes sense when there are no real-time QOS needs.
As real-time QOS needs arise, however, the location
where parts of the system will run becomes more
important. In these cases, affinity should be empha-
sized to reduce latency and jitter.

Storage is a key factor in CPS, as it does not do much
good to virtualize storage if it then takes too long to
move data from one node to another. At the same
time, rebalancing and replication also need to happen.
Taking physical dimensions into account in the con-
text of load building is beneficial and not practiced as
often as it needs to be. Developers must also discover
a way to exploit physical characteristics of data and
computation to better distribute work throughout
clouds.

In short, developers of large-scale CPS need a holistic
approach. Advances in this area will be particularly
challenging because many researchers work in isola-
tion, while most product companies work on projects
one or two layers at a time. Success will thus require
approaches from a research point of view, as well as a
product point of view that span the layers of these
projects and can work end-to-end.

4.3 Next-generation Challenges: Larger-Scale CPS

Although some organizations have had greater suc-
cess developing large-scale CPS over the past decade,
there’s also been a countervailing trend toward at-
tempting to develop highly complex large-scale CPS.
Systems in this context are evolving towards ultra
large-scale, i.e., they are pushing far beyond the size
of even today's large-scale CPS by every measure,
including lines of code, amount of data stored, ac-
cessed, manipulated, and refined, number of connec-
tions and interdependencies, number of hardware
elements, number of computational elements, num-
ber of system purposes and user perception of these
purposes, number of routine processes, interactions,
and “emergent behaviors,” number of (overlapping)
policy domains and enforceable mechanisms, and
number of people involved in some way (see [20] for
further discussion). Examples of these ultra-large-
scale CPS are evolving in smart grid, Industrial Inter-
net, and air traffic management domains.

Ultra-large-scale CPS have dynamic behavior in
which transient overloads can occur. There are nu-
merous time critical tasks, and many resources de-
pend on the environment for use. Often there are
trade-offs and conflicts between the aforementioned
resources. One of the most prominent challenges ob-
served is integration with legacy systems and sub-
systems.

The technologies historically used by system integra-
tors to develop and sustain large-scale CPS have
themselves incurred many challenges stemming from
accidental and inherent complexities. For example,
these technologies have tended to be highly hetero-
geneous in terms of programming languages, operat-
ing systems, middleware, and tooling. Likewise, tech-
nologies implemented several years ago may now be
unusable in some environments due to rapid ad-
vances in the solution space.

Not surprising, it is tedious and error-prone to map
problems and requirements from the problem space
to the technologies that exist in the solution space.
System integrators are ultimately responsible for try-
ing to make these connections. These problems have
recently become even harder to address because
their requirements exceed the capabilities provided
in today’s commodity computing clouds.

Adding further complication, the U.S. government,
which has been a major player in funding for large-
scale CPS, has been forced to cut back significantly on
research and development due to the fiscal con-
straints arising from sequestration. Winston Church-
ill is attributed to the quote, “Gentleman, we’ve run

out of money—it’s time to start thinking,” which
serves as an accurate metaphor for what is happen-
ing in ultra-large-scale CPS domains today.

5 A Vision for Software Infrastructures for Large-
Scale and Ultra-Large-Scale CPS

This section outlines emerging research solutions
and approaches for architecting large-scale CPS sys-
tems. The architecture covers the core components
needed for CPS and specific technologies that can fill
these gaps, such as the OMG’s DDS.

5.1 Key Requirements for Large-scale CPS Soft-
ware Infrastructure

Meeting the challenges of large-scale CPS—including,
but not limited to, approaches that are being dis-
cussed in the context of proposed industry standards,
such as the Industrial Internet—requires rethinking
basic properties and principles commonly ascribed to
cloud computing. Whatever the future of elastic
cyber-physical systems software infrastructure may
be, it must include support for the following require-
ments:

• Systems must be flexible, as they must be able to
replace, reuse, analyze, distribute, paralyze in iso-
lation, and then compose these pieces back to-
gether in a dependable way.

• Systems need to be open so that programmers do
not program themselves into a corner with a solu-
tion that only works with commitment to a single
vendor.

• Systems need to be uniform with respect to treat-
ing multicore and distributed core in a common
way. Uniformity keeps these two components
transparent from the applications and services
they run.

• Systems must be scalable as the demand for ever-
increasing scope rises. Solutions such as load bal-
ancing algorithms take advantage of elastic hard-
ware resources at the infrastructure level.

One of the most important considerations for meet-
ing these requirements of large-scale CPS is middle-
ware, which resides between applications and the
underlying operating systems, networks, and hard-
ware. Middleware provides key services that are es-
sential to design and operate large-scale CPS at scale.
Below we discuss the key layers of large-scale CPS
software infrastructure.

5.2 Key Layers of Large-Scale CPS Infrastructure

Anyone who has taken a networking course knows
that there are seven layers in the OSI stack and four
layers in the Internet stack. In general, however,

there’s less familiarity of the layers within the mid-
dleware stack, which is essential for success in devel-
oping next-generation software infrastructure for
large-scale CPS. Figure 3 illustrates the key layers,
which are described briefly below.

Operating systems and communication protocols are
essentially a hardware abstraction layer that allow
higher-level services and applications to ignore dif-
ferences in the underlying computing and network-
ing hardware. Host infrastructure middleware is an
operating system abstraction later that abstracts
away from the operating system and removes acci-
dental complexities of the system’s APIs. It amplifies
programming software in a portable way. Examples
of host infrastructure middleware include Java, Real-
time Java, and Microsoft CLR.

Figure 3: Middleware and System Infrastructure Layers

The next level is distribution middleware, which al-
lows for decoupling and abstracting the fact that
there is a network between the sender and receiver
of messages. Distribution middleware provides the
ability to communicate across address and host
boundaries in a way that is unobtrusive to the appli-
cation. Examples of this type of middleware include
SOAP, Web Services, CORBA and DDS. Common mid-
dleware services comprise the next layer.

Once distribution middleware is implemented, it be-
comes easier to program across a network. The next
challenge is deciding how to build reusable services
that name the information, discover services, detect
presence, send events to subscribers in a predictable
way, monitor health, provide information durability,
historical data, record data floes and transactions,
perform failover operations, etc. These all fall within
the realm of common middleware services.

Domain-specific middleware services are perhaps the
most important layer. These middleware services
involve intellectual property or value added in a par-
ticular domain such as avionics, SCADA, C4ISR, air
traffic management and healthcare. This area is
where the bulk of the industrial Internet lies, and
where the next generation of standards and capabili-
ties must be researched and transitioned into prac-
tice.

5.3 Promising Foundations Towards Elastic CPS
Middleware: Data Distribution Service (DDS)

The Object Management Group’s (OMG) Data Distri-
bution Service (DDS) [22] possesses many of the cri-
teria for large-scale CPS software infrastructure men-
tioned above, i.e., it is flexible, open, uniform, and
scalable. DDS supports a pattern language that allows
loosely coupled, heterogeneous, evolvable, scalable,
and dependable large-scale CPS. DDS is used widely
throughout this domain because it provides a power-
ful software infrastructure for building large-scale
CPS.

DDS supports different types of information modeling,
including relational. Relational modeling uses a data-
centric publish-subscribe abstraction in which events
and their relationships to each other may be assigned.
It also supports object-oriented information model-
ing with its data local reconstruction layer.

Figure 4: Key Elements in DDS

DDS reinforces the idea of a global data space, which
enables publishers and subscribers the ability to read
and write topic data asynchronously, anonymously,
and decoupled in time and space, as shown in Figure
4. It allows production and consumption of data in
the global data space in many ways. DDS also permits
control of the way in which information flows
through a space, which is a powerful capability in
large-scale CPS.

DDS is well suited for large-scale CPS in part because
of its rich set of QoS policies. QoS policies allow for

the control of variables essential to delivering infor-
mation in a timely and dependable manner. There are
about two-dozen QoS policies in DDS that handle pri-
orities, deadlines, data durability, replication and re-
dundancy, history, resource utilization and more, as
shown in Figure 5.

QoS policies that are particularly relevant to large-
scale CPS include the ability to indicate latency, laten-
cy bounds, and reliability bounds. Likewise, these
QoS policies also support the ability to manage co-
herency issues and resource constraints. There are
various actions that can be implemented in this space
to gain greater control of large-scale CPS.

Figure 5: A Summary of DDS QoS Policies

DDS allows matching of publishers and subscribers in
terms of QoS policies that are requested/offered
(RxO). This distributed matching capability allows
DDS implementations to decide on an optimal way
connecting end-to-end flows of producers and con-
sumers, as shown in Figure 6. When this capability is
integrated on top of intelligent communication infra-
structure, it is able to provide control over the net-
work core.

Figure 6: The Request/Offered QoS Model of DDS

Since large-scale CPS do not exist in a vacuum, the
ability to bridge different components together is
crucial. DDS provides many ways to bridge other
technologies through the DDS data bus, which ena-
bles communication with web services, Java messag-
ing service, and other protocols in a way that can plug
and play seamlessly with legacy and new systems.
There are also a number of standards available with-
in the DDS ecosystem, such as Java, C++, and UML,
and it can also take advantage of other standards,
including mappings to RESTful web services.

When integrating large-scale CPS, no single vendor is
sufficient. The potential to interwork and connect
between parties using a heterogeneous selection of
middleware is both valuable and necessary. Interop-
erability protocols supported by DDS make it possi-
ble for different vendors to interoperate. There is
also currently a vibrant research community focused
on DDS [21], which further motivates its potential
applicability as a context within which further re-
finement of policies and mechanisms for enforcing
CPS semantics can be prototyped, explored, evalu-
ated , and potentially deployed.

6 Concluding Remarks

Despite advances in elastic hardware, it is still hard to
deploy CPS in cloud environments, making it neces-
sary to investigate further advances in the state of the
art for elastic software infrastructure. It is unlikely
that public clouds will serve as the basis of mission-
critical large-scale CPS. It is more likely that private
clouds will be used, but that does not mean those sys-
tems will not benefit from standards and other tech-
nologies.

What is likely to matter most in computing clouds for
CPS is how a fundamental tension between multi-ten-
ancy and elasticity on the one hand, and precision in
the resulting CPS properties on the other hand, can
be addressed. Virtualization may be beneficial if it
can be afforded, but an alternative approach could be
to run on the bare hardware using powerful integra-
tive middleware technologies, such as those provided
by (or perhaps evolved from) successful software
infrastructure standards, such as DDS.

DDS is a particularly intriguing venue for further in-
vestigation of large-scale CPS because it is standards-
based and includes a number of open-source solu-
tions that facilitate the mixing and matching of capa-
bilities and the ability to build infrastructure for de-
pendable cyber-physical systems. Although great
progress has been made, there remain many research
challenges surrounding CPS. Despite these challenges,
DDS is still the most closely connected and capable of

providing off-the-shelf solutions that address these
challenges. Many hard research challenges remain,
however, as discussed in the forthcoming report from
the NSF Workshop on Cloud Computing for Cyber-
Physical Systems [18].

References

1. J. Ding, J. Sprinkle, C. Tomlin, S. Sastry and J.
Paunicka. "Reachability Calculations for Vehicle
Safety during Manned/Unmanned Vehicle Inter-
action." AIAA Journal of Guidance, Control, and
Dynamics, 35(1):138-152, 2012.

2. S. Boyer, “SCADA: Supervisory Control And Data
Acquisition (4th Edition),” International Society of
Automation, 2009, ISBN 1936007096.

3. Q. Li, T. Cui, Y. Weng, R. Negi, F. Franchetti, M. Ilic,
"An Information-Theoretic Approach to PMU
Placement in Electric Power Systems," IEEE
Transactions on Smart Grid 4(1), pp. 446-456,
March 2013.

4. R. Bashshur, T. Reardon, and G. Shannon, “Tele-
medicine: A New Health Care Delivery System,”
Annual Review of Public Health, 21(1), pp. 613-
637, May 2000.

5. V. Combs, R. Hillman, M. Muccio, R. McKeel, “Joint
Battlespace Infosphere: Information Manage-
ment Within a C2 Enterprise”, US Air Force Re-
search Laboratory, Rome, NY, document
ADA463694, June 2005.

6. M. Khalifa and R. Davison, "SME adoption of IT:
the case of electronic trading systems," IEEE
Transactions on Engineering Management, , 53(2),
pp.275-284, May 2006.

7. M. Schinkel and K. Hunt, "Anti-lock braking con-
trol using a sliding mode like approach," Ameri-
can Control Conference, 2002.

8. Y. Le Gorrec, J. Magni, C. Doll, and C. Chiappa,
Modal Multimodel Control Design Approach Ap-
plied to Aircraft Autopilot Design, Journal of
Guidance, Control, and Dynamics 21(1), 1998.

9. M. Pajic, S. Sundaram, J. Le Ny, G. Pappas, and R.
Mangharam, "The Wireless Control Network:
Synthesis and Robustness", 50th IEEE Conference
on Decision and Control, Atlanta, GA, 2010.

10. A. Saifullah, Y. Xu, C. Lu and Y. Chen, “Priority As-
signment for Real-Time Flows in WirelessHART
Networks,” Euromicro Conference on Real-Time
Systems (ECRTS'11), July 2011.

11. C. Urmson, et al., "Autonomous Driving in Urban
Environments: Boss and the Urban Challenge",
Journal of Field Robotics, July 2008.

12. M. Pajic and R. Mangharam, "Spatio-Temporal
Techniques for Anti-Jamming in Embedded Wire-

less Networks", EURASIP Journal on Wireless
Communication and Networking, 2010.

13. S. Xi, J. Wilson, C. Lu and C.D. Gill, RT-Xen: To-
wards Real-time Hypervisor Scheduling in Xen,
ACM International Conference on Embedded
Software (EMSOFT'11), October 2011.

14. M. Xu, L.T.X. Phan, I. Lee, O. Sokolsky, S. Xi, C. Lu
and C. Gill, Cache-Aware Compositional Analysis
of Real-Time Multicore Virtualization Platforms,
IEEE Real-Time Systems Symposium, December
2013.

15. J. Lions et al., “ARIANE 5 Flight 501 Failure – Re-
port by the Inquiry Board,”
www.di.unito.it/~damiani/ariane5rep.html.

16. P. Evans and M. Annunziata, “Industrial Internet
– Pushing the Boundaries of Minds and Machines,”
General Electric, available from
http://www.ge.com/docs/chapters/Industrial_In
ternet.pdf.

17. Patrick Lardieri, Jaiganesh Balasubramanian,
Douglas C. Schmidt, Gautam Thaker, Aniruddha
Gokhale, and Tom Damiano, A Multi-layered Re-
source Management Framework for Dynamic Re-
source Management in Enterprise DRE Systems,
the Journal of Systems and Software: special is-
sue on Dynamic Resource Management in Dis-
tributed Real-Time Systems, editors C.
Cavanaugh and F. Drews and L. Welch, Vol 80, Is-
sue 7, July 2007, pgs. 984-996.

18. ISIS, “NSF Workshop on Cloud Computing for
Cyber-Physical Systems,”
www.isis.vanderbilt.edu/workshops/cc4cps.

19. J. Balasubramanian, A. Gokhale, A. Dubey, F. Wolf,
C. Lu, C. Gill and D. Schmidt, Middleware for Re-
source-Aware Deployment and Configuration of
Fault-tolerant Real-time Systems, IEEE Real-Time
and Embedded Technology and Applications
Symposium (RTAS'10), April 2010.

20. Software Engineering Institute, Carnegie Mellon
University, “Ultra-Large-Scale Systems,”
http://www.sei.cmu.edu/uls.

21. A. Hakiri, P. Berthou, A. Gokhale, D. Schmidt, T.
Gayraud, “Supporting End-to-End Quality of Ser-
vice Properties in OMG Data Distribution Service
Publish/Subscribe Middleware over Wide Area
Networks, ” Journal of Systems and Software
86(10), October 2013.

22. Douglas C. Schmidt, Angelo Corsaro, and Hans
Van'T Hag, “Addressing the Challenges of Tactical
Information Management in Net-Centric Systems
with DDS,” CrossTalk special issue on Distributed
Software Development, May, 2008, pgs. 24-29.

http://repository.upenn.edu/mlab_papers/19/
http://repository.upenn.edu/mlab_papers/19/
http://www.cse.wustl.edu/~lu/papers/ecrts11-wirelesshart.pdf
http://www.cse.wustl.edu/~lu/papers/ecrts11-wirelesshart.pdf
http://www.cse.wustl.edu/~lu/papers/ecrts11-wirelesshart.pdf
http://jwcn.eurasipjournals.com/content/pdf/1687-1499-2010-819318.pdf
http://jwcn.eurasipjournals.com/content/pdf/1687-1499-2010-819318.pdf
http://jwcn.eurasipjournals.com/content/pdf/1687-1499-2010-819318.pdf
http://www.cse.wustl.edu/~lu/papers/emsoft11.pdf
http://www.cse.wustl.edu/~lu/papers/emsoft11.pdf
http://www.cse.wustl.edu/~lu/papers/rtss13-cache.pdf
http://www.cse.wustl.edu/~lu/papers/rtss13-cache.pdf
http://www.di.unito.it/~damiani/ariane5rep.html
http://www.ge.com/docs/chapters/Industrial_Internet.pdf
http://www.ge.com/docs/chapters/Industrial_Internet.pdf
http://www.dre.vanderbilt.edu/~schmidt/PDF/JSS-2006.pdf
http://www.dre.vanderbilt.edu/~schmidt/PDF/JSS-2006.pdf
http://www.dre.vanderbilt.edu/~schmidt/PDF/JSS-2006.pdf
http://www.isis.vanderbilt.edu/workshops/cc4cps
http://www.cse.wustl.edu/~lu/papers/rtas10-decoram.pdf
http://www.cse.wustl.edu/~lu/papers/rtas10-decoram.pdf
http://www.cse.wustl.edu/~lu/papers/rtas10-decoram.pdf
http://www.sei.cmu.edu/uls
http://www.dre.vanderbilt.edu/~schmidt/PDF/CrossTalk-2008-final.pdf
http://www.dre.vanderbilt.edu/~schmidt/PDF/CrossTalk-2008-final.pdf
http://www.dre.vanderbilt.edu/~schmidt/PDF/CrossTalk-2008-final.pdf

