
1

Accelerating the Industrial Internet with
the OMG Data Distribution Service

Abstract

The Industrial Internet is an emerging software and communication infrastructure that interconnects machines
and data to build intelligent machines and applications never before possible. Using GE’s words, it merges
“big iron” and “big data” to create “brilliant machines.” Embedded sensors and sophisticated software allow
machines (and users) to communicate in real-time and find meaning where it did not exist before. Machines—
from jet engines to gas turbines to medical scanners—connected via the Industrial Internet have the analytical
intelligence to self-diagnose and self-correct, so they can operate reliably, react to real-world changes in their
environment and provide more sophisticated service to the users.

This paper describes advances taking place in the Industrial Internet. The content will cover technical
challenges emerging in this context, including terminology, history and research. It also showcases the OMG
Data Distribution Service (DDS) as a critical foundation for building an elastic software infrastructure for the
Industrial Internet.

Overview of the Industrial Internet

The term Industrial Internet was coined by GE several years ago and refers to the integration of complex
physical machinery with network sensors and software. The concept combines several technologies within
the field, including machine learning, big data, Internet of Things (IoT) and machine-to-machine (M2M)
communication.

The goal of the Industrial Internet is to facilitate the connection of machines embedded with sensors to other
machines and end-users, as well as to enable access and control of various mechanical devices. GE often
refers to mechanical devices as “things that spin,” which includes turbines, jet engines, and medical devices.
The key to the success of these systems is their ability to extract data from devices, make sense of that data
in real time and deliver it at a specific time. The end goal is to derive value in terms of improved utility and cost
savings.

Overview of Cyber-Physical Systems (CPSs)

At the heart of the Industrial Internet are cyber-physical systems (CPSs) operating within cloud computing
environments. CPSs involve tight coupling and coordination between a system’s computational elements,
components written in software and physical elements, which are components that interact with the physical
world. Examples of physical elements include hot rolling mills, medical instruments, airplanes, trains and anti-
lock breaking systems on modern automobiles (see Fig. 1).

WHITEPAPER

Dr. Douglas C. Schmidt, Professor of Computer Science, Vanderbilt University

2

Acccelerating the Industrial Internet using the OMG Data Distribution Service

rti.com

CPSs increasingly use network processing elements to control devices and interactions. Interactions may
include physical environments, such as wind farms, chemical environments or biological environments, such as
pharmaceutical factories. These interactions may also be used for experiments in big data, big science, smart
grid power control and other domains (see Fig. 2).

CPSs are time-sensitive, meaning that correct information or action delivered or executed too late results in
an incorrect outcome. As a result, the dependability of CPSs has not only a reliability dimension but also a
temporal one. In other words, system functions must occur in a timely manner. Security is increasingly important
to CPSs since it is detrimental to deliver information at a specific time if the information has been tampered with
or compromised.

After decades of research and development on these CPSs in industrial, military, aerospace, and telecom, one
particularly illustrative example of a mission-critical CPS comes from a company in Germany that builds quality
control equipment for beer bottling. This system takes photos of beer bottles during the manufacturing process
and performs image processing to monitor quality. Image processing of the photos is used to detect defects in
the glass, mold in the beer and other imperfections.

Figure 1. Cyber-physical systems (CPSs) feature tight coordination between
computational and physical elements.

Figure 2. CPSs increasingly use networked processing elements to
control physical, chemical or biological processes or devices.

3

Acccelerating the Industrial Internet using the OMG Data Distribution Service

rti.com

Maximized Data to Packet Ratio

The DDS wire protocol was designed for distributed real-time applications. It was therefore originally designed
to be highly efficient on the wire. For example, data type information is exchanged once at discovery time,
not continuously at run-time. Also, the open OMG standard wire protocol of DDS (called the DDS-RTPS
Interoperability Wire Protocol) uses a very compact and efficient binary wire data representation (Common Data
Representation, or CDR). RTI has numerous benchmarks that support its throughput capabilities
(see http://www.rti.com/products/dds/benchmarks-cpp-linux.html).

The application developer is also given fine-grain control of packet sizes, which is particularly important in low
bandwidth and high latency networks where application data needs to be placed into large data packets to
minimize the impact of latency on the application. RTI Data Distribution Service also uses type information
intelligently to put minimum data on the wire. For example, it supports sparse data types so that for a given type,
only changed fields would be transmitted on the wire (see http://www.rti.com/products/index.html).

Distributed Cyber-Physical Systems and the Role of Cloud Computing

CPSs have historically been used to control devices in stand-alone environments that often aren’t connected
to a network at all. Although there are still many of these types of CPSs, this paper focuses on CPSs that are
connected via local area networks (LANs) or wide area networks (WANs). These distributed CPSs must address
many requirements and challenges that aren’t as relevant for stand-alone CPSs, including partial failure and higher
latency and jitter due to shared communication links, as well as denial of service attacks.

Although there are a number of examples of distributed CPSs (primarily in the aerospace and defense domains),
these types of systems have historically been highly proprietary and expensive to develop and sustain. In
recent years, the enormous investment in commodity cloud computing environments has spurred an interest in
leveraging these technologies as the basis for distributed CPSs. Cloud computing provides a utility model for
computing that enables ubiquitous, convenient and on-demand access across a network to a shared pool of
configurable computing resources.

The key characteristics of cloud computing environments (see Fig. 3) include:

•	 On-demand self-service, which refers to the ability of consumers to unilaterally provision computing
capabilities including networks, storage and servers. This requires the ability to interact over high-speed
broadband networks.

•	 Resource pooling and multi-tenant models, in which multiple applications can run in the context of shared
server and networking resources. Achieving these elastic capabilities requires the means to automatically
and rapidly expand and contract the amount of computation and storage based on dynamically fluctuating
levels of demand.

•	 Measured service, in which resource utilization can be controlled via some type of metering capability.

Figure 3. Key characteristics of cloud computing environments.

4

Acccelerating the Industrial Internet using the OMG Data Distribution Service

rti.com

The goal of cloud computing is to treat computing and communications as utilities and provide these
capabilities without requiring excessive involvement from operators or service providers, as it should instead
be achieved largely through application control. A key benefit of cloud computing lies in the economies of scale
provided by multi-tenancy and elasticity, which involve the ability to have multiple applications and services
sharing the same computing infrastructure, as well as the potential to expand and contract infrastructure as
needed and on-demand. Virtualization can be useful in these scenarios, but it may become detrimental in cyber-
physical systems due to overhead and scheduling issues.

Most applications of commodity cloud computing focus on web hosting, where low cost (e.g., via resource
sharing) and high availability (e.g., via replication) are the most critical quality-of-service (QoS) properties.
Although these environments are increasingly being adopted by consumers and certain industries, many of the
classic implementations of cloud computing are at odds with CPS requirements, such as bounded latency, jitter
and priority inversions.

Research and Development Progress for Distributed Cyber-Physical Systems

Many CPS design and operational paradigms have come and gone during the past 40 years. In the 1970s and
1980s, there was a tendency to build CPSs via a tightly-coupled design paradigm (see Fig. 4).

These CPSs were designed in a stovepipe manner with many and little reuse or sharing. Most elements of
these systems were proprietary and controlled or built by a single integrator. They were also non-adaptive. For
example, if changes were made to requirements or the runtime environment, many parts of the systems broke.
As a result, these CPSs were expensive to sustain and evolve, in addition to incurring vulnerabilities due to not
being designed to connect to the Internet.

In general, the limitations of the tightly-coupled design paradigm are that small changes made to the system
can break almost anything. Examples of these problematic changes include adjustments to requirements,
implementation, infrastructure, operating systems, programming languages, middleware and networks.

This tightly-coupled design paradigm is also problematic due to the ways in which developers and operators
have traditionally provisioned, scheduled and certified CPSs. The operational capabilities and characteristics of
traditional CPSs are typified by the need to obtain all the required resources. If this provisioning process goes
smoothly, traditional CPSs usually work well. If not all of the resources are acquired, however, there can be
major issues and CPSs simply do not work as needed (see Fig. 5).

Figure 4. Legacy CPS designs tend to be stovepiped, propietary, brittle and
nonadaptive, vulnerable and expensive to develop and evolve.

5

Acccelerating the Industrial Internet using the OMG Data Distribution Service

rti.com

The tight coupling of these CPSs is exacerbated by stringent end-to-end QoS requirements, including bounded
latency and absence of priority inversion. To meet these requirements, developers of traditional CPSs typically
lock everything down, share limited information between priority groups and allocate resources statically. While
this strategy works for small CPSs in closed stand-alone environments, it simply doesn’t scale to meet the
needs of distributed CPSs being developed and planned for today’s Industrial Internet. In particular, computing
clouds aren’t typically viewed as platforms that must be statically provisioned or tightly managed without
sharing.

Over the past decade, there has been tremendous improvement in research and development for distributed
CPSs, as well as evolution in the adoption and application of newer design paradigms. For example, cutting-
edge CPSs in military, aviation and civilian domains are more layered and componentized than those of
previous decades (see Fig. 6).

Modern CPSs include layers of standardization and have become more robust at the infrastructure level.
Moreover, advances in loosely-coupled CPS software and system architecture have improved such that when
problems arise, properly programmed systems are able to cope using appropriate adaptive modifications.

A further benefit of these modern, less tightly-coupled CPSs is that solutions are more cost-effective to evolve
and retarget. Developers are less apt to have to backtrack and recertify an entire CPS when minor changes
are made, which is a key cost-driver for sustainability in legacy systems. Consequently, changes can be made
to a CPS environment, requirements and aspects of implementation, including those that are hidden behind
component or module boundaries.

Figure 5. Tightly-coupled design paradigm.

Figure 6. Modern, leading-edge CPS designs tend to be layered and componentized, standards and COTS-
based, robust to failures, adaptive to operating conditions and cost effective to evolve and retarget.

6

Acccelerating the Industrial Internet using the OMG Data Distribution Service

rti.com

Modern CPSs have improved from an operational point of view. The majority of new loosely-coupled CPSs are
being constructed via data-centric and reusable protocols. Event and messaging buses are more resilient in
these types of CPSs. The CPSs themselves, when constructed properly, are designed to work appropriately
even if they don’t receive all resources in a timely manner, which enables dynamic allocation and management
(see Fig. 7). There is the added benefit of better sharing support for resources, especially in environments with
the ability to describe priorities and importance of information flow at multiple levels.

Some of the operating platforms that have evolved to support modern CPSs have much in common with
computing clouds. For example, the total ship computing environment developed for the US Navy’s DDG-1000
destroyer include advances in distributed resource management based on many of the technologies mentioned
throughout this paper (also see http://www.dre.vanderbilt.edu/~schmidt/JSS-DRM.pdf). While the scale of
a DDG-1000 destroyer is not nearly as large as the Industrial Internet, it serves as a good example of how
metropolitan area network (MAN)-sized CPSs are being developed reliably and securely.

Current Research and Development Trends and Challenges for Distributed Cyber-Physical Systems

Current trends and challenges within the domain of distributed CPSs are a hot topic of discussion. Considering
the activity in this space, it is useful to be familiar with past developer approaches and gain insight from those
experiences.

Elastic Hardware

The CPS space is complicated, but some answers can be found in research conducted on elastic hardware
platforms in cloud computing environments. Elastic hardware refers to platforms with the ability to add or
remove CPU capacity within a reasonable time frame and price. This technology enables cloud providers to
add or subtract hardware without the need to change underlying business logic or software configurations.
Since programmers’ time has become a precious commodity, the flexibility enabled by elastic hardware is
tremendously valuable.

One complication of elastic hardware is that most platforms have been utilized for hosting web applications
in public cloud environments or data centers. Although those environments have been relatively reliable for
conventional web hosting services, they pale in comparison to the complexities and mission-criticalities of
Industrial-Internet-style applications, where support for secure, real-time communications and failover are
essential.

Elastic hardware is thus necessary, but not sufficient, for building elastic applications that possess cyber-
physical properties. There are a number of reasons why programming elastic hardware for CPS is hard. The first
is that many programming models used by developers are inadequate. Developers tend to use complicated or
obtrusive APIs, which are challenging to program. Conversely, there are solutions that are simple to program,
but tend to have problems with respect to scalability and predictability. These solutions work well if timeliness is
not a concern, but they are not a viable solution when timeliness is paramount.

Figure 7. Loosely-coupled CPSs ensure acceptable end-to-end QoS and enable dynamic resource allocation
and management.

7

Acccelerating the Industrial Internet using the OMG Data Distribution Service

rti.com

Another issue is the general lack of understanding for real-time, concurrent network solutions. There are many
inherent and accidental complexities in this area, including race conditions, deadlocks, priority inversions and
missed deadlines. The CPS development community needs to become more familiar with these issues so they
can work more effectively at fixing them with available tools.

Some operating platforms provide good support for multicore solutions, but do not have sufficient support to
seamlessly transition from multicore to distributed core. When this is the case, the system will work well up to
about 16 cores (i.e., the current scale supported by high-end Intel or AMD multicore chip sets), and then start to
degrade significantly when the system scales beyond that.

Finally, there is the long observed issue of inadequate support for QoS at scale. In this context, QoS refers to
the ability to control systematic quality attributes (often referred to as “non-functional properties”), including
prioritization, failover and robustness, as well as system-wide resources in an end-to-end environment over
various types of networking infrastructure. Approaches that work well for conventional web-based systems
often do not work as well in the mission-critical CPS domain.

The impediments to programming elastic applications on elastic hardware affect the majority of computing
systems, though they are particularly problematic for CPSs. As a result, many organizations believe at their peril
that the traditional Internet and Web protocols that work well for ecommerce or file sharing will work just as well
for more complex CPSs in the Industrial Internet. When they ultimately discover otherwise, the consequences
are expensive, at best.

Four Key Research Challenges for Elastic Cyber-Physical Systems to Support the Industrial Internet

As discussed at the beginning of this paper, the Industrial Internet is an emerging software and communication
infrastructure that connects machines, data and their users, to enable access and control of mechanical
devices in unprecedented ways. It connects machines embedded with sensors and sophisticated software to
other machines (and end users) to extract data, make sense of it and find meaning where it did not exist before.
Machines—from jet engines to gas turbines to medical scanners—connected via the Industrial Internet have
the analytical intelligence to self-diagnose and self-correct so they can deliver the right information to the right
people at the right time (and in real-time).

Despite the promise of the Industrial Internet, however, supporting the end-to-end QoS requirements is hard
and requires advances in a number of key areas, including:

•	 Precise auto scaling of resources with an end-to-end focus needs to be a feature of CPS. Auto scaling is
often thought about as adding cores when demand rises and removing cores when demand wanes (see
Fig. 8). Although this is certainly useful, it comes with the downside of not working properly from a system-
wide perspective. Large-scale systems like the Industrial Internet require ways to scale up scheduling and
auto scaling in a broad environment, to support precise behavior for end-to-end task changes.

Figure 8. CPU utilization.

8

Acccelerating the Industrial Internet using the OMG Data Distribution Service

rti.com

 Stability and safety properties within mission-critical CPSs require complex analysis to provide confidence
that they will work as expected. Supporting this need calls for analysis examining reachability of states in
system, which is currently a particularly hard part of the research space.

•	 Optimization algorithms that balance real-time constraints with cost and other goals must be in
place (see Fig. 9). These problems can be solved by additional hardware, but not all developers have
those resources available. Although deployment and configuration algorithms—along with services and
infrastructure—are key to successful CPSs, implementing these algorithms effectively is hard in domains
where the cost commodity marginal basis is driven down. For example, the automotive industry needs to
sell in volume, and thus cannot afford to spend hundreds of dollars on high-end hardware in low-end to
mid-level cars because the costs will not be recouped.

 Another essential component for CPSs is creating the means to co-schedule or perform admission control
and eviction of assorted task sets deployed on shared computing and communication resources to ensure
that high priority operations take place at the appropriate time. These requirements are not typically met in
conventional cloud computing environments. In other words, when these systems get overloaded, the QoS
degrades and there is no clear way to prioritize between tasks.

•	 Improved fault-tolerance fail-over that supports real-time requirements is crucial in environments with high
probability of failures and attacks. One way to do this is semi-active replication, which is used so that when
the system is running and failures occur, they can failover rapidly and predictably (see Fig. 10).

 This replication style is designed to have some of the benefits of both the active replication and passive
replication styles, including predictable failover times and deterministic behavior during program execution.
(see http://www.dre.vanderbilt.edu/~schmidt/PDF/WDMS02.pdf)

Figure 9. Multidimensional resource management.

Figure 10. Semi-active replication is used for rapid and predictable failover.

9

Acccelerating the Industrial Internet using the OMG Data Distribution Service

rti.com

•	 Data provisioning and load balancing algorithms that take into account a variety of properties, including
geo-physical, when deciding where to migrate work (see Fig. 11). Cloud computing is generally considered
as so flexible that there is little difference to where computation takes place and storage resides, which
makes sense when there are no real-time QoS needs. As real-time QoS needs arise, the location where
parts of the system will run becomes more important. In these cases, affinity should be emphasized to
reduce latency and jitter.

 Storage is a key factor in CPS, as it does not do much good to virtualize storage if it then takes too long to
move data from one node to another. At the same time, rebalancing and replication also need to happen.
Taking physical dimensions into account in the context of load building is beneficial and not practiced as
often as it needs to be. Developers must also discover a way to exploit physical characteristics of data and
computation to better distribute work throughout clouds.

Developers of distributed CPSs need a holistic approach. Advance in this area is challenging because many
researchers work in isolation, while most product companies work on projects one or two layers at a time.
Success requires approaches from both research and product points of view that span the layers of these
projects and can work end-to-end.

A Promising Solution

Meeting the challenges of distributed CPSs—including, but not limited to, the Industrial Internet—requires
rethinking basic properties and principles commonly ascribed to cloud computing. Whatever the final solution
for elastic cyber-physical systems software infrastructure may be, it must include support for the following
requirements:

•	 Systems must be flexible, as they must be able to replace, reuse, analyze, distribute, paralyze in isolation
and then compose these pieces back together in a dependable way.

•	 Systems need to be open so that programmers do not program themselves into a corner with a solution
that only works with commitment to a single vendor.

•	 Systems need to be uniform with respect to treating multicore and distributed core in a common way.
Uniformity keeps these two components transparent from the applications and services they run.

•	 Systems must be scalable as the demand for ever-increasing scope rises. Solutions such as load
balancing algorithms take advantage of elastic hardware resources at the infrastructure level.

One of the most important considerations for meeting these requirements of distributed CPS is middleware,
which resides between applications and the underlying operating systems, networks and hardware.
Middleware provides key services that are essential to design and operate distributed CPSs at the scale of the
Industrial Internet and ultra-large-scale (ULS) systems.

Figure 11. Data provisioning and load balancing algorithms use many
different properties when deciding where to migrate work.

10

Acccelerating the Industrial Internet using the OMG Data Distribution Service

rti.com

Key Layers of Distributed CPS Software Infrastructure

Anyone who has taken a networking course knows that there are seven layers in the OSI stack and four layers
in the Internet stack. In general, people are less familiar with the layers within the middleware stack, which is
essential to successfully developing next-generation software infrastructure for distributed CPSs and the Industrial
Internet. Figure 12 illustrates the key layers.

Domain-Speci�c
Services

Common
Middleware Services

Distributed
Middleware

Host Infrastructure
Middleware

Operating Systems
and Protocols

Tailored to requirements of particular domains, such as SCADA,
avionics, aerospace, vehtronics, C41SR, air tra�c management,
integrated healthcare, etc.

Augment distribution middleware by de�ning higher-level domain-
independent services that focus on programming “business logic.”

De�nes higher-level programming models whose reusable APIs and
components automate and extend native OS capabilities across
distribution boundaries.

Encapsulates and enhances native OS mechanisms to create reusable
network programming components.

Provide mechanisms to manage end-system resources, e.g. CPU
scheduling, inter-process communication, memory management,
and �le systems.

An operating system is a hardware abstraction layer that allows higher-level services and applications to ignore
differences in the hardware. Examples of operating sytsems for CPSs include real-time Linux, VxWorks and
Solaris. Host infrastructure middleware is an operating system abstraction later that abstracts away from the
operating system and removes accidental complexities of the system’s APIs. It amplifies programming software
in a portable way. Examples of host infrastructure middleware for CPSs include real-time Java and ACE.

The next level up is distribution middleware, which allows for decoupling and abstracting the fact that there
is a network between the sender and receiver of messages. Distribution middleware provides the ability to
communicate across address and host boundaries in a way that is unobtrusive to the application. Examples of
this type of middleware for CPSs include real-time CORBA and DDS.

Common middleware services comprise the next layer. Once distribution middleware is implemented, it
becomes easier to program across a network. The next challenge is deciding how to build reusable services
that name the information, discover services, detect presence, send events to subscribers in a predictable way,
monitor health, provide information durability and historical data, record data flows and transactions, perform
failover operations, and so on. These all fall within the realm of common middleware services.

Domain-specific middleware services are perhaps the most important layer. These middleware services
involve intellectual property or value added in a particular domain such as avionics, SCADA, C4ISR, air traffic
management and healthcare. This area is where the bulk of the industrial Internet lies, and where the next
generation of standards and capabilities must be researched.

Promising Elastic CPS Middleware: The OMG Data Distribution Service (DDS)

The Object Management Group (OMG) Data Distribution Service (DDS) for Real-Time Systems possesses all
of the criteria for distributed CPS software infrastructure mentioned above. It is flexible, open, uniform and
scalable. DDS supports a pattern language that allows loosely coupled, heterogeneous, evolvable, scalable and
dependable distributed CPS. DDS is used widely throughout this domain because it provides a powerful software
infrastructure for building Industrial Internet and other large-scale CPSs.

Figure 12. Key layers of distributed CPS software infrastructure.

11

Acccelerating the Industrial Internet using the OMG Data Distribution Service

rti.com

DDS supports different types of information modeling, including relational. Relational modeling uses a data-
centric publish-subscribe abstraction in which events and their relationships to each other may be assigned.
DDS reinforces the idea of a global data space, which enables the ability to read and write data asynchronously,
anonymously and decoupled in time and space (see Fig. 13). It allows production and consumption of data in the
global data space in many ways. DDS also permits control of the way in which information flows through a space,
which is a powerful tool.

DDS is well suited for Industrial Internet and other distributed CPSs in part because of its rich set of QoS policies.
QoS policies allow for the control of variables essential to delivering information in a timely and dependable
manner. There are about two-dozen QoS policies in DDS that handle priorities, deadlines, data durability,
replication and redundancy, history, resource utilization and more(see Fig. 14).

QoS policies particularly relevant to CPS include the ability to indicate durability, latency, latency bounds and
reliability bounds. Likewise, these QoS policies also support the ability to manage availability, coherency issues
and resource constraints. There are various actions that can be implemented in this space to gain greater control
of CPS.

DDS allows matching of publishers and subscribers in terms of QoS policies that are requested/offered (RxO).
This distributed matching capability allows DDS implementations to decide on an optimal way to connect
end-to-end flows of producers and consumers. When this capability is integrated on top of an intelligent
communication infrastructure, it is able to provide control over the network core.

Figure 13. A global data space enables the ability to read and write data
asynchronously, anonymously and decoupled in time and space.

Figure 14. DDS includes about two dozen QoS policies.

12

Acccelerating the Industrial Internet using the OMG Data Distribution Service

rti.com

Since large-scale CPSs do not exist in a vacuum, the ability to bridge different components together is
crucial. DDS provides many ways to bridge other technologies through the DDS data bus, which enables
communication with web services, Java messaging service and other protocols in a way that can plug and
play seamlessly with legacy and new systems. There are also a number of standards available within the DDS
ecosystem, such as Java, C++ and UML. It can also take advantage of other standards, including mappings to
RESTful web services.

When integrating large-scale CPSs, no single vendor is sufficient. The potential to interwork and connect
between parties using a heterogeneous selection of middleware is both valuable and necessary. The OMG
Real-Time Publish Subscribe Protocol (RTPS) is the standard Interoperability Wire Protocol used by DDS
implementations to enable different vendors to interoperate.

There is currently a vibrant research community focused on DDS. Also, a recently published paper describes
various techniques for integrating DDS with WANs, (see http://www.dre.vanderbilt.edu/~schmidt/PDF/
DDS-WAN.pdf)

The Big Picture

Despite advances in elastic hardware, it is still hard to deploy CPSs in cloud environments, making the right
support necessary. It is improbable that public clouds will be the basis of mission-critical Industrial Internet
systems. It is more likely that private clouds will be used, but that does not mean those systems will not benefit
from standards and other technologies.

According to the experts, what matters most in computing clouds for CPSs is multi-tenancy and elasticity.
Virtualization is beneficial if it can be afforded, but the goal is to run on the bare hardware using powerful
integrative middleware technologies, such as DDS. DDS is an ideal fit for distributed CPSs because it is
standards-based and includes a number of open-source solutions that facilitate the mixing and matching of
capabilities and the ability to build infrastructure for dependable cyber-physical systems.

Although great progress has been made, there remain many research challenges surrounding CPSs.
Despite these challenges, DDS is still the most closely matched to the CPS domain and capable of
providing off-the-shelf solutions that address these challenges (see http://www.industrialinternet.com/blog/
three-qs-professor-douglas-schmidt/).

13

Acccelerating the Industrial Internet using the OMG Data Distribution Service

rti.com

RTI, Real-Time Innovations, RTI Data Distribution Service, DataBus, Connext, Micro DDS, 1RTI, and the phrase “Your systems. Working as one,” are registered trademarks or trademarks of Real-
Time Innovations, Inc. All other trademarks used in this document are the property of their respective owners. ©2014 RTI. All rights reserved. v. 500XX 0114D

CORPORATE HEADQUARTERS
232 E. Java Drive
Sunnyvale, CA 94089

Tel: +1 (408) 990-7400
Fax: +1 (408) 990-7402
info@rti.com www.rti.com

About Real-Time Innovations

RTI is the real-time distributed infrastructure software company. Our messaging forms the core nervous system
for the most demanding real-time applications in the Internet of Things. With RTI Connext™ DDS, devices
seamlessly share information and work together as one integrated system.

RTI applications span air, sea, land and space defense; medical imaging, emergency response and hospital
integration; power control and energy management; avionics, unmanned systems and air-traffic control;
financial and asset trading; and automotive testing and safety.

RTI is committed to open standards, open community source and open architecture. RTI provides the leading
implementation of the Object Management Group (OMG) Data Distribution Service (DDS) standard.

RTI is the world’s largest embedded middleware provider. RTI is privately held and headquartered in Sunnyvale,
California.

About the Author

Dr. Douglas C. Schmidt is a professor of computer science at Vanderbilt University and a widely published
author in the fields of object-oriented design and programming, distributed real-time and embedded computing,
cyber-physical systems, and software patterns and frameworks. He is co-teaching the first trans-institution
massive open online course (MOOC) specialization on mobile cloud computing with Android (see http://www.
coursera.org/course/posa).

