
Int. J. Business Process Integration and Management, Vol. X, No. Y, 200X 1

Copyright © 200X Inderscience Enterprises Ltd.

Creating self-healing service compositions with
feature models and microrebooting

Jules White*, Harrison D. Strowd and
Douglas C. Schmidt
Department of Electrical Engineering and Computer Science,
Vanderbilt University, Nashville, TN, USA
E-mail: jules@dre.vanderbilt.edu
E-mail: harrison.strowd@vanderbilt.edu
E-mail: schmidt@dre.vanderbilt.edu
*Corresponding author

Abstract: Service-oriented architectures (SOAs) provide loose coupling and software reuse in
enterprise applications. SOAs enable applications to heal themselves by failing over to alternate
services when a critical application component or service reference fails. The numerous intricate
details of identifying errors and planning a recovery strategy make it hard to develop applications
that can heal by swapping services.
 Model-driven engineering (MDE) offers a potential solution to handling the complexity of
building applications that can heal by swapping services. This paper presents an MDE technique
called Refresh that is based on microrebooting and uses

1 feature models to derive a new and correct service composition when a failure occurs
2 an application’s component container to shutdown the reference to the failed service
3 the application container to reboot the subsystem.

We also present the results from a case study that shows Refresh significantly reduces both
modelling and healing implementation effort.

Keywords: feature modelling; service healing; reconfiguration; constraint satisfaction; service
oriented architectures; SOAs; autonomic systems; enterprise Java Beans; model-driven
development; microrebooting; self-healing; service composition.

Reference to this paper should be made as follows: White, J., Strowd, H.D. and Schmidt, D.C.
(xxxx), ‘Creating self-healing service compositions with feature models and microrebooting’,
Int. J. Business Process Integration and Management, Vol. X, No. Y, pp.000–000.

Biographical notes: Jules White is a Research Assistant Professor in the Electrical Engineering
and Computer Science Department at Vanderbilt University. He received his BA in Computer
Science from Brown University, his MS and PhD from Vanderbilt University. His research
focuses on applying search-based optimisation techniques to the configuration of distributed,
real-time and embedded systems. In conjunction with Siemens AG, Lockheed Martin, IBM and
others, he has developed scalable constraint and heuristic techniques for software deployment
and configuration. He is the Project-Lead of the Eclipse Foundation’s Generic Eclipse Modelling
System (GEMS http://www.eclipse.org/gmt/gems).

Harrison Strowd is a Graduate Student at Carnegie Mellon University, pursuing Master of
Science in Information Technology – Software Engineering. He received his BS in Computer
Science and Math from Vanderbilt University. His prior research focused on feature selection
algorithms in the context of large-scale product lines. Currently, he is researching the application
of probabilistic model checkers to data-intensive distributed computing systems.

Douglas C. Schmidt is a Full Professor in the Electrical Engineering and Computer Science
Department and Associate Chair of the Computer Science and Engineering program at Vanderbilt
University, Nashville, TN. During the past two decades he has led pioneering research on
patterns, optimisation techniques and empirical analyses of object-oriented and component-based
frameworks and model-driven development tools that facilitate the development of middleware
and applications for distributed real-time and embedded (DRE) systems. He is an expert on DRE
computing patterns and middleware frameworks and has published over 400 technical papers and
nine books that cover a range of topics including high-performance communication software
systems, parallel processing for high-speed networking protocols, quality-of-service
(QoS)-enabled distributed object computing, object-oriented patterns for concurrent and
distributed systems model-driven development tools. He received his PhD in Computer Science
from the University of California, Irvine in 1994. (URL: www.dre.vanderbilt.edu/~schmidt).

2 J. White et al.

1 Introduction

Organisations are rapidly deploying service-oriented
architectures (SOAs) that create loosely coupled and highly
reusable application components through the use of
standardised message-oriented protocols, such as the Simple
Object Access Protocol (SOAP). Often, within a single
organisation or group of collaborating organisations,
multiple services are available that can accomplish a
particular task. The redundancy in services provides the
potential to create applications that can heal themselves by
failing over to leverage similar services when a service in
their service composition (i.e., the services used – by the
application) fails. Failing over to another equivalent but not
necessarily identical – service can create robust applications
that can adapt to service failures and remain functional.

Designing and implementing a mechanism to build
self-healing service compositions is complex. Since,
software development projects already have low success
rates and high cost, building a service capable of healing is
hard (Barki et al., 1993). Moreover, building adaptive
mechanisms greatly increases application complexity and
can be hard to decouple from application code if the
development of the adaptive mechanism is not successful.

Model-driven engineering (MDE) provides a potential
solution to managing the complexity of developing adaptive
services. In an MDE approach, high-level adaptive models
are used to generate the complex adaptive code required to
heal the application when services fail. This approach
allows MDE tools to generate much of the complex healing
code and in many cases, remove the healing code if it does
not function properly. Although, numerous approaches
(Joshi et al., 2005; Bhat et al., 2006; Calinescu, 2007;
Denaro et al., 2007) have been devised to build MDE
models and platforms for enterprise applications, these
approaches tend to suffer from one or more of the following
problems:

1 they require significant development effort to explicitly
model the numerous potential error states and recovery
paths from an error state to a correct state

2 they require extensive effort to develop the adaptation
action implementations for a realistic application.

This paper presents an MDE approach and toolset called
Refresh, for designing and implementing self-healing
service compositions that addresses the limitations outlined
above. Refresh is specifically designed for healing a service
composition when

1 the application is implemented with a component-based
technology, such as enterprise Java Beans or the
CORBA Component Model

2 catastrophic failure is imminent

3 the application and any redundant instances in an
application cluster cannot continue functioning
correctly in their current configuration

4 the application has alternate composable services that
could potentially be exploited to avoid failure.

For each potential error state that an application’s service
composition could enter, conventional MDE adaptation
techniques (Joshi et al., 2005; Bhat et al., 2006; Calinescu,
2007, Denaro et al., 2007) require explicitly modelling both
the error state and the numerous actions to transition from
the error state to a correct state. For large enterprise
applications, moreover, there are usually a significant
number of potential error states and complex nuanced
considerations, such as availability of other services,
database locks held and transaction states. These
considerations make it hard to create a model for service
composition healing. Rather than explicitly modelling error
states and recovery actions, Refresh uses feature models
(Kang et al., 1998) to capture the rules for determining what
is or is not a correct configuration/error state.

Feature models describe an application in terms of
points of variability and their effect on each other. For
example, in an e-commerce application, a feature might be a
service for accessing an order database. The order feature
can have different subfeatures, such as different potential
services that can serve as the order database access service.
If one particular order database access service is chosen, it
excludes the other potential order services from being used
(it constrains the other features). If the chosen service fails,
a new feature selection can be derived that does not include
the failed service’s feature.

This paper provides the following contributions to the
study and development of self-healing service
compositions:

• It shows how when a failure occurs (such as the
inability to communicate with a dependent service)
Refresh uses the application’s feature models to derive
a new and valid service composition from the currently
available services and components, which eliminates
the need to model every potential error state and
recovery action.

• It describes Refresh’s use of an approach based on
microrebooting (Candea et al., 2004), which is a
technique for rebooting a small set of failed
components rather than an entire application server, to
shutdown the failed service composition and launch the
newly derived composition, eliminating the need for
developers to implement recovery actions.

• It presents empirical results from a case study applying
Refresh to an e-commerce application that shows
Refresh provides a ~55% decrease in modelling
complexity and ~60% decrease in implementation cost
versus other MDE approaches for building self-healing
service compositions.

 Creating self-healing service compositions with feature models and microrebooting 3

Figure 1 Pet Store service composition feature model

The remainder of this paper is organised as follows: Section
2 presents the e-commerce application that we will use as a
case study throughout the paper; Section 3 enumerates
current challenges in applying existing MDE techniques for
building adaptive applications to our case study; Section 4
describes Refresh’s approach to using feature models and
microrebooting to reduce the complexity of modelling and
implementing an application that can heal; Section 5
analyses empirical results obtained from applying Refresh
to our case study; Section 6 compares Refresh with related
work and Section 7 presents concluding remarks.

2 Case study: the Java Pet Store

To show the complexity of applying conventional MDE
techniques to creating healing applications, we present a
case study based on Sun’s Java Pet Store e-commerce
application (Sun Microsystems n.d.). The Pet Store provides
a web-based storefront for selling pets. The store includes
multiple categories of pets, products (e.g., bulldog and
iguana) and individual product items (e.g., female bulldog
puppy). Customers browse for pets and purchase different
items.

Sun and other parties use the Pet Store as a reference
application to showcase various enterprise Java
technologies. Since the Pet Store application is widely
known and can serve as a reference for comparing different
technologies, the Pet Store has been re-implemented in
different programming languages and with different
frameworks. For example, the Java Spring Framework
(Johnson and Hoeller, 2004) has created the Spring Pet
Store. The Spring Framework’s version of the Pet Store
includes support for integrating web services and is the
implementation we have chosen for the case study.

Figure 1, presents a high-level feature model of the
features related to the Pet Store’s data tier. Features are
denoted by the various boxes in the diagram. The levels of
hierarchy represent subfeatures. For example, all Pet Store
instances have DAOs, Datasources and JTA as subfeatures
(the filled circles at the top of the child features denote
required features). The Pet Store Java Transaction API
(JTA) feature can either be present, denoted when the child
JTAPresent feature is selected or not present.

A feature can also specify rules restricting the selection
of other features if the feature is selected. For example, the
selection of the Datasources/Multiple features requires that
JTAPresent also be selected. This requirement is denoted by
the JTAPresentRef required feature reference under
Multiple.

The Spring Framework allows the swapping of
individual components in the Pet Store with proxies to
remote services. Figure 1 lists the various DAOs that are
available in the Pet Store. Each DAO can potentially be
swapped for a remote service. Figure 2 shows the various
options for the OrderDAO. Either the OrderDAO can be
implemented by a local component or it can be implemented
as a dynamically created Java proxy to a SOAP, Burlap,
Hessian or RMI order service. The case study focuses on
failing over from the middle-tier DAOs to different remote
services to demonstrate the complexities of applying
existing MDE techniques.

Figure 2 Feature model of the J2EE Pet Store’s order-DAO

3 Challenges of creating self-healing services

A common approach (Joshi et al., 2005; Lapouchnian et al.,
2005; Barbier, 2006; Bhat et al., 2006; Elkorobarrutia et al.,
2006; Calinescu. 2007; Denaro et al., 2007) to modelling
application healing is to model the individual error states
that the application can enter and a recovery path (a
sequence of recovery actions) to return the application to a
correct state. For example multiple MDE approaches
(Lapouchnian et al., 2005; Barbier, 2006; Elkorobarrutia et
al., 2006) use statecharts (Harel et al., 1987) to capture the
various error states of an application and the sequences of
recovery actions to return to a correct state. Enumerating
each potential error state and each recovery path can require
significant modelling complexity. This section shows how,
even when an MDE tool can generate the majority of the
self-healing code for a service composition, the requirement
to model and implement recovery actions places a heavy
burden on developers.

4 J. White et al.

3.1 Challenge 1: significant modeling complexity to
specify a recovery path from an arbitrary error
state to a correct state

A healing model must use different error states for
each implementation of a service type or
component type

The failure of the OrderDAO seems like a fairly simple
error condition to model and specify a recovery path for, but
it is not. The problem with modelling each potential error
state and recovery path is that the series of recovery actions
that must be invoked is different for the local OrderDAO
and remote service implementation.

For example, if the local OrderDAO fails, it may be
swapped for another implementation. If a remote service
fails, it may be necessary to free resources, such as memory
used by caches or network ports, that were used by a
connection to it. Services connected through different
protocols also need separate error states to associate their
unique recovery actions with.

If the Pet Store’s service composition healing is
modelled using statecharts, as shown in Figure 3, there are
four different states for each DAO. To increase readability,
Figure 3 does not include events and guards on transitions,
which further complicate the model. There are 20 different
states needed to represent the potential services and
components that can serve as the Pet Store’s DAOs.

Figure 3 Pet Store service composition statechart

For every error state that the system needs to recover
from, the model must explicitly specify a
recovery path

For example not only should the failure of a Hessian and
SOAP-based order service be modelled separately, but the
series of recovery actions attached to each also should be
modelled separately. As with error states, the number of
recovery path specifications produced for healing each
component of an enterprise application can be large.

The Pet Store requires a number of recovery actions to
take place to swap the service used for a DAO. The various
actions for swapping the OrderDAO to one of the remote

services is modelled in Figure 4. First, to swap a DAO, a
Spring HotSwappableTargetSource (an object capable of
swapping an active component in the application) must be
obtained. Next, any resources held by the old DAO
implementation or DAO proxy to a remote service must be
released. After releasing resources, a new proxy to another
remote service can be created. Finally, the newly created
proxy can be swapped into the application using the
HotSwappableTargetSource. Including the recovery paths in
the model ups the total number of states per DAO from four
to 25.

Figure 4 OrderDAO recovery paths statechart

Healing a local error may require evaluating the
global application state

For example, if the JTA is being used to manage
transactions, the Pet Store can fail over to any remote
service and still provide proper transaction behaviour. If
JTA is not being used to manage transactions, however, the
system can only provide transactions across a single data
source, meaning that all the DAOs must be accessing the
same database instance. Requiring the use of a single
database instance prevents an arbitrary service from being

 Creating self-healing service compositions with feature models and microrebooting 5

chosen. In the non-JTA situation, the service may only fail
over to a remote service if the service is accessing the same
database instance as all other referenced remote services.

An extension of the OrderDAO recovery statechart to
include the JTA consideration is shown in Figure 5. Each
transition to the swap states now includes a guard to ensure
that swapping is allowed. A new GlobalSwapController has
been added to the model to only allow swapping when
either JTA is present or a single data source is being
referenced by the application’s service composition. Section
4.2 shows how Refresh uses feature modelling and other
techniques to eliminate the need to model every potential
error state and recovery action.

Figure 5 OrderDAO recovery paths statechart when accounting
for JTA

3.2 Challenge 2: significant complexity to write
reconfiguration code that can bring the system
from an arbitrary error state to a correct state.

Regardless of the MDE approach used to build the
application healing mechanism, developers must always
implement the application-specific recovery actions. This
requirement parallels the development of enterprise
applications and services, where, despite the frameworks
used, developers are always required to implement the core
business logic. Some specialised MDE tools may provide
pre-built recovery actions for specific domains, but in
general, nearly every MDE approach requires developers to
write the recovery actions.

For each path from an error state to a recovery state,
complex recovery logic must be written

The more error states that are possible in the application, the
more recovery actions must be written by developers. These
numerous recovery actions can be both expensive to
develop and hard to test, which can become problematic
when projects are already prone to failure and cost overruns.

In the Pet Store application, there are four separate
DAOs that can each be swapped to one of four remote
services to avoid failures. To implement a simple swapping
mechanism in the Pet Store, the Spring framework provides
numerous complex utility classes for hotswapping
components and connecting to remote services, such as
Apache Axis web services. Despite these numerous utility
classes (as shown in Section 5), to create an action to swap
just the OrderDAO to one of the four remote services
requires 77 lines of Java code to implement the swapping
logic and 11 lines of XML code to enable and configure the
swapping action in the Pet Store. Although, some level of
refactoring and object-oriented design can be used to share
common logic across actions, implementing each action still
requires significant effort. Section 4.3 shows how
microrebooting can significantly reduce this substantial
development burden by loading a new service composition
derived by a constraint solver.

3.3 Challenge 3: executing arbitrary recovery
actions in arbitrary error states can have
numerous unforeseen side-effects

Error states are often specified in such a way that the system
as a whole can be in numerous different states that all fall
under the definition of the same error state. For example,
when the OrderDAO fails, the Pet Store can have orders in
progress, category listings in progress and numerous other
nuanced conditions. Building a robust and correct recovery
action requires taking into account the side effects of the
recovery action on the complex overall state of the
application.

For example, what will happen if the local OrderDAO is
swapped with a remote service during the submission of one
or more customer orders? Does the safety of the swap
depend on whether or not a local or JTA-based transaction
mechanism is used? These complex nuanced questions are
not easy to answer and must be considered for each
recovery action implementation. These intricacies make
developing a recovery action that will not lead to unforeseen
problems hard. Section 4.3 shows how using
microrebooting as the basis for recovery eliminates many of
these hard to predict recovery side-effects and also provides
a more well understood state transition mechanism.

6 J. White et al.

4 Developing healing adaptations with Refresh

The challenges in Sections 3.1–3.3 stem from two causes:

1 the requirement that every error state and recovery path
must be modelled explicitly

2 that developers must implement every complex
recovery action.

This section describes our MDE toolset, called Refresh, that
eliminates these two sources of substantial complexity.

4.1 Overview of Refresh

Refresh is based on the concept of microrebooting (Candea
et al., 2004). When an error is observed in the application,
Refresh uses the application’s component container to
shutdown and reboot the application’s components. Using
the application container to shutdown the failed subsystem
takes milliseconds as opposed to the seconds required for a
full application server reboot. Since it is likely that
rebooting in the same configuration (e.g., referencing the
same failed remote service) will not fix the error, Refresh
derives a new application configuration and service
composition from the application’s feature models that does
not contain the failed features (e.g., remote services).

The service composition dictates the remote services
used by the application. The application configuration
determines any local component implementations, such a
SOAP messaging classes, needed to communicate and
interact properly with the remote services. After deriving
the new application configuration and service composition,
Refresh uses the application container to reboot the
application into the desired configuration. The overall
structure of Refresh is shown in Figure 6.

Refresh interacts directly with the application container,
as shown in Figure 6. During the initial and subsequent
container booting processes, Refresh transparently inserts
application probes into the application to observe the
application components. Observations from the application
components are sent back to an event stream processor that
runs queries against the application event data, such as
exception events, to identify errors. Whenever an
application’s service composition needs to be healed,
environment probes are used to determine available remote
services and global application constraints, such as whether
or not JTA is present.

Refresh uses event stream processing (Luckham, 2001)
to run queries against the application’s event data and
identify feature failures. The initial implementation of
Refresh, based on the Spring Framework’s IoC
container, uses the Esper event stream processor (Event
Stream Intelligence with Esper and NEsper,
http://esper.codehaus.org n.d.) for Java. Esper is a
high-performance event stream processor that is capable of
handling 100,000 events a second with 2,000 queries on a
single dual-core CPU (Esper FAQ, http://esper. codehaus.
org/tutorials /faq esper/ faq.html#performance n.d.).

Figure 6 Refresh structure (see online version for colours)

Figure 7 Error propagation to Refresh (see online version for
colours)

 Creating self-healing service compositions with feature models and microrebooting 7

Each feature in the feature model that could potentially fail
is associated with a group of event stream queries. At
runtime, when a query associated with a feature returns a
result, Refresh is notified that the associated feature has
failed, as shown in Figure 7. The data and objects observed
and analysed by Refresh are determined by the query
specifications.

Once Refresh is notified of a feature failure, its three
main tasks are to use

1 the container to shutdown the application’s components

2 the application’s feature model to derive a new
application configuration and service composition

3 the container to reboot the application in the new
configuration.

The sequence of events from a feature failure notification to
the rebooting of the container are shown in Figure 8.

Figure 8 Refresh reconfiguration, shutdown and launch recovery
sequence

To derive a new configuration of the application that does
not include the failed feature, Refresh transforms the feature
selection problem into a constraint satisfaction problem
(CSP) using techniques that have been developed by us an
others in prior work (Benavides et al., 2005, White, et al.,
2007a, 2007b). Once the feature selection problem is
transformed into a CSP, a high-performance general
purpose constraint solver, such as the Java Choco
(Benavides et al., 2007) solver, is used to derive a new set
of features/configuration for the application.

After the new application configuration and service
composition is derived, Refresh invokes the container’s
shutdown sequence to properly release resources, abort
transactions and perform other critical activities. The new
configuration is injected into the container through
programmatic calls or by regenerating the application’s
configuration files (White et al., 2007a). After the
configuration is injected into the container, the application
is launched in the new configuration without the failed
service, as shown in Figure 9.

Figure 9 Refresh launches the application in the new (see online
version for colours)

4.2 Use feature modeling to capture the rules for
deriving what is considered a correct state

As discussed in Section 3.1, modelling each individual error
state and recovery path is complex. Refresh uses feature
modelling to avoid requiring developers to model each
individual error state and recovery path. Feature modelling
captures the rules – rather than individual error states and
recovery paths–for deriving what constitutes a correct
application configuration and service composition. In terms
of healing, feature modelling describes:

• the component or service types that are needed to
compose the application

• the sets of components or services that can serve as the
implementation of a service type in the application’s
composition

• the rules dictating the requirements, such as dependent
libraries, required by each component or service
implementation

• the rules constraining how the choice of one service
implementation restricts the choices of other
component or service implementations in the same
application composition.

When the failure of a feature is observed, Refresh uses the
feature model of the application to derive an alternate set of
features for the application that does not include the failed
feature. For example, in the Pet Store, when the
LocalOrderDAO feature fails, Refresh uses the feature
model to derive an alternate feature selection for the Pet
Store. In the example shown in Figure 10, Refresh chooses
a new feature selection that uses the BurlapOrderService
rather than the failed SOAPOrderService.

8 J. White et al.

Figure 10 Deriving a new service composition from the Pet Store feature model

Automated feature selection using a constraint solver

The key to Refresh’s healing capabilities is its ability to use
a constraint solver (Cohen, 1990) to derive a new feature
selection for the application automatically. Prior work
(Benavides et al., 2005, 2007; White et al., 2007a) provides
extensive details on the process for transforming a feature
selection problem into a CSP (Cohen, 1990), which is the
input format of a constraint solver and deriving a feature
selection. We briefly cover this mapping below.

A CSP is a series of variables and a set of constraints
over the variables. For example, ‘A + B < C’ is a CSP over
the integer variables A, B and C. A constraint solver
automatically derives a correct labelling (values for the
variables). The labelling ‘A = 1, B = 2, C = 4’ is a correct
labelling of the example CSP.

A selection of features from a feature model can be
represented by a set of integer variables with domain 0 or 1.
Each variable represents a unique feature from the feature
model. If the variable representing the HessianOrderService
is represented by the variable V1, then V1 = 1 in a labelling
of a feature selection CSP means that the feature is selected
in the solution. If the labelling contains V1 = 0, it implies
that the feature is not selected in the solution. The
configuration of an application and its service composition
is represented as a set of these variables that denote which
services and application components are enabled in a
configuration.

Rules dictating the proper composition of the services
are specified as constraints over the Vi variables. For
example, since only one of HessianOrderService and
SOAPOrderService can be used at a time by the Pet Store, a
constraint can be used to capture this rule. Let, V2 be the
variable representing the SOAPOrderService. This rule is
specified as the constraint V1 = 1 → V2 = 0. As described in
(White et al., 2007a), complex rules, such as memory
constraints, can be described using a CSP.

When a feature is flagged as failed, Refresh adds a new
constraint to the feature selection process preventing the
failed feature from being selected (e.g., Vi = 0). Refresh then
uses a, the constraint solver, to derive a new feature
selection that can be used by the application based on the
environmental constraints (e.g., JTA vs. no JTA) and
feature model composition constraints (e.g., only one of the
order services may be selected at a time).

4.3 Reusing the component container’s
shutdown/configuration/launch mechanisms for
state transitions

Sections 3.2–3.3 show the complexity and large
development burden of writing recovery actions to heal an
application by failing over to alternate services. Refresh
attacks the problem with a combination of code reuse and
automation. In particular, it reuses an application
container’s ability to shutdown an application’s
components, reconfigure the components (i.e., create the
newly desired service composition) and launch the
application in the new state (i.e., transition the application
into the new service composition state). By reusing existing
mechanisms that are well-tested and trusted by developers,
the need to write custom recovery actions is eliminated.

Moreover, since rebooting in the same application
configuration with the same service composition is unlikely
to fix a failed reference to a service, Refresh automatically
derives a new and valid application configuration and
service composition. This automated approach to deriving a
new service composition from an application’s feature
model allows microrebooting to be applied to service
composition healing. Normally, with a manual recovery
action implementation process, developers would deduce
the correct states to transition the application into and
implement the transition logic. Refresh’s automated
derivation process eliminates the need for developers to:

 Creating self-healing service compositions with feature models and microrebooting 9

1 determine where to transition to

2 decide how to accomplish the transition

3 implement the transition.

Container rebooting-based healing reduces potential
unintended side-effects

A key benefit of using the container’s built in component
management mechanisms for state transitions is that they
are guaranteed to bring the non-persistent application state
to the desired correct state. This guarantees help to resolve
the problems outlined in Section 3.3 of dealing with the
potential of unintended side effects from recovery actions.

With Refresh, the application container shuts down
components, which releases resources and resets in-memory
state and then relaunches the application with a clean
memory state. With recovery actions, there is the potential
that one or more of the affects on the application will have
unforeseen consequences to the non-persistent in-memory
application state. These unforeseen side effects are not
possible with a container rebooting approach that resets
non-persistent state.

A container rebooting approach does not eliminate the
possibility that persistent application state, such as database
rows, will not be placed into an inconsistent state. The
approach does, however, have a number of properties that
make this scenario far less likely than a recovery action
approach. First, all components typically must implement
lifecycle methods that are called by the container to manage
the component. If a component does not properly handle
persistent state on shutdown, it is a flaw in the
implementation of the component that could emerge – even
if the application never uses healing mechanisms.

Second, most enterprise applications maintain the
consistency of persistent application state through
transactions. Moreover, most enterprise applications use
container-managed persistence APIs, such as JTA. Even the
non-JTA examples provided for the Pet Store still use an
alternate container-managed persistence API that works
across only a single datasource. When the container is used
as the healing transition mechanism, any transactions that
are in process will be properly rolled back or committed by
the container during the healing of the application’s service
composition.

5 Applying Refresh to the Java Pet Store

To compare the development effort of including recovery
actions into the Pet Store, we implemented the following
three versions of the Spring Pet Store with self-healing
service compositions.

• The first implementation was produced using a purely
manual approach that used Spring’s proxying and
aspect infrastructure to implement the monitoring of the

DAOs and Spring HotSwappableTargetSources to
swap remote services on-the-fly.

• The second implementation was produced assuming an
MDE tool was provided that could model the error
states and recovery actions for the Pet Store and
generate the required monitoring code and recovery
path logic but not the implementations of the recovery
actions. We refer to this MDE approach as the MDE
error state/recovery path approach.

• The third implementation was produced using Refresh,
which captures the rules for configuring the application
and its service composition in feature models and uses
microrebooting to eliminate the need to implement
recovery actions.

The self-healing for all three implementations was built
around the ability to swap failed DAOs with remote services
and to swap from failed remote services to other remote
services. The modifications for the three implementations
are available from (White, 2007).

Manual implementation

The top table in Table 1 shows the results of the initial
implementation efforts. The manual approach required
implementing two key classes a ServiceSwapper capable of

1 looking up the Spring HotSwappableTargetSource for a
DAO

2 connecting to a Hessian, Burlap, SOAP or RMI remote
service

3 swapping in the new service for the failed
component/service.

As shown in Table 1, the class required 77 lines of code.
The second class implemented was a Spring
MethodInterceptor that was used to monitor each invocation
on a DAO or remote service for exceptions and call the
appropriate ServiceSwapper when an exception occurred.
This class required 20 lines of code. Finally, the
components were included in the Pet Store by adding them
to the XML configuration files for the Pet Store, which
required adding 96 lines of XML code.

MDE error state/recovery path implementation

The analysis for the MDE error state/recovery path
approach was based on a generic model of the minimum
effort that would be required for any MDE adaptation
modelling tool and framework that did not provide
Spring-specific recovery action implementations. The
models were built using statecharts, since it is arguably the
most widely used and mature state modelling language.
statecharts also have a number of powerful concepts, such
as parallel states, which reduce the total modelling
complexity.

10 J. White et al.

Table 1 Comparing implementation effort for the Healing Pet Store

Initial implementation Manual MDE/error state/
recovery path Refresh

Modelling

 Modelled states or features 0 111 33
 Modelled connections/transitions 0 104 29
 Model error identification 0 0 23
 Modelling totals 0 215 85

Implementation

 Implement recovery actions 77 77 0
 Implement recovery path chooser 31 0 0
 Configuration modifications 96 44 67
 Implementation tools 204 121 67

For the MDE implementation effort analysis, we measured
only the lines of code required to implement the
ServiceSwapper and to integrate the needed
ServiceSwappers into the configuration files of the Pet
Store. We assumed that all of the logic for choosing the
correct ServiceSwapper to execute, the implementation of
the MethodInterceptor and all configuration code required
to integrate the method interceptors and their dependent
proxies into the configuration file would be generated by the
tool. Our experiments thus only measured the cost of
modelling error states and recovery actions and
implementing them.

The MDE error state/recovery action approach used the
Statecharts presented in Section 3.1. The full Statechart
healing specification requires 111 states and 102 transitions
between states. As seen in Table 1, the MDE approach still
requires 77 lines of code to implement the ServiceSwapper
recovery action but eliminates the 31 lines of code needed
to implement the recovery path execution logic and the 20
lines of code required for the monitoring implementation.

Refresh implementation

Finally, we implemented the swapping capabilities in the
Pet Store using Refresh. Refresh’s use of Feature models
required a total of 33 model elements (features) and 29
connections versus the MDE approach’s 111 model
elements (states) and 102 connections (transitions). Refresh
also required 16 lines of code to specify the Esper queries
over the event stream of the Pet Store to map queries to the
failure of one of the Pet Store features. Refresh’s use of the
container’s built-in shutdown/configuration/launch
mechanisms for healing, eliminated the need to implement
the code for the ServiceSwapper.

Refresh automatically generates the required monitoring
code for the Pet Store (this was assumed for the other MDE
approach as well). Refresh did require 23 more lines of code
to be modified in the configuration file of the Pet Store
versus the other MDE approach. These extra lines of
configuration code are a result of adding the Refresh
annotations dictating how to dynamically modify the

application’s configuration based on a feature selection.
Overall, the Refresh approach required 55% less
implementation effort than the other MDE approach and
60% less modelling effort.

Refresh performance

We used Apache JMeter to simulate the concurrent access
of 40 different customers to the Pet Store and the time
required to complete 4,000 orders. We simulated the failure
of different DAOs to force Refresh to heal the Pet Store by
swapping remote services for the failed DAOs. After the
DAOs were swapped to remote services, we iteratively
shutdown the services used by the Pet Store to force the
failover to alternate remote services.

Over the tests, Refresh averaged 151 ms from the time
an exception indicating a failure was observed until the Pet
Store was reconfigured and rebooted with a new service
composition. These times were obtained by running the Pet
Store on a 2.0ghz Intel Core DUO on Windows XP with
two gigabytes of RAM. The average time required by the
constraint solver to derive a new feature selection was 12
ms. These times indicate that Refresh can provide
high-performance application healing while reducing
modelling and implementation effort.

6 Related work

Microrebooting (Candea et al., 2004) is a technique used to
restart only the component, or collection of components in
which the failure occurred. Refresh uses microrebooting to
eliminate the need to model and implement recovery
actions, as described in Section 4. The problem with
applying microrebooting alone to service composition
healing is that remote services usually cannot be rebooted
and thus failures will persist across reboots. Refresh,
however, dynamically derives a new service composition
and application configuration before rebooting that
eliminates the reference to the failed service.
Reconfiguration of the service composition allows Refresh

 Creating self-healing service compositions with feature models and microrebooting 11

to eliminate references to failed services and prevent an
error from persisting across reboots.

Lapouchnian et al. (2005) propose using goal modelling
to help develop autonomic applications. Moreover,
Lapouchnian’s technique uses feature models to help
understand the variability in system objectives.
Lapouchnian’s techniques are focused on developing a
design for an autonomic system and also rely on statecharts.
Refresh, in contrast, does not require a specific application
design – only that the application has different potential
services or components that it can be composed of.
Furthermore, as Section 3, Lapouchnian’s use of statecharts
adds a substantial development burden. Refresh does not
use error state/recovery action based modelling and
implementation and thus avoids this development burden.

Crawford and Dan (2002) developed a framework,
known as eModel to assist in monitoring and adapting a
system, based on its environment. One of their primary
design goals was ease of use for model providers and model
users interacting with the framework. This framework
requires a model, in the form of an XML file, to specify the
states to be identified and the actions to be taken in such
situations. The model provider is thus required to identify
all potentials states of the system and provide a specific set
of actions to take for each state. Section 3 showed the
problems associated with specifying error states and
recovery actions. Unlike eModel, Refresh does not require
explicit specification of recovery actions and avoids these
difficulties.

There are a large number of other healing or adaptation
approaches (Joshi et al., 2005; Lapouchnian et al., 2005;
Bhat et al., 2006; Barbier, 2006; Elkorobarrutia et al., 2006;
Calinescu, 2007; Denaro et al., 2007) that rely on
identifying error states and then planning and executing
some number of recovery actions. As shown in Section 3,
modelling and implementing recovery actions is complex
and costly. Moreover, as the empirical results from Section
5 showed, by eliminating the need to model and implement
recovery actions, Refresh produced a 55% reduction in
implementation effort and a 60% reduction in modelling
effort compared to techniques that require error state and
recovery action modelling.

7 Concluding remarks

Numerous MDE approaches for building self-healing
service compositions (Joshi et al., 2005; Lapouchnian et al.,
2005; Bhat et al., 2006; Barbier, 2006; Elkorobarrutia et al.,
2006; Calinescu, 2007; Denaro et al., 2007) rely on
developers modelling each potential error state and the
recovery paths from each state. Regardless of the technique
used, developers are always responsible for implementing
the complex application-specific recovery actions.
Moreover, since these approaches use recovery actions to
transition an application between two arbitrary states,
recovery actions can have unintended side effects on the
application, such as producing deadlock or data corruption,
that are hard to identify and avoid.

This paper describes how our Refresh technique uses
feature modelling to capture the rules for deriving a correct
service composition state. Our experience using Refresh
showed that leveraging feature models to automatically
derive new service compositions when a dependent service
fails eliminates the complexity of needing to model each
individual error state and recovery action.

Moreover, by using microrebooting to transition the
application from its failed service composition to the new
service composition, we found that developers need not
implement complex recovery actions. Finally, through
results obtained from applying Refresh to case studies, we
observed that eliminating the modelling and implementation
of recovery actions greatly reduced the cost of creating
self-healing service compositions.

Refresh is available in open-source form as part of the
GEMS Model Intelligence project at
www.eclipse.org/gmt/gems.

References
Barbier, F. (2006) ‘MDE-based design and implementation of

autonomic software components’, Cognitive Informatics,
2006. ICCI 2006, 5th IEEE International Conference on 1.

Barki, H., Rivard, S. and Talbot, J. (1993) ‘Toward an assessment
of software development risk’, Journal of Management
Information Systems, Vol. 10, No. 2, pp.203–225.

Benavides, D., Segura, S., Trinidad, P. and Ruiz-Cortés, A. (2007)
‘Using Java CSP solvers in the automated analyses of feature
models’, Post-Proceedings of The Summer School on
Generative and Transformational Techniques in Software
Engineering (GTTSE).

Benavides, D., Trinidad, P. and Ruiz-Cortes, A. (2005)
‘Automated reasoning on feature models’, 17th Conference
on Advanced Information Systems Engineering (CAiSE05,
Proceedings), LNCS 3520, pp.491–503.

Bhat, V., Parashar, M., Liu, H., Khandekar, M., Kandasamy, N.
and Abdelwahed, S. (2006) ‘Enabling self-managing
applications using model-based online control strategies’,
Proceedings of the 3rd IEEE International Conference on
Autonomic Computing, Dublin, Ireland.

Calinescu, R. (2007) ‘Model-driven autonomic architecture’,
Proceedings of the 4th IEEE International Conference on
Autonomic Computing, Jacksonville, Florida, USA, June.

Candea, G., Kawamoto, S., Fujiki, Y., Friedman, G. and Fox, A.
(2004) ‘Microreboot-a technique for cheap recovery’,
Proceedings of the 6th Symposium on Operating Systems
Design and Implementation, pp.31–44.

Cohen, J. (1990) Constraint Logic Programming Languages,
Vol. 33, ACM Press, New York, NY, USA.

Crawford, C. and Dan, A. (2002) ‘E-model: addressing the need
for a flexible modeling framework in autonomic computing’,
Modeling, Analysis and Simulation of Computer and
Telecommunications Systems, MASCOTS 2002, Proceedings
on 10th IEEE International Symposium, pp.203–208.

Denaro, G., Pezze, M. and Tosi, D. (2007) ‘Designing
self-adaptive service-oriented applications’, in Proceedings of
the 4th IEEE International Conference on Autonomic
Computing, Jacksonville, Florida, USA, June.

12 J. White et al.

Elkorobarrutia, X., Izagirre, A. and Sagardui, G. (2006) ‘A
self-healing mechanism for state machine based components’,
Proceedings of the 1st International Conference on
Ubiquitous Computing: Applications, Technology and Social
Issues, Alcal de Henares, Madrid, Spain, June.

Esper FAQ, available at
http://esper.codehaus.org/tutorials/faqesper/faq.html#perform
ance (n.d.).

Event Stream Intelligence with Esper and NEsper, available at
http://esper.codehaus.org (n.d.).

Harel, D., et al. (1987) ‘Statecharts: a visual formalism for
complex systems’, Science of Computer Programming,
Vol. 8, No. 3, pp.231–274.

Johnson, R. and Hoeller, J. (2004) Expert one-on-one J2EE
development without EJB, Wrox.

Joshi, K., Sanders, W., Hiltunen, M. and Schlichting, R. (2005)
‘Automatic model-driven recovery in distributed systems’, at
the 24th IEEE Symposium on Reliable Distributed Systems
(SRDS’05) pp.25–38.

Kang, K., Kim, S., Lee, J., Kim, K., Shin, E. and Huh, M. (1998)
‘FORM: a feature-oriented reuse method with domain-
specific reference architectures’, Annals of Software
Engineering, Vol. 5, pp.143–168.

Lapouchnian, A., Liaskos, S., Mylopoulos, J. and Yu, Y. (2005)
‘Towards requirements-driven autonomic systems design’,
Proceedings of the 2005 Workshop on Design and Evolution
of Autonomic Application Software, pp.1–7.

Luckham, D. (2001) The Power of Events: An Introduction to
Complex Event Processing in Distributed Enterprise Systems,
Addison-Wesley Longman Publishing Co., Inc. Boston, MA,
USA.

Sun Microsystems (n.d.) Java Pet Store Sample Application.
White, J. (2007) ‘Healing Pet Store case study implementation.

http://www.dre.vanderbilt.edu/jules/petstore-casestudy-
code.zip’.

White, J., Czarnecki, K., Schmidt, D. C., Lenz, G., Wienands, C.,
Wuchner, E. and Fiege, L. (2007a) ‘Automated model-based
configuration of enterprise Java applications’, in EDOC 2007.

White, J., Nechypurenko, A., Wuchner, E. and Schmidt, D.C.
(2007b) ‘Optimizing and automating product-line variant
selection for mobile devices, in 11th International Software
Product Line Conference.

