
Model-driven Configuration of Cloud
Computing Auto-scaling Infrastructure

Brian Dougherty1 and Jules White2 and Douglas C. Schmidt1

1 Vanderbilt University briand,schmidt@dre.vanderbilt.edu
2 Virginia Tech julesw@vt.edu

Abstract. Cloud computing uses virtualized computational resources to allow
an application’s computational resources to be provisioned on-demand. Auto-
scaling is an important cloud computing technique that dynamically allocates
computational resources to applications to precisely match their current loads.
This paper presents a model-driven engineering approach to optimizing the con-
figuration and cost of cloud auto-scaling infrastructure. The paper provides the
following contributions to the study of model-driven configuration of cloud auto-
scaling infrastructure: (1) it shows how virtual machine configurations can be
captured in feature models, (2) it describes how these models can be transformed
into constraint satisfaction problems (CSPs) for configuration and cost optimiza-
tion, (3) it shows how optimal auto-scaling configurations can be derived from
these CSPs with a constraint solver, and (4) it presents a case-study showing the
cost reduction produced by this model-driven approach.

1 Introduction
Current trends and challenges. Cloud computing is a computing paradigm that uses
virtualized server infrastructure to dynamically provision virtual OS instances [8]. By
allocating virtual machines to applications on demand, cloud infrastructure users can
pay for servers incrementally rather than investing the large up-front costs to purchase
new servers. Moreover, rather than over-provisioning an application’s infrastructure to
meet peak load demands, an application can auto-scale by dynamically acquiring and
releasing virtual machine instances as load fluctuates.

A key concern when auto-scaling an application is ensuring that virtual machines
can be provisioned and booted quickly enough to meet response time requirements as
the load changes. If auto-scaling is too slow to keep up with load fluctuations, appli-
cations may experience a period of poor response time while waiting for additional
computational resources to come online. One way to mitigate this risk is to maintain an
auto-scaling queue containing prebooted and preconfigured virtual machine instances
that can be allocated rapidly, as shown in Figure 1.

When a cloud application requests a new virtual machine configuration from the
auto-scaling infrastructure, the auto-scaling infrastructure first attempts to fulfill the
request with a prebooted virtual machine in the queue. For example, if a virtual machine
with Fedora Core 6, JBoss, andMySQL is requested, the auto-scaling infrastructurewill
attempt to find a matching virtual machine in the queue. If no match is found, a new
virtual machine must be booted and configured to match the allocation request.



2 Brian Dougherty and Jules White and Douglas C. Schmidt

Fig. 1: Auto-scaling in a Cloud Infrastructure

Open problems. A key challenge for developers is determining the size and prop-
erties of an auto-scaling queue shared by multiple applications that each may have dif-
ferent virtual machine configurations [3]. For example, a web application may request
virtual machine instances configured as database, middle-tier Enterprise Java Beans
(EJB), or front-end web servers. Determining how to capture and reason about the con-
figurations that comprise the auto-scaling queue is hard due to the large number of
configuration options (such as MySQL and SQL Server databases, Ubuntu Linux and
Windows operating systems, and Apache HTTP and IIS/Asp.Net web hosts) offered by
cloud infrastructure providers.

It is even harder to determine the optimal queue size and types of virtual machine
configurations that will ensure that virtual machine allocation requests can be serviced
quickly enough to meet a required auto-scaling response time limit. A variety of strate-
gies can be employed, such as filling the queue with virtual machine configurations that
are most common across the applications or that take the most time to provision/boot.
Cost optimization is challenging because each configuration placed into the queue can
have varying costs based on the hardware resources and software licenses it uses.
Solution approach → Auto-scaling queue configuration derivation based on

feature models. This paper presents a Model-Driven Engineering (MDE) approach
called the Smart Cloud Optimization for Resource Configuration Handling (SCORCH)
that captures virtual machine configuration options for a set of cloud applications and
derives an optimal set of virtual machine configurations for an auto-scaling queue.
SCORCH provides three contributions to the study of MDE cost optimization of cloud
auto-scaling. First, we describe an MDE technique for transforming feature model rep-
resentations of cloud virtual machine configuration options into constraint satisfaction
problems (CSPs) [6, 5]. Second, we describe another MDE technique for analyzing ap-
plication configuration requirements and virtual machine operating costs to determine
what virtual machine instance configurations to include in an auto-scaling queue in
order to meet an auto-scaling response time guarantee. Third, we present empirical re-



Title Suppressed Due to Excessive Length 3

sults from a case study using Amazon’s EC2 cloud computing infrastructure that shows
our MDE techniques minimize operational cost while ensuring that an auto-scaling re-
sponse time requirement is met.
Paper organization. The remainder of the paper is organized as follows: Section 2

describes the challenges of modeling, analyzing, and deriving an optimal auto-scaling
queue configuration; Section 3 presents SCORCH’s MDE approach to derive optimal
auto-scaling queue configurations; Section 4 presents empirical results from applying
SCORCH to derive an auto-scaling queue for ecommerce applications that show the
cost effectiveness of the technique; Section 5 compares SCORCH with related work;
and Section 6 presents concluding remarks.

2 Challenges of Configuring Virtual Machines in Cloud
Environments

This section describes three key challenges of capturing virtual machine configuration
options and using this configuration information to optimize the setup of an auto-scaling
queue. Section 3 then presents SCORCH’s MDE approach to resolving these chal-
lenges.

2.1 Challenge 1: Capturing Virtual Machine Configuration Options and
Constraints

A cloud application can request virtual machines with a wide range of configuration
options, such as type of processor, amount of memory, OS, and installed middleware.
For example, the Amazon EC2 cloud infrastructure (aws.amazon.com/ec2) supports
5 different types of processors, 6 different memory configuration options, and over 9
different OS types, as well as multiple versions of each OS type [4]. These EC2 con-
figuration options cannot be selected arbitrarily and must adhere to a multitude of con-
figuration rules. For example, a virtual machine running on Fedora Core 6 OS cannot
run MS SQL Server. Tracking these numerous configuration options and constraints
is hard. Sections 3.1&3.2 describe how SCORCH uses feature models to alleviate the
complexity of capturing and reasoning about configuration rules for virtual machine
instances.

2.2 Challenge 2: Selecting Virtual Machine Configurations to Guarantee
Auto-scaling Speed Requirements

A key determinant of auto-scaling performance is the types of virtual machine config-
urations that are kept ready to run. If an application requests a virtual machine con-
figuration and an exact match is available in the auto-scaling queue, the request can
be fulfilled nearly instantaneously. If the queue does not have an exact match, it may
have a running virtual machine configuration that can be modified to meet the requested
configuration faster than provisioning and booting a virtual machine from scratch. For
example, a configuration may reside in the queue that has the correct OS but needs to
unzip a custom software package, such as a pre-configured Java Tomcat Web Applica-
tion Server, from a shared filesystem onto the virtual machine. Auto-scaling requests



4 Brian Dougherty and Jules White and Douglas C. Schmidt

can thus be fulfilled with both exact configuration matches and subset configurations
that can be modified faster than provisioning a virtual machine from scratch.

Determining what types of configurations to keep in the auto-scaling queue to en-
sure that virtual machine allocation requests are serviced fast enough to meet a hard
allocation time constraint is hard. For one set of applications, the best strategy may be
to fill the queue with a common generic configuration that can be adapted quickly to sat-
isfy requests from each application. For another set of applications, it may be faster to
fill the queue with the virtual machine configurations that take the longest to provision
from scratch. Numerous strategies and combinations of strategies are possible, making
it hard to select configurations to fill the queue that will meet auto-scaling response
time requirements. Section 3.3 show how SCORCH captures cloud configuration op-
tions and requirements as cloud configuration feature models, transforms these models
into a CSP, and creates constraints to ensure that a maximum response time limit on
auto-scaling is met.

2.3 Challenge 3: Optimizing Queue Size and Configurations to Minimize Cost

A further challenge for developers is determining how to configure the auto-scaling
queue to minimize the costs required to maintain it. The larger the queue, the more it
costs. Moreover, each individual configuration within the queue can vary in cost. For
example, a “small” Amazon EC2 virtual machine instance running a Linux-based OS
costs $0.085 per hour while a "Quadruple Extra Large" virtual machine instance with
Windows costs $2.88 per hour.

It is hard for developers to manually navigate the tradeoffs between costs and auto-
scaling response time of different queue sizes and sets of virtual machine configura-
tions. Moreover, there are an exponential number of possible queue sizes and config-
uration options that complicates deriving the minimal cost queue configuration that
will meet auto-scaling speed requirements. Section 3.3 describes how SCORCH uses
CSP objective functions and constraints to derive a minimum cost queue configuration
that meets virtual machine configuration constraints generated by transforming feature
model representations of application configuration rules and options into a CSP.

3 The Structure and Functionality of SCORCH

This section describes the MDE techniques that SCORCH uses to address the chal-
lenges of optimizing an auto-scaling queue described in Section 2. SCORCH resolves
these challenges by using models to capture virtual machine configuration options ex-
plicitly, model transformations to convert these models into constraint satisfaction prob-
lems (CSPs), and constraint solvers to derive the optimal queue size and contained
virtual machine configuration options to minimize cost while meeting auto-scaling re-
sponse time requirements.

The SCORCH MDE process is shown in Figure 2 and described below:

1. Developers use a SCORCH cloud configuration model to construct a catalog of
configuration options that are available to virtual machine instances.



Title Suppressed Due to Excessive Length 5

Fig. 2: SCORCH Model-Driven Process

2. Each application considered in the auto-scaling queue configuration optimization
provides a configuration demand model that specifies the configuration for each
type of virtual machine instance the application will request during its execution
lifecycle.

3. Developers provide a configuration adaptation time model that specifies the time
required to add/remove a feature from a configuration.

4. Developers provide a cost model that specifies the cost to run a virtual machine
configurationwith each feature present in the SCORCH cloud configurationmodel.

5. The cloud configuration model, configuration demand models, and load estimation
model are transformed into a CSP and a constraint solver is used to derive the
optimal auto-scaling queue setup.

The remainder of this section describes the structure and functionality of each of the
models defined and used by SCORCH.

3.1 SCORCH Cloud Configuration Models

A key consideration in SCORCH is modeling the catalog of virtual machine config-
uration options. Amazon EC2 offers many different options, such as Linux vs. Win-
dows operating systems, SQL Server vs. MySQL databases, and Apache HTTP vs.
IIS/Asp.Net webhosts. This model provides developers with a blueprint for construct-
ing a request for a virtual machine instance configuration and checking its correctness.
The queue configuration optimization process also uses this model to ensure that valid
configurations are chosen to fill the queue.

To manage the complexity of representing virtual machine instance configuration
options, SCORCH uses a modeling paradigm from software product-lines called fea-
ture models [5]. Feature models describe commonality and variability in a configurable
software platform. For example, a feature model can capture the different OS types and
versions available for a virtual machine instance, as shown in Figure 3.



6 Brian Dougherty and Jules White and Douglas C. Schmidt

Fig. 3: Example SCORCH Cloud Configuration Feature Model

Feature models capture the points of commonality and variability using an abstract
called a feature. Each feature in the feature model represents an increment of function-
ality or a point of variability. Features can describe both high-level functional variations
in the software, e.g., whether or not the underlying software can load balance HTTP re-
quests. A feature can also represent implementation-specific details, e.g., whether or
not Ubuntu 9.10 or Fedora is used.

As shown in Figure 3, feature models use a tree-like structure to define the rela-
tionships between the various features and encode configuration rules into the model,
e.g., a virtual machine configuration can include only a single operating system, such
as Ubuntu 9.10 or Fedora. Some features may require other features to be present in
order to function, e.g., the JBOSS v6 feature cannot be chosen without also selecting
the JBOSS feature.

A configuration of the software platform is defined by a selection of features from
the feature model. The most basic rule of configuration correctness is that every se-
lected feature must also have its parent feature selected. This rule also implies that
every correct feature selection must include the root feature. Moreover, the feature se-
lection must adhere to the constraints on the parent-child relationships encoded into the
feature model. A listing of the basic feature selection rules is shown in Figure 3.

Developers use the SCORCH cloud configuration model to express the available
configuration options for virtual machine instances as a feature model. SCORCH is
designed for environments, such as private clouds, where it is feasible for applications
to enumerate their features and to use this model for queue configuration optimization.
SCORCH is also applicable to clouds where a subset of customers pay a premium to
have their virtual machine instance configurations considered in the queue optimization
process.



Title Suppressed Due to Excessive Length 7

The configuration adaption time model’s information is captured as attributes of
the features in the SCORCH cloud configuration model. Although attributes are not
technically a model, we describe them as such to simplify the CSP discussions. Each
feature can be annotated with an integer attribute that specifies the time in milliseconds
to add/remove the given feature from a configuration. Features that are not realistically
feasible to add/remove from a booted VM configuration are annotated with configu-
ration adaptation times of T= . For example, installing a Red Hat Package Manager
archive on a virtual machine to add a feature might take a few seconds, whereas chang-
ing the OS may not be as feasible due to the overhead incurred.

The cost model is also captured using attributes in the SCORCH cloud configuration
model. Again, we describe it as a model to simplify the CSP descriptions. Each feature
that impacts the cost of a configuration is annotated with a cost attribute that specifies
the cost per hour to have a booted virtual machine configuration in the queue with that
feature. For example, these attributes can be used to model the cost of the “Small”
vs. “Quadruple Extra Large” computing node size features of an Amazon EC2 virtual
machine configuration.

3.2 SCORCH Configuration Demand Models

Applications are auto-scaled at runtime by dynamically requesting and releasing vir-
tual machine instances. When a new virtual machine instance is requested, the desired
configuration for the instance is provided. SCORCH requires each application to pro-
vide a model of the virtual machine instance configurations that it will request over its
lifetime.

Developers construct SCORCH configuration demand models to dictate what vir-
tual machine configurations an applicationwill request. The configuration demandmod-
els use a textual domain-specific language to describe each configuration that will be
requested as a selection of features from the SCORCH cloud configuration model. For
example, a valid configuration demand model that includes one virtual machine config-
uration for a large JBOSS application server and one configuration for a Jetty server is
shown in Figure 4.

Fig. 4: SCORCH Textual Configuration Demand Model



8 Brian Dougherty and Jules White and Douglas C. Schmidt

The basic structure of the model is one or more identifiers for configurations that
will be requested. Each identifier is followed by a set of braces that enclose the names of
the features selected/deselected in the configuration. Features either may be specifically
selected for a configuration bymarking them as selected or excluded bymarking them
as not selected. If a configuration does not explicitly mark a feature as selected or
not selected, the SCORCH optimization process will determine whether or not to
include it. For example, the JettyServer does not specify a value for the processor
size and will accept any available processor.

3.3 Runtime Model Transformation to CSP and Optimization
A key value of using feature models for capturing virtual machine configuration options
is that selecting a group of features to optimize an objective function can be phrased
as a CSP. In the context of SCORCH, the cloud configuration model and configuration
demandmodels are converted into a CSP where a solution is a valid set of configurations
for the virtual machine instances in the auto-scaling queue. The objective function of
the CSP is designed to attempt to derive a mix of configurations that minimizes the cost
of maintaining the queue while ensuring that any hard constraints on the time to fulfill
auto-scaling requests are met.

The conversion of feature selection problems into CSPs has been described exten-
sively in prior work [1, 12]. A CSP is a set of variables and a set of constraints governing
the allowed values of the variables. For example, X +Y < 10 is a CSP with two vari-
ables. A valid labeling of values for X and Y must adhere to the constraint that their
sum is less than 10. Feature configuration problems are converted into CSPs where the
selection state of each feature is represented as a variable with domain {0,1}. The con-
straints are designed so that a valid labeling of these variables yields a valid feature
selection from the feature model.

A CSP for a feature selection problem can be described as a 3-tuple:

P=< F,C, >

where:

– F is a set of variables describing the selection state of each feature. For each feature,
fi ∈ F , if the feature is selected in the derived configuration, then f i = 1. If the ith
feature is not selected, then fi = 0.

– C captures the rules from the feature model as constraints on the variables in F .
For example, if the ith feature requires the jth feature,C would include a constraint:
( fi = 1) ⇒ ( f j = 1).

– is an optional objective function that should be maximized or minimized by the
derived configuration.

Building a CSP to derive a set of configurations for an auto-scaling queue uses
a similar methodology. Rather than deriving a single valid configuration, however,
SCORCH attempts to simultaneously derive both the size of the auto-scaling queue
and a configuration for each position in the auto-scaling queue. If SCORCH derives a



Title Suppressed Due to Excessive Length 9

size for the queue of K, therefore, K different feature configurations will be derived for
the K virtual machine instances that need to fill the queue.

Since SCORCH attempts to minimize cost while ensuring that auto-scaling time
constraints are not exceeded, additional information must be added to the CSP to rep-
resent the expected types of configurations that will be requested from the queue. The
configuration demand models are encoded into the CSP to express this information.
The configuration demand models are encoded into the CSP as sets of labeled variables
representing the feature configurations of virtual machines that each application may
request from the queue.

The CSP for a SCORCH queue configuration optimization process can be described
formally as the 8-tuple

P=< S,Q,C,D,L,T,M, >

, where:

– S is the size for the auto-scaling queue, which represents the number of virtual
machine instances that will be prebooted and available in the queue. This variable
is derived automatically as part of the SCORCH optimization process.

– Q is a set of sets that describes the selection state of each virtual machine instance
configuration in the queue. If there are Z distinct types of configurations specified
in the configuration demand models, then the size of Q is Z. Each set of variables,
Qi ∈ Q, describes the selection state of the features for one of the virtual machine
instances in the queue. For each variable, qi j ∈ Qi, if qi j = 1 in a derived configu-
ration, it indicates that the jth feature is selected by the ith virtual machine instance
configuration.

– C captures the rules from the feature model as constraints on the variables in all sets
Qi ∈ Q. For example, if the kth feature requires the j th feature, C would include a
constraint: ∀Qi ∈ Q, (qik = 1) ⇒ (qi j = 1).

– D contains the set of configuration demand models contributed by the applications.
Each demand model Di ∈ D represents a complete set of selection states for the
features in the feature model. If the j th feature is requested by the ith demandmodel,
then di j ∈ Di,di j = 1. The demand models can be augmented with expected load
per configuration, which is a focus of our future work.

– L is the cost model that specifies the cost to include the feature in a running virtual
machine instance configuration in the auto-scaling queue. For each configuration
Di ∈ D a variable Li ∈ L specifies the cost of that feature. These values are derived
from the annotations in the SCORCH cloud configuration model.

– T is the configuration time model that defines how much time is required to add/-
remove a feature from a configuration. The configuration time model is expressed
as a set of positive decimal coefficients, where ti ∈T is the time required to add/remove
the ith feature from a configuration. These values are derived from the annotations
in the SCORCH cloud configuration model.

– is the cost minimization objective function that is described in terms of the vari-
ables in D, Q, and L.

– M is the maximum allowable response time to fulfill a request to allocate a virtual
machine with any requested configuration from the demand models to an applica-
tion.



10 Brian Dougherty and Jules White and Douglas C. Schmidt

3.4 Response Time Constraints and CSP Objective Function
Given a CSP to derive configurations to fill the auto-scaling queue, an objective function
can be defined to attempt to minimize the cost of maintaining the auto-scaling queue.
Moreover, we can define constraints to ensure that a maximum response time bound is
adhered to by the chosen virtual machine queue configuration mix and queue size that
is derived.

We can describe the expected response time, Rtx, to fulfill a request Dx from the
configuration demand model as:

Rtx =min(CT0 . . .CTn, boot(Dx)) (1)

CTi =

{
∀qi j ∈ Qi, qi j = dx j 0 (a),
∃qi j ∈ Qi, qi j!= dx j t j(|qi j−dx j|) (b)

(2)

where:

– Rtx is the expected response time to fulfill the request.
– n is the total number of features in the SCORCH cloud configuration model
– CTi is the expected time to fulfill the request if the ith virtual machine configuration
in the queue was used to fulfill it.

– boot(Dx) is the time to boot a new virtual machine instance to satisfy Dx and not
use the queue to fulfill it.

The expected response time, Rtx is equal to the fastest time available to fulfill the
request, which will either be the time to use a virtual machine instance in the queueCTi
or to boot a completely new virtual machine instance to fulfill the request boot(D x).
If a configuration exists in the queue that exactly matches the request (a), the the time
to fulfill the request is zero (or some known constant time). If a given virtual machine
configuration is not an exact match (b), then the time to fulfill the request with that
configuration is equal to the time required to modify the configuration to match the
requested configurationDx. For each feature qi j in the configuration that does not match
what is requested in the configuration, t j is the time incurred to add/remove the feature.

Across the Z distinct types of configuration requests specified in the configuration
demand models we can therefore limit the maximum allowable response time with the
constraint:

∀Dx ∈ D, M ≥ Rtx (3)
With the maximum response time constraint in place, the SCORCH model-to-CSP

transformation process then defines the objective function to minimize. For each virtual
machine instance configuration,Qi, in the queue, we define its cost as:

Cost(Qi) =
n

j=0
qi jL j

. The overall cost minimization objective function, , is defined as the minimization of
the variableCost, where:

=Cost =Cost(Q0)+Cost(Q1)+ · · ·+Cost(Qk)



Title Suppressed Due to Excessive Length 11

.
The final piece of the CSP is defining the constraints attached to the queue size

variable S. We define S as the number of virtual machine instance configurations that
have at least one feature selected:

Si =

{
∀qi j ∈Qi, qi j = 0 0,
∃qi j ∈Qi, qi j = 1 1

(4)

S=
Z

i=0
Si

Once the CSP is constructed, a standard constraint solver, such as the Java Choco
constraint solver (choco.sourceforge.net), can be used to derive a solution. Sec-
tion 4 presents empirical results from applying SCORCH with Java Choco to a case
study of an ecommerce application running on Amazon’s EC2 cloud computing infras-
tructure.

4 Results
This section presents a comparison of SCORCH with two other approaches for provi-
sioning virtual machines to ensure that load fluctuations can be met without degradation
of quality of service. We compare the cost effectiveness of each of the approaches for
provisioning an infrastructure for supporting a set of ecommerce applications. We se-
lected ecommerce applications due to the high fluctuations in workload that occur due
to the varying seasonal shopping habits of users. To compare the cost effectiveness of
these approaches, we chose the pricing model and available virtual machine instance
types associated with Amazon EC2.

We investigated three-tiered ecommerce applications consisting of web front end,
middleware, and database layers. The applications required 10 different distinct virtual
machine configurations. For example, one virtual machine required JBOSS, MySql, and
IIS/Asp.Net while another required Tomcat, HSQL, and Apache HTTP. These applica-
tions also utilize a variety of computing instance types fromEC2, such as high-memory,
high-CPU, and standard instances.

To model the traffic fluctuations of ecommerce sites accurately we extracted traf-
fic information from Alexa (www.alexa.com) for newegg.com (newegg.com), which
is an extremely popular online retailer. Traffic data for this retailer showed a spike of
three times the normal traffic during the November-December holiday season. During
this period of high load, the site required 54 virtual machine instances. Using the pric-
ing model provided by Amazon EC2, each server costs $1.44 an hour to support the
heightened demand.

4.1 Experiment: Virtual Machine Provisioning Techniques
Static provisioning. The first approach consists of provisioning a computing infrastruc-
ture equipped to handle worst case demand at all times. In our scenario, this technique
would require that all 54 servers were run continuously to ensure that response time is



12 Brian Dougherty and Jules White and Douglas C. Schmidt

maintained. This technique is similar to computing environments that do not permit any
type of auto-scaling. Since the infrastructure can always support the worst-case load, we
refer to this technique as static provisioning.
Non-optimized auto-scaling queue. Another approach is to augment the auto-

scaling capabilities of a cloud computing environment with an auto-scaling queue. In
this approach, auto-scaling is used to adapt the number of resources to meet the current
load that the application is experiencing. Since additional resources can be allocated
as demand increases, we need not boot all 54 servers continuously. Instead, an auto-
scaling queue with a virtual machine instance for each of the ten different configura-
tions required by the application must be available to be allocated on demand. We refer
to this technique as non-optimized auto-scaling queue since the auto-scaling queue is
not optimized.
SCORCH. In this approach we use SCORCH to minimize the number of virtual

machine instances required in the auto-scaling queue while ensuring that response time
is met. By optimizing the auto-scaling queue with SCORCH, the size of the queue can
be reduced by 80% to two virtual machine instances.

4.2 Cost Comparison of Techniques
Figure 5 shows the average loads of the ecommerce applications per month.

Fig. 5: Average Load Per Month
Fig. 6: Monthly Cost Comparison of Virtual Ma-
chine Instance Provisioning Techniques

The maximum load for the 6 month period occurred in November and required 54
virtual machine instances to support the increased demand. The monthly operational
costs of applying each response time minimization technique can be seen in Figure 6.

Since the maximum demand of the ecommerce applications required 54 virtual
machine instances to function, the static provisioning technique was the most expen-
sive, with 54 virtual machine instances prebooted at all times. The non-optimized auto-
scaling queue did not require as many virtual machine instances and therefore reduced
cost. Applying SCORCH yielded the lowest cost by requiring the fewest number of
virtual machine instances to be placed in the auto-scaling queue.

Figure 7 compares the total cost of applying each of the virtual machine provi-
sioning techniques for a six month period. The non-optimized auto-scaling queue and



Title Suppressed Due to Excessive Length 13

SCORCH techniques reduced the price of utilizing an auto-scaling queue to maintain
response time in comparison to the static provisioning technique. Figure 8 compares
the savings of using a non-optimized auto-scaling queue versus an auto-scaling queue
generated with SCORCH. While both techniques reduced cost by more than 35%, de-

Fig. 7: Total Cost for Provisioning Approaches Fig. 8: Total Cost Reduction Comparison

riving an auto-scaling queue configuration with SCORCH yielded a 50% reduction of
cost compared to utilizing the static provisioning technique. This result reduced costs
by over $165,000 for supporting the ecommerce applications for 6 months.

5 Related Work

This section compares SCORCH to related techniques for handling increased demand
in cloud computing environments and automated configuration derivation.
Virtual machine forking handles increased workloads by replicating virtual ma-

chine instances onto new hosts in negligible time, while maintaining the configuration
options and state of the original virtual machine instance. Cavilla et al [7] describe
SnowFlock, which uses virtual machine forking to generate replicas that run on hun-
dreds of other hosts in a less than a second. This replication method maintains both
the configuration and state of the cloned machine. Since SnowFlock was designed to
instantiate replicas on multiple physical machines, it is ideal for handling increased
workload in a cloud computing environment where large amounts of additional hard-
ware is available. SnowFlock is ideal for situations in which a single simple task, such
as a page request or query, is computationally expensive, but must exit rapidly.

SnowFlock is effective for cloning virtual machine instances so that the new in-
stances have the same configuration and state of the original instance. As a result, the
configuration and boot time of a virtual machine instance replica can be almost entirely
bypassed. This technique, however, requires that at least a single virtual machine in-
stance matching the configuration requirements of the requesting application is booted.
In contrast, SCORCH uses prebooted virtual machine instances that are likely to match
the configuration requirements of arriving applications. Our future work will augment
SCORCH with virtual forking techniques, such as SnowFlock, to help reduce/remove



14 Brian Dougherty and Jules White and Douglas C. Schmidt

the need to have multiple, pre-booted instances with identical configuration require-
ments included in the auto-scaling queue.
Automated feature derivation. To maintain the service-level agreements (SLAs)

provided by cloud computing environments, it is critical that techniques for deriving
virtual machine instance configurations are automated since manual techniques do not
support the dynamic scalability that makes cloud computing environments attractive.
Many techniques exist for the automated derivation of feature sets from feature mod-
els such as [2, 10, 9, 11]. These techniques convert feature models to CSPs that can
be solved using commercial CSP solvers. By representing the configuration options of
virtual machine instances as feature models, these techniques can be applied to yield
feature sets that meet the configuration requirements of an application.

Existing techniques, however, focus on meeting configuration requirements of one
application at a time. These techniques could therefore be effective for determining an
exact configuration match for a single application. SCORCH analyzes CSP represen-
tations of feature models to determine feature sets that satisfy some or all of feature
requirements of multiple applications. This information is critical to raise the hit rate
of the auto-scaling queue while minimizing additional cost by determining virtual ma-
chine configurations that match configuration requirements of multiple applications.

6 Concluding Remarks
Auto-scaling cloud computing environments helps minimize response time during pe-
riods of increased application demand, while reducing cost during periods of light de-
mand. The time to boot and configure additional virtual machine instances to support
applications during periods of high demand, however, can negatively impact response
time. This paper describes how the Smart Cloud Optimization of Resource Configura-
tion Handling (SCORCH) MDE tool intelligently populates an auto-scaling queue to
provide pre-booted virtual machine instances that can be used immediately, allowing
applications to bypass boot-time penalties and significantly reducing allocation time.

SCORCH uses feature models to represent the configuration requirements of mul-
tiple software applications and operational costs of utilizing different virtual machine
configurations, transforms these representations into CSP problems and analyzes them
to determine a set of virtual machine instances that maximizes auto-scaling queue hit
rate while minimizing additional operating cost. These virtual machine instances are
then placed in an auto-scaling queue to expedite auto-scaling in response to increased
application demand. SCORCH differs from existing techniques, such as virtual machine
forking, by examining and leveraging the commonalities of the configuration require-
ments of multiple applications to determine virtual machine instances that maximize hit
rate to be included in an auto-scaling queue.

The following are lessons learned from using SCORCH to construct auto-scaling
queues:

– Auto-scaling queue optimization effects operating cost.Using an optimized auto-
scaling queue greatly reduces the total operational cost compared to using a full
queue or non-optimized auto-scaling queue. SCORCH reduced operating cost by
50% or better.



Title Suppressed Due to Excessive Length 15

– Dynamic pricing options should be investigated.Cloud infrastructuresmay change
the price of procuring virtual machine instances based on current overall cloud de-
mand at a given moment. Our future work is incorporating a monitoring system to
allow SCORCH to take advantage of such price drops when appropriate.

– Predictive load analysis should be integrated. The workload of a demand model
can drastically effect the resource requirements of an application. In future work,
SCORCH will take into account predictive load analysis to auto-scaling queues that
cater to the workload characteristics of applications.

SCORCH is part of the ASCENT Design Studio and is available in open-soure
format from code.google.com/p/ascent-design-studio.
References
1. D. Benavides, P. Trinidad, and A. Ruiz-Cortes. Automated Reasoning on Feature Models. In

Proceedings of the 17th Conference on Advanced Information Systems Engineering, Porto,
Portugal, 2005. ACM/IFIP/USENIX.

2. D. Benavides, P. Trinidad, and A. Ruiz-Cortés. Automated reasoning on feature models. In
LNCS, Advanced Information Systems Engineering: 17th International Conference, CAiSE
2005, volume 3520, pages 491–503. Springer, 2005.

3. J. Bosch, G. Florijn, D. Greefhorst, J. Kuusela, J. Obbink, and K. Pohl. Variability issues in
software product lines. Lecture Notes in Computer Science, pages 13–21, 2002.

4. S. Hazelhurst. Scientific computing using virtual high-performance computing: a case study
using the Amazon elastic computing cloud. In Proceedings of the 2008 annual research con-
ference of the South African Institute of Computer Scientists and Information Technologists
on IT research in developing countries: riding the wave of technology, pages 94–103. ACM
New York, NY, USA, 2008.

5. K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson. Feature-oriented domain analysis
(FODA) feasibility study, 1990.

6. V. Kumar. Algorithms for constraint-satisfaction problems: A survey. AI magazine, 13(1):32,
1992.

7. H. Lagar-Cavilla, J. Whitney, A. Scannell, P. Patchin, S. Rumble, E. de Lara, M. Brudno,
and M. Satyanarayanan. SnowFlock: rapid virtual machine cloning for cloud computing.
In Proceedings of the fourth ACM european conference on Computer systems, pages 1–12.
ACM, 2009.

8. D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff, and D. Zagorod-
nov. The eucalyptus open-source cloud-computing system. In Proceedings of the 2009 9th
IEEE/ACM International Symposium on Cluster Computing and the Grid-Volume 00, pages
124–131. IEEE Computer Society, 2009.

9. J. White, D. Benavides, B. Dougherty, and D. Schmidt. Automated Reasoning for Multi-step
Configuration Problems. In Proceedings of the Software Product Lines Conference (SPLC),
San Francisco, USA, Aug. 2009.

10. J. White, B. Dougherty, and D. Schmidt. Selecting highly optimal architectural feature sets
with Filtered Cartesian Flattening. The Journal of Systems & Software, 82(8):1268–1284,
2009.

11. J.White, D. Schmidt, D. Benavides, P. Trinidad, and A. Ruiz-Cortés. Automated diagnosis of
product-line configuration errors in feature models. In Proceedings of the Software Product
Lines Conference (SPLC), pages 225–234. Citeseer, 2008.

12. J. White, D. C. Schmidt, D. Benavides, P. Trinidad, and A. Ruiz-Cortez. Automated Diagno-
sis of Product-line Configuration Errors in Feature Models. In Proceedings of the Software
Product Lines Conference (SPLC), Limerick, Ireland, Sept. 2008.


