
Prompt Engineering for Structured Data:
A Comparative Evaluation of Styles and LLM Performance

Ashraf Elnashar and Jules White
Department of Computer Science

Vanderbilt University, Nashville, TN, USA
{ashraf.elnashar,jules.white}@vanderbilt.edu

Douglas C. Schmidt
Department of Computer Science

William & Mary, Williamsburg, VA, USA
dcschmidt@wm.edu

Abstract
Prompt engineering for structured data is an evolving

challenge as large language models (LLMs) grow in so-
phistication. Earlier studies—including our own—tested
only a limited set of prompts on a single model, such as
GPT-4o [8]. This paper broadens the scope by evaluating
six styles—JSON, YAML, CSV, function-calling APIs, sim-
ple prefixes, and a hybrid CSV/prefix—across three leading
LLMs: ChatGPT-4o, Claude, and Gemini. Using controlled
datasets, we benchmark accuracy, token cost, and genera-
tion time to deliver the first systematic cross-model compar-
ison of prompt strategies for structured outputs.

Our approach employs structured validation and custom
Python utilities to ensure reproducibility, with results visu-
alized through Technique vs. Accuracy, Token Cost, and
Time graphs. Our analysis reveals clear trade-offs: simpler
formats often reduce cost and runtime with little accuracy
loss, while more expressive formats offer flexibility for com-
plex data. These findings underscore how prompt design
can be tuned to balance efficiency and versatility in real-
world applications.

Our results show prompt choice directly shapes both
quality and efficiency. Claude consistently achieves the
highest accuracy, ChatGPT-4o excels in speed and token
economy, and Gemini provides a balanced middle ground.
By extending beyond single-model evaluations, this study
offers practical guidance for selecting prompts based on
model capabilities and application demands, advancing
prompt engineering with a comprehensive, multi-model
framework for optimizing structured data generation.

Keywords: Structured Data Generation, LLMs, Prompt
Engineering, JSON, YAML, CSV Formats, Token Effi-
ciency Data Validation, Cost-Effective AI.

1 Introduction
Structured data extraction remains a persistent chal-

lenge in LLM applications. Modern LLMs show re-
markable capabilities in generating structured outputs from

unstructured text, offering transformative capabilities in
domains like business intelligence, healthcare, and e-
commerce [20, 7]. Yet, the quality and efficiency of struc-
tured data generation depend heavily on how prompts are
designed. Prompt styles vary in structure, verbosity, and
interpretability, which significantly influence the output’s
accuracy, token cost, and generation time [18]. Our ear-
lier study explored these dynamics using GPT-4o and three
prompt styles.

This paper builds directly on our prior work [8], which
evaluated three prompt styles—JSON, YAML, and Hybrid
CSV/Prefix—using GPT-4o alone for structured data gener-
ation tasks. In this extended study, we significantly broaden
both the prompt design space and the model spectrum, in-
troducing a multi-model comparison framework to gener-
alize and refine earlier insights. Our latest work broadens
that investigation across more LLMs and formats to better
understand generalizable strategies for prompt-based struc-
tured data generation.

While prior studies have explored these differences,
there are no comprehensive, cross-model analyses. This
paper extends our previous work by examining six prompt
styles—JSON, YAML, CSV, function calling APIs, sim-
ple prefixes, and a hybrid CSV/prefix format—across three
state-of-the-art models: ChatGPT-4o, Claude, and Gem-
ini. This multi-model, multi-format evaluation establishes
a comprehensive and generalizable framework for codify-
ing how prompt design affects the accuracy, efficiency, and
cost of structured data generation.

Prompting beyond hierarchy: Exploring diverse rep-
resentations. Hierarchical formats like JSON and YAML
are commonly used for their structural rigor and compati-
bility with downstream systems. However, they can be ver-
bose and computationally expensive, especially when used
with large or nested datasets. In contrast, simpler formats,
such as CSV and prefix-based prompts, offer more compact
representations that are faster and cheaper to process, al-
beit with potential trade-offs in structure and semantic clar-
ity. Hybrid approaches, such as CSV with prefixed rows,

1

attempt to bridge this gap by retaining structural cues in a
tabular format. Moreover, function-calling APIs, now sup-
ported nativelyin many LLMs, provide a formal schema-
driven interface that enables strict data validation and inte-
gration with programmatic workflows.

Despite the potential of structured data generation [22]
with LLMs, limited guidance exists on the optimal prompt
styles for achieving high-quality outputs with leading
LLMs. Many practitioners prompt via JSON or API func-
tion calls due to their structured format and familiarity.
Whilte these prompt styles are widely adopted, they may
not be optimal in terms of token usage or processing
time—especially when dealing with complex and/or large
datasets. Alternative prompting techniques, such as simple
prefixes, CSV, YAML, or hybrid formats, may offer similar
or even better results that consume fewer resources.

Our approach → Evaluating the impact of prompt
styles on structured data generation. This paper system-
atically evaluates six prompting strategies—ranging from
hierarchical formats (JSON, YAML) to lightweight rep-
resentations (CSV, simple prefixes), as well as function
calling APIs and hybrid approaches—across three leading
LLMs: ChatGPT-4o, Claude, and Gemini. We assess the
performance of these six prompting styles across three met-
rics (accuracy, token cost, and generation time), comparing
results across the selected LLMs. Our results quantify the
efficiency of each technique and establish practical recom-
mendations for prompt design, particularly where token us-
age and response time are key considerations.

This paper provides the following contributions to re-
search on optimized prompt techniques for efficient and ac-
curate structured data generation using LLMs:

• We conducted an experiment that generates random-
ized datasets in three distinct scenarios (personal sto-
ries, medical records, and receipts) to evaluate how ef-
fectively each prompt style captures the required struc-
ture across diverse and context-specific scenarios.

• The datasets we generated for personal stories con-
tain attributes representing individual characteristics
and paired them with corresponding valid narratives.
Datasets for medical records contain medical attributes
to produce valid and realistic entries. Datasets for re-
ceipts contain attributes to create valid examples re-
flecting real-world purchases, following the dataset
construction methodology from our previous study [8].

• We used these three datasets to compare the outputs
generated by leading LLMs (ChatGPT-4o, Claude, and
Gemini) with the expected results. Accuracy was mea-
sured based on strict adherence to the original data at-
tributes and values, ensuring the generated structured
data matched the intended formats, including JSON,
YAML, and CSV.

• We developed an automated validation framework to
measure output fidelity, token consumption, and gen-
eration latency. These metrics are visualized through
comparative graphs—Technique vs. Accuracy, Tech-
nique vs. Token Cost, and Technique vs. Time, high-
lighting the trade-offs across prompt styles and LLMs.

Rationale for prompt formats and real-world use
cases. We selected the following six prompt formats to mir-
ror common production pathways for structured data:

• JSON—The default interchange for web and mi-
croservices, which enables strict nesting and schema
validation in downstream ETL/ELT and API contracts.

• YAML—Human-editable configuration prevalent in
DevOps (e.g., CI/CD pipelines and Kubernetes man-
ifests), offering readability with hierarchical structure.

• CSV—Tabular format ubiquitous in analytics, BI
pipelines, spreadsheets, and data lake ingestion;
lightweight and token-efficient.

• Function Calling APIs—Direct alignment with LLM
tool/function APIs used in production (e.g., structured
outputs validated by JSON Schema) to minimize pars-
ing errors.

• Simple Prefixes—Label–value pairs favored in low-
latency agents and logging pipelines since it’s compact
and robust for shallow structures.

• Hybrid CSV/Prefix—Combines tabular headers with
required placeholders for missing values, reflecting re-
alistic ingestion constraints where all columns must re-
main present.

These choices capture the practical spectrum from hierar-
chical rigor (JSON/YAML) to minimal, low-cost encod-
ings (CSV/Prefixes), and a middle ground (Hybrid) that pre-
serves column integrity while controlling verbosity.

Paper organization. The remainder of this paper is or-
ganized as follows: Section 2 summarizes the open research
questions addressed in our study and outlines our techni-
cal approach; Section 3 explains our experiment design,
datasets, and testbed environment; Section 4 analyses the
results of experiments that evaluate the efficiency, accuracy,
and cost-effectiveness of different prompting strategies for
structured data generation using LLMs; Section 5 provides
a comparative analysis of the performance of ChatGPT-4o,
Claude, and Gemini on our datasets; Section 6 compares our
research with related work; Section 7 outlines our study’s
current evaluation scope and highlights future extensions;
and Section 8 presents lessons learned from our study and
outlines future work.

2 Summary of Research Questions
Four research questions guide our study by evaluat-

ing the effectiveness of different prompt styles on struc-
tured data generation by leading LLMs. Each question

2

addressed a specific aspect of prompt performance, focus-
ing on accuracy, efficiency, and cost-effectiveness. These
questions build upon the research framework introduced in
our earlier study [8], which focused on prompt-style eval-
uation for structured data generation using GPT-4o. This
paper extends those questions across a broader range of
prompt styles and evaluate them using multiple state-of-the-
art LLMs to gain deeper, more generalizable insights, as de-
scribed below:

• Q1: Which prompt style produces the most ac-
curate structured data for each LLM? We exam-
ined how well each style captured attribute complete-
ness and correctness by comparing generated outputs
against predefined test datasets. This comparison al-
lowed us to identify which styles most reliably pre-
served the intended structure and values across mod-
els.

• Q2: What is the token cost of each prompt
style, and which delivers the best cost-effectiveness?
Since token usage directly drives API expenses, we
measured the consumption of each style to see which
minimized costs while still maintaining accuracy—an
essential factor for applications where efficiency and
scale matter.

• Q3: How does each prompt style perform in terms
of generation speed? We recorded the time each LLM
required to produce structured outputs, highlighting
which styles generated results most quickly. This met-
ric is particularly relevant for real-time or high-volume
scenarios where response time is critical.

• Q4: Do some prompt styles perform better for cer-
tain data types or scenarios? To assess context sen-
sitivity, we applied each style to varied datasets (e.g.,
personal stories, receipts, medical records) to deter-
mine whether specific styles offered advantages de-
pending on the structure, complexity, or domain of the
data.

3 Experiment Design
To address the research questions in Section 2, we devel-

oped a multi-stage study involving randomized data gener-
ation, prompt formulation [12], interactions with multiple
LLMs [24], and validation of generated outputs. This study
evaluated the efficiency, accuracy, and cost-effectiveness of
six prompting styles (JSON, YAML, CSV, API function
calls, simple prefixes, and a hybrid CSV/prefix format) to
generate structured data across three data contexts (personal
stories, receipts, and medical records). To ensure a compre-
hensive analysis, we performed this study using three lead-
ing LLMs (ChatGPT-4o, Claude, and Gemini).

This experiment builds upon our earlier study, which
evaluated structured data generation using three prompt

styles (JSON, YAML, and Hybrid CSV/Prefix) with GPT-
4o alone [8]. In this work, we significantly extend the exper-
iment design by introducing three additional prompt styles
(CSV, API function calls, and Simple Prefixes) and com-
paring them across three leading LLMs. We also reuse and
expand upon the randomized datasets and evaluation frame-
work from our prior work to maintain consistency while en-
abling multi-model analysis. Some figures and validation
methodologies presented in this section are adapted from
the original study with updated results and formatting.

Systematically assessing the performance of each
prompt style per LLM identified optimal formats for struc-
tured data generation-based token usage, processing time,
and accuracy metrics. Our experiment was structured into

Figure 1. Visualization of Study Stages
two stages shown in Figure 1 and described below, fol-
lowing and expanding the design of our prior GPT-4o-only
study [8].

• Stage One: Data Generation and Prompt Testing.
This first stage created randomized datasets tailored
to the three contexts (personal stories, receipts, and
medical records) and applied six distinct prompt style
(JSON, YAML, CSV, API function calls, Simple Pre-
fixes, and Hybrid CSV/Prefix) to guide the LLMs in
generating structured outputs. Three metrics aAccu-
racy, token usage, and generation time) were recorded
for each combination of LLM and prompt style.

• Stage Two: Assessment and Refinement. This sec-
ond stage validated the outputs generated by each LLM
against the original datasets to measure accuracy. The
metrics collected during Stage One were assessed to
identify the most efficient and effective prompt styles.
The results were codified into actionable recommenda-
tions that highlight the strengths and trade-offs of each
prompt style for different data contexts and LLMs.

3.1 Stage One: Data Generation and Prompt
Testing

The first stage of our study developed and vali-
dated datasets simulating realistic data generation scenarios

3

across three contexts: personal stories, receipts, and med-
ical records. Each dataset [10] includes diverse attributes
(e.g., name, age, city, email) formatted under consistent
guidelines to ensure comparability. These datasets form the
foundation for Stage Two, where we evaluate the effective-
ness of different prompt styles (Section 3.2).

Our dataset generation process began by randomizing
attributes to include diversity, such as optional fields like
email. These attributes were embedded into prompts in-
structing each LLM to generate a narrative that incorporated
all specified details. Each generated story was then vali-
dated against the original attributes using pattern-matching
to ensure accuracy and completeness.

The validation process ensured every input dictionary at-
tribute was reflected accurately in the generated story. This
process extracted relevant paragraphs for each individual at-
tribute using a pattern-matching algorithm and compared
each attribute from the input against the generated text to
verify inclusion. Any missing attributes were logged for
further refinement to ensure generated outputs met the ex-
pected requirements of accuracy and completeness.

3.1.1 Personal Stories Dataset and Validation

The Personal Stories Dataset tests each LLM’s ability to
weave structured input attributes into coherent narrative
outputs. It simulates use cases where structured data must
appear naturally within free-form text while preserving ev-
ery required attribute. This systematic generation process
ensured consistency, accuracy, and validity throughout. To
create this dataset, random attributes were generated for fic-
tional individuals, including fields like name, age, city, and
optionally email, as shown in Figure 2. These attributes

{ "people": [{
"name": "dkmotp",
"age": 3

}, {
"name": "mlumld",
"city": "London"

}, {
"name": "fanonr",
"email": "uytgoy@example.com"

}, {
"name": "jntsxr",
"age": 33,
"city": "New York",
"email": "xqnmth@example.com"

}] }

Figure 2. Random People Generation Example
(adapted from [8])

were structured in dictionaries where each entry represents
a unique individual. The randomization ensured diversity
and tested each LLM’s capability to handle variations in in-
put attributes effectively.

Problem Statement
- Write a short, single-paragraph story

about the individuals listed below.
Constraints
- Ensure that every value in the dictionary

is included exactly as provided.
- The values must be explicitly stated in

the story so they can be verified using
‘.contains({people})‘.

Input
- ‘people‘: A list of randomly generated

dictionaries representing individuals.

Figure 3. Prompt Generating Personalized Stories
(adapted from [8])

Figure 3 shows the LLM prompt used to generate per-
sonalized stories. This prompt was designed to ensure each
LLM generated a short, single-paragraph narrative that ex-
plicitly included every attribute from the input dictionary.
Moreover, this prompt enforced the inclusion of all attribute
values exactly as provided, enabling rigorous validation of
the generated outputs, as shown in Figure 4.

Story
In a twist of fate that only destiny could
orchestrate, dkmotp, a bright-eyed curious
3-year-old, found himself at a bustling
carnival in the heart of London. Just steps
away, mlumld, who had spent her entire life
in this vibrant city, was mesmerized by the
lively atmosphere, unaware her path was
about to cross with others in strange ways.
As fanonr admired the colorful parade, busy
typing an email to uytgoy example.com, she
accidentally bumped into jntsxr, a 33-year-
old from New York who was in town to escape
the familiar chaos of his life. He quickly
glanced at his phone to ensure nothing had
happened to his email draft addressed to
xqnmth@example.com. Little did they know,
their lives were about interconnect by the
most unexpected series of events.

Figure 4. LLM-generated Personalized Stories
(adapted from [8])

The validated stories were formatted into six distinct
styles for further analysis and experimentation: (1) JSON
for hierarchical structures with nested attributes, (2) YAML
for human-readable formats, (3) CSV for flat tabular data
representation, (4) API function calls for encapsulating
structured data, (5) Simple prefixes for lightweight labeled
fields, and (6) Hybrid CSV/prefix for combining tabular
headers with prefixed rows. Section 3.2 assesses each for-
mat for accuracy, efficiency, and token usage in subsequent
stages of the experiment, providing a comprehensive under-
standing of their relative strengths and weaknesses.

4

3.1.2 Medical Record Dataset
The Medical Record Dataset evaluates the ability of each
LLM to generate structured medical records that accurately
represent input attributes. This dataset simulates real-world
scenarios where structured patient data is embedded within
electronic medical records, while preserving the complete-
ness and correctness of all specified details. The generation
process followed a systematic methodology to ensure con-
sistency, accuracy, and validity.

To create the dataset, random attributes were generated
for fictional individuals, including fields such as name, and
optionally age, city, and email. Likewise, medical-specific
fields, such as diagnosis, prescriptions, and doctor’s notes,
were included but are considered outside the scope of this
experiment. These attributes were organized into dictionar-
ies, with each entry representing a unique individual. Fig-
ure 2 depicts the random person generation process for the
Medical Record Dataset.

Randomizing attributes ensured diversity and tested each
LLM’s ability to handle varying input fields effectively. The
prompt shown in Figure 5 guided each LLM to generate
structured medical records that include every attribute from
the input dictionary. This prompt included all specified at-

Problem Statement
Write a structured medical record for each
individual listed below.
Constraints
- Ensure that every value in the dictionary

is included exactly as provided.
- The values must be explicitly stated in

the record so they can be verified using
‘.contains({{people}})‘.

Input
- ‘people‘: A list of randomly generated

dictionaries representing individuals.
Output Format
Write medical records using this format:
Patient Information: X
- Name: [Name] (required)

- Age: [Age] (optional)
- City: [City] (optional)
- Email: [Email] (optional)

Ensure the records are formatted as shown
above and all names are listed exactly
as provided in the dictionary.

Figure 5. Prompt Generating Medical Records
tributes and ensured the generated medical records followed
the required structure and formatting. Figure 6 shows exam-
ples of the LLM-generated medical records.

3.1.3 Receipt Dataset
The Receipt Dataset evaluates each LLM’s ability to gen-
erate structured receipts that represent input attributes ac-
curately. This dataset simulates real-world scenarios where

Patient Information: 1
- Name: dkmotp

- Age: 3
Patient Information: 2
- Name: mlumld

- City: London
Patient Information: 3
- Name: fanonr

- Email: uytgoy@example.com
Patient Information: 4
- Name: jntsxr

- Age: 33
- City: New York
- Email: xqnmth@example.com

Figure 6. LLM-generated Medical Record

structured information about transactions or individuals is
embedded within formal receipt templates, while preserv-
ing the completeness and correctness of all specified details.
The generation process applied a systematic prompt style to
ensure consistency, accuracy, and validity.

To create the dataset, random attributes were generated
for fictional individuals, including fields such as name, and
optionally age, city, and email. These attributes were or-
ganized into dictionaries, with each entry representing a
unique individual. Figure 2 depicts the random person gen-
eration process for the Receipt Dataset.

Randomizing attributes ensured diversity and tested each
LLM’s ability to handle varying input fields effectively. The
prompt shown in Figure 7 guided each LLM to generate
structured receipts that explicitly included every attribute
from the input dictionary. This prompt enforced the inclu-

Problem Statement
- Write a structured receipt for each

individual listed below.
Constraints
- Ensure that every value in the dictionary

is included exactly as provided.
- The values must be explicitly stated in the

receipt so they can be verified using
‘.contains({{people}})‘.

Input
- ‘people‘: A list of randomly generated

dictionaries representing individuals.
Output Format
Write receipts using the following format:
Receipt for Person: X

- Name: [Name] (required)
- Age: [Age] (optional)
- City: [City] (optional)
- Email: [Email] (optional)

Ensure all names are listed exactly as shown
in the dictionary and only include optional
fields if they are provided.

Figure 7. Prompt Generating Receipt Records

5

sion of all specified attributes and ensured the generated re-
ceipts follow the required structure and formatting. Figure 8
shows examples of LLM-generated receipts.

Receipt for Person 1
- Name: dkmotp

- Age: 3
Receipt for Person 2
- Name: mlumld

- City: London
Receipt for Person 3
- Name: fanonr

- Email: uytgoy@example.com
Receipt for Person 4
- Name: jntsxr

- Age: 33
- City: New York
- Email: xqnmth@example.com

Figure 8. LLM-generated Receipt Records

3.2 Stage Two: Assessment and Refinement
The second stage of our study evaluated outputs from

three LLMs—ChatGPT-4o, Claude, and Gemini—using the
datasets introduced in Section 3.1. Building on Stage One’s
metrics, we assessed each prompt style for accuracy, effi-
ciency, and token cost, providing actionable insights into
their relative performance. As detailed in Section 4, this
analysis highlights the strengths, limitations, and trade-
offs of all six styles across the Personal Stories, Medical
Records, and Receipts datasets.

Stage Two employed six distinct prompt styles—JSON,
YAML, CSV, API function calls, Simple Prefixes, and Hy-
brid CSV/Prefix—each crafted to represent structured data
in a specific format. These styles were applied to test how
effectively each LLM could generate outputs that were both
accurate and efficient, as described below.

The JSON prompt Figure 9 instructs each LLM to create
a structured JSON output adhering to a predefined schema.
This format is hierarchical and suitable for applications re-

Create valid JSON output using this schema:
{ "people": [{

"name": "<name>",
"age": <age>,
"city": "<city>",
"email": "<email>"

},
... # Repeat for other people in story
]

}
If any attributes (name, age, city, email)
are not present for a person in the story,
omit them from that person’s JSON object.

Figure 9. Prompt in JSON Format

quiring nested structures. The YAML prompt shown in
Figure 10 emphasizes human-readability while maintaining

strict formatting standards, making it a versatile option for
both human and machine interpretation.
Create valid YAML output using this schema:

people:
- name: <name>
- age: <age>
- city: <city>
- email: <email>
Repeat for other people in story

If any attributes (name, age, city, email)
aren’t present for a person in the story,
omit that attribute from that YAML object.

**Ensure the YAML output begins with
’‘‘‘yaml’ and ends with ’‘‘‘’.**

Figure 10. Prompt in YAML Format
The CSV prompt shown in Figure 11 represents the data

in a flat, tabular format, ensuring simplicity and compatibil-
ity with data analysis tools. The API function call prompt

Create a CSV file based on this schema:
Name, Age, City, Email

If any attributes (Name, Age, City, Email)
are not present for a person in the story,
leave that field blank in the CSV output.

**Ensure the CSV output begins with
’‘‘‘csv’ and ends with ’‘‘‘’.**

Figure 11. Prompt in CSV Format

in Figure 12 simulates an API interaction by formatting the
data as function arguments in JSON, challenging each LLM
to meet schema requirements precisely.

The Simple Prefix prompt shown in Figure 13 generates
structured text using labeled fields (e.g., ‘Name:‘, ‘Age:‘),
focusing on human-readability and lightweight represen-
tation. Finally, the Hybrid CSV/Prefix prompt shown in
Figure 14 combines elements of tabular data and prefixed
text, requiring each LLM to maintain placeholders for all
attributes, even when values are absent.

Each of these six prompts was crafted carefully to eval-
uate how effectively each LLM interpreted and adhered to
the provided instructions. The outputs generated from these
prompts were then validated against the three Personal Sto-
ries, Medical Records, and Receipts databases to measure
accuracy. Each dataset was generated using prompts that
were identical across ChatGPT-4o, Claude, and Gemini to
provide a fair comparison by avoiding any LLM-specific
tailoring. This approach ensured our evaluations reflected
each LLMs’ inherent capabilities without introducing bias
from prompt tailoring [6].

We evaluated the performance of these six prompt styles
systematically by applying them to the three datasets for
all three LLMs. Our assessment identified the strengths

6

Use OpenAI’s API to invoke a function named
‘answer‘ with the following schema:
{ "$schema":

"http://json-schema.org/draft-07/schema#",
"type": "object",
"properties": {

"people": {
"type": "array",
"items": {
"type": "object",
"properties": {

"name": {
"type": "string"

},
"age": {

"type": "string"
},
... # Repeat for city & email

},
"required": ["name"]

} } },
"required": ["people"]

}
For each person in the story, include their
information as an object within the "people"
array. If any attributes (name, age, city,
email) aren’t present for a person in the
story, omit that parameter in their object.

**Ensure the API function call output begins
with ’‘‘‘json’ and ends with ’‘‘‘’.**

Figure 12. Prompt in API Function Call Format
and weaknesses of each prompt style by comparing LLM-
generated outputs against expected data via the following
three measures:

• Accuracy measures. which calculated the percentage
of attributes correctly included in the generated output,

• Token usage measures, which evaluated the number of
tokens consumed by each prompt style for each LLM,
as token efficiency directly correlates with cost,

• Time efficiency measures, which computed response
times for generating outputs to assess the suitability of
each LLM for real-time or batch processing tasks.

Our schema validation [4] process ensured every at-
tribute from the input datasets was reflected accurately in
the generated LLM outputs. As discussed in Section 4 be-
low, the findings from Stage Two codified actionable rec-
ommendations when selecting the most effective LLM and
prompt style combinations for different structured data gen-
eration tasks.

4 Analysis of Experiment Results
This section compares the performance of ChatGPT-

4o, Claude, and Gemini’s in accordance with the assess-
ment process described in Section 3.2. This analysis builds

Create structured text output using prefixes
based on this schema where available:

Name: <name>
Age: <age>
City: <city>
Email: <email>

If any attributes (Name, Age, City, Email)
are not present for a person in the story,
omit that line in the output.

**Ensure each person’s details are
separated in output.**

Figure 13. Prompt in Simple Prefix Format

Create structured output using a hybrid of
CSV and simple prefixes based on this
schema,:

row: name, age, city, email
Ensure the first row includes the header and
each column has a placeholder, even if the
value is not present.

For each person in the story, extract their
name, age, city, and email, and format it
as a CSV string prefixed by ’row’. The first
line must always be "row: name, age, city,
email". For subsequent rows, if any of these
attributes are not present for a person,
leave that field empty while keeping the
comma as a placeholder.

**Ensure the Hybrid CSV/Prefix output begins
with ’‘‘‘hybrid’ and ends with ’‘‘‘’.**

The output should retain all columns in the
order specified, even if some values are
missing. Use the information extracted from
this story:
{ In a twist of fate that only destiny could
orchestrate, dkmotp, a bright-eyed curious
3-year-old, found himself at a bustling
carnival in the heart of London. Just steps
away, mlumld, who had spent her entire life
in this vibrant city, was mesmerized by the
lively atmosphere, unaware her path was
about to cross with others in strange ways.
As fanonr admired the colorful parade, busy
typing an email to uytgoy example.com, she
accidentally bumped into jntsxr, a 33-year-
old from New York who was in town to escape
the familiar chaos of his life. He quickly
glanced at his phone to ensure nothing had
happened to his email draft addressed to
xqnmth@example.com. Little did they know,
their lives were about interconnect by the
most unexpected series of events.}

Figure 14. Prompt in Hybrid CSV Simple Prefix
Format

7

upon our previous GPT-4o-focused evaluation [8], which
explored the trade-offs among three prompt styles (JSON,
YAML, Hybrid CSV/Prefix) using a single-model setup. In
this extended study, we broaden the scope significantly by
evaluating six prompt styles across three advanced LLMs.
While the datasets and visualization strategies (e.g., prompt
style vs. accuracy, token cost, and generation time) retain
elements from our prior methodology, all results, graphs,
and comparisons have been re-executed with the expanded
set of prompt styles and LLMs to ensure comprehensive,
model-specific insights.

4.1 Analysis of ChatGPT-4o Experiment Results
We first analyze the results of applying ChatGPT-4o

across our three Patient Information, Personal Story, and
Receipt datasets for each of the three accuracy, token usage,
and time efficiency measures.

4.1.1 Accuracy Analysis for ChatGPT-4o
Figure 15 depicts ChatGPT-4o’s accuracy for all six prompt
styles and three datasets. The results indicate ChatGPT-

Figure 15. ChatGPT-4o Accuracy by Prompt
Style and Type (extended from [8])

4o achieves consistently high accuracy (nearly 100%) for
structured datasets (i.e., Patient Information and Receipt)
across all prompt styles. Its performance declines sig-
nificantly, however, for the narrative-style Personal Story
dataset, where its accuracy ranges between 20%-40%.

ChatGPT-4o’s disparity in performance highlights its
challenges when structuring narrative data compared to
well-structured formats. The API Function Call, YAML,
and Hybrid CSV/Prefix prompt styles exhibit strong perfor-
mance, particularly for structured datasets. JSON demon-
strates variability in accuracy, however, particularly for Per-
sonal Story data. These results underscore ChatGPT-4o’s
strengths in handling structured data formats, while reveal-
ing its limitations in unstructured and narrative contexts.

4.1.2 Token Usage Analysis for ChatGPT-4o
Figure 16 shows ChatGPT-4o’s token usage for all six
prompt styles and three datasets. These results show the

Figure 16. ChatGPT-4o Token Usage by Prompt
Style and Type (extended from [8])

API Function Call and JSON prompt styles consume the
highest number of tokens, particularly for Patient Informa-
tion and Personal Story datasets, which generate verbose
and structured outputs that increase token usage.

In contrast, the CSV prompt style exhibits the low-
est token usage across all dataset types, demonstrating
ChatGPT-4o’s efficiency in producing concise tabular out-
puts. Among the dataset types, the Receipt dataset consis-
tently shows lower token usage for all prompt styles. This
result reflects the reduced complexity and structured nature
of ChatGPT-4o for transactional data.

The Hybrid CSV/Prefix and Simple Prefixes prompt
styles balance token usage and maintain moderate verbosity.
These results highlight ChatGPT-4o’s ability to minimize
token consumption while ensuring high-quality outputs for
structured and semi-structured datasets. ChatGPT-4o does
exhibit notable variability, however, influenced by both
prompt style and dataset type.

4.1.3 Time Analysis for ChatGPT-4o
Figure 17 visualizes the processing times of ChatGPT-4o
across all the prompt styles and dataset types. These results

Figure 17. ChatGPT-4o Time Taken by Prompt
Style and Type (extended from [8])

indicate that the API Function Call and JSON prompt styles
exhibit the highest processing times, particularly for Patient

8

Information and Personal Story datasets. JSON processing
for Patient Information reaches over ten seconds, reflecting
the complexity of generating detailed structured outputs.

In contrast, the CSV prompt style and Receipt dataset
show the lowest processing times across all prompt styles,
with times often below three seconds. These results show
ChatGPT-4o generates concise outputs efficiently for trans-
actional data in simple formats. The Hybrid CSV/Prefix
and YAML prompt styles show moderate processing times
across datasets, balancing complexity and output quality.

In general, processing times for Patient Information
datasets remain consistently higher than for other types,
highlighting the intricacy of these structured inputs. These
findings underscore ChatGPT-4o’s efficiency in simpler for-
mats and transactional data while revealing its challenges in
handling complex, hierarchical outputs.

ChatGPT-4o demonstrates a mix of strengths and weak-
nesses across accuracy, token use, and runtime. It performs
well on structured datasets like Patient Information and
Receipt, particularly with YAML and API Function Call
prompts, but struggles with the more open-ended Personal
Story dataset. Its efficiency with compact formats like CSV
makes it ideal for token-constrained tasks, though verbose
styles such as JSON and API Function Call significantly in-
crease token consumption.

Finally, ChatGPT-4o exhibits competitive time effi-
ciency by processing simpler formats like CSV and Receipt
datasets quickly. However, more complex prompt styles and
datasets, such as Patient Information and JSON, demand
significantly longer processing times. These results reaffirm
and extend our earlier findings on ChatGPT-4o [8], confirm-
ing its strength in structured data generation and identifying
new trends when evaluated across a broader spectrum of
prompt styles and datasets.

4.2 Analysis of Experiment Results for Claude
This section analyses Claude’s performance across the

three Personal Stories, Medical Records, and Receipt
Records datasets described in Section 3.1. Claude was eval-
uated using customized prompts designed to leverage its
strengths in generating structured outputs while adapting to
the varying complexities of the datasets. As with ChatGPT-
4o, accuracy, token usage, and generation time metrics were
analyzed to quality how well the Claude LLM (1) cap-
tured the essential attributes of each dataset and (2) how
effectively it handled the trade-offs between verbosity, effi-
ciency, and output quality. This analysis provides insights
into Claude’s ability to handle structured and narrative data,
offering a comparative perspective against other LLMs.

4.2.1 Accuracy Analysis for Claude
Figure 18 depicts Claude’s accuracy across various prompt
styles and dataset types. These results reveal that Claude
achieves consistently high accuracy (close to 100%) for

Figure 18. Claude Accuracy by Prompt Style and
Type

structured datasets, such as Patient Information and Receipt
across all prompt styles, demonstrating its strength in han-
dling structured data effectively. Its performance drops sig-
nificantly, however, for the narrative-style Personal Story
dataset, with accuracy stabilizing at around 40% across all
prompt styles.

This analysis highlights Claude’s uniform performance
across different prompt styles (such as API Function Call,
YAML, and CSV), reflecting its robustness in generating
output for structured datasets. For less structured datasets,
such as Personal Story, Claude’s accuracy remains consis-
tent regardless of prompt style, indicating that dataset com-
plexity, rather than prompt structure, plays a more signif-
icant role in its performance. These findings underscore
Claude’s reliability in structured tasks, while identifying ar-
eas for improving its narrative-style data generation.

4.2.2 Token Usage Analysis for Claude

Figure 19 depicts the token usage of the Claude LLM across
various prompt styles and dataset types. These results indi-

Figure 19. Claude Token Usage by Prompt Style
and Type

cate that API Function Call and JSON prompt styles con-
sume the highest number of tokens, particularly for Patient
Information and Personal Story datasets, where token us-
age exceeds 700 tokens. This finding reflects the verbose
and detailed outputs required for these structured tasks.

9

In contrast, the CSV and Simple Prefixes prompt styles
show the lowest token usage for Claude. In particular, the
Receipt dataset consistently shows minimal token consump-
tion. This efficiency highlights Claude’s adaptability in gen-
erating concise outputs for simpler datasets and formats.

The moderate range of token usage for the Hybrid
CSV/Prefix and YAML prompt styles reveal how Claude
balances verbosity and efficiency. Across all prompt styles,
Patient Information datasets consistently require the most
tokens, followed by Personal Story, while Receipt datasets
remain the least token-intensive. These results show
Claude’s ability to balance output quality and verbosity
based on dataset complexity and output requirements.

4.2.3 Time Analysis for Claude
Figure 20 shows Claude’s time performance across the
prompt styles and dataset types. These results indicate the

Figure 20. Claude Time Taken by Prompt Style
and Type

API Function Call and JSON prompt styles require the most
time for processing, with Patient Information datasets tak-
ing over twelve seconds on average. This finding reflects the
complexity of generating detailed and structured outputs for
these prompt styles and datasets.

Conversely, the CSV prompt style demonstrates the
fastest processing times, particularly for the Receipt dataset,
where times fall below 2 seconds. This efficiency highlights
Claude’s ability to handle simple tabular formats and trans-
actional data effectively.

Hybrid CSV/Prefix and YAML prompt styles exhibit
moderate processing times, balancing the trade-offs be-
tween complexity and efficiency. Across all prompt styles,
Patient Information consistently requires the most process-
ing time, followed by Personal Story, while Receipt datasets
remain the fastest to process. These results underscore
Claude’s adaptability in balancing processing time with out-
put complexity and dataset characteristics.

Claude’s performance across the accuracy, token usage,
and time metrics show its strengths in handling structured
data and its limitations with narrative-style datasets. Claude
achieves near-perfect accuracy for structured datasets, such

as Patient Information and Receipt, regardless of the prompt
style used. Its performance declines significantly, however,
for the narrative-style Personal Story dataset, where accu-
racy stabilizes around 40% across prompt styles.

Claude’s token usage demonstrates efficiency for sim-
pler prompt styles like CSV and Simple Prefixes, especially
for the Receipt dataset. It requires substantially more to-
kens, however, for verbose prompt styles like API Func-
tion Call and JSON, particularly for Patient Information and
Personal Story.

Claude’s processing times are similarly dataset-
dependent, with Patient Information and Personal Story
requiring the longest times for API Function Call and JSON
prompt styles, which exceed twelve seconds. Conversely,
simpler prompt styles like CSV and datasets like Receipt
exhibit faster processing times, often below two seconds.
These results emphasize Claude’s capability for structured
data tasks while revealing areas to improve its efficiency
and performance for narrative or unstructured data.

4.3 Gemini Analysis of Experiment Results
This section examines the performance of the Gemini

LLM across the three datasets described in Section 3.1 in
accordance with the accuracy, token usage, and processing
time metrics described in Section 3.2. This analysis as-
sessed Gemini’s adaptability and effectiveness in handling
structured, semi-structured, and narrative data and quan-
tified Gemini’s strengths in producing structured outputs
while identifying its trade-offs in computational efficiency
and output quality across diverse datasets.

4.3.1 Accuracy Analysis for Gemini
Figure 21 visualizes the accuracy of Gemini across the var-
ious prompt styles and dataset types. These results in-

Figure 21. Gemini Accuracy by Prompt Style and
Type

dicate consistently high accuracy for structured datasets
like Patient Information and Receipt across most prompt
styles, with scores nearing 100%. This finding demon-
strates Gemini’s capability to generate reliable outputs for
well-structured data.

10

In contrast, Gemini struggled with the narrative-style
Personal Story dataset, where accuracy stabilized at ∼40%
across all prompt styles, reflecting limitations in structur-
ing less formal, narrative inputs. Among the prompt styles,
API Function Call and YAML exhibit the highest accuracy
for structured datasets, while Hybrid CSV/Prefix shows
a slight decline in accuracy for Patient Information, sug-
gesting challenges in mixed-format data generation. Over-
all, Gemini displays strong adaptability to various prompt
styles, excelling in structured tasks while maintaining con-
sistent but moderate performance for narrative data.

4.3.2 Token Usage Analysis for Gemini
Figure 22 shows Gemini’s token usage across various
prompt styles and dataset types. These results indicate that

Figure 22. Gemini Token Usage by Prompt Style
and Type

API Function Call and JSON prompt styles require the high-
est number of tokens, particularly for Patient Information
and Personal Story, where token usage exceeds 500 tokens.
This finding reflects the verbose and detailed outputs gener-
ated by Gemini for structured and semi-structured datasets.

In contrast, the CSV prompt style demonstrates the low-
est token usage, particularly for the Receipt dataset, where
usage remains consistently below 100 tokens. This effi-
ciency highlights Gemini’s ability to adapt its verbosity to
simpler formats and transactional data.

Hybrid CSV/Prefix and YAML prompt styles fall within
a moderate range of token usage, balancing output verbosity
and efficiency effectively. Across all prompt styles, Patient
Information consistently requires the most tokens, followed
by Personal Story, while Receipt datasets remain the least
token-intensive. These findings emphasize Gemini’s ability
to balance token consumption while maintaining high out-
put quality across diverse datasets and prompt styles.

4.3.3 Time Analysis for Gemini
Figure 23 depicts Gemini’s time performance across all the
prompt styles and dataset types. These results show that the
API Function Call prompt style requires the longest pro-
cessing time across all datasets, particularly for Personal

Figure 23. Gemini Time Taken by Prompt Style
and Type

Story, which exceeds ten seconds. This finding reflects the
additional complexity and verbosity required for narrative-
style data in this prompt style.

Conversely, the CSV and Hybrid CSV/Prefix prompt
styles demonstrate the shortest processing times, especially
for the Receipt dataset, where times consistently remain be-
low four seconds. This finding shows Gemini’s ability to
handle structured and simple formats efficiently.

YAML and JSON prompt styles exhibit moderate pro-
cessing times, balancing output quality and computational
demand. Across all prompt styles, Patient Information and
Receipt datasets display consistent performance, whereas
Personal Story remains the most variable and often the
most time-intensive. These results emphasize Gemini’s ef-
ficiency for structured data and its adaptability to diverse
prompt styles and dataset types.

Gemini demonstrates strong performance across the ac-
curacy, token usage, and time metrics, with clear strengths
in handling structured data and moderate adaptability for
narrative-style inputs. It achieves near-perfect accuracy
for structured datasets like Patient Information and Re-
ceipt across most prompt styles, while its performance
for the narrative-style Personal Story dataset is consistent
but lower, stabilizing around 40%. Gemini’s token usage
balances verbosity and efficiency effectively, with prompt
styles like CSV and Hybrid CSV/Prefix requiring minimal
tokens, particularly for simpler datasets like Receipt.

However, verbose prompt styles such as API Function
Call and JSON exhibit higher token usage, especially for
complex datasets like Patient Information and Personal
Story. Processing times further reflect this trend, with
API Function Call being the most time-intensive, particu-
larly for Personal Story datasets. In contrast, the CSV and
Hybrid CSV/Prefix prompt styles demonstrate the fastest
times, especially for the Receipt dataset. These results high-
light Gemini’s adaptability and efficiency in structured data
tasks, while also revealing areas for improvement in han-
dling narrative or semi-structured data with less verbosity
and faster response times.

11

5 Comparison of ChatGPT-4o, Claude, and
Gemini LLM Models

This section provides a comparative analysis of the per-
formance of GPT-4o, Claude, and Gemini on the three
datasets described in Section 3.1. This analysis builds di-
rectly upon our prior study of prompt style efficiency using
GPT-4o and three prompt formats (JSON, YAML, and Hy-
brid CSV/Prefix) [8]. In this extended work, we introduce
three additional prompt styles (CSV, API Function Call,
and Simple Prefixes) and evaluate them across three ad-
vanced LLMs. While we reuse elements of the experimental
design and visualization formats (such as accuracy/token/-
time comparisons), all results have been independently re-
generated and expanded to support model-level comparative
analysis. As before, our evaluation focuses on the accuracy,
token usage, and processing time metrics to highlight the
pros and cons of each LLM across various prompt styles
and data types. By examining their adaptability to struc-
tured, semi-structured, and narrative datasets, this compari-
son quantifies unique characteristics of each LLM and iden-
tifies trade-offs between efficiency, quality, and computa-
tional demands.

5.1 Why Models Differ: Mechanistic Hypotheses
and Qualitative Evidence

Our cross-model results reveal a pattern: Claude attains
the highest accuracy, ChatGPT-4o is most efficient in time
and tokens, and Gemini balances the two. We hypothesize
the following reasons for this pattern:

• Alignment and decoding preferences. Claude’s con-
servative, instruction-faithful decoding appears to fa-
vor completeness of fields (higher accuracy) at the cost
of verbosity (more tokens and time).

• Efficiency tuning. ChatGPT-4o yields lean outputs
(fewer tokens, lower latency), occasionally omitting
low-salience attributes in narrative contexts, which can
reduce measured attribute recall.

• Balanced priors. Gemini exhibits moderate ver-
bosity and accuracy, suggesting a decoding strategy
that trades a small amount of precision for efficiency
across formats.

To ground these hypotheses, we reviewed representative
outputs and categorized common error types into (i) omis-
sion (required field missing), (ii) type/format (value present
but malformatted), and (iii) misassignment (value placed
under the wrong key).

Preliminary inspection suggests that Claude tends to
minimize omission errors, supporting its higher accuracy
on hierarchical outputs, while ChatGPT-4o favors brevity,
occasionally dropping low-salience fields in favor of token
and time efficiency. Gemini balances these tendencies but

shows slightly higher rates of misassignment in narrative-
style tasks.

A full quantitative audit of error categories will be our fo-
cus in future work, as discussed in Section 7. Nevertheless,
this taxonomy provides a mechanism-oriented lens for in-
terpreting the observed trade-offs in accuracy and efficiency
across models.

5.2 Comparing the Accuracy of ChatGPT-4o,
Claude, and Gemini

The comparative accuracy performance of ChatGPT-4o,
Claude, and Gemini across various prompt styles is shown
in Figure 24. This figure shows that Claude is the most ac-

Figure 24. Accuracy Comparison Across LLMs
(extended from [8])

curate LLM, consistently achieving accuracy levels above
80% across all prompt styles. Its ability to handle di-
verse input structures and datasets underscores its robust-
ness. ChatGPT-4o also demonstrates steady performance,
with accuracy levels ranging between 75% and 80%, re-
flecting its adaptability to various prompt styles.

In contrast, Gemini exhibits variable accuracy, perform-
ing well in structured prompt styles like YAML and API
Function Call but showing significant declines in Hybrid
CSV/Prefix, where its accuracy dips below 65%. This find-
ing highlights potential challenges in managing mixed-style
prompts for certain datasets. Among the prompt styles, API
Function Call and YAML show high accuracy for all mod-
els, while Hybrid CSV/Prefix poses difficulties for Gem-
ini. These results highlight Claude’s superior versatility,
ChatGPT-4o’s stability, and Gemini’s specialized strengths
with notable areas for improvement.

5.3 Comparing the Token Usage of ChatGPT-4o,
Claude, and Gemini

Figure 25 compares the token usage of ChatGPT-4o,
Claude, and Gemini across various prompt styles. These re-
sults show ChatGPT-4o consistently consuming the fewest
tokens across all prompt styles, underscoring its efficiency
in generating concise outputs. This efficiency is particularly

12

Figure 25. Token Usage Comparison Across
LLMs (extended from [8])

notable in prompt styles like CSV, Simple Prefixes, and Hy-
brid CSV/Prefix, where ChatGPT-4o’s token usage remains
much lower than Claude and Gemini’s usage.

In contrast, Claude exhibits the highest token usage
for most prompt styles, indicating a propensity to pro-
duce more verbose responses. This trend is particular ev-
ident in the API Function Call and JSON prompt styles,
where Claude’s token consumption surpasses ChatGPT-4o
and Gemini by a substantial margin. Gemini positions it-
self between ChatGPT-4o and Claude, balancing verbosity
and token efficiency, and demonstrates moderate token us-
age across all prompt styles.

These observations suggest that ChatGPT-4o is the most
token-efficient model, which is advantageous in scenar-
ios (such as applications with strict token limits or cost
constraints) where minimizing token consumption is criti-
cal. Claude’s higher token usage may be beneficial for use
cases that require more detailed and elaborate responses, but
could be less suitable in contexts where token economy is
essential. Gemini offers a middle ground, providing a bal-
ance between detailed output and token efficiency, making
it a versatile option for a variety of applications.

5.4 Comparing Time Performance of ChatGPT-
4o, Claude, and Gemini

Figure 26 depicts the comparative time performance of
ChatGPT-4o, Claude, and Gemini across various prompt
styles. This figure shows that Claude consistently demon-
strates the longest processing times, particularly for API
Function Call and JSON, where times approach nine sec-
onds. This finding reflects its detailed output generation
process, which prioritizes verbosity over efficiency.

In contrast, ChatGPT-4o consistently delivers the fastest
processing times across all prompt styles, maintaining a
range between four and six seconds. Even for more com-
plex prompt styles like JSON, ChatGPT-4o’s time efficiency
highlights its streamlined approach to output generation.
Gemini exhibits variable performance, balancing efficiency

Figure 26. Time Comparison Across LLMs (ex-
tended from [8])

for prompt styles like CSV and Hybrid CSV/Prefix while
showing spikes in time for JSON, where its processing time
aligns with Claude’s.

For simpler prompt styles, such as CSV, all three mod-
els demonstrate shorter processing times, with ChatGPT-4o
leading in efficiency. These results emphasize ChatGPT-
4o’s time efficiency, Claude’s verbosity at the cost of longer
processing times, and Gemini’s balanced approach with oc-
casional variability Figure 26.

5.5 Comparing ChatGPT-4o, Claude, and Gemini
Performance Across All Metrics

A comparative analysis of ChatGPT-4o, Claude, and
Gemini shows distinct trade-offs in performance across the
accuracy, token usage, and time efficiency metrics. We
summarize these results through two complementary visu-
alizations, each offering unique insights into the data.

5.5.1 Metric-by-Metric Comparison Using Bar Charts
Figure 27 shows a multi-metric bar chart that extends
prior visualizations [8] to enable cross-model comparisons
across six prompt styles. The figure reveals clear trade-

Figure 27. Metric-by-Metric Performance of
ChatGPT-4o, Claude, and Gemini (extended
from [8])

13

offs: Claude leads in accuracy (85%), particularly on com-
plex formats like JSON and YAML; ChatGPT-4o, though
slightly lower at 78%, delivers the best token and time effi-
ciency, making it ideal for cost-sensitive tasks; and Gemini,
at 76%, provides balanced but moderate results across all
metrics.
5.5.2 Holistic Trade-Off Analysis Using Radar Charts
Figure 28 provides a radar chart summarizing the same met-
rics, offering a holistic view of the trade-offs among the
three LLMs. Unlike the bar chart in Figure 27, this figure

Figure 28. Aggregate Comparison of ChatGPT-
4o, Claude, and Gemini Performance (extended
from [8])

visualizes LLM strengths and weaknesses via a unified pro-
file, allowing a more intuitive understanding of how each
LLM balances its capabilities. For instance, Claude’s focus
on accuracy is visually distinct from ChatGPT-4o’s domi-
nance in token and time efficiency, whereas Gemini shows
a steady but less pronounced performance across all axes.

We intentionally included both Figure 27 and 28 since
each serves a different analytical purpose. The bar chart
is ideal for detailed, metric-specific comparisons, enabling
precise quantification of each LLM’s strengths and weak-
nesses. In contrast, the radar chart facilitates a high-level
overview, which helps stakeholders grasp LLM trade-offs
quickly for practical decision-making.

5.5.3 Performance Analysis
Claude achieves the highest accuracy at 85%, particularly
excelling in tasks requiring complex hierarchical represen-
tations, such as JSON and YAML prompts. This finding
highlights Claude’s strong ability to preserve the structural

integrity of outputs. ChatGPT-4o, with an accuracy of 78%,
offers consistent performance across most prompt styles but
falls short of Claude’s precision in highly structured out-
puts. While Gemini trails slightly at 76%,it exhibits com-
petitive accuracy, showing potential for handling structured
tasks effectively, but with some room for refinement.

Token efficiency places ChatGPT-4o as the most
resource-efficient model, achieving a score of 90%, sig-
nificantly outperforming Claude (60%) and Gemini (70%).
This find demonstrates ChatGPT-4o’s capability to generate
concise and compact outputs while maintaining acceptable
accuracy levels. Both Claude and Gemini show higher to-
ken usage, particularly in verbose formats such as JSON,
indicating a trade-off between verbosity and precision.

ChatGPT-4o again emerges as the time efficiency leader
with a score of 95%, delivering faster response times across
a majority of prompt styles. Gemini follows with a moder-
ate time efficiency score of 75%, balancing speed and ac-
curacy reasonably well. Claude lags behind at 60%, reflect-
ing its computational overhead and longer processing times,
particularly for resource-intensive tasks.

5.5.4 Trade-Offs and Practical Recommendations
Our findings reveal clear trade-offs among ChatGPT-4o,
Claude, and Gemini, providing practical guidance for
matching models and prompt styles to application needs.
Claude delivers the highest accuracy, especially in complex
formats like JSON and YAML, where it excels at preserving
nested hierarchies and attribute completeness. These gains,
however, come with higher token costs and slower runtimes.

ChatGPT-4o offers the strongest balance of speed, effi-
ciency, and accuracy. It consistently minimizes token usage
and processing time while maintaining reliable accuracy,
making it the best fit for cost-sensitive or real-time scenar-
ios where latency and budget constraints dominate. Gemini
provides steady, all-around performance, making it a flex-
ible choice for general-purpose structured data generation.
Still, its lower accuracy in styles like Hybrid CSV/Prefix
and greater variability on verbose prompts suggest it may
require additional tuning for specialized use cases.

This expanded multi-model trade-off analysis builds on
the insights from our prior work [8], which focused on a
single-model (GPT-4o) comparison. By introducing model-
specific constraints and behaviors, our findings offer a more
comprehensive framework for practitioners aiming to opti-
mize structured data workflows in LLM applications.

5.5.5 Summarizing Insights in a Comparative Table
Table 1 provides a comparative analysis of ChatGPT-4o,
Claude, and Gemini across key accuracy, token usage, and
time efficiency metrics. This table highlights the distinct
strengths and weaknesses of each LLM model when evalu-
ated against multiple methods. Specifically, the table sum-
marizes the overall accuracy trends, the best-performing

14

methods for accuracy, token usage efficiency, and time effi-
ciency, revealing trade-offs and areas where each LLM ex-
cels or falls short.

This summary table expands upon the single-model
comparison in our earlier work [8] by offering LLM-
specific insights that capture model-wise trade-offs between
accuracy, token cost, and time performance.

Table 1. Comparative Analysis of ChatGPT-4o,
Claude, and Gemini

As shown in Table 1, Gemini delivers balanced perfor-
mance, performing especially well with YAML and Sim-
ple Prefix prompts. Yet its lower accuracy and higher vari-
ability on Hybrid CSV/Prefix highlight the need for further
tuning in mixed-format contexts. Across all three models,
JSON and YAML excel at representing hierarchical data
but incur heavy token costs due to verbosity. By contrast,
CSV and Simple Prefix prompts are faster and more cost-
efficient, though less adaptable to complex structures. The
Hybrid CSV/Prefix approach aims to merge tabular clarity
with prefix guidance, showing promise but inconsistent re-
sults across models.

In summary, Claude excels in accuracy for structured
and verbose outputs. In contrast, ChatGPT-4o prioritizes
efficiency and time, whereas Gemini offers a balanced ap-
proach while revealing areas for refinement in mixed-format
tasks. These findings provide actionable insights for select-
ing the most suitable model and format based on specific
application requirements.

6 Related Work
Recent advancements in LLMs, such as ChatGPT-4o,

Claude, and Gemini, have significantly expanded their ap-
plicability to structured data generation tasks in domains
like healthcare, e-commerce, and personalized content syn-
thesis. Prior research has examined prompt engineering
strategies, cross-LLM comparisons, performance metrics,
and domain-specific applications. Building on these foun-
dations, more recent work has extended findings through
multi-model, multi-prompt frameworks and highlighted the

importance of broader evaluation lenses, including halluci-
nation, safety, and benchmarking rigor. This section sur-
veys these six areas and contextualizes our contributions in
relation to existing research, as shown in Figure 29.

Figure 29. Structured Data Generation with
LLMs (adapted from [8])

6.1 Prompt Engineering: Crafting Effective and
Structured Outputs

Prompt design plays a critical role in harnessing the ca-
pabilities of LLMs to generate accurate and structured out-
puts. Prior studies have investigated prompt styles such as
JSON, YAML, CSV, and prefix-based prompt styles, ana-
lyzing their efficacy in guiding model behavior. Notably, re-
search by Brown et al. (2020) [6] introduced prompt-based
prompt styles to instruct generative models, highlighting
the importance of input formatting. Most studies tailored
prompts for specific LLMs, however, potentially biasing
cross-model evaluations. Our work contributes to this field
by employing a standardized set of prompts across GPT-4o,
Claude, and Gemini, ensuring consistency and fairness in
comparative analysis.

6.2 Cross-LLM Comparisons: Evaluating LLMs
Unnder Consistent Conditions

Existing work often focuses on the isolated performance
of a single LLM, such as OpenAI’s ChatGPT models or An-
thropic’s Claude. Few studies conduct direct comparisons
across multiple LLMs under standardized conditions. Raf-
fel et al. (2020) [21] compared various transformer-based
models in the T5 framework, emphasizing the need for
benchmark datasets to assess model robustness. Similarly,
Zhang et al. (2021) [11] explored cross-model evaluations
for task-specific applications but relied on tailored prompts.
In contrast, our study evaluates three leading LLMs on iden-
tical datasets using consistent prompts, providing a more
equitable basis for comparison.

15

6.3 Performance Metrics: Measuring Efficiency,
Accuracy, and Cost-effectiveness

Measuring LLM performance requires a multi-faceted
approach, incorporating key metrics, such as accuracy, to-
ken usage, and response time. Studies by Vaswani et al.
(2017) [23] and later refinements by OpenAI [2] and An-
thropic [1] emphasized token efficiency [3] as a key factor in
determining LLM scalability and cost-effectiveness. Other
research explored accuracy in generating structured out-
puts, particularly in domains like medical records and finan-
cial receipts that require hierarchical data representation.
Our work extends prior research by analyzing these met-
rics comprehensively across diverse datasets and prompt
styles, highlighting the trade-offs between verbosity, effi-
ciency, and generation quality.

6.4 Applications of LLMs in Healthcare, E-
commerce, and Storytelling

LLMs have increasingly being adopted and applied to
generate structured data in domains like healthcare, person-
alized storytelling, and transactional record management.
For instance, prior studies have demonstrated the use of
LLMs in generating synthetic medical records [15] for data
augmentation and training machine learning models. Sim-
ilarly, e-commerce applications have leveraged LLMs for
generating product descriptions [14] and receipt summaries.
Our datasets, including Personal Stories, Medical Records,
and Receipt Records, align with these use cases, enabling a
realistic evaluation of LLM performance in relevant scenar-
ios.

6.5 Extending Prior Findings Via a Multi-model,
Multi-prompt Framework

Our prior work [8] focused on evaluating three prompt
styles with GPT-4o. In contrast, our current study signifi-
cantly expands the prompt and model space. By conduct-
ing comparative evaluations across ChatGPT-4o, Claude,
and Gemini using six prompt styles, we generalize previous
conclusions and identify nuanced model-specific behaviors
and trade-offs. This broader framework provides a more ac-
tionable foundation for prompt design and model selection
in structured data applications.

6.6 Broader Evaluation Lens
Complementary literature on hallucination [16], safety

evaluation [19], and mathematical rigor in benchmark-
ing [13] motivates richer assessment axes beyond our core
triad. The considerations described in Section 7 are aligned
with these lenses and provide a path to integrate safety-
and-reliability perspectives into structured data generation
pipelines.

7 Limitations and Future Work
Our study emphasizes three reproducible metrics (accu-

racy, token cost, time) on randomized, controlled datasets

across three contexts. This scope omits several deployment-
oriented dimensions that we plan to incorporate:

• Robustness to noisy instructions and distractors, in-
cluding spelling errors, shuffled key orders, and extra-
neous tokens.

• Graceful handling of missing fields while preserving
schema placeholders in CSV/Hybrid outputs.

• Generalization to unseen schemas and attribute drift
common in production pipelines.

In Section 5.1, we introduced a preliminary qualitative
error taxonomy (omission, type/format, misassignment)
to interpret why models differ. While this taxonomy pro-
vides useful insights into alignment, efficiency, and trade-
offs among Claude, ChatGPT-4o, and Gemini, it remains
qualitative. A full quantitative audit of these error cate-
gories across datasets and prompt styles will be the focus of
future work, providing stronger empirical grounding for the
mechanistic hypotheses.

Our future work will therefore extend evaluation along
broader dimensions of robustness and reliability. This in-
cludes (i) a quantitative audit of error categories intro-
duced in Section 5.1, and (ii) expanded robustness testing
(e.g., noisy prompts, missing fields, and unseen schemas) to
strengthen the mechanistic explanations of model behavior
and provide deeper guidance for structured data generation
in real-world deployments.

Finally, while randomized attributes enable controlled
comparisons, they may under-represent domain-specific
edge cases and regulatory constraints present in real EMR
or e-commerce data. To address this, we are extending
our datasets with semi-synthetic corpora curated from real
schemas (de-identified) and will release scripts to reproduce
robustness tests.

8 Concluding Remarks
This paper presented a detailed methodology, compre-

hensive analysis, and practical recommendations stemming
from a study evaluating the impact of prompt styles on
structured data generation tasks with LLMs. Our study
results contribute to the growing body of knowledge on
prompt engineering and structured data generation with
LLMs. The following are lessons we learned from conduct-
ing the research presented in this paper:

• Trade-offs in prompt design are context-dependent.
Understanding the trade-offs associated with different
prompting techniques helps developers and data sci-
entists make informed choices that balance accuracy,
efficiency, and cost-effectiveness. For instance, hierar-
chical formats like JSON and YAML [9] offer superior
accuracy but at a higher token cost, whereas CSV and
simple prefixes [5] provide cost-efficient alternatives
with reduced flexibility for complex structures.

16

• Alternative formats deliver unique advantages. Al-
ternative formats, such as simple prefixes and hybrid
approaches, can offer high accuracy with reduced to-
ken costs in certain use cases. These formats are less
verbose and strike a balance between clarity and con-
ciseness, making them valuable for semi-structured
data, such as receipts or transactional records.

• Consistent prompts enhances evaluation fairness.
Using consistent prompts across different LLMs en-
sures fairness in evaluation and highlights the inherent
capabilities of each LLM. Our findings demonstrate
that standardized prompts provide a reliable baseline
for performance comparison to avoid biases caused by
prompt tailoring for specific LLMs.

• Efficiency gains vary across LLMs. The study re-
vealed significant differences in token usage and pro-
cessing times among ChatGPT-4o, Claude, and Gem-
ini. While ChatGPT-4o had the highest efficiency in
both token consumption and time, Claude excelled in
accuracy and Gemini struck a balance between the
two. These insights guide LLM selection for specific
use cases where speed or cost constraints are critical.

• Applications influence prompt selection. The selec-
tion of prompt styles can vary significantly based on
application domain. For example, our results demon-
strate how JSON and YAML formats are better suited
for domains like healthcare requiring hierarchical data
representation. Conversely, CSV and simple prefixes
excel in domains like e-commerce where token effi-
ciency and processing speed are critical. While our
datasets simulate healthcare (e.g., medical records) and
e-commerce (e.g., receipt records), our results general-
ize to similar structured data across these domains.

• Prompt design impacts outcomes. While our study
does not focus directly on iterative prompt refine-
ment [17], the results indicate that careful initial
prompt design plays a key role in determining the ac-
curacy and efficiency of LLM outputs. This finding
underscores the importance of selecting prompt styles
that align with the dataset’s complexity and intended
use case. Our future work will explore the role of it-
erative refinement in enhancing LLM output quality,
which is beyond the scope of this paper.

Overall, this paper extends our earlier work [8] by ex-
panding the prompt design space, model diversity, and eval-
uation depth. These contributions support a broader un-
derstanding of how LLMs can be effectively leveraged for
structured data generation in real-world applications.

Acknowledgements
We used ChatGPT-4o’s code generate capabilities to vi-

sualize the data and filter the datasets. Likewise, Claude

and Gemini’s outputs provided a comparative evaluation of
LLM performance across structured data generation tasks.
The contributions of these LLMs enriched the analysis and
insights presented in this study.

References

[1] Microsoft Copilot and Anthropic Claude AI in
Education and Library Service,.

[2] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. Gpt-4 Technical Report.
arXiv preprint arXiv:2303.08774, 2023.

[3] Ramon Maria Garcia Alarcia and Alessandro Golkar.
Optimizing Token Usage on Large Language Model
Conversations Using the Design Structure Matrix.
arXiv preprint arXiv:2410.00749, 2024.

[4] Jo Inge Arnes and Alexander Horsch. Schema-Based
Priming of Large Language Model for Data Object
Validation Compliance. Available at SSRN 4453361,
2023.

[5] Alexander Ball, Lian Ding, and Manjula Patel.
Lightweight Formats for Product Model Data
Exchange and Preservation. In PV 2007 Conference,
pages 9–11, 2007.

[6] Tom B. Brown, Benjamin Mann, Nick Ryder,
Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, et al. Language Models are
Few-shot Learners. arXiv preprint arXiv:2005.14165,
33:1877–1901, 2020.

[7] John Dagdelen, Alexander Dunn, Sanghoon Lee,
Nicholas Walker, Andrew S Rosen, Gerbrand Ceder,
Kristin A Persson, and Anubhav Jain. Structured
Information Extraction from Scientific Text with
Large Language Models. Nature Communications,
15(1):1418, 2024.

[8] Ashraf Elnashar, Jules White, and Douglas C.
Schmidt. Enhancing Structured Data Generation with
GPT-4o Evaluating Prompt Efficiency Across Prompt
Styles. Frontiers in Artificial Intelligence, Volume 8 -
2025, 2025.

[9] Malin Eriksson and Victor Hallberg. Comparison
Between JSON and YAML for Data Serialization.
The School of Computer Science and Engineering
Royal Institute of Technology, pages 1–25, 2011.

17

[10] Angela Fan, Mike Lewis, and Yann Dauphin.
Hierarchical Neural Story Feneration. arXiv preprint
arXiv:1805.04833, 2018.

[11] William Fedus, Barret Zoph, and Noam Shazeer.
Switch Transformers: Scaling to Trillion Parameter
Models with Simple and Efficient Sparsity. Journal
of Machine Learning Research, 23(120):1–39, 2022.

[12] Lin Guo. The Effects of the Format and Frequency of
Prompts on Source Evaluation and Multiple-Text
Comprehension. Reading Psychology,
44(4):358–387, 2023.

[13] Zijin Hong, Hao Wu, Su Dong, Junnan Dong, Yilin
Xiao, Yujing Zhang, Zhu Wang, Feiran Huang, Linyi
Li, Hongxia Yang, et al. Benchmarking Large
Language Models Via Random Variables. arXiv
preprint arXiv:2501.11790, 2025.

[14] Shashank Kedia, Aditya Mantha, Sneha Gupta,
Stephen Guo, and Kannan Achan. Generating Rich
Product Descriptions for Conversational
E-Commerce Systems. In Companion Proceedings of
the Web Conference 2021, pages 349–356, 2021.

[15] Gleb Kumichev, Pavel Blinov, Yulia Kuzkina, Vasily
Goncharov, Galina Zubkova, Nikolai Zenovkin,
Aleksei Goncharov, and Andrey Savchenko.
MedSyn: LLM-Based Synthetic Medical Text
Generation Framework. In Joint European
Conference on Machine Learning and Knowledge
Discovery in Databases, pages 215–230. Springer,
2024.

[16] Chaozhuo Li, Pengbo Wang, Chenxu Wang, Litian
Zhang, Zheng Liu, Qiwei Ye, Yuanbo Xu, Feiran
Huang, Xi Zhang, and Philip S Yu. Loki’s Dance of
Illusions: A Comprehensive Survey of Hallucination
in Large Language Models. arXiv preprint
arXiv:2507.02870, 2025.

[17] Zhexin Liang, Chongyi Li, Shangchen Zhou,
Ruicheng Feng, and Chen Change Loy. Iterative
Prompt Learning for Nnsupervised Backlit Image
Enhancement. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages
8094–8103, 2023.

[18] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao
Jiang, Hiroaki Hayashi, and Graham Neubig.
Pre-train, Prompt, and Predict: A Systematic Survey
of Prompting Methods in Natural Language
Processing. ACM Computing Surveys, 55(9):1–35,
2023.

[19] Songyang Liu, Chaozhuo Li, Jiameng Qiu, Xi Zhang,
Feiran Huang, Litian Zhang, Yiming Hei, and
Philip S Yu. The Scales of Justitia: A Comprehensive
Survey on Safety Evaluation of LLMs. arXiv preprint
arXiv:2506.11094, 2025.

[20] Max Moundas, Jules White, and Douglas C. Schmidt.
Prompt Patterns for Structured Data Extraction from
Unstructured Text. In Proceedings of the 31st Pattern
Languages of Programming (PLoP) conference,
Columbia River Gorge, WA, October 2024.

[21] Colin Raffel, Noam Shazeer, Adam Roberts,
Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the
Limits of Transfer Learning with a Unified
Text-to-text Transformer. Journal of machine
learning research, 21(140):1–67, 2020.

[22] Sindhu Tipirneni, Ming Zhu, and Chandan K. Reddy.
StructCoder: Structure-Aware Transformer for Code
Generation, 2024.

[23] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention Is All You
Need. In Advances in Neural Information Processing
Systems, volume 30, 2017.

[24] Xingyao Wang, Zihan Wang, Jiateng Liu, Yangyi
Chen, Lifan Yuan, Hao Peng, and Heng Ji. Mint:
Evaluating LLMs in Multi-Turn Interaction with
Tools and Language Feedback. arXiv preprint
arXiv:2309.10691, 2023.

18

