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ABSTRACT
The emerging trend in Internet of Things (IoT) applications
is to move the computation (cyber) closer to the source of the
data (physical). This paradigm is often referred to as edge
computing. If edge resources are pooled together they can
be used as decentralized shared resources for IoT applica-
tions, providing increased capacity to scale up computations
and minimize end-to-end latency. Managing applications on
these edge resources is hard, however, due to their remote,
distributed, and possibly dynamic nature, which necessitates
autonomous management mechanisms that facilitate appli-
cation deployment, failure avoidance, failure management,
and incremental updates. To address this need, we present
CHARIOT, which is orchestration middleware capable of
autonomously managing IoT systems that comprises edge
resources and applications. CHARIOT implements a three-
layer architecture. The topmost layer comprises a system
description language; the middle layer comprises a persis-
tent data storage layer and the corresponding schema to
store system information; and the bottom layer comprises a
management engine, which uses information stored in per-
sistent data storage to formulate constraints that encode
system properties and requirements, thereby enabling the
use of Satisfiability Modulo Theories (SMT) solvers to com-
pute optimal system (re)configurations dynamically at run-
time. This paper describes the structure and functionality of
CHARIOT and evaluates its efficacy as the basis for a smart
parking system case study that is responsible for parking
space management.

1. INTRODUCTION
Emerging trends and challenges. Popular IoT ecosys-
tem platforms, such as Beaglebone Blacks, Raspberry Pi,
Intel Edison and other related technologies like SCALE [5],
Paradrop[33], provide new capabilities for data collection,
analysis, and processing at the edge [32] (also referred to as
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Fog Computing [6]). When pooled together, edge resources
can be used as decentralized shared resources that can host
data collection, analysis, and actuation loops of IoT appli-
cations. Examples of such applications include air quality
monitoring, parking space detection, and smart emergency
response. In this paper, we refer to the combination of re-
mote edge resources and applications deployed on them as
IoT systems. These IoT systems provide the capacity to
scale up computations, as well as minimize end-to-end la-
tency, which makes them well-suited to support novel use
cases for smart and connected communities.

While the promise of the IoT paradigm is significant, sev-
eral challenges must be resolved before they become ubiqui-
tous. Conventional enterprise architectures use centralized
servers or clouds with static network layouts and a fixed
number of devices without sensors and actuators to inter-
act with their physical environment. In contrast, edge de-
ployment use cases raise key challenges not encountered in
cloud computing, including (1) handling the high degree of
dynamism arising from computation and communication re-
source uncertainty and (2) managing resource constraints
imposed due to cyber-physical nature of applications and
the system hardware.

Computation resource uncertainty in IoT systems stems
from several factors, including increased likelihood of fail-
ures, which are in turn caused by increased exposure to nat-
ural and human-caused effects, as well as dynamic environ-
ments where devices can join and leave a system at any time.
Communication resource uncertainty is caused by network
equipment failure, interference, or due to mobile nature of
some systems (for example, swarm of UAVs, fractionated
satellites). Unlike traditional enterprise architectures whose
resource constraints narrowly focus on only CPU, memory,
storage and network, IoT systems require a capability to
express and satisfy more stringent resource constraints due
to their cyber-physical nature, such as their deployment on
resource-limited sensors and actuators.

Even under the uncertainties and constraints mentioned
above, IoT systems must be capable of managing their ap-
plications to ensure maximum availability, especially since
these applications are often mission-critical. Each applica-
tion deployed for a mission has specific goal(s) that must
be satisfied at all times. IoT systems should therefore be
equipped with mechanisms that ensure all critical goals are
satisfied for as long as possible, i.e., they must be resilient by
facilitating failure avoidance, failure management, and op-
erations management to support incremental hardware and
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Figure 1: The Layered Architecture of CHARIOT.

software changes over time. In the context of IoT systems,
resilience involves more than fault tolerance since a resilient
system must not only tolerate failures, but should also adapt
seamlessly to planned and unplanned changes. Moreover,
since IoT systems comprising edge resources are often re-
motely deployed, autonomous system resilience mechanisms
can help ensure availability and cost-effective management
strategies.
Solution approach → Autonomous resilience manage-
ment mechanisms. To address the challenges described
above, IoT systems should be equipped with autonomous
mechanisms that enable the analysis and management of
(1) the overall system goals describing the required appli-
cations that must be available, (2) the composition and re-
quirements of applications, and (3) the constraints govern-
ing the deployment and (re)configuration of applications.
This paper describes a holistic solution called Cyber-pHysical
Application aRchItecture with Objective-based reconfigura-
Tion (CHARIOT), which supports the autonomous man-
agement of remotely deployed IoT systems. Specifically,
CHARIOT uses the analysis and management capabilities
outlined above to provide services for initial application de-
ployment, failure avoidance, failure management, and oper-
ations management. CHARIOT implements a three-layered
architecture stack consisting of a design layer, a data layer,
and a management layer, as shown in Figure 1.
Contribution 1: A generic system description language. At
the top of CHARIOT’s stack is a design layer implemented
via a generic system description language. This design layer
captures system specifications in terms of different kinds
of available hardware resources, software applications, and
the resource provided/required relationship between them.
As shown in Section 4, CHARIOT implements this layer
using a domain-specific modeling language (DSML) called
CHARIOT-ML whose goal-based system description approach
yields a generic means of describing complex IoT systems.
This approach extends our prior work [26, 27] by (1) using
the concept of component types (instead of specific imple-

mentations) to enhance flexibility and (2) supporting a suite
of redundancy patterns.
Contribution 2: A schema for persistent storage of system
information. In this middle of CHARIOT’s stack is a data
layer implemented using a persistent data storage and the
corresponding well-defined schema to store system informa-
tion, which includes a design-time system description and a
runtime representation of the system. This layer canonical-
izes the format in which information about an IoT system
is represented. We present the details of this contribution
in Section 5.
Contribution 3: A management engine to facilitate autono-
mous resilience. The bottom of CHARIOT’s stack is a man-
agement layer that comprises monitoring and deployment
infrastructures, as well as a novel management engine that
facilitates application (re)configuration as a mechanism to
support autonomous resilience. As described in Section 6,
this management engine uses IoT system information stored
in the persistent storage to formulate Satisfiability Modulo
Theories (SMT) constraints that encode system properties
and requirements, enabling the use of SMT solvers (such as
Z3 [8]) to dynamically compute optimal system (re)configur-
ation at runtime. This approach extends our prior work [26]
by (1) adding the capability to compute exact component
instances from available component types, (2) encoding re-
dundancy patterns using SMT constraints, and (3) adding
capability to use a finite horizon look-ahead strategy that
pre-computes solutions to significantly improve the perfor-
mance of CHARIOT’s management engine.
Contribution 4: Distributed implementation and evaluation
of CHARIOT. Section 7 describes an implementation of
CHARIOT, which uses MongoDB [23] as a persistent storage
service, ZooKeeper [1] as a coordination service to facilitate
group-membership and failure detection, and ZeroMQ [13]
as a high-performance communication middleware. We also
describe a smart-parking application responsible for park-
ing space management that serves as a use case scenario to
present experimental evaluation to show how CHARIOT,
as an orchestration middleware, is suitable to manage edge
computing for IoT systems.
Paper organization. The remainder of this paper is orga-
nized as follows: Section 2 summarizes the problem back-
ground and surveys related research to distinguish our work
on CHARIOT presented in this paper; Section 3 provides
detailed coverage of the research topics addressed by this
paper; Sections 4-7 describes in detail our four contributions
described above; and Section 8 presents concluding remarks
and future work.

2. BACKGROUND AND RELATED WORK
Software plays an essential role in mission-critical systems

both as the provider of functionality and as a universal sys-
tem integrator. The survivability and resilience of an IoT
system thus critically depends on software. If any hardware
or software components in an IoT system fail the system
should be able to recover and survive with the help of capa-
bilities provided by the software. Moreover, the complexity
of IoT systems has progressed to the point where zero-defect
systems (consisting of both hardware and software) are hard
and costly to develop, validate, and sustain. An IoT system
must therefore be prepared to handle a myriad of failures.
This section describes related research to distinguish it from
our work on CHARIOT presented in the remainder of this
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paper.

2.1 Redundancy-based Strategies
Fault tolerance in computing has a long history, but re-

silience [17]1 is beyond the capabilities of conventional fault-
tolerant approaches since resilience means “adapting to cha-
nge.” Conventional fault tolerance techniques are based on
redundancy together with comparison or acceptance-based
testing, especially for mission-critical systems with extremely
high availability requirements. Redundancy-based techniques
mask certain classes of persistent and transient faults that
may develop in one or more (but not in all) redundant com-
ponents at the same time, thereby ensuring that faults do
not lead to eventual system or subsystem failures. These
techniques rely on the assumption that failure of a compo-
nent is an independent event. Hence, the failure probability
of the overall system or subsystem is lower since it is a prod-
uct of the failure probabilities of the individual components.

Redundancy-based resilience techniques use comparison
(e.g., a voter) or acceptance check (e.g., an acceptance test)
schemes to decide if a component is working correctly or not,
as well as pass on the ’correct’ output to the downstream
subsystem. Other well-known redundancy techniques in-
clude recovery blocks and self-check programming [30]. None
of these methods are sufficient, however, for IoT systems
where both software and hardware topologies can change
dynamically.

2.2 Reconfiguration-based Strategies
Reconfiguration-based resilience techniques provide an al-

ternative to the redundancy-based strategies described above.
The goal of reconfiguration is to detect anomalous behavior,
perform diagnosis to identify the fault cause(s) responsible
for the detected anomalies, and apply remedies to restore the
functionalities affected by anomalies. These techniques can
be configured to account for anomalous behavior and their
cascading effects due to faults identified at design time, as
well as latent bugs, common mode failures, or other unfore-
seen events or attacks that disrupt the nominal operation.
Moreover, these approaches can be applied to augment sys-
tem resilience when redundancy-based fault tolerance strate-
gies are already in place.

Anomaly detectors can be based on observing different
system aspects, such as heartbeats of the computing nodes
and applications, watchdogs associated with hardware and
software operation, resource utilization of the hosted appli-
cations, or unexpected perturbations of application data.
These observations are periodically compared against pre-
set values or thresholds, model outputs, or expected behav-
iors. Diagnosis schemes can use the status of these anomaly
monitors to localize and isolate the fault source(s) based
on a table look-up or by using rule-based or model-based
reasoning. Anomaly detectors can also employ a hierarchi-
cal approach, as well as consensus-based schemes between
multiple independent observers. Our prior work [19, 22] on
anomaly detection and diagnosis form the basis for the di-
agnosis system applied in this paper.

There are two types of reconfiguration-based techniques:
offline strategies using pre-specified reconfiguration rules and
dynamic online reconfiguration. Statically-specified recon-

1Resilience [17] is a system level property—by definition any
part of the system can fail, yet the system should be able to
keep providing the services it supports.

figuration techniques require explicit and declarative mod-
eling of how a system should be reconfigured before it is
deployed. Conversely, dynamic reconfiguration techniques
require implicit and symbolic capturing of system behavior
as a mathematical model that is dynamically searched at
runtime to find solutions used to repair and restore a sys-
tem.

2.2.1 Offline Strategies
In [21, 10] the authors present two solutions for synthesiz-

ing an optimal assembly for component-based systems, given
a set of constraints. Both solutions perform automatic static
assembly at design-time. The key difference between these
solutions is that [21] does not consider timing constraints,
whereas the solution in [10] targets scheduling constraints in
cyber-physical systems. Neither of these solutions meet the
needs of IoT systems, however, since they do not consider
dynamic reconfiguration and focus solely on automatically
synthesizing optimal system assemblies at design-time.

The work appearing in [3, 28, 2] presents different policy-
based approaches. In [3], the authors present a policy-
based framework that requires mission specification, which
describes how specific roles are assigned to different nodes
based on their credentials and capabilities, as well as how
these roles should be reassigned in response to changes or
failures. This mission specification explicitly encodes recon-
figuration actions, e.g., role reassignments, at design-time.
In [28], the authors apply a similar approach using declar-
ative policies to specify adaptation. In [2], the authors
present a policy-based approach where each adaptation pol-
icy comprises rules, actions, and the rate at which each rule
should be evaluated. These approaches differ from our work
because they are based on static reconfiguration, whereas
CHARIOT is based on dynamic reconfiguration.

Our prior work based on static reconfiguration [20] shows
how system-wide mitigation can be performed based on re-
active, timed-state machines specified at design-time, us-
ing the results of a two-level fault-diagnoser [9]. In general,
statically-specified reconfiguration techniques result in faster
performance since reconfiguration actions are pre-determined,
so no additional computations are required at runtime. These
techniques are generally untenable for IoT systems, however,
since these systems are dynamic and thus all possible run-
time scenarios cannot be pre-determined at design-time.

2.2.2 Online Strategies
The CHARIOT solution described in this paper uses on-

line dynamically computed strategy for reconfiguration. It
requires runtime computation to search for a solution. Re-
ducing this search time and ensuring its predictability is
of utmost importance for IoT systems that host mission-
critical, cyber-physical applications. Our prior work [18] on
dynamic reconfiguration was based on boolean encoding of
a system. This work has some limitations, however, since it
was (1) based on a SAT solver and therefore could not ac-
commodate complex constraints over integer variables, (2)
not flexible enough to consider runtime modification of a sys-
tem’s encoding, and (3) unable to take timing requirements
into account.

In [31], the authors present middleware that supports timely
reconfiguration in distributed real-time systems based on
services. At desin-time, the schedulability and complexity
of a system is analyzed and fine tuned to bound sources of
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unpredictability. The resulting Scheduled Expanded Graph
is used at runtime to determine the Execution Graph, which
represents the application in execution. Although this ap-
proach is flexible and relies on runtime search of the ex-
ecution graph for viable reconfiguration solutions, the pre-
dictability and schedulability analysis is conducted at design-
time, so system resources cannot be modified at runtime. In
contrast, CHARIOT supports runtime modification required
for systems with dynamic resources.

Dynamic Software Product Lines (DSPLs) have also been
suggested for dynamic reconfiguration. In [7], the authors
present a survey of state-of-the-art techniques that attempt
to address many challenges of runtime variability mecha-
nisms in the context of DSPLs. The authors also provide
a potential solution for runtime checking of feature mod-
els for variability management, which motivates the concept
of configuration models. A configuration model acts as a
database that stores a feature model along with all possi-
ble valid states of the feature model. Although this work is
conceptually similar to ours, it does not take timing require-
ments into account.

Ontology-based reconfiguration work has been presented
in [12, 29], where the analytical redundancy of computa-
tional components is made explicit. On the basis of this
ontology, the system can be reconfigured by identifying suit-
able substitutes for the failed services.

3. PROBLEM FORMULATION AND CHAR-
IOT OVERVIEW

This section describes the problem we address with the
work on CHARIOT presented in this paper. We focus on
IoT systems comprising clusters of heterogeneous nodes that
provide computation and communication resources, as well
as a variety of sensors and actuators. Cluster membership
can change over time (both online and offline) due to failures
or addition and removal of resources. Figure 2 shows a typi-
cal node of this distributed platform created by these nodes.
Each node contains a layered software stack consisting of
an operating system (OS), communication middleware, and
platform services (such as failure monitoring and detection,
application management, and network analysis).

Figure 2: A Component-based IoT Application Model.

This distributed platform supports the needs of IoT appli-
cations, which may span multiple nodes for reasons related
to the availability of resources, e.g., some nodes may have
sensors, some may have actuators, some may have the com-
puting or storage resources, some need more than the pro-

cessing power available on one node. These applications are
composed of loosely connected, interacting components [11],
running on different processes, as shown in Figure 2. A com-
ponent provides a certain functionality and may require one
or more functionalities2 via its input and output ports. The
same functionality can be provided by different components.
These provided and required relations between components
and functionalities establish dependencies between compo-
nents. Applications can thus be assembled from components
that provide specific services. Likewise, components may be
used (or reused) by many active applications. Moreover, the
cluster of computing nodes can host multiple applications
concurrently.

An IoT system running this distributed platform must
manage the resources and applications to ensure that func-
tionalities provided by application components are always
available. This capability is important since IoT applica-
tions are often mission-critical, so functionalities required to
satisfy mission goal must be available as long as possible.
This notion of functionality requirement can also be hierar-
chical, i.e., we can have a notion of a high-level functionality
that can be further divided into sub-functionalities.

The possibility of having hierarchical functionalities re-
sults in a functionality tree, which distinguishes between
functionalities that can be divided into sub-functionalities
and functionalities that cannot be decomposed further. The
latter represents a leaf of the tree and should always map to
one or more application components. Although each com-
ponent just provides a single functionality, the same func-
tionality can be provided by multiple components. The re-
quirement relationship between each parent and its children
at every level of this functionality tree can be expressed us-
ing a boolean expression [24, 15] that yields an and-or tree.
Additional resource and implicit dependency constraints be-
tween components may arise due to system constraints, such
as (a) availability of memory and storage capacity for com-
ponents to use, (b) availability of devices and software ar-
tifacts (libraries) for components to use, and (c) network
links between nodes of a system, which restricts deployment
of component instances with inter-dependencies.

3.1 A Representative IoT System Case Study
Consider an indoor parking management system installed

in a garage. This case study focuses on the vacancy de-
tection and notification functionality. This system is de-
signed to make it easier for clients to use parking facilities
by tracking the availability of spaces in a parking lot and
servicing client parking requests by determining available
parking spaces and assigning a specific parking space to a
client. We use this system as a running example throughout
the rest of this paper to explain various aspects of CHAR-
IOT. Figure 3 visually depicts this IoT system; it consists
of a number of pairs of camera nodes (wireless camera) and
processing nodes (Intel Edison module mounted on Arduino
board)3 placed on the ceiling to provide coverage for multi-
ple parking spaces. Each pair of a camera and a processing
node is connected via a wired connection. In addition, the
parking lot has an entry terminal node that drivers interact
with to as they enter the parking lot.

In addition to the hardware devices that comprises the

2In this context, functionalities are synonymous to services
or capabilities associated with a component.
3https://www.arduino.cc/en/ArduinoCertified/IntelEdison
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Figure 3: An Overview of the Parking Management System Case Study.

system, Figure 3 also shows a distributed application con-
sisting of five different types of components deployed on
the hardware outlined above. An ImageCapture component
runs on a camera node and periodically captures an image
and sends it to an OccupancyDetector component that runs
on a processing node. An OccupancyDetector component
detects vehicles in an image and determines occupancy sta-
tus of parking spaces captured in the image. For an Image-
Capture component to send images to an OccupancyDetector
component, it must first find the OccupancyDetector by us-
ing the LoadBalancer component, which also runs on a pro-
cessing node. The LoadBalancer component keeps track of
the different OccupancyDetector components available. Af-
ter an OccupancyDetector component analyses an image for
occupancy status of different parking spaces, it sends the re-
sult to the ParkingManager component, which keeps track
of occupancy status of the entire parking lot. The Parking-
Manager component also runs on a processing node. The
fifth and final component comprising the smart parking ap-
plication is the Client component, which runs on the entry
terminal and interacts with users to allow them to query,
reserve, and use the parking lot.

3.2 Problem Statement
Resilience can be described in terms of ensuring the sur-

vivability of the system’s high-level mission. Anything can
go wrong at any time, including faults in the computing
and communication hardware, in the platform, and in the
application software. Over time, nodes may be added or re-
moved. Also, the applications can change as well in response
to new requirements. This results in dynamic systems; how-
ever, the degree of dynamism can vary significantly based
on the types of systems. For example, the smart parking
example presented in Section 3.1 is an example of a less dy-
namic system as the physical resources are spatially static
and any dynamism is related to system update associated
with addition or removal of resources. However, a cluster
of UAVs or fractionated satellites are example of highly dy-
namic systems. Furthermore, many IoT systems may oper-

ate continuously over years, so changes must be rolled out
during production. Moreover, unanticipated changes in the
system (e.g., erroneous updates) or in the environment (e.g.,
physical obstructions resulting in loss of wireless signal and
therefore network partition) must be survivable, i.e., the
IoT system should recover automatically without requiring
manual intervention.

The case study shown in Section 3.1 motivates the need for
orchestration middleware like CHARIOT to manage deploy-
ment, execution, and update phases. For example, middle-
ware capable of deploying distributed applications is quite
useful in a large multi-level parking garage. Likewise, man-
aging the life-cycle of previously deployed applications dur-
ing the execution phase is also important. Factors that could
trigger execution phase management actions vary from opti-
mization to resilience. For example, it is essential to ensure
that the ParkingManager component is not a single point
of failure, i.e., the smart parking system should not fail if
the ParkingManager component fails. We therefore require
middleware that can detect failures, determine if a failure
affects the ParkingManager component, and if it does, then
autonomously reconfigure the system so that a ParkingMan-
ager component is always available. Reconfiguration of an
IoT system requires a certain amount of time, which might
not be acceptable for safety-critical, real-time systems. In
such scenarios, the only viable solution is to have redundant
copies of applications.

Addressing the problems described above requires a so-
lution that holistically addresses both (a) the design-time
challenges of capturing the system description, and (b) the
runtime challenges of implementing the dynamic reconfig-
uration strategies. In particular, the following key factors
must be considered by such a solution:

1. Failure avoidance, which is necessary since failures can
cause downtime. IoT systems consist of hardware com-
ponents that degrade over time and hence eventually
fail. Likewise, software applications can also fail due
to various defects. Since these types of failures cannot
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be avoided altogether in an IoT system, one approach
to handling failure is to minimize its impact.

2. Failure management, which is needed to minimize down-
time due to failures that cannot be avoided, including
failures caused by unanticipated changes. The desired
solution should ensure all application goals are satis-
fied for as long as possible, even after failures.

3. Operations management, which is needed to minimize
the challenges faced when intentionally changing or
evolving an existing IoT system, i.e., these are an-
ticipated changes. A solution for this should consider
changes in hardware resources and software applica-
tions.

3.3 Overview of the CHARIOT Ecosystem
An overview of our approach to solving these requirements

is presented in Figure 4. As shown in the figure, the design-
time aspect includes a modeling language and associated
interpreters. We describe the modeling language in Sec-
tion 4. The runtime aspect includes entities that comprise a
self-reconfiguration loop, which implements a sense-plan-act
closed-loop to (a) detect and diagnose failures, (b) compute
reconfiguration, and (c) reconfigure the system. With re-
spect to the layers of CHARIOT previously described in
Section 1, we can say that the design layer is part of the
design-time aspect, the management layer is part of the run-
time aspect, and the data layer cross cuts both aspects.

Figure 4: Overview of the self-reconfiguration mechanism.

CHARIOT handles failure avoidance via functionality re-
dundancy and optimized distribution of redundant function-
alities. The general idea here is to be able to tolerate more
failures by strategically deploying redundant copies of com-
ponents that provide critical functionalities, such that more
failures are avoided/tolerated without having to reconfigure
the system; further description of functionality redundancy
is presented in Section 4.2.

Failure management is handled using the above-described
sense-plan-act loop. The Monitoring Infrastructure is re-
sponsible for detecting failures; this is the sensing phase.
After failure detection and diagnosis, it is the responsibility
of the Management Engine to determine the actions needed
to reconfigure the system such that failures are mitigated;

this is the planning phase and is based on Z3 [8], which is
an open source Satisfiability Modulo Theories (SMT) solver.
Once reconfiguration actions are computed, the Deployment
Infrastructure is responsible for taking those actions to re-
configure the system; this is the acting phase. Since fail-
ure detection and diagnosis have been extensively studied
in existing literature, our focus in this paper is strictly on
the second (planning) and third (acting) phases of the self-
reconfiguration loop; this is presented in Section 6. We
use capabilities supported out-of-the-box by ZooKeeper [14]
to implement a monitoring infrastructure based on a group
membership mechanism (see Setion 7.1.2).

Operations management is required to handle anticipated
changes (i.e., planned update or evolution). These changes
include both hardware and software changes carried out at
runtime. Addition of new nodes and removal of existing
nodes are example of hardware changes. Similarly, addition
of new applications, removal of existing applications, and
modification of existing applications are example of software
changes. While failure management is triggered by detection
of failures, operations management can be triggered for var-
ious reason. A software related change is always instigated
from changes made to the appropriate design-time system
model. So, for a software related change there is no detection
mechanism; the trigger has to be human/manual invocation
of the management engine. However, in the case of a hard-
ware related change, since hardware nodes are not modeled
explicitly as part of a design-time system model, some ex-
ternal entity is required to detect these changes and invoke
the management engine. This detection is also done by the
group membership mechanism presented in Section 7.1.2.

Figure 5: Reconfiguration triggers associated with failure
management and operations management.

To summarize detection and reconfiguration trigger mech-
anisms associated with failure management and operations
management, we present Figure 5 as an overview. As shown
in the figure, reconfiguration for failure management and
hardware update (operations management) is triggered by
the monitoring infrastructure. Whereas, reconfiguration for
software update (operations management) is manually trig-
gered once the system model is updated.

4. THE CHARIOT DESIGN LAYER
This section describes the CHARIOT design layer, which

addresses the requirement of a design-time entity to cap-
ture system descriptions. CHARIOT’s design layer allows
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implicit and flexible system description prior to runtime. In
general, an IoT system can be described in terms of required
components or it could be described in terms of functional-
ities provided by components. The former approach is in-
flexible since it tightly couples specific components with the
system. CHARIOT therefore supports the latter approach,
which is more generic and flexible since it describes the sys-
tem in terms of required functionalities, so that different
components can be used to satisfy system requirements, de-
pending on their availability.

A key challenge we faced when creating CHARIOT was to
devise a design-time environment whose system description
mechanism can capture system information (e.g., properties,
provisions, requirements, and constraints) without explicit
management directives (e.g., if node A fails, move all com-
ponents to node B). The purpose of this mechanism is to
enable CHARIOT to manage failures by effciently search-
ing for alternative solutions at runtime. Another challenge
we faced was how to devise abstractions that ensure both
correctness and flexibility so CHARIOT can easily support
operations management.

To meet the challenges described above, CHARIOT’s de-
sign layer allows application developers to model IoT sys-
tems using a generic system description mechanism. We im-
plement this mechanism using a goal-based system descrip-
tion approach. The key entities modeled as part of a sys-
tem’s description are (1) resource categories and templates,
(2) different types of components that provide various func-
tionalities, and (3) goal descriptions corresponding to differ-
ent applications that must be hosted on available resources.
Since IoT applications are generally mission-specific, their
goals should be satisfied during a specified amount of time.
CHARIOT defines a goal as a collection of objectives, where
each objective is a collection of functionalities that can have
inter-dependecies.

CHARIOT’s design layer concretizes the functionality tree
described in Section 3. It currently enforces a two-layer func-
tionality hierarchy, where objectives are high-level function-
alities that satisfy goals and functionalities are leaf nodes
associated with component types. When these component
types are instantiated, each component instance provides
associated functionalities. To maximize composability and
reusability, a component type can only be associated with
a single functionality, though multiple component types can
provide the same functionality.

To further elaborate CHARIOT’s design layer the remain-
der of this section presents the system description of the
smart parking system initially presented in Section 3.1. Fig-
ure 6 shows the corresponding functionality tree, which is
used below to describe the different entities comprising the
system’s description using snippets of models built using
CHARIOT-ML, which is our design-time modeling environ-
ment. For a detailed description of the modeling language
itself, see our prior work [27].

4.1 Node Categories and Templates
Since physical nodes are part of an IoT system, CHARIOT-

ML models them using categories and templates. The nodes
are not explicitly modeled since the group of nodes compris-
ing a system can change dynamically at runtime. As such,
in CHARIOT we only model node categories and node tem-
plates. A node category can be defined as a logical concept
used to establish groups of nodes; every node that is part of

Figure 6: Parking System Description for the example shown
in figure 3.

a IoT system belongs to a certain node category.

Figure 7: Snippet of Node Categories and Node Templates
Declarations.

Since we do not explicitly model nodes at design-time, we
use the concept of node templates to represent the kinds of
nodes that can belong to a category. Therefore, a node cat-
egory is a collection of node templates and a node template
is a collection of generic information (specifications such as
memory, CPU, devices, etc) that can be associated with any
node that is an instance of the node template. When a node
joins a cluster at runtime the only information it needs to
provide (beyond node-specific network information) is which
node template it is an instance of. It is important to note
that the concept of node categories becomes important when
assigning a per-node replication constraint (discussed in Sec-
tion 4.2), which requires that a functionality be deployed on
each node of the given category.

Figure 7 presents the node categories and templates for
the smart parking system. As shown in this figure, there
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are three categories of nodes: CameraNode (line 3-10), Pro-
cessingNode (line 12-18), and TerminalNode (line 20-26).
Each category contains one template each. The CameraN-
ode category contains a wifi cam template that represents
a Wi-Fi enabled wireless IP camera. The ProcessingNode
category contains an Edison template that represents an
Edison board. The TerminalNode category contains an en-
try terminal template that represents a parking control sta-
tion placed at an entrance of a parking space. This scenario
is consistent with the smart parking system described in
Section 3.1.

4.2 Goal Description
The goal description for the smart parking application is

shown in Figure 8 . The goal itself is declared as Smart-

Figure 8: Snippet of Smart Parking Goal Description Com-
prising Objectives and Replication Constraints.

Parking (line 3). Following the goal declaration is a list of
the objectives required to satisfy the goal (line 5-6). Two
objectives are defined in this example: the ClientInterac-
tion objective and the OccupancyChecking objective. The
ClientInteraction objective is related to the task of handling
client parking requests, whereas the OccupancyChecking ob-
jective is related to the task of determining the occupancy
status of different parking spaces.

In CHARIOT-ML, objectives are instantiations of compo-
sitions (see Section 4.3). The ClientInteraction objective is
an instantiation of the client interaction composition (line
5) and the OccupancyChecking objective is an instantiation
of the occupancy checking composition (line 6). A descrip-
tion of how we model these compositions in CHARIOT-ML
is presented in Section 4.3. After the objectives are mod-
eled as part of a system, CHARIOT-ML allows the asso-
ciation of those objectives’s functionalities with replication
constraints. For example, Figure 8 shows the association
of the image capture functionality with a per-node replica-
tion constraint (line 9-10), which means this functionality
should be present on each node that is an instantiation of
any node template belonging to CameraNode category. Sim-
ilarly, the parking client functionality is also associated with
a per-node replication constraint (line 11-12) for TerminalN-
ode category. Finally, the occupancy detector functionality
is associated with a cluster replication constraint (line 13-
14), which means this functionality should be deployed as a
cluster of at-least 2 and at-most 4 instances.

CHARIOT-ML supports functionality replication using
four different redundancy patterns: the (a) voter pattern,
(b) consensus pattern, (c) cluster pattern, and (d) per-node
pattern, as shown in Figure 9. The per-node pattern (as de-
scribed above for the image capture functionality) requires

that the associated functionality be replicated on a per-
node basis. Replication of functionalities associated with
the other three redundancy patterns is based on their redun-
dancy factor, which can be expressed by either (a) explicitly
stating the number of redundant functionalities required or
(b) providing a range. The latter (as previously described
for the occupancy detector functionality) requires the asso-
ciated functionality to have a minimum number for redun-
dancy and a maximum number for redundancy, i.e., if the
number of functionalities present at any given time is within
the range, the system is still valid and no reconfiguration is
required.

Figure 9 presents a graphical representation of voter, con-
sensus, and cluster redundancy patterns (the case of the
consensus pattern, CS represents consensus services). Dif-
ferent redundancy factors are used for each. As shown in
the figure, the voter pattern involves a voter in addition
to the functionality replicas; the consensus pattern involves
a consensus service each for the functionality replicas and
these consensus services implement a consensus ring; and
the cluster pattern only involves the functionality replicas.
Implementing the consensus service is beyond the scope this
paper. We envision using existing consensus protocols, such
as Raft [25], for this purpose.

4.3 Functionalities and Compositions
Functionalities in CHARIOT-ML are modeled as entities

with one or more input and output ports, whereas composi-
tions are modeled as a collection of functionalities and their
inter-dependencies. Figure 10 presents four different func-
tionalities (parking manager, image capture, load balancer,
and occupancy detector) and the corresponding composition
(occupancy checking) that is associated with the Occupancy-
Checking objective (see line 6 in Figure 8). This figure also
shows that composition is a collection of functionalities and
their inter-dependencies, which are captured as connections
between input and output ports of different functionalities.

4.4 Component Types
CHARIOT-ML does not model component instances, but

instead models component types. As discussed earlier in
Section 4, each component type is associated with a func-
tionality. When a component type is instantiated, the com-
ponent instance provides the functionality associated with
its type. A component instance therefore only provides a sin-
gle functionality, whereas a functionality can be provided by
component instances of different types. Two advantages of
modeling component types instead of component instances
include the flexibility it provides with respect to (1) the num-
ber of possible runtime instances of a component type and
(2) the number of possible component types that can provide
the same functionality.

Figure 11 shows how the ParkingManager component type
is modeled in CHARIOT-ML. As part of the component
type declaration, we first model the functionality that is
provided by the component (line 4). After the functionality
of a component type is modeled, we model various resource
requirements (Figure 11 only shows memory requirements
in line 6) and the launch script (line 8), which can be used
to instantiate an instance of the component by spawning an
application process.

CHARIOT supports two different types of component types:
hardware components and software components. The com-
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(a) Voter pattern with factor = 3. (b) Consensus pattern with factor = 4. (c) Cluster pattern with factor = 2.

Figure 9: Example Redundancy Patterns for Functionality F1. The CSn m entities represent consensus service providers.

Figure 10: Snippet of Functionalities and Corresponding
Composition Declaration.

Figure 11: Snippet of Component Type Declaration.

ponent type presented in Figure 11 is an example of a soft-
ware component. Hardware components are modeled in a
similar fashion, though we just model the functionality pro-
vided by a hardware component and nothing else since a
hardware component is a specific type of component whose
lifecycle is tightly coupled to the node with which it is as-
sociated. A hardware component is therefore never actively
managed (reconfigured) by the CHARIOT orchestration mid-
dleware. The only thing that affects the state of a hardware
node is the state of its hosting node, i.e., if the node is on
and functioning well, the component is active and if it is not,
then the component is inactive.

In context of the smart parking system case study pre-
sented in this paper, the ImageCapture component is a hard-
ware component that is associated with camera nodes. As
a result, an instance of the ImageCapture component runs
on each active camera node. We model this requirement
using the per-node redundancy pattern (see line 32-33 in
Figure 8). Likewise, the failure of a camera node implies
failure of the hosted ImageCapture component instance, so
this failure cannot be mitigated.

5. THE CHARIOT DATA LAYER
This section presents the CHARIOT data layer, which de-

fines a schema that forms the basis for persistently storing
system information, such as design-time system description
and runtime system information. This layer codifies the for-
mat in which system information should be represented. A
key advantage of this codification is its decoupling of CHAR-
IOT’s design layer (top layer) from its management layer
(bottom layer), which yields a flexible architecture that can
accommodate varying implementations of the design layer,
as long as those implementations adhere to the data layer
schema described in this section.

Figure 12 presents UML class diagrams as schemas used
to store design-time system description and runtime system
information. These schemas are designed for document-
oriented databases. An instance of a class that is not a
child in a composition relationship therefore represents a
root document. Below we describe CHARIOT’s design-time
and runtime schemas in detail.

5.1 Design-time System Description Schema
The schema for design-time system description comprises

entities to store node categories, component types, and goal
descriptions, as shown in Figure 12a. As discussed in Sec-
tion 4.1, a node category is a concept used to establish logical
groups of nodes that form part of an IoT system. It contains
a collection of node templates, which provide a generic spec-
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(a) Schema to Store Design-time System Descriptions.

(b) Schema to Store Runtime System Representations.

Figure 12: UML Class Diagrams for Schemas Used to Store System Information.

ification of a type of node. The NodeCategory class there-
fore consists of a unique name and a list of node templates.
Likewise, the NodeTemplate class consists of a unique name
and a set of specification attributes, such as available operat-
ing system, middleware, memory, storage, software artifacts,
and devices.

In addition to node categories, a design-time system de-
scription schema also captures component types available
for IoT applications. Neither node categories nor component
types are application-specific since multiple applications can
be simultaneously hosted on nodes of an IoT system and a
component type can be used by multiple applications.The
ComponentType class consists of a unique name and a set
of other attributes such as (1) name of the functionality
provided, (2) required operating system, middleware, mem-
ory, storage, software artifacts, and required devices, and
(3) scripts that can be used to start and stop an instance of
the component type, as shown in Figure 12a.

A design-time system description schema also consists of
goal descriptions. As discussed in Section 4, a goal descrip-
tion is application-specific and it describes the goal of an ap-
plication in terms of objectives and functionalities required
to satisfy the goal. The GoalDescription class consists of
a unique name and a set of objectives and constraints, as
shown in Figure 12a. Moreover, objectives are represented
by the Objective class,w hich consists of a unique name and
a set of functionalities.

In addition to objectives and functionalities, a goal de-
scription can also contain replication constraints. The Repli-
cationConstraint class represents replication constraints, as
shown in Figure 12a. As described in Section 4.2, a repli-
cation constraint has a kind, which can either be a voter,
consensus, cluster, or per-node. A replication constraint
should always be associated with a functionality. The max-
Instances, minInstance, and numInstances attributes are re-
lated to the degree of replication. The latter attribute is used
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if a specific number of replica is required, whereas the former
two attributes are used to describe a range-based replication.
The nodeCategories attribute is used for per-node replica-
tion constraints. The serviceComponentType attribute is re-
lated to specific component types that provide special repli-
cation services, such as a component type that provides a
voter service or a consensus service.

5.2 Runtime System Information Schema
The schema for runtime system information comprises en-

tities to store functionality instances, nodes, deployment ac-
tions, reconfiguration events, and look-ahead information, as
shown in Figure 12b. The FunctionalityInstance class con-
sists of a unique name, name of the associated functionality
and objective, boolean flags to indicate whether a function-
ality instance corresponds to the voter of a voter replication
group (isVoter attribute) or a consensus service provider of
a consensus replication group (isConsensusProvider). The
FunctionalityInstance class also consists of a Component-
Type attribute to store exact component type of a func-
tionality instance; this attribute is only relevant for voter
and consensus service providing functionality instances as
they are not associated with a separate functionality that
is part of a goal description. Furthermore, the Functionali-
tyInstance class also consists of an alwaysDeployOnNode at-
tribute, which ties a functionality instance to a specific node
and is only relevant for functionality instances related to per-
node replication groups. Finally, a mustDeploy boolean at-
tribute of the FunctionalityInstance class indicates whether
a functionality instance should always be deployed.

The Node class consists of a unique name, associated node
template, node status, and a list of hosted processes. For the
latter, the Process class is used and it consists of a unique
name, process ID, status, and a list of hosted component
instances. Similarly, the ComponentInstance class repre-
sents component instances and it consists of a unique name,
name of the component type it implements, status, name of
the corresponding functionality instance as a component in-
stance is always associated with a functionality instance (see
Section 6.2), node name (alwaysDeployOnNode) if a compo-
nent instance needs to be always deployed on that node as
part of a per-node replication constraint, and a mustDeploy
boolean attribute to determine if a component instance must
always be deployed.

The DeploymentAction class represents runtime deploy-
ment actions that are computed by the CHARIOT manage-
ment engine to (re)configure a system. The DeploymentAc-
tion class consists of an action, a completed boolean flag
to indicate if an action has been taken or not, process af-
fected by the action, node on which the action should be
performed, and scripts to perform the action. CHARIOT
supports two kinds of actions: start actions and stop ac-
tions. The LookAhead class represents precomputed solu-
tions related to CHARIOT’s finite-horizon look-ahead strat-
egy described in Section 6.3. It consists of attributes that
represents a failed entity, and a set of recovery actions (de-
ployment actions) that must be performed to recover from
the failure.

Finally, the ReconfigurationEvent class represents runtime
reconfiguration events. It is used to keep track of different
failure and update events that triggers system reconfigura-
tion. It consists of detectionTime, solutionFoundTime, and
reconfiguredTime to keep track of when a failure or update

was detection, when a solution was computed, and when the
computed solution was deployed. It also consists of a com-
pleted boolean attribute to indicate whether a reconfigura-
tion event is complete or not and an actionCount attribute
to keep track of number of actions required to complete a
reconfiguration event.

6. THE CHARIOT MANAGEMENT LAYER
The CHARIOT management layer comprises a monitor-

ing infrastructure, deployment infrastructure, and a man-
agement engine, as shown in Figure 4. The monitoring,
deployment, and configuration of distributed applications
are well studied, so CHARIOT implements these capabili-
ties using existing technologies, as described in Section 7.1.
This section therefore focuses on CHARIOT’s management
engine, which is a novel contribution that facilitates self-
reconfiguration of IoT systems managed via CHARIOT.

The general idea behind CHARIOT’s self-reconfiguration
approach relies on the concepts of configuration space and
configuration points. If a system’s state is represented by
a configuration point in a configuration space, then recon-
figuration of that system entails moving from one config-
uration point to another in the same configuration space.
The remainder of this section describes these concepts and
presents CHARIOT’s core reconfiguration mechanism and
configurable look-ahead strategy.

6.1 Configuration Space and Points
A configuration space includes (1) goal descriptions of dif-

ferent application, (2) replication constraints corresponding
to redundancy patterns associated with different applica-
tions, (3) component types that can be used to instantiate
different component instances and therefore applications,
and (4) available resources, which includes different nodes
and their corresponding resources, such as memory, storage,
and computing elements. At any given time a configuration
space of an IoT system can represent multiple applications
associated with the system. A configuration space can there-
fore contain multiple configuration points, which represent
valid configurations of all applications that are part of the
IoT system represented by the configuration space.

A valid configuration of an IoT system represents component-
instance-to-node mappings (i.e., a deployment) for all com-
ponent instances needed to realize different functionalities
essential for the objectives required to satisfy goals of one
or more applications. The initial configuration point rep-
resents the initial (baseline) deployment, whereas, current
configuration point represents the current deployment.

An IoT system’s state is represented by a configuration
point in a configuration space, as defined above. System
reconfiguration thus entails moving from one configuration
point to another in the same configuration space. When a
failure occurs, the current configuration point is rendered
faulty. Moreover, parts of configuration space may also be
rendered faulty, depending on the failure. For example, con-
sider a scenario where multiple configuration points map one
or more components to a node. If this node fails then all
aforementioned configuration points are rendered faulty. In
addition to failure, hardware and software updates can also
result in reconfiguration, as discussed in Section 3.3.

Given these definitions of configuration space and con-
figuration points, reconfiguration in CHARIOT happens by
identifying a new valid configuration point and determining
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the set of actions required to transition from current (faulty)
configuration point to the new (desired) configuration point.
Configuration points and their transitions therefore form the
core of CHARIOT’s reconfiguration mechanism. For any
reconfiguration several valid configuration points might be
available. From the available configuration points, an op-
timal configuration point that satisfies the system require-
ments can be obtained based on several criteria, such as
transition cost, reliability, operation cost, and/or utility.

6.2 Computing the Configuration Point
Given the description of configuration space and point

above, a valid reconfiguration mechanism should be based
on transitions between configuration points. The Configu-
ration Point Computation (CPC) algorithm serves this pur-
pose and thus defines the core of CHARIOT’s self-reconf-
iguration mechanism. Once CHARIOT determines that a
system has reached an undesired state (configuration point),
the CPC algorithm must compute a new configuration point
and a set of actions to transition to the new configuration
point to restore normal operation. The CPC algorithm can
be decomposed into three phases: the (1) instance computa-
tion phase, (2) constraint encoding phase, and (3) solution
computation phase, as described below.

6.2.1 Instance Computation Phase
The first phase of a CPC computes required instances of

different functionalities and subsequently components, based
on the system description provided at design-time. Each
functionality can have multiple instances if it is associated
with a replication constraint. Each functionality instance
should have a corresponding component instance that pro-
vides the functionality associated with the functionality in-
stance. Depending upon the number of component types
that provide a given functionality, a functionality instance
can have multiple component instances. Only one of the
component instances will be deployed at runtime, however,
so there is always be a one-to-one mapping between a func-
tionality instance and a deployed component instance.

The CPC algorithm first computes different functional-
ity instances using Algorithm 1, which is invoked for each
objective. Every functionality is initially checked for repli-
cation constraints (line 3). If a functionality does not have
a replication constraint, a single functionality instance is
created (line 32). For every functionality that has one or
more replication constraints associated with it, we handle
each constraint depending on the type of the constraint. A
per-node replication constraint is handled by generating a
functionality instance and an assign constraint each for ap-
plicable nodes (line 6-11). An application node is a node
that is alive and belongs to the node category associated
with the per-node replication constraint.

Unlike a per-node replication constraint, the voter, con-
sensus, and cluster replication constraints depend on exact
replication value or replication range to determine the num-
ber of replicas (line 13-19). In the case of a range-based repli-
cation, CHARIOT tries to maximize the number of replicas
by using maximum of the range, which ensures that max-
imum number of failures are tolerated without having to
reconfigure the system. After the number of replicas is de-
termined, CHARIOT computes the replica functionality in-
stances (line 21), as well as special functionality instances
that support different kinds of replication constraint. For

example, for each replica functionality instance in a con-
sensus replication constraint, CHARIOT generates a con-
sensus service functionality instance (line 23) (a consensus
service functionality is provided by a component that im-
plements consensus logic using existing algorithms, such as
Paxos [16], Raft [25]). For a voter replication constraint, in
contrast, CHARIOT generates a single voter functionality
instance for the entire replication group (line 27). In the
case of a cluster replication constraint, no special function-
ality instance is generated as a cluster replication comprises
independent functionality instances that do not require any
synchronization (see Section 4.2).

To ensure proper management of instances related to func-
tionalities with voter, consensus, or cluster replication con-
straints, CHARIOT uses four different constraints: (1) im-
plies, (2) collocate, (3) atleast, and (4) distribute. The im-
plies constraint ensures all replica functionality instances as-
sociated with a consensus pattern require their correspond-
ing consensus service functionality instances (line 24). Sim-
ilarly, the collocate constraint ensures each replica function-
ality instance and its corresponding consensus service func-
tionality instance are always collocated on the same node
(line 25). The atleast constraint ensures the minimum num-
ber of replicas are always present in scenarios where a repli-
cation range is provided (line 28-29). Finally, the distribute
constraint ensures that the replica functionalities are dis-
tributed across different nodes (line 30). CHARIOT’s abil-
ity to support multiple instances of functionalities and dis-
tribute them across nodes enables failure avoidance.

After functionality instances are created, CHARIOT next
creates the component instances corresponding to each func-
tionality instance. In general, it identifies a component type
that provides the functionality associated with each func-
tionality instance and instantiates that component type. As
explained in Section 4.4, component types are modeled as
part of the system description. Different component types
can provide the same functionality, in which case multiple
component types are instantiated, but a constraint is added
to ensure only one of those instances is deployed and run-
ning at any given time. In addition, all constraints pre-
viously created in terms of functionality instances are ul-
timately applied in terms of corresponding component in-
stances. Section 6.2.2 provides detailed description of how
these constraints are encoded.

6.2.2 Constraint Encoding and Optimization Phase
The second phase of the CPC algorithm is responsible

for constraint encoding and optimization. The goal is to
represent the configuration space and current configuration
point using a set of constraints, which allows CHARIOT to
use solvers to compute a new configuration point by solving
these constraints. The CHARIOT management engine uses
Satisfiability Modulo Theories (SMT) [4] for constraint en-
coding and optimization; its underlying solver is Z3 [8]. To
present a generic solution, CHARIOT first needs to identify
a set of constraints and optimization that are required to
model a configuration space and a configuration point, as
described below:

1. Since reconfiguration involves transitioning from one
configuration point to another, constraints that repre-
sent a configuration point are of utmost importance.

2. Constraints to ensure component instances that must
be deployed are always deployed.
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Algorithm 1 Functionality Instances Computation.

Input: objective (obj), nodes (nodes list), computed functionalities (computed functionalities)
Output: functionality instances for obj (ret list)

1: for func in obj.functionalities do
2: if func not in computed functionalities then . Make sure a functionality is processed only once.
3: if func has associated replication constraints then
4: constraints = all replication constraints associated with func
5: for c in constraints do
6: if c.kind == PER NODE then . Handle per node replication.
7: for node category in c.nodeCategories do
8: nodes = nodes in nodes list that are alive and belong to category node category
9: for n in nodes do

10: create functionality instance and add it to ret list
11: add assign (functionality instance, n) constraint

12: else
13: replica num = 0 . Initial number of replicas, which will be set to max value if range given.
14: range based = False . Flag to indicate if a replication constraints is range based.
15: if c.numInstances ! = 0 then
16: replica num = c.numInstances
17: else
18: range based = True
19: replica num = c.maxInstances

20: for i = 0 to replica num do . Create replica functionality instances.
21: create replica functionality instance and add it to ret list
22: if c.kind == CONSENSUS then . Handle consensus replication.
23: create consensus service functionality instance and add it to ret list
24: add implies (replica functionality instance, consensus service functionality instance) constraint
25: add collocate (replica functionality instance, consensus service functionality instance) constraint

26: if c.kind == V OTER then . Handle voter replication.
27: create voter functionality instance and add it to ret list

28: if range based == True then . If replication range is given, add atleast constraints.
29: add atleast (c.rangeMinValue, replica functionality instances) constraint

30: add distribute (replica functionality instances) constraint

31: else
32: create functionality instance and add it to ret list

33: add func to computed functionalities

3. Constraints to ensure component instances that com-
municate with each other are either deployed on the
same node or on nodes that have network links be-
tween them.

4. Constraints to ensure resources provided-required re-
lationships are valid.

5. Constraints encoded in the first phase of the CPC algo-
rithm for proper management of component instances
associated with replication constraints.

6. Constraints to represent failures, such as node failure
or device failures.

The remainder of this section describes how CHARIOT
implements the constraints listed above as SMT constraints.
These constraints are generic constraints that apply to IoT
systems in different domains, though more constraints can
be added for special needs of specific domains. For example,
given the availability of period and deadline of all component
instances, an IoT system with stringent real-time deadlines
might require a specific resource constraint that ensures pe-
riodic scheduling of applications, e.g., using Rate Monotonic
Scheduling or another real-time scheduling algorithm.

As mentioned in Section 6.1, a configuration point repre-
sents a valid deployed of all component instances. A con-

figuration point in CHARIOT is therefore presented using a
component-instance-to-node (C2N) matrix, as shown below.

Definition 1 (C2N matrix). A C2N matrix comprises
rows that represent component instances and columns that
represent nodes; the size of this matrix is α× β, where α is
the number of component instances and β is the number of
available nodes (Equation 1). Each element of the matrix
is encoded as a Z3 integer variable whose value can either
be 0 or 1 (Equation 2). A value of 0 for an element means
that the corresponding component instance (row) is not de-
ployed on the corresponding node (column). Conversely, a
value of 1 for an element indicates deployment of the cor-
responding component instance on the corresponding node.
For a valid C2N matrix, a component instance must not be
deployed more than once (Equation 3).

C2N =


c2n00 c2n01 c2n02 . . . c2n0β

c2n10 c2n11 c2n12 . . . c2n1β

c2n20 c2n21 c2n22 . . . c2n2β

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
c2nα0 c2nα1 c2nα2 . . . c2nαβ

 =

c2ncn : c ∈ {0 . . . α}, n ∈ {0 . . . β}, (α, β) ∈ Z+ (1)
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∀c2ncn ∈ C2N : c2ncn ∈ {0, 1} (2)

∀c :

β∑
n=0

c2ncn <= 1 (3)

Now that we have constraints to represent a configura-
tion point (i.e., a valid component-instance-to-node map-
ping) we need a constraint to ensure component instances
that should be deployed are always deployed. At this point
it is important to recall range-based replication described in
Section 4.2, which results in a set of instances where a certain
number (at least the minimum) should always be deployed,
but the remaining (difference between maximum and mini-
mum) are not always required, even though all of them are
deployed initially. At any given time, therefore, a configura-
tion point can comprise of some component instances that
must be deployed and others that are not always required
be deployed. In CHARIOT we encode the must deploy con-
straint as follows:

Definition 2 (Must deploy assignment). The “must
deploy assignment” constraint is used to ensure all compo-
nent instances that should be deployed are in fact deployed.
This constraint therefore uses the C2N matrix (Equation 1)
and a set of component instances that must be deployed, as
shown in Equation 4.

Let M be a set of all component instances that must be
deployed.

∀m ∈M :

β∑
n=0

c2nmn == 1 (4)

The third set of constraints we need ensure that compo-
nent instances with inter-dependencies (i.e., that communi-
cate with each other) are either deployed on the same node
or on nodes that have network links between them. CHAR-
IOT encodes this constraint as follows:

Definition 3 (Dependency Constraint). This con-
straint ensures that interacting component instances are al-
ways deployed on resources with appropriate network links
to support communication. This constraint is encoded in
terms of two matrices: a node-to-node (N2N) matrix and
a component-instance-to-component-instance (C2C) matrix.
The N2N matrix represents network links between nodes and
therefore comprises rows and columns that represent differ-
ent nodes (Equation 5). Each element of the N2N matrix is
either 0 or 1, where 0 means there exists no link and 1 means
there a link exists between the corresponding nodes. The C2C
matrix is the same except it comprises rows and columns that
both represent component instances (Equation 6). The con-
straint itself is presented in Equation 7.

N2N =


n2n00 n2n01 n2n02 . . . n2n0β

n2n10 n2n11 n2n12 . . . n2n1β

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
n2nβ0 n2nβ1 n2nβ2 . . . n2nββ

 =

n2nn1n2 : (n1, n2) ∈ {0 . . . β}, β ∈ Z+ (5)

C2C =


c2c00 c2c01 c2c02 . . . c2c0α
c2c10 c2c11 c2c12 . . . c2c1α
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
c2cα0 n2nα1 n2nα2 . . . n2nαα

 =

c2cc1c2 : (c1, c2) ∈ {0 . . . α}, α ∈ Z+ (6)

Let cs and cd be two component instances that are depen-
dent on each other.

∀n1, ∀n2 : ((c2ncsn1 × c2ncdn2) ∧ (n1 6= n2)) =⇒
(n2nn1n2 == c2ccscd)

(7)

The fourth set of constraints CHARIOT needs ensure the
validity of resources provided-required relationships, such
that essential component instances of one or more appli-
cations can be provisioned. CHARIOT encodes these con-
straints in terms of resources provided by nodes and required
by component instances. Moreover, resources are classified
into two categories: (1) cumulative resources and (2) com-
parative resources. Cumulative resources have a numerical
value that increases or decreases depending on whether a
resource is used or freed. Examples of cumulative resources
include primary memory and secondary storage. Compar-
ative resources have a boolean value, i.e., they are either
available or not available and their value does not change
depending on whether a resource is used or freed. Exam-
ples of comparative resources include devices and software
artifacts. These two constraints can be encoded as follows:

Definition 4 (Cumulative resource constraint).
The “cumulative resource” constraint is encoded using a pro-
vided resource-to-node (CuR2N) matrix and a required reso-
urce-to-component-instance (CuR2C) matrix. The CuR2N
matrix comprises rows that represent different cumulative
resources and columns that represent nodes; the size of this
matrix is γ × β, where γ is the number of cumulative re-
sources and β is the number of available nodes (Equation 8).
The CuR2C matrix comprises rows that represent different
cumulative resources and columns that represent component
instances; the size of this matrix is γ×α, where γ is the num-
ber of cumulative resources and α is number of component
instances (Equation 9). Each element of these matrices are
integers. The constraint itself (Equation 10) ensures that for
each available cumulative resource and node, the sum of the
amount of the resource required by the component instances
deployed on the node is less than or equal to the amount of
the resource available on the node.

CuR2N =


r2n00 r2n01 r2n02 . . . r2n0β

r2n10 r2n11 r2n12 . . . r2n1β

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
r2nγ0 r2nγ1 r2nγ2 . . . r2nγβ

 =

r2nrn : r ∈ {0 . . . γ}, n ∈ {0 . . . β}, (γ, β) ∈ Z+ (8)

CuR2C =


r2c00 r2c01 r2c02 . . . r2c0α
r2c10 r2c11 r2c12 . . . r2c1α
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
r2cγ0 r2cγ1 r2cγ2 . . . r2cγα

 =
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r2crc : r ∈ {0 . . . γ}, c ∈ {0 . . . α}, (γ, α) ∈ Z+ (9)

∀r, ∀n :

(
α∑
c=0

c2ncn × r2crc

)
≤ r2nrn (10)

Definition 5 (Comparative resource constraint).
The “comparative resource” constraint is encoded using a
provided resource-to-node (CoR2N) matrix and a required
resource-to-component-instance (CoR2C) matrix. The CoR2N
matrix comprises rows that represent different comparative
resources and columns that represents nodes; the size of this
matrix is φ × β, where φ is the number of comparative re-
sources and β is the number of available nodes (Equation 11).
Similarly, the CoR2C matrix comprises rows that represent
different comparative resources and columns that represent
component instances; the size of this matrix is φ×α, where
φ is the number of comparative resources and α is num-
ber of component instances (Equation 12). Each element of
these matrices are either 0 or 1; 0 means the correspond-
ing resource is not provided by the corresponding node (for
CoR2N matrix) or not required by the corresponding com-
ponent instance (for CoR2C matrix), whereas, 1 means the
opposite. The constraint itself (Equation 13) ensures that
for each available comparative resource, node, and compo-
nent instance, if the component instance is deployed on the
node and requires the resource, then the resource must also
be provided by the node.

CoR2N =


r2n00 r2n01 r2n02 . . . r2n0β

r2n10 r2n11 r2n12 . . . r2n1β

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
r2nφ0 r2nφ1 r2nφ2 . . . r2nφβ

 =

r2nrn : r ∈ {0 . . . φ}, n ∈ {0 . . . β}, (φ, β) ∈ Z+ (11)

CoR2C =


r2c00 r2c01 r2c02 . . . r2c0α
r2c10 r2c11 r2c12 . . . r2c1α
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
r2cφ0 r2cφ1 r2cφ2 . . . r2cφα

 =

r2crc : r ∈ {0 . . . φ}, c ∈ {0 . . . α}, (φ, α) ∈ Z+ (12)

∀r, ∀n,∀c : Assigned(c, n) =⇒ (r2nrn == r2crc) (13)

Assigned (c, n) function returns true if component c is
deployed on node n, i.e., it returns true if c2ncn == 1.

The fifth set of constraints are needed for management of
component instances associated with replication constraints.
As mentioned in Section 6.2.1, assign, implies, collocate,
atleast, and distribute are the five different kinds of con-
straints that must be encoded. Each of these constraints is
encoded as follows:

Definition 6 (Assign constraint). The “assign const-
raint” is used for component instances corresponding to func-
tionalities associated with per-node replication constraint. It

ensures that a component instance is only ever deployed on
a given node. In CHARIOT, an assign constraint is encoded
as shown in Equation 14.

Let c be a component instance that should be assigned to
a node n.

Enabled(c) =⇒ (c2ncn == 1) (14)

Enabled(c) function returns true if component instance c

is assigned to any node, i.e, it checks if
∑β
n=0 c2ncn == 1.

Definition 7 (Implies constraint). The “implies” con-
straint is used to ensure that if a component depends upon
other components then its dependencies are satisfied. It is
encoded using the implies construct provided by an SMT
solver like Z3.

Definition 8 (Collocate constraint). A “collocate”
constraint is used to ensure that two collocated component
instances are always deployed on the same node. In CHAR-
IOT, as shown in Equation 15, this constraint is encoded by
ensuring the assignment of the two component instances is
same for all nodes.

Let c1 and c2 be two component instances that needs to be
collocated.

(Enabled(c1) ∧ Enabled(c2)) =⇒
(∀n : c2nc1n == c2nc2n)

(15)

Definition 9 (Atleast constraint). An “atleast” con-
straint is used to encode a M out of N semantics to en-
sure that given a set of components ( i.e. N), a specified
number of those components ( i.e. M) is always deployed.
CHARIOT only uses this constraint for range-based replica-
tion constraints and its implementation is two fold. First,
during the initial deployment CHARIOT tries to maximize
M and deploy as many component instances as possible.
Current implementation of CHARIOT uses the maximum
value associated with a range and initially deploys N com-
ponent instances, as shown in Equation 16. This of course
assumes availability of enough resources. A better solution
to this would be to use the maximize optimization, as shown
in Equation17. However, in Z3 solver, which is the SMT
solver used by CHARIOT, this optimization is experimental
and does not scale well. Second, for subsequent non-initial
deployment CHARIOT relies on the fact that maximum pos-
sible deployment was achieved during initial deployment, so
it ensures the minimum number required is always met, as
shown in Equation 18.

Let S = {c1, c2 . . . cα′} be a set of replica component in-
stances associated with an atleast constraint; N is the size
of this set. Also, let min value be the minimum number of
component instances required; this is synonymous to M.

∑
c∈S

β∑
n=0

c2ncn == max value (16)

maximize(
∑
c∈S

β∑
n=0

c2ncn) (17)

∑
c∈S

β∑
n=0

c2ncn >= min value (18)
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Definition 10 (Distribute constraint). A “distrib-
ute” constraint is used to ensure that a set of components are
deployed on different nodes. In CHARIOT this constraint is
encoded by ensuring at most only one component instance
out of the set is deployed on a single node, as shown in
Equation 19.

Let S = {c1, c2 . . . cα′} be a set of components that needs
to be distributed.

∀n :
∑
c∈S

c2ncn ≤ 1 (19)

The final step (step 8) of the second phase of the CPC
algorithm encodes and adds failure constraints. Depending
on the kind of failure, there can be different types of fail-
ure constraints. We describe how CHARIOT encodes node
failures and component failures below.

Finally, the sixth set of constraints handles failure repre-
sentation. Constraints related to different failures are en-
coded in CHARIOT as shown below:

Definition 11 (Node failure constraint). A “node
failure” constraint is used to ensure that no components are
deployed on a failed node. CHARIOT encodes this constraint
as shown in Equation 20.

Let nf be a failed node.

α∑
c=0

c2ncnf == 0 (20)

Definition 12 (Component failure constraint). A
component can fail for various reasons, so there can be dif-
ferent ways to resolve a component failure. One approach is
to ensure that a component is redeployed on any node other
than the node in which it failed (Equation 21). If a compo-
nent keeps failing in multiple different nodes, however, then
CHARIOT may need to consider another constraint that en-
sures the component is not redeployed on any node (Equa-
tion 22).

Let us assume component c1 failed on node n1.

c2nc1n1==0 (21)

β∑
n=0

c2nc1n == 0 (22)

6.2.3 Solution Computation Phase
The third and final phase of the CPC algorithm involves

computing a “least distance” configuration point, i.e., a con-
figuration point that is the least distance away from current
configuration point. This ensures that a system always un-
dergoes the least possible number of changes during reconfig-
uration. The distance is computed as the number of changes
required to transition to the new configuration point. Since
a configuration point is a component-instance-to-node map-
ping represented as C2N matrix (see Definition 1), the dis-
tance between two configuration points is the distance be-
tween their corresponding C2N matrices. In CHARIOT, the
least distance constraint is encoded as shown below:

Definition 13 (Least Distance Constraint). The
“least distance” constraint is used to ensure that we find a
valid configuration point that is closest to the current config-
uration point. The distance between two configuration points
is the distance between their corresponding C2N matrices.
This distance is computed as shown in Equation 23; the dis-
tance between two valid configuration points A and B is the
sum of the absolute difference between each element of the
C2N matrices corresponding to the two configuration points.
In order to ensure that we obtain least distance configuration
point, an ideal solution would be to use minimize optimiza-
tion (Equation 24) which is supported by SMT solvers like
Z3. However, like the maximize optimization, the minimize
optimization implementation in Z3 is experimental and does
not scale well. As such, in CHARIOT we currently im-
plement this constraint using a recursive logic, which upon
every successful solution computation adds the distance con-
straint (Equation 23) before invoking the solver again to find
a solution that is at a lesser distance compared to the pre-
vious solution. This recursion stops when no solution can
be found, in which case the previous solution is used as the
optimum (least distance away) solution.

config distance =

β∑
n=0

|c2n Acn − c2n Bcn| (23)

minimize(config distance) (24)

At this point in the CPC algorithm, CHARIOT invokes
the Z3 solver to check for a solution. If all constraints are sat-
isfied and a solution is found, the CPC algorithm computes
a set of deployment actions. CHARIOT computes deploy-
ment actions by comparing each element of the C2N matrix
that represents the current configuration point with the cor-
responding element of the C2N matrix associated with com-
puted solution, i.e., the target configuration point. If the
value of an element in the former is 0 and later is 1, CHAR-
IOT adds a START action for the corresponding component
instance on the corresponding node. Conversely, if the value
of an element in the former is 1 and the later is 0, CHARIOT
adds a STOP action. Applying this operation to each ele-
ment of the matrix results in a complete set of deployment
actions required for successful system transition.

6.3 The Look-ahead Reconfiguration Approach
By default, the CPC algorithm presented in Section 6.1

yields a reactive self-reconfiguration approach since the al-
gorithm executes once a failure is detected. Runtime recon-
figuration will therefore incur the time taken to compute a
new configuration point and determine deployment actions
required to transition to a new configuration. This approach
might be acceptable for IoT systems consisting of non-real-
time applications that can incur considerable downtime. For
IoT systems that host real-time, mission-critical applica-
tions, however, predictable and timely reconfiguration is es-
sential. Since all dynamic reconfiguration mechanisms rely
on runtime computation to calculate a reconfiguration so-
lution, the time to compute a solution increases with the
scale of the IoT system. The CPC algorithm presented in
Section 6.1 is no different, as shown by experimental results
in our prior work [26].

To address this issue, therefore, we extend the CPC al-
gorithm by adding a configurable capability to use a finite
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horizon look-ahead strategy that pre-computes solution and
thus significantly improves the performance of the manage-
ment engine. We call this capability the Look-ahead Re-
Configuration (LaRC). The general goal of the LaRC ap-
proach is to pre-compute and store solutions, so it just finds
the appropriate solution and applies it when required. When
the CPC algorithm is configured to execute in the “look-
ahead” mode, solutions are pre-computed every time the
system state (i.e., the current configuration point) changes.

The first pre-computation happens once the system is ini-
tially deployed using the default CPC algorithm. Once a sys-
tem is initially deployed, we pre-compute solutions to handle
failure events. It is important to note that pre-computed so-
lutions cannot be used for update events as update events
change the system is such a way that the previously pre-
computed solutions are rendered invalid. So, once we have a
set of pre-computed solutions, failures are handled by finding
the appropriate pre-computed solution, applying the found
solution, and pre-computing solutions to handle future fail-
ure events. Whereas, for update events, the default CPC
algorithm is invoked again (same as during initial deploy-
ment) to compute a solution. Once a solution for an update
event is computed, we again pre-compute solutions to handle
failure events.

Algorithm 2 Solution Pre-computation.

Input: nodes (nodes list)

1: remove existing look-ahead information from the config-
uration space

2: for node in node list do
3: if node is alive then
4: tmp config space = get configuration space
5: mark node as failed in tmp config space
6: actions = CPC algorithm on tmp config space
7: if actions ! = null then
8: l ahead = new LookAhead instance
9: l ahead.failedEntity = node.name

10: l ahead.failureKind = NODE
11: l ahead.deploymentActions = actions
12: store l ahead in the configuration space

In order to pre-compute solutions, CHARIOT currently
uses Algorithm 2. Since our work presented in this paper fo-
cuses on node failures, this algorithm pre-computes solutions
for node failures only. Assuming that a system is in a stable
state, this algorithm first removes any existing look-ahead
solutions (line 1) since it is either invalid (update event) or
already used (failure event). After this the algorithm iter-
ates through each available node (line 2-3) and for each node,
the algorithm creates a temporary copy of the configuration
space (line 4), which includes the current (stable) configu-
ration point. All subsequent actions are taken with respect
to the temporary configuration space copy, so the original
copy is not corrupted during the pre-computation compu-
tation process. After a copy of the configuration space is
made, the particular node is marked as failed (line 5) and
the CPC algorithm is invoked (line 6). In essence, this pre-
computation algorithm injects a failure and asks the CPC
algorithm for a solution. If a solution is found, the injected
failure information and the solution is stored as an instance
of the LookAhead class presented in Section 5.2 (line 7-12).

6.3.1 Design Discussion and Rationale

The description of the LaRC approach in Section 6.3 yields
interesting observations with regards to the solution pre-
computation algorithm. First, the current version of the so-
lution pre-computation algorithm only considers node fail-
ures. We will alleviate this limitation in future work by
adding system-wide capabilities to monitor, detect, and han-
dle failures involving application processes, components, and
network elements.

Second, and the more interesting observation is related to
the fact that the solution pre-computation algorithm specif-
ically pre-computes solution only for the next step,i.e., the
algorithm only looks one step ahead. We believe that the
number of steps to look-ahead should be a configurable pa-
rameter as different classes of system might benefit from
different setting of this parameter. For example, consider
systems that are highly dynamic and therefore subject to
frequent failures resulting in bursts of failure events. For
such systems, it would be important to look-ahead more
than one step at a time otherwise we won’t be able to han-
dle multiple failures happening in short timespan. However,
if we consider systems that are comparatively more static,
like the smart parking system presented earlier in this pa-
per (Section 3.1), we expect a higher Mean Time To Failure
(MTTF) and therefore do not require to pre-compute solu-
tions by looking ahead more than one step at a time.

Overall, there is clearly a trade-off between time, space,
and number of failures tolerated when considering the num-
ber of pre-computation steps. Multi-step pre-computation
takes more time as well as space to store large number of
solutions based on various permutation and combination of
possible failures, but can handle bursts of failures. Whereas,
a single-step pre-computation will be much faster and oc-
cupy less space but it will be non-trivial to handle bursts of
failures.

We believe that an ideal solution would be to achieve a dy-
namic solution pre-computation algorithm. The dynamism
is with respect to the configuration of the pre-computation
steps parameter. For any given system, we assume that
there is an initial value, however, during runtime, this value
can change depending on the system behavior. Further in-
vestigating and implementing such a solution is part of our
future work.

7. IMPLEMENTATION AND EVALUATION
This section presents a detailed description of CHAR-

IOT’s implementation and empirically evaluates its imple-
mentation using the smart parking system use-case scenario
previously described in Section 3.1.

7.1 CHARIOT Runtime Implementation
This section presents an overview of the CHARIOT run-

time implementation and evaluates its performance. Fig-
ure 13 depicts CHARIOT’s implementation architecture, which
consists of a compute node comprising the layered stack de-
scribed in figure 1.

Each CHARIOT-enabled compute node hosts two plat-
form services: a Node Monitor and a Deployment Manager.
The Node Manager assesses the liveliness of its specific node,
whereas the Deployment Manager manages the lifecycle of
applications deployed on a node. In addition to compute
nodes, CHARIOT’s runtime also comprises one or more in-
stances of three different types of server nodes: (1) Database

17



Figure 13: The Implementation Design of the CHARIOT
Runtime.

Servers that store system information, (2) Management En-
gines that facilitate failure avoidance, failure management,
and operation management, and (3) Monitoring Servers that
monitor for failures.4

CHARIOT’s Node Manager is implemented as a ZooKeep-
er [14] client that registers itself with a Monitoring Server,
which is in turn implemented as a ZooKeeper server and
uses ZooKeeper’s group membership functionality to detect
member (node) additions and removals (i.e., failure detec-
tion). This design supports dynamic resources, i.e., nodes
that can join or leave a cluster at any time. A group of Node
Monitors (each residing on a node of a cluster) and one or
more instances of Monitoring Servers define the monitoring
infrastructure described in Section 3.3.

The Deployment Manager is implemented as a ZeroMQ
[13] subscriber that receives management commands from
a Management Engine, which is in turn implemented as
a ZeroMQ publisher. The Management Engine computes
the initial configuration point for application deployment,
as well as subsequent configuration points for the system to
recover from failures. After a Deployment Manager receives
management commands from the Management Engine, it
executes those commands locally to control the lifecycle of
application components. Application components managed
by CHARIOT can be in one of two states: active or inac-
tive. A group of Deployment Managers—each residing on a
node of a cluster—represents the deployment infrastructure
described in Section 3.3.

A Database Server is an instance of a MongoDB server.
For the experiments presented in Section 7.2, we only con-
sider compute node failures, so deploying single instances
of Monitoring Servers, Database Servers, and Management
Engines fulfills our need. To avoid single points of fail-
ure, however, CHARIOT can deploy each of these servers
in a replicated scenario. In the case of Monitoring Servers
and Database Servers, replication is supported by existing
ZooKeeper and MongoDB mechanisms. Likewise, replica-
tion is trivial for Management Engines since they are state-
less. A Management Engine executes the CPC algorithm
(see Section 6.2), with or without the LaRC configuration
(see Section 6.3), using relevant information from a Database
Server. CHARIOT can therefore have multiple replicas of

4Since failure detection and diagnosis is not the primary
focus of this paper, our current implementation focuses on
resolving node failures, though CHARIOT can be easily ex-
tended to support mechanism to detect component, process,
and network failures.

Management Engines running, but only one performs recon-
figuration algorithms. This constraint is achieved by imple-
menting a rank-based leader election among different Man-
agement Engines. Since a Management Engine implements
a ZeroMQ server—and since ZeroMQ does not provide a
service discovery capability by default—CHARIOT needs
some mechanism to handle publisher discovery when a Man-
agement Engine fails. This capability is achieved by using
ZooKeeper as a coordination service for ZeroMQ publishers
and subscribers.

7.1.1 Application Deployment Mechanism
For initial application deployment, CHARIOT ML (see

Section 4) is used to model the corresponding system that
comprises the application, as well as resources on which
the application will be deployed. This design-time model
is then interpreted to generate a configuration space (see
Section 6.1) and store it in the Database Server, after which
point a Managment Engine is invoked to initiate the de-
ployment. When the Management Engine is requested to
perform initial deployment, it retrieves the configuration
space from the Database Server and compute a set of de-
ployment commands. These commands are then stored in
the Database Server and sent to relevant Deployment Man-
agers, which take local actions to achieve a distributed appli-
cation deployment. After a Deployment Manager executes
an action, it updates the configuration space accordingly.

7.1.2 Group Membership Mechanism for Failure and
Update Detection

CHARIOT leverages capabilities provided by ZooKeeper
to implement a node failure detection mechanism, which
performs the following steps: (1) each computing node runs
a Node Manager after it boots up to ensure that each node
registers itself with a Monitoring Server, (2) when a node
registers with a Monitoring Server, the latter creates a corre-
sponding ephemeral node.5, and (3) since node membership
information is stored as ephemeral nodes in the Monitoring
Server, it can detect failures of these nodes.

7.1.3 Reconfiguration Mechanism
After a failure is detected a Monitoring Server notifies

the Management Engine, as shown in Figure 13. This fig-
ure also shows that the Management Engine then queries
the Database Server to obtain the configuration space and
reconfigure the system using relevant information from the
configuration space and the detected failure.

7.2 Experimental Evaluation
Although we have previously used CHARIOT to deploy

and manage applications on an embedded system comprising
Intel Edison nodes (see http://chariot.isis.vanderbilt.edu/
tutorial.html), this paper uses a cloud-based setup to eval-
uate CHARIOT at a larger scale. Below we first describe
our experiment test-bed. We then describe the application
and the set of events used for our evaluation. We next
present evaluation of the default CPC algorithm and evalu-
ate the CPC algorithm with the LaRC algorithm. Finally,
we present CHARIOT resource consumption metrics.

7.2.1 Test-bed
5ZooKeeper stores information in a tree like structure com-
prising simple nodes, sequential nodes, or ephemeral nodes.
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Figure 14: Default CPC Algorithm Performance. (Please refer to Table 1 for details about each event shown in this graph.)

Our test-bed comprises 44 virtual machines (VMs) each
with 1GB RAM, 1VCPU and 10GB disk in our private
OpenStack cloud. We treat these 44 VMs as embedded com-
pute nodes. In addition to these 44 VMs, three additional
VMs with 2 VCPUs, 4 GB memory, and 40GB disk is used
as server nodes to host Monitoring Server, Database Server,
and Management Engine (see Figure 13). All these VMs ran
Ubuntu 14.04 and were placed in the same virtual LAN.

7.2.2 Application and Event Sequence
To evaluate CHARIOT, we use the smart parking system

described in Section 3.1. We divide the 44 compute nodes
into 20 processing nodes (corresponding to the edison node
template in Figure 7), 21 camera nodes (corresponding to
the wifi cam node template in Figure 7), and 3 terminal
nodes (corresponding to the entry terminal node template
in Figure 7). The goal description we used is the same shown
in Figure 8, except we increase the replication range of the
occupancy detector functionality to minimum 7 and maxi-
mum 10.

To evaluate the default CPC algorithm we use 33 different
events presented in Table 1. As shown in the table, the first
event is the initial deployment of the smart parking system
over 21 nodes (10 processing nodes, 10 camera nodes, and
1 terminal node). This initial deployment results in a total
of 23 component instances. After initial deployment, we in-
troduce 6 different node failure events, one at a time. We
then update the system by adding 2 terminal nodes, 10 pro-
cessing nodes, and 11 camera nodes. These nodes are added
one at a time, resulting in a total of 44 nodes (including
the 6 failed nodes). These updates are examples of intended
updates and show CHARIOT’s operations management ca-
pabilities. After updating the system, we introduce three
more node failures.

7.2.3 Evaluation of the Default CPC Algorithm
Figure 14 presents evaluation of the default CPC algo-

rithm using application and event sequence described above.

To evaluate the default CPC algorithm we use the total so-
lution computation time, which is measured in seconds. The
total solution computation time can be decomposed into two
parts: (1) problem setup time and (2) Z3 solver time. The
problem setup time corresponds to the first two phases of
the CPC algorithm (see Section 6.2.1 and Section 6.2.2),
whereas the Z3 solver time corresponds to the third phase
of the CPC algorithm (see Section 6.2.3).

Figure 14 shows that for initial deployment and the first 5
failure events, the total solution computation time is similar
(average = 48 seconds) because the size of the C2N matrix
and associated constraints created during the problem setup
time are roughly the same. The 6th failure (7th event in
Figure 14), is associated with the one and only terminal node
in the system. The Z3 solver therefore quickly determines
there is no solution, so the Z3 solver time for the 7th event
is the minimal 1.74 seconds.

Events 8 through 30 are associated with a system update
via the addition of a single node per event. These events
show that for most cases the total solution computation
time increases with each addition of node. The problem
setup time increases consistently with increase in the num-
ber of nodes because the size of the C2N matrix, as well as
the number of constraints, increases with an increase in the
number of nodes. The Z3 solver time also increases with
increase in number of nodes in the system, however, it does
not increase as consistently as the problem setup time due
to the least distance configuration computation presented in
Section 6.2.3. The amount of iterations (and therefore time)
it takes the Z3 solver to find a solution with least distance
is non-deterministic. If a good solution (with respect to dis-
tance) is found in the first iteration, it takes less number of
iterations to find the optimal solution.

Finally, events 31 through 33 are associated with more
node failures. The total solution computation time there-
fore decreases due to the decrease in number of nodes and
component instances, which results in a smaller C2N matrix
and a fewer number of constraints.
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Table 1: D&C Stages

Events Description
1 Initial deployment over 21 nodes (10 processing nodes, 10 camera nodes, and 1 terminal node) resulting in 23

component instances; 10 different component instances related to the occupancy detector functionality due to
its corresponding cluster replication constraint, 10 different component instances related to the image capture
functionality due to its corresponding per-node replication constraint associated with camera nodes (we have
10 camera nodes), a component instance related to the client functionality due to its corresponding per-node
replication constraint associated with terminal nodes (we have 1 terminal node), and a component instance each
related to the load balancer, and parking manager functionalities.

2 Failure of a camera node. No reconfiguration is required for this failure as a camera node hosts only a node-specific
component that provides the image capture functionality.

3 Failure of the processing node that hosts a component instance each related to the load balancer and park-
ing manager functionalities. This results in reconfiguration of the aforementioned two component instances.
Furthermore, since the processing node hosts an instance of the occupancy detection functionality, the number
of component instances related to this funcitonality decreases from 10 to 9. However since 9 is still within the
provided redundancy range (min = 7, max = 10), this component instance does not get reconfigured.

4 Failure of the processing node on which the component instance related to the parking manager functionality was
reconfigured to as the result of the previous event. This event results in the parking manager functionality related
component instance to again be reconfigured to a different node. Furthermore, the number of component instances
related to the occupancy detector functionality decreases to 8, which is still within the provided redundancy range;
as such, reconfiguration of that component instance is not required.

5 Failure of the processing node on which the component instance related to the load balancer functionality was
reconfigured to as result of event 3. This event results in the component instance being reconfigured again to a
different node. Also, the number of component instances related to the occupancy detector functionality decreases
to 7, which is still within the provided redundancy range so no reconfiguration is required.

6 Failure of another processing node. This node only hosts a component instance related to the occupancy detector
functionality. Therefore, as a result of this failure event, the provided redundancy range associated with the
occupancy detector functionality is violated as the number of corresponding component instances decreases to 6.
So, this component instance is reconfigured to a different node in order to maintain at least 7 instances of the
occupancy detector functionality.

7 Failure of the single available terminal node on which the component instance related to the client functionality
was deployed as part of the initial deployment (event 1). This event results in an invalid system state as there
are no other terminal nodes and therefore instances of client functionality available.

8-30 Hardware updates associated with addition of 2 terminal nodes, 10 processing nodes, and 11 camera nodes. These
nodes are added one at a time. Due to associated per-node replication constraints, addition of a terminal node
results in deployment of a component instance associated with the client functionality. Similarly, addition of
a camera node results in deployment of a component instance associated with the image capture functionality.
However, addition of a processing node does not result in any new deployment as it is not associated with a
per-node replication constraint.

31 Failure of a processing node that hosts a component instance related to the occupancy detector functionality. This
results in reconfiguration of the component instance to a different node.

32 Failure of another processing node, which hosts no applications. Therefore, no reconfiguration is required.
33 Failure of a camera node. Again, no reconfiguration is required (see event 2 above).

7.2.4 Evaluation of the CPC algorithm with LaRC
For the purpose of this evaluation we use the first 5 events

since this is enough to showcase the tradeoff between the de-
fault CPC algorithm and the CPC algorithm with LaRC. In
this approach, the total solution computation time (apart
from the initial deployment) is the time taken to query the
database for pre-computed solution. This time is signifi-
cantly lower (average = 0.0085 seconds) than that for the
default CPC algorithm (average = 48 seconds).

To demonstrate the tradeoff between the two versions of
the CPC algorithm, we present the time taken for solution
pre-computation and space required to store pre-computed
solution in Figure 15. As shown in the figure, the time taken
to pre-compute solution after initial deployment is 1,400
seconds, which is the time needed to pre-compute solution
for 21 node failures (initial configuration). To store this
pre-computed solution 1,715 bytes of storage space is used.
Events 2 through 5 represent node failures and as we can
clearly see, the solution pre-computation time and storage
used to store the pre-computed solution decreases with each
failure because failures result in less number of scenarios for
which we need to pre-compute a solution.

Figure 15: Solution Pre-computation Time for CPC with
LaRC. (The solution for failure event i+1 is computed when
the reconfiguration action for the failure event i is being
applied.)
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7.2.5 Resource Consumption
To demonstrate the usability of CHARIOT in IoT sys-

tems, we present various resource consumption of CHAR-
IOT entities (Deployment Manager and Node Monitor, see
Figure 13) that run on each compute node. The resource
consumption number only consider the chariot management
entities and not the actual application being managed. More-
over, for the purpose of this evaluation we categorize the
compute nodes based on their lifetime (short, medium, long)
and randomly pick 4-5 nodes form each category. Nodes A,
B, C, D, and E are nodes with short lifetime (less than 15
minutes); nodes F, G, H, and I are nodes with medium life-
time (between 110 and 154 minutes); nodes J, K, L, and M
are nodes with long lifetime (between 200 and 235 minutes).

Figure 16: Average Memory Consumption.

Figure 17: Average Network Bandwidth Consumption.

Figure 16 presents the average memory consumed by CHAR-
IOT entities running on 13 nodes above mentioned through-
out their lifetime. This figure shows that the average mem-
ory consumption is close to slightly above or below 25 MB
in each node. Similarly, Figure 17 presents the average net-
work bandwidth consumed by CHARIOT entities running
on the aforementioned 13 nodes throughout their lifetime.
This figure shows that the network bandwidth used to send
and receive information is minimal and predictable. We do
not show the CPU utilization since it was mostly 0%, some-
times rising to less than 0.5%.

From above results presented above we conclude that the
CHARIOT infrastructure is not resource intensive and there-
fore can be used for resource-constrained IoT devices. CHAR-

IOT is currently written using Python6, though we intend
to convert most of our code to C++ to further improve
CHARIOT’s performance.

8. CONCLUDING REMARKS
This paper described the structure and functionality of

CHARIOT, which is an orchestration middleware designed
to meet the resilience requirements of IoT systems. The fol-
lowing is a summary of our lessons learned from developing
CHARIOT and applying it in the context of a smart parking
system case study:

• Lesson 1: Design-time system description should
be generic. If the objectives of an application and
the different functionality that it requires can be spec-
ified in a generic manner, CHARIOT can create an
online mechanism that maps the system objectives to
required resources based on functionality decomposi-
tion and functionality-component association. It is
important, however, to extend this concept to support
the idea of graceful degradation. As part of future
work, we are modeling quality of service functions that
provide mechanisms for evaluating the performance
of a component’s functionality based on available re-
sources. This mechanism can help in cases where we
need to arbitrate between different system objectives.
• Lesson 2: Design-time and runtime system in-

formation can be used to encode constraints
at runtime. Using design-time system description
and runtime system representation, constraints can be
dynamically encoded to represent various system re-
quirements. These constraints can aid online reconfig-
uration via the use of state-of-the-art solvers such as
Z3, which is a SMT solver. To minimize downtime,
however, efficient pre-computation of reconfiguration
steps is necessary. CHARIOT’s Look-ahead approach
described in this paper is a step in this direction.
• Lesson 3: Dynamic online reconfiguration is

time consuming. Online reconfiguration is time con-
suming and is thus not suitable for low latency real-
time IoT systems. For those types of systems, it is
important to include redundancy in the deployment
logic. The CHARIOT modeling language and recon-
figuration logic provides support for such redundancy
concepts.
• Lesson 4: Failure reconfiguration approach can

be extended to support system updates as well.
CHARIOT’s reconfiguration framework can be extended
to address IoT system evolution, which corresponds to
the addition of computational capabilities or new soft-
ware applications. By generalizing and automating re-
configuration steps CHARIOT can be adopted to IoT
apps in many domains.

Our future work on CHARIOT will analyze the time com-
plexity of the reconfiguration analysis and develop strategies
to minimize downtime to facilitate its use in safety- and
time-critical IoT application domains.
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