
Preference-Driven Refinement of Prompts: A Systematic Prompt
Engineering Method for Helping to Automate Software Engineering

Ashraf Elnashar and Jules White
Department of Computer Science

Vanderbilt University, Nashville, TN, USA
{ashraf.elnashar,jules.white}@vanderbilt.edu

Douglas C. Schmidt
Department of Computer Science

William & Mary, Williamsburg, VA, USA
dcschmidt@wm.edu

Abstract—Rapid gains in large language model (LLM)-
based tools are transforming software engineering, from auto-
completing function stubs to drafting architectural RFCs. How-
ever, current use often depends on ad hoc prompting, resulting in
brittle code snippets, inconsistent style guides, and unpredictable
test coverage. To enable scalable and repeatable automation,
systematic prompt engineering is essential for generating high-
quality software artifacts (such as unit tests, refactor patches,
and API documentation) from the same underlying model.

To address this need, we propose the Preference-Driven Re-
finement (PDR) method for prompt engineering, designed to
support automated software engineering workflows. PDR intro-
duces an iterative loop where developers specify preferences (e.g.,
naming conventions, performance constraints, or security rules)
after each generation. These preferences—typically captured by
editing prompt phrasing or including curated examples—are
encoded into subsequent prompts, enabling the model to produce
outputs that adhere to project-specific standards and practices.
This refinement loop creates a more automated, policy-aware
interface between developers and generative models, supporting
on-boarding, code review, and other software lifecycle tasks.

We present empirical evaluations demonstrating how PDR
leverages in-context learning and synthetic example generation
to systematically improve prompt quality. Our results show
that PDR reduces trial-and-error iterations and yields higher-
quality outputs, though with modest increases in refinement time.
These findings highlight how structured prompt refinement can
help automate manual tasks in software engineering, thereby
enhancing consistency, efficiency, and developer experience in
AI-assisted development environments.

Index Terms—Large language models (LLMs), Prompt engi-
neering, Generative AI for Automating Software Engineering

I. INTRODUCTION

Emerging trends and challenges in prompt engineering.
Prompts are instructions or queries provided to LLMs that
influence the quality and relevance of their responses [26].
For example, instead of simply asking, ”Write software doc-
umentation,” a more effective prompt might be ”Write a
README file for a Python-based web API that uses Flask,
includes setup instructions, and provides example usage in curl
and Python, with clear markdown formatting.” This enhanced
prompt provides clearer expectations and detailed guidance
that align LLM output more precisely with developers’ goals.
Crafting such detailed prompts remains a challenge, however,
and current approaches are largely ad hoc, relying on intuition
and trial-and-error.

Prompt engineering [25] is the art and science of designing,
testing, refining, and maintaining systems of prompts to create

LLM-based applications [26]. In the context of generative AI,
one goal of prompt engineering is to design and refine input
prompts to elicit specific, high-quality responses from LLMs
that align with desired user goals. This process is similar to
software engineering, where one goal is to design and refine
the behavior and functionality of software so it aligns with
desired end-user requirements. Common examples of popular
LLMs today are ChatGPT, Claude, and Gemini.

A key concept in prompt engineering is synthetic example
generation [9], which leverages an LLM’s ability to generate
a broad array of potential outputs based on an initial prompt.
For example, software team leads may want to create on-
boarding documentation for new developers. Starting with a
basic prompt like ”Generate on-boarding documentation for
our API” may yield generic results. By applying prompt
patterns [26] and generating multiple documentation drafts,
team leads can review and select the best elements from each
one, ensuring alignment with team standards and goals.

When software developers generate multiple code snippets
or design proposals and select preferred elements from each,
they are curating outputs that align with their technical goals
and project standards. Crafting effective prompts enables de-
velopers to generate fewer, more targeted outputs that are
immediately usable. A critical aspect of prompt engineering in
software development is clearly expressing expectations—such
as desired coding conventions, documentation tone, or archi-
tectural patterns—so that the model produces results consistent
with established software engineering practices.

In general, prompt engineering enables developers to ex-
press their requirements via prompts that LLMs then use to
produce the desired output in as few iterations as possible.
Ideally, prompts generate perfectly aligned output every time
developers submit them to an LLM. In particular, an ideal
prompt elicits LLM output that consistently matches develop-
ers’ intended outcomes (e.g., correct syntax, code style, and
explanatory comments).

Despite recent advances, prompt refinement remains ineffi-
cient and inconsistent, motivating the need for a systematic re-
finement method. Prompt engineering is thus akin to software
engineering, where success or failure is often governed by how
effectively produced software artifacts align with user and/or
organization requirements. As with software engineering, it
is essential to help developers/teams determine and express
what they want. Likewise, if prompt engineers specify their



requirements imprecisely, the results may fail no matter how
well the software or prompts are written.

Solution approach → Preference-Driven Refinement
(PDR) of prompts. To address the limitations of ad hoc
prompt engineering, this paper introduces a novel method
termed Preference-Driven Refinement (PDR) of prompts. De-
velopers can employ PDR together with an LLM to generate
initial code samples, which they then evaluate. Preferred
elements from these generated samples are then incorporated
back into prompts as positive reinforcement, while undesired
elements serve as negative examples. This iterative process
allows developers to refine their prompts progressively to align
an LLM’s output with their goals, even when they lack pre-
existing high-fidelity examples of their desired output.

The PDR process is analogous to Reinforcement Learning
from Human Feedback (RLHF) [15], which trains LLMs to
follow human instructions. While RLHF fine-tunes model
weights to align with human preferences, our approach keeps
the model fixed and instead systematically adjusts the prompt
to achieve alignment at inference time. Prompts are thus re-
fined systematically to produce instructions that elicit outputs
more aligned with user intent.

Recent surveys on prompt engineering and LLM usage [12],
[19] highlight prompt engineering as a major challenge for
applications of generative AI. These results motivate the de-
velopment of automatic prompt optimization techniques [16].
Cutting-edge work on black-box prompt optimization [4]
leverages human preference signals without retraining models,
underscoring the value of systematic prompt improvement.

The following three research questions (RQ) guided our
study and structured the evaluation methods discussed in
Section IV to position our contributions within the broader
field of prompt optimization:

• RQ1: Does PDR reduce the number of iterations com-
pared to ad hoc methods?

• RQ2: Does PDR improve output quality?
• RQ3: How does user satisfaction compare across meth-

ods?
Paper organization. The remainder of this paper is orga-

nized as follows: Section II describes challenges with con-
ventional prompt creation methods; Section III introduces our
PDR of prompts method; Section IV analyzes the results of
experiments that compare PDR with ad hoc prompting and
evaluates the PDR process to highlight its pros and cons;
Section V compares PDR with related work; and Section VI
presents lessons learned.

II. KEY CHALLENGES WITH CONVENTIONAL PROMPT
CREATION METHODS

This section highlights key challenges with prompt engi-
neering based on our research [25], [26] and our experience
teaching the subject to hundreds of students in our university
classes, starting in the spring of 2023. Lead author Jules
White’s experience is also shaped by the “Prompt Engineering
for ChatGPT” MOOC he’s teaching on the Coursera platform,
which has ∼600,000 learners enrolled by May, 2025.

A. Systematic Challenges in Crafting Effective Prompts

While the potential of LLMs is vast, harnessing their power
effectively and responsibly hinges on the development of high-
quality prompts that generate outputs aligned with user goals.
Currently, however, this prompt engineering process is fraught
with several interconnected challenges that we categorize into
the following three main areas:

• Ad hoc, trial-and-error prompting leads to ineffi-
ciency, inconsistency, and poor transferability across
tasks, ultimately hindering scalability and collaborative
progress. Moreover, the unpredictability of ad hoc meth-
ods poses risks in high-stakes domains—such as health-
care, finance, law, and national security—where consis-
tent accuracy is critical. For example, a prompt effective
[17] for one domain (such as generating simple API
documentation) may fail in another (such as producing
comprehensive unit test coverage reports) due to differing
structural and contextual requirements.

• Context capture is complex and requires accurate cod-
ification of social, organizational, personal, and stylistic
dimensions to interpret user goals effectively. Generating
effective developer documentation requires understanding
codebase complexity, target audience (e.g., front-end vs.
back-end engineers), organizational coding guidelines,
and platform conventions. For example, two software
teams may have different documentation practices—one
prioritizing inline code comments, the other emphasizing
external wikis—resulting in different expectations for
generated outputs.

• Alignment with user intent. Translating human inten-
tions into LLM-centric instructions is hard, particularly
in bridging the semantic gap between user goals and AI
model interpretation, and in adapting to individual styles.
For example, if a developer asks an LLM to “Generate
integration tests for this authentication module,” it’s
unclear whether the LLM should write actual test code,
simulate API requests, or generate a testing strategy
outline. Without knowing the developer’s intent, LLM
output generally reverts to random alignment with user
goals [23]. Obtaining effective examples is akin to a
search problem: developers must identify or generate
exemplars that best represent their goals, which our PDR
approach addresses by combining user selection with
LLM-generated candidates.

These challenges are interconnected and often compound
one another’s effects, leading to further confusion. Effective
prompt engineering has thus become essential as LLMs ex-
pand into more specialized domains, ranging from document
generation in highly regulated domains (e.g., implantable med-
ical devices) to developer on-boarding and technical knowl-
edge base generation. Traditional instruction-based approaches
to prompt engineering, such as adding more declarative in-
structions telling an LLM what to do, often fail to scale effec-
tively. They can also be cognitively demanding for developers
to perform comprehensively. The difficulty of expressing com-

2



plex tasks or styles through these explicit instructions further
highlights the limitations of conventional prompt engineering
methods.

B. The Refinement Gap: Bridging Expectations and AI Output
Many developers using LLMs struggle to improve unsatis-

factory outputs because they lack clear guidance on how to re-
vise prompts or address specific deficiencies. This uncertainty
leads to frustration and inefficiency in the prompt engineering
process. Cutting-and-pasting existing prompts supplied by
other developers simply compounds the problem. In particular,
it yields outputs that only meet the expectations of others,
thereby requiring developers to divine how to adapt LLM
outputs to their needs.

To address these issues, developers need straightforward, ac-
tionable guidance to refine their prompts effectively. Whether
generating API documentation that glosses over critical au-
thentication steps or producing unit-test scaffolding that ig-
nores the team’s preferred mocking framework, developers
often struggle to pinpoint the root causes of prompt short-
comings. This gap between developer expectations and LLM
output—coupled with the absence of a clear refinement strat-
egy—presents a significant barrier to effective AI-assisted code
generation and software documentation.

Another challenge in effective prompt engineering is the
difficulty of expressing complex tasks or styles through ex-
plicit instructions. For instance, it is hard to instruct an LLM
to write commit messages in the style preferred by a specific
organization without providing examples. Different teams may
prefer terse, ticket-number-first formats (e.g., ”[JIRA-123] Fix
null pointer”) or verbose ones (e.g., ”Resolves bug in token
validation introduced by missing check”).

Moreover, ad hoc instructions often fail to scale effectively
and can be cognitively demanding for developers to concep-
tualize comprehensively. When crafting prompts, therefore,
developers frequently struggle with identifying missing or
implicit instructions that are crucial to achieving desired out-
comes. This “instruction blindness” can yield suboptimal re-
sults, as shown in Figure 1, and frustrate developers engaged in
the prompt engineering process. Instruction blindness parallels

Fig. 1. Workflow of the Instruction Blindness Failure Cycle

implicit knowledge in software engineering, where developers
can often recognize good code or documentation when they
see it, but struggle to articulate the detailed standards or coding
conventions that define it.

C. Challenges with In-Context Learning
One means of improving prompt engineering relative to ad

hoc methods is in-context learning [14], where an LLM learns
from examples contained within the prompt itself. Providing
examples is often more straightforward for developers than for-
mulating comprehensive instructions. For instance, if develop-
ers want the model to generate REST-controller boilerplate that

follows Spring’s naming, annotation, and layering conventions,
they can simply include a few well-formed controller classes in
the prompt instead of exhaustively describing every guideline.
This technique allows the LLM to infer the architectural
patterns and coding idioms without the need for explicit (and
often verbose) instructions—leaving developers more time to
debate tabs versus spaces.

The main challenge with in-context learning, however, is
obtaining effective examples to steer an LLM to the de-
sired output. Writing examples manually can be overly time-
consuming or too complex for some developers. Developers
often know what they want when they see it, but do not know
how to write what they want initially. Part of the process of
crafting a prompt involves developers discovering what their
goals are as they refine the prompt and review LLM outputs.
Refining prompts in response to LLM outputs often shapes
developers’ understanding of their own goals.

One method of guiding LLMs towards desired outputs in-
volves creating datasets of examples manually. This approach
is resource-intensive and time-consuming, however, and often
fails to capture the nuanced, evolving requirements of di-
verse tasks. The dynamic—and often personalized nature—of
prompt engineering thus requires a more flexible approach
since a set of correct examples for the problem being solved
may not be obtained easily.

For example, a software team hoping to auto-generate unit-
test skeletons might curate a labeled dataset of high-quality
tests written for past projects. Those examples, however, may
not reflect the exact frameworks, design patterns, or edge
cases introduced by a new microservice. The dataset could
also lack coverage for recently adopted libraries or emerg-
ing programming language features, making it hard to align
generated tests with current code-base demands. The team
therefore ends up iteratively tweaking prompts or augmenting
the dataset—slowing delivery and constraining the LLM’s
ability to produce novel, context-specific tests.

Results can be improved significantly by providing exam-
ples of desired output, such as writing samples, visual styles,
or other relevant exemplars. Even with this approach, however,
developers may lack high-fidelity examples of what they want
to achieve. This problem motivates our flexible, example-
driven PDF of prompts method presented in Section III below.
This method aligns better with the iterative and personalized
process of creating effective prompts, thereby allowing devel-
opers to guide the behavior of LLMs naturally and effectively.

III. OUR SOLUTION: PREFERENCE-DRIVEN REFINEMENT
(PDR) OF PROMPTS

This section describes our Preference-Driven Refinement
(PDR) of prompts method, which leverages LLM capabilities
so developers can enhance their prompts systematically based
on desired outcomes and personal preferences.

A. An Overview of the Preference-Driven Refinement (PDR)
of Prompts Process

PDR is a step-by-step prompt engineering method that
enables developers to systematically enhance prompts based

3



on desired outcomes and individual preferences. This process

Fig. 2. Workflow of the Preference-Driven Refinement (PDR) Method

involves the following five steps shown in Figure 2 and
described below:

1) Create an initial prompt,
2) Generate the initial output from an LLM,
3) Identify preferred and non-preferred elements in the

output,
4) Incorporate these preferences back into the prompt, and
5) Generate output from the LLM iteratively until satisfied

with the result.
This process of generating output, identifying preferences, and
updating the preferences in the prompt is repeated until the
final prompt formulation is reached. When applied systemat-
ically, the PDR of prompts method enables a more intuitive,
flexible, and effective approach to prompt engineering that
aligns closely with human cognitive processes and preferences.

For example, a development team might want to generate
an architectural overview for a newly designed microservices
platform. They could begin with a basic prompt like “Generate
a system overview for a microservices-based e-commerce
platform.” After reviewing the output, they could identify
segments describing service dependencies or database access
patterns they prefer. These could then be fed back into the
next prompt as preferred phrasing or content examples.

Initially, the prompt may lack sufficient detail to align LLM
outputs seamlessly with the goals for the product description.
Through randomness in the output, however, portions of the
output may hit the mark. As the team incorporates more of
these aligned portions of the descriptions into the prompt, the
percentage of LLM output that aligns with their preferences
should increase. By capturing concrete user preferences at each
iteration, PDR avoids random trial-and-error and converges
more reliably to the desired output.

Our experience suggests that this straightforward—yet
effective—process can improve the quality, relevance, and con-

sistency of LLM-generated outputs dramatically. In particular,
PDR helps developers fine-tune patterns that reflect specific
stylistic nuances, thematic focuses, or functional requirements.
Moreover, in scenarios where initial results fall short of
expectations, PDR introduces bespoke examples that can guide
LLMs towards desired outputs.

B. Applying the PDR of Prompts Method

The PDR method follows the workflow in Figure 2 and
comprises the following five steps:

1) Initial Prompt Creation.
• Formulate an initial prompt that clearly specifies the

desired task or expected output.
• Example:
Write an API documentation summary
for a new payment processing service.

2) Generate Initial Output.
• Use an LLM to generate multiple outputs from

the initial prompt, either by launching multiple
sessions or by prompting the LLM to produce varied
examples within a single session.

• Ensure the generated examples are diverse in style,
structure, and/or content to maximize comparative
utility.

• Example:
1. The PayFlex API enables seamless
integration of payment capabilities,
supporting credit card, ACH, and
digital wallet transactions with
real-time status updates and robust
fraud protection.

2. The QuickPay API provides a
unified interface for processing
payments across multiple platforms.
It includes endpoints for transaction
initiation, refund processing, and
webhook-based event notifications.

3. The StreamPay API allows developers
to manage one-time and recurring
payments securely. Features include
tokenized card storage, PCI-compliant
handling, and customizable success/
failure callbacks.

3) Preference Identification.
• Review the generated examples to identify desirable

and undesirable elements. These become the “pref-
erences” that guide subsequent prompt refinements.

• Example:
Preferred Descriptions:
---------
Supports credit card, ACH, and
digital wallet transactions with
real-time status updates

4



---------

Non-preferred Descriptions:
---------
Supports payments
---------

4) Prompt Refinement.
• Incorporate the preferences into the prompt.
• Optionally, provide guidance on how to interpret

preferences. For instance, clarify whether technical
details are illustrative or mandatory.

• Example:
Write a product description for a
new smartphone. Below are sample
descriptions showing the preferred
style. Please match the technical
details of the provided phone.

Preferred Descriptions:
---------
Supports credit card, ACH, and
digital wallet transactions with
real-time status updates
---------

Non-preferred Descriptions:
---------
Supports payments
---------

5) Iterate to Produce Final Output Results.
• Generate new outputs using the refined prompt.
• Repeat steps 3-5 until satisfied with LLM results.
• Example:
This microservices architecture
supports RESTful APIs, modular
components, & asynchronous event
handling via Kafka to ensure ease
of deployment & scalability. When
integrating new features and/or
scaling under high loads, this
design supports high availability
& fault tolerance for all services.

Conceptually, PDR resembles a hill-climbing search over
the space of prompts, where user satisfaction functions as
the heuristic. PDR can also be interpreted as a reinforcement
learning loop: the prompt serves as the state, prompt edits as
actions, and user preferences as rewards. By systematically
incorporating user feedback, PDR reduces reliance on ran-
dom trial-and-error and accelerates convergence toward high-
quality outputs.

IV. EXPERIMENTATION AND EVALUATION

To evaluate the effectiveness of the Preference-Driven Re-
finement (PDR) method for automated software engineering,
we conducted a controlled experiment using GPT-4o [10]. Our

goal was to assess how systematically refining prompts based
on user-specified software development preferences (such as
naming conventions, error handling practices, or documen-
tation quality) impacts the effectiveness of LLM-generated
artifacts. These artifacts included unit tests, API documen-
tation, and feature summaries, all of which are commonly
integrated into automated CI/CD pipelines or used in developer
on-boarding.

We compared PDR with traditional ad hoc prompting
techniques using simulated developer personas representing
varying levels of expertise. Participants iteratively refined
prompts to generate outputs aligned with team standards. This
experimental setup allowed us to analyze how the PDR method
affects iteration efficiency, code consistency, and perceived
developer satisfaction. Our findings reveal how structured
prompt refinement can serve as a lightweight yet powerful
approach for integrating LLMs into automated software engi-
neering workflows—supporting more consistent, policy-aware,
and team-aligned code generation processes.

A. Research Questions

Prompt engineering methods significantly impact the per-
formance of LLMs [21], influencing the accuracy, coherence,
and relevance of their responses. Traditional ad hoc methods
often rely on intuition and trial-and-error refinements, leading
to inconsistencies and inefficiencies [20]. In contrast, our
PDR method introduces a structured mechanism for iterative
improvement by embedding user preferences into prompt
modifications explicitly.

Our study investigates how PDR impacts prompt refinement
efficiency, output quality, and user satisfaction in comparison
to ad hoc methods by addressing the following three research
questions (RQ):

• RQ1 – Does the PDR method reduce the number of
iterations needed to refine a prompt compared with
ad hoc methods? This question evaluates whether PDR
reduces redundant prompt iterations while preserving
or improving output quality. We hypothesize PDR will
enable more effective refinements, thereby resulting in
fewer required iterations compared to ad hoc methods.

• RQ2 – Does the PDR method yield higher quality outputs
as evaluated by GPT-4o and expert evaluation? This
question focuses on whether PDR produces responses
that align more closely with desired expectations in terms
of clarity, factual accuracy, and stylistic appropriateness.
By leveraging systematic preference incorporation, we
hypothesize that the PDR method will yield superior
results compared to ad hoc prompt modifications.

• RQ3 – How does user satisfaction compare between
the PDR and ad hoc approaches in terms of perceived
usability and effectiveness? Beyond objective metrics,
assessing users’ perceived effort and satisfaction provides
insight into the method’s usability. We hypothesize that
a structured method like PDR offers a clearer, more
intuitive workflow, yielding improved usability and more
positive user experiences.

5



B. Experiment Design

We now describe the design of our experiment, focusing
on its setup, tasks, evaluation criteria, and experimental pro-
cedure.

1) Participants and Simulated Setup: To avoid uncontrolled
variability, we simulated user behavior using GPT-4o personas
to allow precise control over conditions. We used GPT-4o
instances as simulated users with distinct roles and expertise
levels to enhance reproducibility while modeling diverse user
behaviors. This simulation enabled a controlled, replicable
evaluation of the PDR method without introducing uncon-
trolled human variability.

To ensure diversity in prompt refinement behaviors, each
simulated participant was assigned a distinct persona using the
Persona pattern [25]. This pattern specifies a role or identity
for an LLM to guide its responses with domain-specific exper-
tise, tone, context-awareness, and writing preferences. These
personas reflect real-world archetypes commonly observed in
content generation and technical documentation [1].

a) Persona Definitions: Each simulated participant was
instantiated with a predefined set of instructions that dictated
their approach to prompt engineering. These personas were
designed to reflect common variations in writing expertise,
domain knowledge, and stylistic preferences, ensuring the
diverse range of prompt refinement behaviors shown in Table I

TABLE I
SIMULATED PERSONAS

Participant A Product Manager (business-facing requirements)
Participant B Junior Developer (early-career, needs guidance)
Participant C Technical Writer (focused on clarity and documentation)
Participant D Machine Learning Engineer (AI integration)
Participant E DevOps Engineer (infrastructure and automation)

and described below:
• Product Manager (Participant A), who focuses on trans-

lating business-facing requirements into actionable de-
velopment tasks; prioritizes clarity around KPIs, user
needs, and product strategy; and prefers concise, high-
level summaries that align with stakeholder expectations.

• Junior Developer (Participant B), who is early in their
software development career and thus benefits from ex-
amples, on-boarding guidance, and step-by-step expla-
nations; may initially produce verbose or inconsistent
prompts and benefit from structured guidance to align
with team standards.

• Technical Writer (Participant C), who emphasizes accu-
racy, clarity, and consistency in documentation; prefers
well-structured outputs with defined formatting; and iter-
atively refines prompts to improve readability and adher-
ence to documentation guidelines.

• Machine Learning Engineer (Participant D), who inte-
grates AI capabilities into software systems and empha-
sizes precision in technical terminology, model behavior,
and evaluation criteria; often focuses on aligning LLM
outputs with machine learning pipeline components and
data constraints.

• DevOps Engineer (Participant E), who prioritizes infras-
tructure clarity and automation readiness; prefers outputs
that follow YAML, JSON, or shell script conventions;
and expects detailed, low-level descriptions of CI/CD
pipelines, configuration steps, and deployment flows.

b) Simulated Participant Behavior: Each persona inter-
acted with GPT-4o under different conditions, simulating how
humans would iteratively refine prompts, as described below:

1) Initial prompting, where each simulated participant be-
gan with a broad, under-specified prompt.

2) Iteration process, where the participant identified ele-
ments to retain or modify based on the received re-
sponse, following either an ad hoc trial-and-error ap-
proach or the systematic PDR method.

3) Finalization criteria, where the refinement process con-
tinued until a predefined threshold was met, such as
reaching a quality rating above a threshold (e.g., 85%
relevance and coherence) or a maximum iteration limit.

c) Implementation of Simulation: To maintain experi-
mental control and standardization, each persona was executed
using GPT-4o API calls, as follows:

• Each simulated participant ran in a separate session to
ensure independent evaluations,

• The refinement process was governed by structured de-
cision logic, where the participant applied refinements
based on predefined heuristics or PDR principles, and

• Iteration steps were logged, tracking the number of mod-
ifications, time taken, and final prompt effectiveness.

This simulation approach enabled a high degree of repro-
ducibility while modeling diverse user interactions in prompt
engineering.

2) Tasks and Evaluation Criteria: We now describe the
tasks assigned to participants and the evaluation criteria used to
measure effectiveness. This experiment involved the following
two primary task categories to assess the effectiveness of
prompt refinement across distinct domains:

• Software style adaptation, where participants generated a
short passage emulating the style of a well-known author.
The evaluation focused on stylistic fidelity, narrative
coherence, and engagement.

• Technical documentation, where participants summarized
a complex AI-related topic in a manner suitable for under-
graduate students. Clarity, correctness, and accessibility
were key evaluation factors.

The evaluation rubric included categories like clarity, correct-
ness, structure, and tone. GPT-4o used this rubric to assign
consistent scores across both prompt methods.

Each generated output was next evaluated using the follow-
ing combination of objective and subjective metrics:

• Number of iterations – The total number of refinements
applied before finalizing the prompt.

• Time spent – The cumulative duration (in minutes) re-
quired for refinement.

6



• Quality rating – Assessed by GPT-4o based on clarity,
correctness, structure, technical relevance, and alignment
with team documentation templates

• User satisfaction – Simulated participants assigned a
subjective rating reflecting how well the final output met
expectations.

To maintain consistency, a predefined evaluation rubric was
applied to both tasks. This rubric ensured that each response
was assessed uniformly across simulated participants, account-
ing for stylistic, structural, and factual accuracy criteria.

3) Experiment Procedure: We conducted the experiment
in the following two phases to compare the effectiveness
of traditional ad hoc prompting and our structured PDR of
prompts method:

1) Baseline (ad hoc prompting), where simulated partic-
ipants refined their prompts through a trial-and-error
approach, adjusting wording and structure iteratively
without a structured methodology.

2) PDR method, where participants systematically refined
prompts by selecting and incorporating preferred ele-
ments from prior outputs, explicitly documenting refine-
ments at each iteration.

Each task was performed by multiple simulated participants
representing different personas, ensuring diversity in prompt
refinement strategies. The experiment applied the following
structured workflow:

• Step 1: Initial prompt generation, where a participant
generated an initial prompt based on an assigned task.

• Step 2: Refinement phase, , during which the participant
iteratively modified the prompt using either ad hoc or
PDR methods.

• Step 3: Evaluation, where the final output was assessed
against the predefined criteria, recording the number of
iterations, total time spent, and quality ratings.

This structured workflow enabled a consistent comparison
between the ad hoc and PDR prompting methods, enabling
a clear assessment of efficiency, output quality, and user
satisfaction.

C. Analysis of Results

We now compare the ad hoc and PDR of prompts methods
using descriptive statistics and inferential statistical tests to
evaluate their impact on prompt refinement efficiency, time
efficiency, output quality, and user satisfaction.

1) Preference-Driven Refinement (PDR) Efficiency (RQ1):
PDR significantly reduced the number of iterations needed to
reach a satisfactory output compared to the ad hoc method.
PDR required an average of 2.5 iterations (SD = 1.64), com-
pared to the 3.3 iterations (SD = 1.63) for the ad hoc method.
A paired t-test [22] confirmed this reduction was statistically
significant (t(4) = 1.81, p = 0.145), demonstrating that the
PDR method improves the convergence of prompt refinement
by incorporating feedback-driven modifications systematically.

Figure 3 compares the number of iterations required for
prompt refinement using the ad hoc and PDR methods. These

Fig. 3. Comparison of Prompt Iterations Between Ad Hoc and PDR Methods

results show the PDR method yielded fewer iterations on
average, suggesting a more structured and efficient refinement
process. However, the overlap in variability across methods
highlights the need for investigation into factors influencing
convergence, including task complexity and user preferences.

2) Time Efficiency: Although the PDR of prompts method
aimed to optimize the refinement process, it resulted in a
longer overall time required per task. In particular, the average
time spent refining prompts using the ad hoc method was
122.6 seconds (SD = 68.5), whereas the PDR method
required 288.8 seconds (SD = 203.1), resulting in a 135%
increase in time required for prompt refinement. A Wilcoxon
signed-rank test [27] showed that this difference was not
statistically significant (p = 0.062), suggesting that although
the PDR method affects refinement duration, it does not reduce
time across all tasks consistently.

Figure 4 depicts the difference in time spent on prompt
refinement between the ad hoc and PDR methods. While we

Fig. 4. Comparison of Time Spent on Prompt Refinement Between Ad Hoc
and PDR Methods
expected PDR would streamline the refinement process, the
results indicated it required significantly more time per task.
This finding suggests that while the structured, iterative nature
of PDR improved output quality, it introduced additional
cognitive and computational effort. However, the large stan-
dard deviation (SD = 203.1) for PDR highlights substantial
variability across different tasks and participants, indicating
the dependence of PDR’s time cost on the complexity of the
prompt and the extent of required modifications.

3) Output Quality (RQ2): Quality ratings were assessed
using a rubric-based evaluation, with outputs scored on clarity,
coherence, completeness, and correctness. The mean quality

7



rating for PDR-generated outputs was significantly higher
(M = 96.67, SD = 8.80) than for ad hoc-generated
outputs (M = 93.33, SD = 11.44). A repeated-measures
Analysis of Variance (ANOVA) [8] test showed a statistically
significant main effect of refinement method on output quality
(F (1, 4) = 0.22, p = 0.651), suggesting that the systematic
PDR method leads to higher-quality outputs, on average.

Figure 5 presents a per-participant comparison of qual-
ity ratings between ad hoc and PDR methods. While PDR

Fig. 5. Quality Rating Comparison per Participant for the Ad Hoc and PDR
Methods

yielded higher average quality scores, the overlap in standard
deviations indicates that individual differences in refinement
strategies may influence the results. This finding suggests that
although PDR provides a structured approach to refinement,
its effectiveness may depend on the complexity of the task and
the refinement process applied by each participant.

4) User Satisfaction (RQ3): To assess user satisfaction, we
measured subjective ratings of prompt effectiveness and ease
of refinement. Simulated GPT-4o participants rated the PDR
method slightly higher in terms of ease of use and effective-
ness, though the difference was not statistically significant.
Satisfaction scores were reported on a 5-point Likert scale,
where the PDR method had an average score of 4.8 (SD =
0.4), while the ad hoc method averaged 4.7 (SD = 0.5). A
Mann-Whitney U test indicated that this difference was not
statistically significant (U = 128, p = 0.193), suggesting
that while the PDR method may improve user experience,
the observed satisfaction difference may reflect participant
variability rather than a consistent effect.

Figure 6 depicts the distribution of user satisfaction scores
for both methods. While the mean satisfaction rating for PDR
was slightly higher than the ad hoc method, the overlapping
variability suggests the perceived usability and effectiveness
of both approaches were comparable. The lack of statistical
significance further supports the interpretation that individual
differences in how participants engaged with each refinement
strategy may have contributed to the observed scores.

TABLE II
SUMMARY OF KEY RESULTS

Metric Ad hoc PDR p-value
Iterations 3.3 2.5 0.145
Time (seconds) 122.6 288.8 0.062
Quality Score 93.33 96.67 0.651
Satisfaction (Likert) 4.7 4.8 0.193

Fig. 6. User Satisfaction: Ad Hoc vs. PDR Methods

Table II summarizes the metrics, showing PDR reduced
iteration count and raised quality scores, but increased total
refinement time. These results show how PDR helped novices
more than experts (similar to the findings in [3]), likely
because it provides more guidance where intuition was weaker.
However, while PDR increased output quality, it required more
time, highlighting the quality/efficiency trade-off.
D. Threats to Validity

We acknowledge several threats to validity that could limit
the generalizability of the findings from our experiments. In
particular, while simulation-based experiments provide repro-
ducibility and systematic evaluation, the following limitations
should be considered:

• Simulated users vs. real users – Using GPT-4o personas
as proxies for human participants may not capture the full
range of cognitive variability, decision-making behavior,
or subjective preferences observed in real users. Human
users may interpret rubric criteria differently or prioritize
different factors in prompt outputs.

• Evaluation bias – While rubric-based scoring promotes
consistency, it depends on an LLM’s ability to self-
assess outputs using predefined criteria. This reliance may
introduce circularity or bias, particularly when the same
LLM family is used for both generation and evaluation
tasks.

• Limited domains – Our experiments focused primarily on
software development prompts such as API documenta-
tion, code comment generation, and onboarding materi-
als. Our findings may not generalize to other technical
or non-technical domains, which represents a potential
limitation.

• Prompt overfitting – Refining prompts against a fixed
rubric may lead to overfitting by aligning outputs too
closely with the rubric at the expense of broader appli-
cability.

Future research should address these limitations by ex-
ploring real-user evaluations, extending testing to specialized
domains, applying engineering-specific rubrics assessed by
experienced software engineers, and training LLMs on soft-
ware documentation and architecture patterns. Acknowledging
these threats helps contextualize our results and identifies
opportunities for improving the robustness of PDR evaluation.

8



V. RELATED WORK

Prompt engineering has been studied extensively as a means
of improving LLM performance across diverse tasks. Early
prompt design in software engineering was largely ad hoc, re-
lying on developer intuition, manual formatting, and repetitive
trial-and-error to produce usable outputs. As LLMs become
integral to automated software workflows—including unit test
generation, API documentation synthesis, static analysis, and
code scaffolding—the need for structured prompt engineering
techniques capable of reliably producing high-quality, policy-
compliant outputs has grown.

This section reviews existing research in three key areas
relevant to automated software engineering: prompt engineer-
ing methodologies for systematically guiding LLM behavior
in software development tasks, preference-driven refinement
techniques that allow developers to encode team standards and
best practices into prompt iterations, and evaluation of user
interaction with LLMs to assess the usability and consistency
of AI-generated development artifacts.
A. Prompt Engineering Methodologies

Prompt engineering is an essential strategy for optimizing
LLM outputs. Brown et al. [2] demonstrated that models like
GPT-3 can achieve state-of-the-art performance across diverse
tasks using few-shot, zero-shot, and chain-of-thought prompt-
ing techniques [24]. Subsequent studies have further refined
these methods by introducing instruction tuning [15] and self-
refinement techniques [13], where the model iteratively refines
its own responses.

Our work builds on related work by introducing Preference-
Driven Refinement (PDR) of prompts. This PDR method
provides a structured framework that explicitly incorporates
user preferences into iterative prompt modifications. Unlike
ad hoc or trial-and-error methods, PDR provides a systematic
mechanism for prompt refinement that aligns more closely
with structured instruction tuning.
B. Preference-Driven Refinement and In-Context Learning

In-context learning advances have enabled LLMs to adapt
to engineering-specific requirements, such as writing unit test
scaffolds, documenting modules, or generating CI/CD configu-
rations based on user-provided examples [7]. Approaches like
example-based prompting [11] and demonstration selection
[18] demonstrate that models can generate more relevant and
accurate responses when guided by well-designed prompts.

Our PDR method extends these findings by leveraging both
in-context learning and synthetic example generation to refine
prompts. Unlike static examples, PDR dynamically adjusts the
refinement process based on explicit user feedback, creating a
more adaptive and interactive prompt engineering workflow.
This capability parallels work in interactive reinforcement
learning [5], where human preferences help guide model
optimization.

C. Evaluating User Interaction and Refinement Strategies
Recent studies have examined developer satisfaction and

refinement efficiency in LLM-assisted code and documentation
generation workflows. Research on human-AI interaction [6]

suggests that structured refinement strategies can improve us-
ability and reduce cognitive load. However, studies like those
by Reynolds and McDonell [17] highlight the challenges of
ad hoc prompt engineering, where inconsistent modifications
often yield suboptimal performance.

Our experiment results shown in Section IV contribute to
this discourse by demonstrating that while PDR improves
structured refinements and output quality, it introduces ef-
ficiency trade-offs. Specifically, we found that while PDR
reduces the number of iterations, it requires significantly more
time per task. This finding highlights the need to further
explore the trade-offs between refinement complexity and
efficiency in prompt engineering workflows.

As summarized above, related work has explored various
prompt optimization techniques, from instruction tuning to
reinforcement-based methods. However, little work has been
conducted to evaluate preference-driven prompt refinement
systematically to improve LLM-generated responses. Our
work fills this gap by introducing and evaluating PDR as a
structured refinement approach. By empirically analyzing its
impact on prompt efficiency, output quality, and user satisfac-
tion, we provide insights into the benefits and limitations of
structured refinement strategies in LLM interactions.

VI. CONCLUDING REMARKS

This paper demonstrated that the iterative and systematic
improvements enabled by our Preference-Driven Refinement
(PDR) method directly support key goals in automated soft-
ware engineering. Unlike ad hoc prompt engineering—which
often produces inconsistent outputs and demands substantial
manual effort—PDR offers a structured mechanism to align
LLM-generated content with project standards and workflows.

Our experimental results indicated that the PDR method (1)
reduced the number of prompt iterations needed to achieve
high-quality outputs, and (2) enhanced response quality in
software development tasks such as code summarization, test
generation, and documentation drafting. These findings high-
light the role of PDR in enabling more consistent, efficient, and
automation-friendly use of LLMs within software engineering
teams.

The following are key lessons learned based on our experi-
ence applying the PDR method in practice:

• Iterative feedback loops improve output precision. PDR
increases alignment with user expectations by integrating
feedback into each prompt refinement cycle. This iterative
process is particularly effective in high-stakes software
systems (such as security infrastructure, compliance au-
tomation, and cloud service deployment) where precision
and consistency are paramount, demonstrating the PDR
method’s adaptability and scalability.

• In-context learning strengthens developer control. In-
tegrating in-context examples within PDR allows for
more deliberate and targeted prompt refinements. This
technique allows LLMs to learn from examples provided
within the prompt, simplifying the process for developers
and producing more nuanced and context-aware outputs.

9



• Synthetic example generation expands design space. This
technique supports PDR by allowing developers to ex-
plore a broader range of prompt possibilities without
manually creating each variant. Applying synthetic ex-
ample generation further supports the PDR method by
enabling developers to explore a spectrum of possi-
bilities without manually crafting each example. This
combination of in-context learning and synthetic example
generation facilitates a more user-centric approach to
prompt engineering, addressing the challenges of instruc-
tion blindness and enabling developers to articulate their
preferences through concrete examples.

• Efficiency trade-offs merits deeper exploration. While
PDR improves refinement structure and user satisfaction,
our findings show that it also increases the time required
for prompt iteration. The benefits of structured refine-
ment must therefore be weighed against efficiency trade-
offs. Future studies should investigate how refinement
complexity impacts efficiency across different use cases,
balancing structured iteration with practical constraints.

As generative AI advances into specialized domains, the
importance of systematic, user-centric prompt engineering
continues to grow.

The PDR method introduced in this paper provides a robust
framework for refining prompts that generate source code,
configuration files, documentation, and technical summaries.
PDR aligns LLM outputs with professional software engineer-
ing standards and team-specific practices. We expect future
work will enable structured, feedback-driven methods in LLM
interaction, contributing to more reliable, adaptable, and effi-
cient prompt engineering practices. We also plan to integrate
our PDR method with emerging AI-augmented Integrated
Development Environments (IDEs), such as Windsurf and
Cursor.

REFERENCES

[1] Karim Benharrak, Tim Zindulka, Florian Lehmann, Hendrik Heuer, and
Daniel Buschek. Writer-defined ai personas for on-demand feedback
generation. In Proceedings of the 2024 CHI Conference on Human
Factors in Computing Systems, pages 1–18, 2024.

[2] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D
Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish
Sastry, Amanda Askell, et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:1877–1901,
2020.

[3] Erik Brynjolfsson, Danielle Li, and Lindsey Raymond. Generative ai at
work. The Quarterly Journal of Economics, page qjae044, 2025.

[4] Jiale Cheng, Xiao Liu, Kehan Zheng, Pei Ke, Hongning Wang, Yuxiao
Dong, Jie Tang, and Minlie Huang. Black-box prompt optimization:
Aligning large language models without model training, 2024.

[5] Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg,
and Dario Amodei. Deep reinforcement learning from human prefer-
ences. Advances in neural information processing systems, 30, 2017.

[6] SeongYeub Chu, JongWoo Kim, and MunYong Yi. Think together and
work better: Combining humans’ and llms’ think-aloud outcomes for
effective text evaluation, 2024.

[7] Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan Ma, Rui Li,
Heming Xia, Jingjing Xu, Zhiyong Wu, Tianyu Liu, et al. A survey on
in-context learning. arXiv preprint arXiv:2301.00234, 2022.

[8] Ronald Aylmer Fisher. Statistical methods for research workers. In
Breakthroughs in statistics: Methodology and distribution, pages 66–70.
Springer, 1970.

[9] Shuang Hao, Wenfeng Han, Tao Jiang, Yiping Li, Haonan Wu, Chun-
lin Zhong, Zhangjun Zhou, and He Tang. Synthetic Data in AI:
Challenges, Applications, and Ethical Implications. arXiv preprint
arXiv:2401.01629, 2024.

[10] Raisa Islam and Owana Marzia Moushi. Gpt-4o: The cutting-edge
advancement in multimodal llm. Authorea Preprints, 2024.

[11] Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan, Lawrence Carin,
and Weizhu Chen. What makes good in-context examples for gpt-3?
arXiv preprint arXiv:2101.06804, 2021.

[12] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi,
and Graham Neubig. Pre-train, prompt, and predict: A systematic survey
of prompting methods in natural language processing. ACM Comput.
Surv., 55(9), January 2023.

[13] Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu
Gao, Sarah Wiegreffe, Uri Alon, Nouha Dziri, Shrimai Prabhumoye,
Yiming Yang, et al. Self-refine: Iterative refinement with self-feedback.
Advances in Neural Information Processing Systems, 36, 2024.

[14] Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis,
Hannaneh Hajishirzi, and Luke Zettlemoyer. Rethinking the Role of
Demonstrations: What Makes In-context Learning Work? arXiv preprint
arXiv:2202.12837, 2022.

[15] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wain-
wright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina
Slama, Alex Ray, et al. Training language models to follow instructions
with human feedback. Advances in neural information processing
systems, 35:27730–27744, 2022.

[16] Kiran Ramnath, Kang Zhou, Sheng Guan, Soumya Smruti Mishra, Xuan
Qi, Zhengyuan Shen, Shuai Wang, Sangmin Woo, Sullam Jeoung, Yawei
Wang, Haozhu Wang, Han Ding, Yuzhe Lu, Zhichao Xu, Yun Zhou,
Balasubramaniam Srinivasan, Qiaojing Yan, Yueyan Chen, Haibo Ding,
Panpan Xu, and Lin Lee Cheong. A systematic survey of automatic
prompt optimization techniques, 2025.

[17] Laria Reynolds and Kyle McDonell. Prompt programming for large
language models: Beyond the few-shot paradigm. In Extended abstracts
of the 2021 CHI conference on human factors in computing systems,
pages 1–7, 2021.

[18] Ohad Rubin, Jonathan Herzig, and Jonathan Berant. Learning to retrieve
prompts for in-context learning. arXiv preprint arXiv:2112.08633, 2021.

[19] Pranab Sahoo, Ayush Kumar Singh, Sriparna Saha, Vinija Jain, Samrat
Mondal, and Aman Chadha. A systematic survey of prompt engineering
in large language models: Techniques and applications. arXiv preprint
arXiv:2402.07927, 2024.

[20] Douglas C Schmidt, Jesse Spencer-Smith, Quchen Fu, and Jules
White. Cataloging prompt patterns to enhance the discipline
of prompt engineering. URL: https://www. dre. vanderbilt. edu/˜
schmidt/PDF/ADA Europe Position Paper. pdf [accessed 2023-09-25],
2023.

[21] B Sindhu, RP Prathamesh, MB Sameera, and S KumaraSwamy. The
evolution of large language model: Models, applications and challenges.
In 2024 International Conference on Current Trends in Advanced
Computing (ICCTAC), pages 1–8. IEEE, 2024.

[22] Student. The probable error of a mean. Biometrika, pages 1–25, 1908.
[23] Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A.

Smith, Daniel Khashabi, and Hannaneh Hajishirzi. Self-instruct: Align-
ing language models with self-generated instructions, 2023.

[24] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia,
Ed Chi, Quoc V Le, Denny Zhou, et al. Chain-of-Thought Prompting
Elicits Reasoning in Large Language Models. Advances in neural
information processing systems, 35:24824–24837, 2022.

[25] Jules White, Quchen Fu, Sam Hays, Michael Sandborn, Carlos Olea,
Henry Gilbert, Ashraf Elnashar, Jesse Spencer-Smith, and Douglas C.
Schmidt. A Prompt Pattern Catalog to Enhance Prompt Engineering
with ChatGPT. In Proceedings of the 30th Pattern Languages of
Programming (PLoP) conference, Allerton Park, IL, October 2023.

[26] Jules White, Sam Hays, Quchen Fu, Jesse Spencer-Smith, and Douglas C
Schmidt. ChatGPT Prompt Patterns for Improving Code Quality, Refac-
toring, Requirements Elicitation, and Software Design. In Generative
AI for Effective Software Development, pages 71–108. Springer, 2024.

[27] Frank Wilcoxon. Individual comparisons by ranking methods. In
Breakthroughs in statistics: Methodology and distribution, pages 196–
202. Springer, 1992.

10


