Prompt Patterns for Structured Data Extraction from Unstructured Text

Max Moundas, Jules White, and Douglas C. Schmidt
Department of Computer Science
Vanderbilt University Nashville, TN, USA
{maximillian.r.moundas, jules.white, d.schmidt}@vanderbilt.edu

Abstract—Large language models (LLMs) show promise for
extracting structured data from unstructured text due to their
ability to identify patterns, keywords (including names, orga-
nizations, locations, and topics), and relations in text. In this
task, however, the performance of LLMs—specifically their
precision, clarity, replicability, and uniform interpretation of
results—depends heavily on how users express their prompts,
which are instructions users give to LLMs. These performance
measures are crucial to ensure consistent and reliable data
extraction across various applications and users. To enhance these
measures—and to make the extraction process more effective
and repeatable for users—this paper introduces structured data
extraction prompt patterns, which are reusable templates for
prompting LLMs to extract desired data from unstructured text.

This paper provides several contributions to research on
structured data extraction. First, we present a catalog of prompt
patterns for common data extraction tasks, such as semantic
data extraction. Second, we describe and evaluate methods for
chaining prompt patterns into pattern compounds or pattern
sequences to extract complex nested data. These combinations
enable more effective use of LLMs for text mining and knowledge
base construction from unstructured corpora. Moreover, our
structured approach to prompt engineering supplies developers
with cohesive and flexible templates, facilitating the creation of
sophisticated data extraction workflows with more dependable
results than ad hoc prompting.

Index Terms—Large language models (LLMs), Prompt pat-
terns, Prompt engineering, Data Extraction

I. INTRODUCTION

Challenges of extracting structured data from unstruc-
tured text. A longstanding challenge in natural language
processing is extracting structured data from unstructured
text [13], such as extracting product attributes (e.g., price and
brand) from product reviews or extracting patient data (e.g.,
age and medical history) from clinical notes. Examples of this
type of extraction include the following:

o Pattern recognition:

— Text: “Car 1 is yellow. car 2 is blue, car 3 is red, car
4 is green.”

— Structured Output: “Car: 1, Color: Yellow; Car: 2,
Color: Blue; Car: 3, Color: Red; Car: 4, Color:
Green”

o Keyword extraction:

— Text: “Black holes are regions in space with immense
gravitational pull.”
— Structured Output: “Keywords: black holes, regions,
space, gravitational pull”
o Relation extraction:

— Text: “Paris is the capital of France.”

— Structured Output: “Relationship: Paris - is the cap-
ital of - France”

This extraction process is hard because unstructured text lacks
explicit demarcations of fields, so the desired data must be
identified and extracted using natural language understanding.
Moreover, factors like ambiguity, complex linguistic arrange-
ment, and diversity in textual representations make data ex-
traction hard [11].

Traditional rule-based and statistical methods for data ex-
traction rely on hand-engineered features and labeled training
data. Recently, large language models (LLMs), such as GPT-4,
have shown promise for “few-shot” data extraction [14].! Few-
shot learning enables LLMs to perform data extraction after
seeing only a few demonstrations, unlike traditional supervised
learning, which requires large labeled datasets.

For example, few-shot learning may involve just a few
annotated sentences showing how to extract product details
from text. LLMs can leverage their pre-trained knowledge
and generalize based on these few examples, without needing
extensive additional training on extraction tasks. Few-shot
data extraction thus enables replicating extraction capabilities
across topics and domains without costly data labeling efforts.

Even with few-shot learning, however, the performance
of LLMs on data extraction tasks depends heavily on how
users express prompts that provide the LLMs with examples
and instructions [10]. Until recently, this dependence required
users to have a deep understanding of how to interact with
LLMs effectively. Unfortunately, this requirement poses a
daunting impediment to broad user adoption and effective
application of LLMs for data extraction.

Solution approach — Prompt patterns for structured
data extraction. To simplify user learning curves, this paper
presents a catalog of prompt patterns for structured data
extraction. Prompt patterns [15] codify best practices for
phrasing prompts to maximize extraction accuracy and provide
knowledge transfer mechanisms that users can reference to
problem-solve with LLMs more effectively [12]. The prompt
patterns presented in this paper are reusable constructs that
serve as building blocks users can combine to prompt LLMs
to extract desired data (including complex nested data) from
unstructured text.

Prompt engineering [12] refers to the practice of designing
and optimizing user inputs (i.e., prompts) to elicit desired
outputs from LLMs. In the context of data extraction, prompt

In this context, “few-shot” refers to the ability to perform a task with
limited training examples.

engineering involves crafting prompts that guide LLMs to
identify and extract specific data from unstructured text ac-
curately. This approach leverages LLMs’ natural language
understanding capabilities to perform extraction tasks without
extensive additional training.

This paper makes the following contributions to work on
prompt engineering for structured data extraction from un-
structured text:

1) We describe a systematic framework and method for
constructing structured data extraction prompts using
modular, reusable prompt patterns that provide the foun-
dation for our principled prompt engineering approach.

2) We present a catalog of prompt patterns that serve as
building blocks for data extraction pipelines, including
patterns for extracting semantics, querying over input
text, and managing context.

3) We demonstrate how these foundational patterns can
be chained to form pattern compounds or pattern se-
quences [1] and then used to extract nested data struc-
tures from unstructured corpora, thereby enabling repli-
catable and transparent text extraction.

4) We present examples that showcase the flexibility of our
prompt patterns when customizing extraction for diverse
use cases while maintaining uniformity in execution.

Table I summarizes the structured data extraction prompt
patterns covered in this paper.

TABLE I
SUMMARY OF PROMPT PATTERNS FOR STRUCTURED DATA EXTRACTION

Pattern Category
Data Extraction
(Section III)

Prompt Pattern

Semantic Extractor (page 3),
Dynamic Attribute Extractor (page 5),
Pattern Matcher (page 6)

Specify Constraints (page 7)

Instances Query on Input
(Section IV)

Input Specification
(Section V)

Keyword Trigger Extractor (page 8)

Paper organization. The remainder of this paper is orga-
nized as follows: Section II gives an overview of structured
data extraction using prompt engineering; Section III describes
three prompt patterns for defining extraction formats and trans-
forming input text into target structures; Section IV discusses
a prompt pattern for querying input text to filter results;
Section V explores a prompt pattern for specifying input
sources; Section VI introduces a decision tree for selecting the
most appropriate prompt pattern based on data characteristics
and extraction requirements; Section VII examines chaining
prompt patterns to enhance the extraction process for complex
scenarios; Section VIII reviews the evolution of structured data
extraction methods, including traditional rule-based and statis-
tical approaches, as well as emerging few-shot learning tech-
niques and prompt engineering strategies; Section IX presents
concluding remarks that summarize key lessons learned from
the prompt patterns and extraction pipelines we document in
this paper; and Appendix A provides an overview of our
prompt pattern form, which should be familiar to readers
acquainted with classic software pattern form [1], [5].

II. OVERVIEW OF STRUCTURED DATA EXTRACTION
USING PROMPT ENGINEERING

A systematic method for effective prompting is needed
within the discipline of prompt engineering to extract struc-
tured data from unstructured text. To provide this capability,
we devised a template tailored specifically for structured data
extraction prompts. This template enhances the precision and
clarity of extraction operations, while also ensuring repli-
cability and uniform interpretation, regardless of the LLM
or context of where prompts are applied. In addition, this
template helps prompt engineers achieve consistency in ex-
ecuting and interpreting extraction tasks, thereby minimizing
discrepancies.

This section describes how we leveraged our template to
codify a comprehensive catalog of patterns, derived from our
own rigorous research and practical applications conducted
over the past two years. These patterns originated from our ex-
perience and serve as modular building blocks for assembling
complex data extraction pipelines. By furnishing users with
these customizable patterns, we enable sophisticated extraction
capabilities, thereby helping to ensure robust and accurate data
retrieval across diverse scenarios, such as the following:

o Extracting contact data (e.g., emails or phone numbers)
from corporate websites,

o Gathering financial figures from annual reports,

« Parsing patient data from medical records,

o Retrieving citations from research papers,

o Compiling real estate listings from property websites, and

o Harvesting usage statistics from application logs.

Our prompt pattern template for data extraction leverages
the unique properties and capabilities of LLMs, such as
their ability to understand context, handle natural language
instructions, and generate structured outputs. Our template
provides a standardized framework that emphasizes flexibility
so users can adapt it to specific use cases while maintaining
its core elements. This template is expressed via the following
structured elements:

Extract GENERATION_CONSTRAINTS in the format
EXTRACTION_PATTERN (where
INSTANCES_QUERY_ON_INPUT) from
INPUT_SPECIFICATION.

Where:

e GENERATION_CONSTRAINTS specifies constraints
or limits on the data to extract. For example, setting
a limit to the number of records retrieved could be
represented as “UP TO Z instances of X.”

o EXTRACTION_PATTERN defines the format or pat-
tern in which data should be retrieved to ensure data
elements are structured in a manner that aligns with the
user objectives. Example objectives include normalizing
raw text data into a consistent format for usage with
predefined fields, converting records into structured en-
tries loadable into databases, and parsing content into

machine-readable formats to facilitate training machine
learning models.

o INSTANCES_QUERY_ON_INPUT is akin to the
"WHERE’ clause in the Structured Query Language
(SQL), allowing the filtering of input based on certain
conditions. This template element enables an LLM to
focus on specific parts of the input, leveraging its con-
textual understanding capabilities without explicitly using
the keyword “where.”

o INPUT_SPECIFICATION specifies the source of the
data or where the extraction should be performed. For
example, it can instruct the LLM to only extract data
directly following a particular keyword or to only extract
data from the last ten lines of the full input text.

Our template provides a structured approach that aligns with
LLM strengths in natural language understanding and gener-
ation. By decomposing the extraction task into these template
elements, LLMs can more effectively parse and execute com-
plex extraction tasks, while maintaining flexibility for various
use cases. This decomposition enhances LLM performance in
the following ways:

o Improved parsing: Each component targets a specific
aspect of the extraction task, allowing an LLM to focus
on one element at a time, thereby reducing cognitive load
and potential confusion.

o Enhanced execution: The structured format guides an
LLM through a step-by-step process, thereby ensuring all
necessary data are considered and extracted in a logical
order.

e Increased accuracy: By clearly defining the extraction
parameters, the likelihood of irrelevant or incorrect data
being included in an LLM’s output is reduced.

o Adaptability: The modular nature of the template enables
easy modification of individual components to suit dif-
ferent extraction scenarios without altering the overall
structure.

For example, in the context of the healthcare domain,
the same template can be adapted to extract patient diag-
noses, medication dosages, and/or treatment outcomes by
simply adjusting the EXTRACTION_PATTERN and IN-
STANCES_QUERY_ON_INPUT components. Similarly, in
a financial setting, the template can be modified to extract
quarterly earnings, stock prices, or market trends by fine-
tuning these elements to specific data requirements. Likewise,
in the field of environmental science, researchers could adapt
this template to extract climate data from diverse sources by
adjusting the EXTRACTION_PATTERN to focus on tem-
perature readings, precipitation levels, or air quality indices,
and modifying the INSTANCES_QUERY_ON_INPUT to
filter for specific geographic regions or time periods. All these
adaptations demonstrate the template’s versatility in facilitat-
ing data-driven research across various scientific disciplines.

The remainder of this paper explores each of the four
elements capitalized above. We explain the nuances of each
element and present prompt patterns that can be employed

effectively in practical scenarios. This detailed exploration pro-
vides a thorough understanding of structured data extraction,
paving the way for more efficient and targeted data retrieval
methodologies in our future work, as discussed in Section IX.

III. DATA EXTRACTION PATTERNS

This section presents the following three prompt patterns
that transform input text into desired target data structures
during extraction: Semantic Extractor, the Dynamic Attribute
Extractor, and the Pattern Matcher. These patterns extract
structured data from unstructured text through a variety of
techniques—from flexible semantic parsing to strict pattern
matching—providing users with multiple modular building
blocks to meet their diverse extraction needs.

A. The Semantic Extractor Pattern

1) Intent & Context: The Semantic Extractor pattern ex-
tracts specific structured data from unstructured text based
on a semantic description rooted in the target data structure
definition. Unlike traditional extraction methods [2], [3] that
rely on explicit rules or patterns, this pattern uses a descriptive
framework to identify and capture desired data implicit in
the target structured specification. This pattern enables better
understanding and interpretation of the meaning or context of
the desired data points, without the need for labor-intensive
rule definition or manual intervention.

2) Motivation: Traditional data extraction methods often
require explicit rule definitions, regular expressions, or manual
tagging, which can be time-consuming, tedious, and error-
prone. The Semantic Extractor pattern enables users to de-
scribe the kinds of data they’re looking to extract in natural
language and in the format it should be extracted. By in-
corporating semantic descriptions into the structured format,
data extraction becomes intuitive and adaptive. This approach
not only saves time but also leverages the natural language
understanding capabilities of LLMs to handle variations in
input text where traditional extraction methods may fail.

3) Key Ideas: To implement the Semantic Extractor pattern
successfully, consider the following key ideas, applying those
that are relevant to a specific extraction task:

o Describe a partially or fully formed example of the target

data structure.

o Use semantic descriptions within the target data structure

to guide the extraction of specific data points.

These ideas are not mutually exclusive and can be combined
as needed to optimize the extraction process for a particular
use case.

4) Example Implementation:

Extract:

{ name: “the name of the car”, identifier: “the VIN
number” }

from the following text:

“In today’s review, we’ll be diving deep into the
latest sedan model, the 'EcoSprint’. This vehicle,

with a VIN number of *12345ABCDE’, has been
making waves in the automotive industry with its
innovative features.”
The extraction prompt provides a clear template for the
target data, which consists of two primary components:
1) The name of the car.
2) The identifier or the VIN number.
This template incorporates semantic descriptions within the
target data structure to guide the extraction process. For
instance, “the name of the car” indicates that the LLM should
look for the specific name or model of the car and map it to
the name attribute. Similarly, “the VIN number” guides the
LLM on what to extract for the identifier attribute.
5) Additional Example Implementations:

Prompt. Extract: { name: ’the name of the mu-
sician’, instrument: ’the primary instrument they
play’ } from: “Ludwig van Beethoven, a maestro
primarily known for his prowess with the piano,
whose compositions have stood the test of time.”

Prompt. Extract: { brand: ’brand of the phone’,
feature: ’its standout feature’ } from: “The latest
"TechStar’ phone boasts a revolutionary 3D touch’
feature that has tech enthusiasts buzzing.”

6) Consequences: The Semantic Extractor pattern lever-
ages LLM capabilities to understand and process natural
language so it can handle input variations, such as synonyms
or rephrased sentences, without requiring precise query terms.
For example:

Original text: “The EcoSprint, identified by VIN
12345ABCDE, is making waves in the auto indus-
try.”

Variation 1: “The EcoSprint sedan (which has the
unique identifier 12345ABCDE) is turning heads.”

Variation 2: “Automotive enthusiasts are excited
about the EcoSprint, a new car with serial number
12345ABCDE.”

In both variations the prompt pattern should successfully
extract the car name and identifier, demonstrating its flexibility.
However, the flexibility of Semantic Extractor is primarily a
consequence of using LLMs rather than a unique feature of the
pattern itself, i.e., the pattern’s strength lies in its structured
means of guiding an LLM’s extraction process.

The effectiveness of the Semantic Extractor pattern depends
on how well an LLM can interpret the provided semantic
descriptions. In turn, this capability relies on the quality and
training of the LLM itself. A balance must therefore be struck
between (1) providing enough detail to guide the extraction
and (2) not over-specifying the prompt to the point where
it over-constrains the LLM, potentially missing relevant data
variations.

While Semantic Extractor reduces the need for explicit
rule definitions, it requires clear and unambiguous semantic
descriptors. Vague or ambiguous descriptors may lead to

incorrect or incomplete data extractions. Frequent testing and
iterative refinement of prompts are therefore essential for
reliable outcomes.

To illustrate how this pattern differs from alternative ex-
traction methods, consider the following example of a more
traditional approach:

Input text: In today’s review, we’ll be diving deep
into the latest sedan model, the EcoSprint’. This
vehicle, with a VIN number of *12345ABCDE’, has
been making waves in the automotive industry with
its innovative features.

Extraction instruction: Extract the name and VIN
number of the car in JSON format.

Expected output: {name: “EcoSprint”, identifier:
“12345ABCDE”}

While this traditional approach can be effective, the Seman-

tic Extractor pattern provides the following advantages:

o It defines a clear structure for the desired output within
the prompt itself, reducing ambiguity in the extraction
task.

o The semantic descriptions offer context about what each
field represents (e.g., “the name of the car” instead of
just “name”), potentially improving extraction accuracy
in complex scenarios.

e It can be adapted more easily to extract different or
additional data without significantly altering the core
prompt structure.

For instance, using Semantic Extractor, the same extraction

task would be formulated as:
Extract:

{ name: “the name of the car”, identifier: “the VIN
number” }

from the following text:

“In today’s review, we’ll be diving deep into the
latest sedan model, the "EcoSprint’. This vehicle,
with a VIN number of 12345ABCDE’, has been
making waves in the automotive industry with its
innovative features.”
This formulation provides clearer guidance to the LLM, po-
tentially leading to more accurate and consistent extractions
across various input texts.

The adaptability of the Semantic Extractor pattern is also
noteworthy. By maintaining a consistent structure and allowing
flexible semantic descriptions, users can easily modify extrac-
tion targets without altering the underlying prompt framework.
For instance, consider the following adaptation:

Original: { name: “the name of the car”, identifier:
“the VIN number” }

Modified: { name: “the name of the car”, identifier:
“the VIN number”, manufacturer: “the company that
made the car”, year: “the year the car was released”

}

This modification expands the extraction scope to include addi-
tional fields without changing the core prompt structure. Such
adaptability is hard with rule-based systems or regular expres-
sions, which often require significant rewrites to accommodate
new extraction targets. Semantic Extractor’s flexibility stems
from its reliance on an LLM’s natural language understanding
rather than rigid syntactic rules, allowing it to interpret and
extract new semantic descriptions with minimal adjustments.

Alternative patterns, such as Dynamic Attribute Extractor
(page 5) or Pattern Matcher (page 6), may be more suit-
able when precision and handling complex data structures
are paramount. These patterns rely on stricter templates and
conditions, providing more control over the extracted data’s
format and accuracy in cases where semantics alone may be
insufficient for effective extraction.

B. The Dynamic Attribute Extractor Pattern

1) Intent & Context: The Dynamic Attribute Extractor pat-
tern extracts and refines structured data attributes dynamically
from unstructured text, focusing on flexibility and constraint
specification. This pattern adapts the data extraction process
to the specific attributes present within the data instances,
thereby ensuring accurate and comprehensive data capture
while allowing for customizable constraints.

2) Motivation: In the diverse domain of unstructured text,
entities are often described with varying attributes, which
can lead to inconsistency and loss of data when using rigid,
predefined data extraction methods. For example, a product
description might include unique features not captured by a
fixed extraction template, resulting in incomplete data repre-
sentation. Alternative methods of data extraction might achieve
uniformity, but at the expense of valuable data since they
cannot handle the natural variation and richness of attributes
that actual instances may possess.

The Dynamic Attribute Extractor pattern overcomes these
limitations in several ways by offering a solution that begins
with a broad extraction framework that adjusts based on the
specific attributes found in the text. Likewise, it allows the
specification of constraints. These capabilities facilitate a more
nuanced data extraction process that can handle diversity
and ensure the complete attribute set is represented in the
structured data output, subject to defined constraints.

3) Key Ideas: To implement the Dynamic Attribute Ex-
tractor pattern successfully, consider the following key ideas,
applying those that are relevant to a specific extraction task:

« Start with a definition of the target structured data format
with semantic descriptions embedded.

« Include an open-ended section describing what additional
attributes should be discovered and extracted.

o Specify constraints defining limits or requirements on
attribute selection, such as “[all instances must have the
same attributes]” or “[each instance can have different
attributes]”.

o Consider an initial discovery process to identify relevant
attributes before final extraction.

These ideas are not mutually exclusive and can be combined
as needed to optimize the extraction process for a particular
use case.

The Dynamic Attribute Extractor pattern’s unique strength
lies in its ability to adapt to varying attribute sets while
maintaining specified constraints. This flexibility allows for
comprehensive data capture across diverse datasets, distin-
guishing it from more rigid extraction methods.

4) Example Implementation:

Extract:

{ name: “the name of the car”, ...attributes related
to the car [all instances should have the same at-
tributes]... }

from the following text:

“The *EcoSprint’ sedan stood out for its V6 engine,
allowing it to go from O to 60 mph in just 5.4
seconds. Braking performance is also top-notch,
with the sedan coming to a complete stop from 60
mph in just 115 feet. The cabin has the EcoSprint’s
premium 10-speaker setup. Safety hasn’t been com-
promised either, as the EcoSprint comes equipped
with adaptive cruise control, blind-spot monitoring,
and automated emergency braking.

The ’TrailRider’ SUV, draped in its unique ’Desert
Sand’ hue, was hard to miss. Its engine, a robust
V8, ensures that the vehicle can handle both city
roads and off-road trails with ease. With a 0-60
time of 6.2 seconds, the TrailRider packs a punch
in terms of raw power. The braking performance is
equally commendable, enabling the SUV to decel-
erate from 60 mph to a standstill in about 120 feet.
Audio enthusiasts riding inside the TrailRider will
be treated to a booming 12-speaker setup, perfect
for long journeys and adventures. To top it all off,
safety features such as lane-keeping assist, 360-
degree cameras, and a collision warning system
ensure the TrailRider provides a secure environment
for its passengers.”

Similar to the Semantic Extractor pattern, the Dynamic
Attribute Extractor pattern provides a structure for the target
name. However, it empowers an LLM to determine additional
relevant target data. From the car example above, we would
expect to see the following additional components in the output
generated by an LLM:

1) The engine in the car.

2) The 0-60 time performed by the car.

3) The braking performance of the car.

4) The speakers installed in the car.

5) The safety features in the car.

5) Additional Example Implementations:

Prompt. Extract: { name: "the name of the gadget’,
...attributes related to the gadget [each instance can
have different attributes]... } from: “The *TechMaster

Pro’ laptop boasts 16GB RAM and a sleek design.
In contrast, the *UltraView’ tablet impresses with its
12-inch display.”

Prompt. Extract: { brand: ’brand of the beverage’,
...attributes related to the beverage [all instances
should have at least one common attribute]... } from:
“The ’Quench’ water comes in a 500ml bottle, while
’EnerBoost’ energy drink offers a caffeine punch and
comes in a 250ml can.”

While the ellipses (...) are used in our example to denote
the open-ended attribute section, alternative syntactic elements
could be employed. The key is to provide a clear structure
that guides an LLM in understanding where dynamic attribute
extraction should occur. Other potential syntactic approaches
could include:

o Using specific delimiters (e.g., ### or $3$3),

o Employing a structured prompt language (e.g., Su-
doLang [4]), and

o Applying natural language instructions (e.g., “Extract any
additional relevant attributes”).

The choice of syntax should prioritize clarity and consis-
tency within the prompt engineering ecosystem being used.

6) Consequences: The Dynamic Attribute Extractor pattern
offers significant advantages in terms of adaptability and the
ability to capture a rich, diverse dataset. For example, it
enables an LLM to parse text and extract desired data, even if
the prompt did not explicitly state the listed components. This
adaptability enhances the robustness of data extraction appli-
cations by allowing an LLM to handle unexpected variations
in text inputs without requiring constant prompt adjustments
or predefined rules.

This pattern differs from a simple JSON extraction prompt
by its ability to specify constraints and adapt to varying
attribute sets. While a standard JSON output would typically
use the same attributes for all instances, Dynamic Attribute
Extractor enables flexibility when needed. This flexibility is
particularly useful when dealing with diverse data sets where
attributes may vary significantly between instances.

However, the flexibility of Dynamic Attribute Extractor can
lead to challenges in maintaining consistency across extracted
data and ensuring all relevant attributes are captured. The
effectiveness of this pattern therefore relies heavily on well-
crafted constraints and iterative refinement by experienced
prompt engineers. It also requires a balance between allowing
for dynamic discovery and providing sufficient guidance to the
LLM.

Another limitation of Dynamic Attribute Extractor is the
risk of overlooking important attributes. To mitigate this,
consider implementing a two-step process:

1) Initial discovery — Use an LLM to analyze the text and
identify potentially relevant attributes.

2) Specific extraction — Based on the discovered attributes,
create a more targeted extraction prompt that explicitly
lists the attributes to extract.

This approach combines the adaptability of dynamic extraction
with the precision of specified attributes, resulting in more
comprehensive and accurate data extraction.

C. The Pattern Matcher Pattern

1) Intent & Context: The Pattern Matcher pattern precisely
extracts structured data from unstructured text by searching
for instances that match a predefined template exactly. This
pattern is therefore similar to applying a regular expression
(regex) within an LLM context. It is best suited for extraction
tasks where the data structure is rigidly defined upfront and
unlikely to change, i.e., precision is favored over flexibility.

2) Motivation: In many production datasets, certain types
of structured data reliably follow fixed formats, such phone
numbers, postal codes, social security numbers, etc. The rigid
conventions in these formats make them ideal candidates for
extraction via the Pattern Matching pattern. Since the structure
is predictable, users can define a template that specifies the
precise expected pattern, such as “[3 digits]-[3 digits]-[4
digits]” for phone numbers.

While traditional tools like Python, sed, awk, and/or perl
scripts can handle such pattern matching tasks efficiently,
implementing this pattern with an LLM can be beneficial in
certain scenarios. For instance, this pattern is useful when
working with a large LLM-based system where maintaining a
consistent workflow is crucial or when the pattern matching
is part of a more complex language understanding task that
leverages an LLM’s capabilities.

3) Key Ideas: To implement the Pattern Matcher pattern
successfully, the following key ideas should be followed,
applying those that are relevant to a specific extraction task:

o Define a clear search pattern that matches the expected

structure of the target data,

o Use delimiters, boundaries, and formatting clues to nar-

row the search,

o Allow for multiple instances of the pattern,

o Match against the pattern definition exactly with no

interpretation, and

o Consider whether the task is better suited for traditional

pattern matching tools or if LLM integration provides
additional value.

These ideas are not mutually exclusive and can be combined
as needed to optimize the extraction process for a particular
use case.

4) Example Implementation:

Extract all instances of the pattern:

“Order ID: [8 digit number]”
from the following text:

“Your order from Elite Hardware was successfully
placed. Make note of the Order ID: 12345678 for
future reference.”
This extraction prompt provides a precise pattern that
matches the expected structure of the target data order IDs.
The pattern consists of the text “Order ID: ” followed by an

8 digit number enclosed in brackets. By defining this strict
template, an LLM can scan the input text and extract any
substrings that match the pattern exactly, without needing to
interpret the context.

The explanatory text “for future reference” in the example
implementation above provides a clue that an order ID is likely
to follow. When applied to the sample input text, the Pattern
Matcher pattern matches “Order ID: 12345678 precisely. This
precision allows an LLM to extract the structured order ID
based on the predefined pattern format.

5) Additional Example Implementations:

Prompt. Extract all instances of the social security
number pattern: “[3 digits]-[2 digits]-[4 digits]” from
the following text: “Both John’s and Jane’s social
security numbers, 123-45-6789 and 987-65-4321,
were written down on the form used to purchase
their new car.”

Prompt. Extract all instances of the email address
pattern: “[a-z0-9._%-+-]@[a-z0-9].[a-z]” from: “If
you are struggling with this material and need help
before the exam, email me your questions at ’your-
professor @myuniversity.edu’.”

Prompt. Extract all instances of the phone number
pattern: “([3 digits]) [3 digits]-[4 digits]” from: “You
can reach the help desk at 123-456-7890 anytime
from 9am-5pm Monday through Friday.”

6) Consequences: The Pattern Matcher pattern offers a
reliable solution for data extraction tasks when the specific
structure or format of the target data is predetermined. One
of its primary benefits is the high precision in extracting
data, particularly when the pattern is defined accurately in
advance. This precision ensures that only the most relevant
data is extracted, eliminating the possibility of errors due to
misinterpretation.

However, the rigidity of Pattern Matcher comes with its own
set of limitations. The pattern is brittle since any deviation
from the predefined pattern—even if slight—will cause the
matcher to overlook relevant data. Users must therefore have
a thorough understanding of the structure and format of the
data they’re dealing with before attempting extraction via
Pattern Matcher. This limitation contrasts with more flexible
data extraction patterns, such as Dynamic Attribute Extraction
(page 5), that understand and extract data based on context
rather than an exact pattern match.

Applying the Pattern Matcher pattern across varied data
sources may yield incomplete results when the data lacks
uniformity. For example, phone numbers could appear in
multiple formats, such as “(123) 456-7890,” “123-456-7890,”
or “123.456.7890.” If Pattern Matcher is configured to rec-
ognize only one specific format then discrepancies, such as
typographical errors or format variations, can result in relevant
data being overlooked. Consequently, the effectiveness of this
pattern depends on the predictability and standardization of
data presentation within the targeted dataset.

While this pattern demonstrates the capability of LLMs to
perform regex-like operations, it may not always be the most
efficient solution. In many cases, preprocessing text using
traditional text-processing tools, such as Python, sed, awk,
or perl scripts, may be more appropriate. The decision to
implement Pattern Matcher via an LLM should therefore be
based on the specific requirements of the task at hand, the
overall system architecture, and whether an LLM’s additional
capabilities provide significant advantages over conventional
pattern matching tools.

IV. INSTANCES QUERY ON INPUT PATTERN

This section presents the Specify Constraints prompt pattern
that was first introduced in previous research [15] under the
name Context Conveyor.> While its broader usage includes
managing conversational flow and topic relevance, this paper
emphasizes applying Specify Constraints specifically to struc-
tured data extraction from unstructured sources.

A. The Specify Constraints Pattern

1) Intent & Context: The Specify Constraints pattern refines
the attention of LLMs during data extraction tasks by allowing
users to explicitly state constraints within which LLMs should
operate. By clearly defining the constraints to apply, users can
better direct an LLM to focus on specific aspects of the data,
thereby reducing the likelihood of irrelevant data extraction
and improving response coherence.

2) Motivation: LLMs tasked with extracting structured data
benefit greatly from understanding the specific constraints un-
der which they should operate. Clear constraints help prevent
the inclusion of extraneous data and ensure that extracted
data aligns with user intentions. The Specify Constraints
pattern mitigates the challenges associated with free-flowing,
unstructured text—where LLMs might otherwise draw on in-
appropriate parts of a conversation or document—by allowing
users to delineate the relevant content scope clearly. When
constraints are stated explicitly, users can maintain a focus that
is pertinent to the ongoing data extraction, avoiding an LLM’s
potential regression to topics that are unrelated or addressed
previously.

3) Key Ideas: To implement the Specify Constraints pattern
successfully, the following key ideas should be followed,
applying those that are relevant to a specific extraction task:

« Provide explicit constraints regarding the input text, such
as “Only consider X,” “Exclude Y,” etc.

e Separate constraints from the extraction task instructions
for clarity.

These ideas are not mutually exclusive and can be combined
as needed to optimize the extraction process for a particular
use case.

>The description of Specify Constraints in this paper distinctively focuses
on its roles in structured data extraction from unstructured text, whereas
our earlier work on Context Conveyor discussed its broader applications in
controlling conversational context within LLM dialogues.

4) Example Implementation:

Constraints: Only consider renewable energy sources
Extract: { TYPE, COST_MULTIPLE }
from the following text:

“Energy sources differ in costs due to infrastructure
and maintenance considerations. Solar energy has
upfront costs of around 2.0X compared to fossil
fuels, due to solar panel installation. Wind energy
comes in at 1.8X, accounting for turbine production
and upkeep. Hydroelectric and geothermal energies
stand at 1.6X and 2.1X, respectively, owing to dam
construction and drilling expenses. Coal, a predom-
inant fossil fuel source, generally costs 1.0X, but it
carries significant environmental implications.”

This prompt provides explicit constraints to focus only
on certain parts of the context, which is renewable energy
sources in this case. This constraint shapes the context con-
sidered by an LLM when extracting the requested “TYPE,
COST_MULTIPLE” structured data. Without it, an LLM
might extract data on all energy types mentioned, including
the non-renewable ones.

The example input text contains details on both renewable
and non-renewable sources. However, the LLM only extracts
data for the renewable types based on the specified constraint.
For instance, it will extract

e Solar, 2.0X
e Wind, 1.8X
o Hydroelectric, 1.6X
e Geothermal, 2.1X
but will ignore fossil fuels and coal.
5) Additional Example Implementations:

Prompt. Constraints: Focus on fruit prices

Extract: { FRUIT_NAME, COST_PER_KG } from
the text: “Bananas cost $0.50 per kg, while toy cars
are priced at $5 each. Mangoes are priced at $1.20
per kg.”

Prompt. Constraints: Prioritize historical figures

Extract: { PERSON_NAME, ERA } from the text:
“Einstein, who was prominent in the 20th century,
had a profound impact on physics. Apples are a great
source of fiber.”

Prompt. Constraints: Only consider the first sen-
tence

Extract: { BRAND, SPEED } from the text: “Toy-
ota’s new model runs at 120mph. In unrelated news,
the weather is set to be sunny tomorrow.

Prompt. Constraints: Only consider renewable en-
ergy sources and exclude energy sources with a cost
multiple above 1.8X

Extract: { TYPE, COST_MULTIPLE } from the
text: “Energy sources differ in costs due to in-
frastructure and maintenance considerations. Solar
energy has upfront costs of around 2.0X compared
to fossil fuels, due to solar panel installation. Wind
energy comes in at 1.8X, accounting for turbine pro-
duction and upkeep. Hydroelectric and geothermal
energies stand at 1.6X and 2.1X, respectively, owing
to dam construction and drilling expenses. Coal, a
predominant fossil fuel source, generally costs 1.0X,
but it carries significant environmental implications.”

6) Consequences: The Specify Constraints pattern can sig-
nificantly enhance the relevance and accuracy of data extracted
by an LLM, particularly in complex or subject-mixed contexts.
By instructing the LLM to consider only the parts of the text
aligned with the current analytical goal, users can minimize
noise and improve the overall quality of the structured data
output.

However, this precision may come with potential limita-
tions. For example, excessive narrowing of context can omit
insightful data that are relevant to broader analytical objec-
tives, though may they seem outside the immediate scope.
Likewise, insufficient context management can yield vague or
overgeneralized data extraction that does not meet the desired
level of specificity. It is therefore critical to articulate the
context with sufficient granularity to guide an LLM effectively
while remaining inclusive of data that could offer value.
Striking the right balance is vital to ensure that structured
data extracted from unstructured text is both accurate and
comprehensive.

Moreover, the Specific Constraints pattern may inadver-
tently reset or obscure context that has been previously es-
tablished, thereby impacting the LLM’s output in unintended
ways, as discussed in [15]. To mitigate this risk, consider the
continuity of context and the repercussions of context shifts
carefully. Confirmations or summaries explaining the impact
of these shifts could be integrated to ensure informed decision-
making with respect to context manipulation.

V. INPUT SPECIFICATION PATTERN

This section presents the Keyword Trigger Extractor pattern,
which provides techniques for targeting extraction on relevant
sections of input text. This pattern provides users with the
means to focus extraction on pertinent data within longer
documents or text collections using built-in semantic triggers
native to the domain.

A. The Keyword Trigger Extractor Pattern

1) Intent & Context: The Keyword Trigger Extractor pat-
tern provides a straightforward way to identify and extract
structured data that consistently appear after predefined cue
words or phrases in unstructured text corpora. This pattern
is particularly useful when dealing with large volumes of
text where certain types of data are introduced consistently
using fixed keywords. Keyword Trigger Extractor allows rapid
filtering and data gathering by honing in on specific textual

cues present in the source material. Rather than scanning
entire documents, this pattern leverages existing semantic
markers within the text itself to locate and extract relevant
data efficiently.

2) Motivation: In many domains, textual data contains
important details, such as names, dates, and figures, that are
reliably preceded by certain keywords or labels that flag their
significance. For instance, customer records may consistently
contain fields like “Name:”, “Date of Birth:”, “Address:”,
etc. Research papers often introduce key data using standard
keywords like “Abstract”, “Introduction”, “Results”, and so
on.

By specifying these cues as triggers, an LLM can rapidly
locate and pull structured data following them with a high
degree of accuracy. These cues avoid the complexity of
applying generic rules or patterns that may inadvertently
extract incorrect data. Domain-specific cues also provide built-
in semantic guidance for extraction.

In long or complex documents, the selective power of
key trigger words enables focused data extraction without
laboriously reviewing entire texts. This capability enables the
rapid construction of structured data sets by targeting only the
most relevant data needed. Reducing manual effort also makes
it feasible to process larger volumes of text data.

3) Key Ideas: To implement the Keyword Trigger Extractor
pattern successfully, the following key ideas should be fol-
lowed, applying those that are relevant to a specific extraction
task:

o Identify a keyword or set of keywords that precede the

target data in the text.

o Define the structured data type or format you expect to

extract following the keyword.
These ideas are not mutually exclusive and can be combined
as needed to optimize the extraction process for a particular
use case.

4) Example Implementation:

Following the keyword “Born:”, extract:

{ birthDate: ’date of birth’, birthPlace: ’place of
birth” }

from:

“...Born: 5th July 1980 in New York...”

This prompt provides the keyword trigger “Born:” that
consistently precedes the target data to extract, which in
this case are the date and place of birth details. It also
specifies the structured format to capture this data as two
fields: “birthDate:” and “birthPlace:”. The explanatory text in
the target format indicates what values should go in each field.

When applied to the sample input, the LLM locates the
“Born:” trigger word and extracts the structured data following
it as

birthDate: *5th July 1980°, birthPlace: ’New York’

The date and location details are inserted into the appropriate
fields based on the semantics provided in the target specifica-
tion, without needing additional context.

5) Additional Example Implementations:

Prompt. Following the keyword “Price:”, extract: {
cost: “amount in USD’ } from: “The item details are
as follows: Price: $20...”

Prompt. Following the keyword “Address:”, extract:
{ street: ’street name’, city: ’city name’, postal:
"postal code’ } from: “..Address: 123 Maple St,
Springfield, 12345...”

6) Consequences: The Keyword Trigger Extractor pattern
efficiently identifies specific fields of interest, which is ben-
eficial in domains with well-formatted text. By leveraging
keywords that consistently flag the introduction of relevant
data, this pattern enhances the precision and accuracy of
data extraction tasks. In practice, Keyword Trigger Extractor
turns specific cues within large texts into reliable anchors for
structured data capture, aiding in the systematic organization
and retrieval of data.

The Keyword Trigger Extractor pattern enables efficient
extraction by honing in on relevant data using predetermined
keyword cues already present in the text itself. The trigger
provides built-in context that guides the LLM. By reducing
the search space via domain-specific triggers, this technique
enables rapid data gathering from large corpora without ex-
tensive manual effort.

However, although the Keyword Trigger Extractor pattern
offers precise extraction based on predefined cues, certain
issues must be considered. The extraction’s accuracy depends
heavily on the consistency of the keyword’s use in the text.
The extractor may ignore data if the keyword varies or if
different keywords are used for the same type of data. This
pattern may therefore not capture data that is far removed or
separated from the keyword, so it’s crucial to ensure target
data appear immediately after the keyword. Over-reliance on
specific keywords can lead to oversights, especially if data can
be introduced by multiple keywords or in varying contexts.

VI. SELECTING THE APPROPRIATE STRUCTURE DATA
EXTRACTION PATTERN

Selecting the most suitable structured data extraction pattern
is crucial to achieve optimal results in data extraction tasks.
To guide the selection process this section presents a decision
tree that considers the nature of the data, its presentation, and
specific extraction requirements. This decision tree builds upon
all five prompt patterns discussed in earlier sections: Seman-
tic Extractor, Dynamic Attribute Extractor, Pattern Matcher,
Specify Constraints, and Keyword Trigger Extractor.

A. Decision Tree for Pattern Selection

Figure 1 shows the process of selecting the most appropriate
structured data extraction pattern based on key characteristics
of the data and extraction requirements. To use this decision
tree, start at the top left box and follow the path based on
the answers to each question. The leaf nodes indicate the
recommended pattern for a specific scenario.

‘ Is the data consistently formatted?

=)
‘ Are there consistent keyword triggers? ‘ ’ Use Keyword Trigger Extractor
‘ Use Specify Constraints ‘
‘ Does the data have varying attributes? ‘ ‘ Use Dynamic Attribute Extractor
‘ Is semantic understanding required? ‘ ‘ Use Semantic Extractor ‘

Use Pattern Matcher ‘

@

@

‘ Is the extraction scope narrow and specific?

A

@

@

Reassess the nature of the extraction task or
consider combining patterns

Fig. 1. Decision Tree for Structured Data Extraction Pattern Selection

B. Decision Points Explained

The following list elaborates on the key decision points
presented in the decision tree shown in Figure 1. Each item
corresponds to a node in the tree, providing further explanation
of the criteria used to navigate the pattern selection process,
as follows:

1) Is the data consistently formatted? If the data follows a
strict, predictable format (e.g., phone numbers or dates),
the Pattern Matcher pattern may be the most efficient
choice.

Are there consistent keyword triggers? When specific
keywords reliably precede the target data, the Keyword
Trigger Extractor pattern can effectively locate and
extract the data.

Is the extraction scope narrow and specific? If the
extraction task requires focusing on particular aspects
within a broader context, the Specify Constraints pattern
helps filter the relevant data.

Does the data have varying attributes? For cases where
the attributes of the target data may differ between
instances, the Dynamic Attribute Extractor pattern offers
the necessary flexibility.

Is semantic understanding required? When the extrac-
tion task demands comprehension of context and mean-
ing, the Semantic Extractor pattern is the most suitable
choice.

2)

3)

4)

5)

C. Application Examples

To demonstrate the application of the decision tree shown
in Figure 1, consider the following five examples:

1) Extracting phone numbers from a customer database
Decision path: Consistently formatted? Yes — apply
Pattern Matcher.

10

Rationale: Phone numbers typically follow a consis-
tent format, making Pattern Matcher the most efficient
choice for accurate extraction.

Extracting product details from e-commerce listings
Decision path: Consistently formatted? No — Consis-
tent keyword triggers? Yes — apply Keyword Trigger
Extractor.

Rationale: E-commerce listings often use consistent key-
words (e.g., “Price:”, “Description:”) to introduce prod-
uct details, making Keyword Trigger Extractor suitable.
Extracting specific energy data from a comprehensive
report

Decision path: Consistently formatted? No — Consistent
keyword triggers? No — Narrow extraction scope? Yes
— apply Specify Constraints.

Rationale: When focusing on specific energy data within
a broader report, Specify Constraints helps narrow the
extraction scope to relevant sections.

Extracting car details from diverse automotive reviews
Decision path: Consistently formatted? No — Consistent
keyword triggers? No — Narrow extraction scope? No
— Varying attributes? Yes — apply Dynamic Attribute
Extractor.

Rationale: Car reviews may contain varying attributes
for different models, making Dynamic Attribute Extrac-
tor the most flexible choice.

Extracting key points from legal documents

Decision path: Consistently formatted? No — Consistent
keyword triggers? No — Narrow extraction scope? No
— Varying attributes? No — Semantic understanding
required? Yes — apply Semantic Extractor.

Rationale: Legal documents require understanding of
context and meaning, making Semantic Extractor the
most appropriate choice.

2)

3)

4)

)

D. Limitations

Although the decision tree shown in Figure 1 provides a
systematic process for selecting a structured data extraction
pattern it does incur several limitations. For example, real-
world scenarios may not always fit neatly into the categories
presented above. Likewise, the effectiveness of each pattern
can vary depending on the specific implementation and the
capabilities of the underlying LLM. Moreover, some scenarios
may benefit from combining patterns, such as using Specify
Constraints to focus on relevant sections before applying
Dynamic Attribute Extractor, as discussed next in Section VII.

VII. CHAINING STRUCTURED DATA EXTRACTION
PATTERNS

While the five individual extraction patterns presented above
offer powerful capabilities for structured data extraction, com-
bining multiple patterns can yield even more precise and
comprehensive results. This section explores the concept of
chaining extraction patterns into two of the pattern relation-
ships described in [1]:

e Pattern compounds, which capture recurring pairs of
patterns that can be treated as a single distinct pattern
to addresses a design problem, or

e Pattern sequences, which are ordered groups of patterns
applied to create a particular architecture or design in
response to a specific situation .

The four chaining pattern compounds and sequences pre-
sented below demonstrate how the synergistic use of multiple
patterns can enhance the overall extraction process. These
combinations build upon the strengths of individual patterns to
address complex extraction scenarios that individual patterns
in isolation may struggle to handle effectively.

A. Pattern Compounds and Sequences for Structured Data
Extraction

The following examples show common chaining strategies
and their applications in various extraction scenarios. These
strategies demonstrate how different patterns can be combined
to address specific structured data extraction challenges.

1) Pattern Compound: Combine the Specify Constraints
and Semantic Extractor Patterns:

o Intent & Context. This pattern compound extracts specific
structured data from a large and diverse dataset by first
narrowing the focus to relevant data and then applying
semantic extraction.

e Motivation. Use this pattern compound when dealing
with comprehensive reports or databases where only a
subset of data is relevant and that data requires semantic
understanding to extract accurately.

o Key Ideas.

— Apply constraints to focus on relevant portions of the
dataset

— Use semantic extraction to interpret and structure the
focused data

o Example Implementation.

FIRST, apply constraints: Only consider renewable
energy sources

THEN, extract: { energy_type: “the type of renew-
able energy”, cost_factor: “the cost multiple com-
pared to fossil fuels”, primary_challenge: “the main
obstacle for implementation” }

From the following text: [Insert comprehensive en-
ergy report text here]

2) Pattern Compound: Combine the Keyword Trigger EXx-

tractor and Dynamic Attribute Extractor Patterns:

e Intent & Context. This pattern compound identifies spe-
cific sections within a document using keywords and then
extracts varied attributes from each section.

e Motivation. This combination is ideal for processing doc-
uments with multiple distinct sections, each containing
different sets of attributes, such as product catalogs or
multi-topic reports.

o Key Ideas.

— Use keywords to identify relevant sections

— Apply dynamic attribute extraction to each identified
section

o Example Implementation.

FIRST, identify product descriptions starting with
“Product:”.

THEN, for each identified product, extract: { name:
“the name of the product”, ...attributes related to the
product [each product can have different attributes]...

}

from the text following “Product:” up to the next
“Product:” or end of text.

3) Pattern Compound: Combine the Specify Constraints

and Pattern Matcher Patterns:

o Intent & Context. This pattern compound extracts specific
formatted data within a larger context by first applying
constraints and then matching precise patterns.

e Motivation. This combination is effective for extracting
structured data with known formats from large datasets,
particularly when only a subset of the formatted data is
relevant.

e Key Ideas.

— Apply constraints to narrow the search space
— Use pattern matching to extract precisely formatted
data

o Example Implementation.

FIRST, apply constraints: Only consider phone num-
bers starting with area codes 5xx

THEN, extract all instances of the pattern: “([5][0-
912)-[0-9]13-[0-914”

from the following customer database: [Insert cus-
tomer database text here]

4) Pattern Sequence: Comprehensive Data Extraction and

Analysis:

e Intent & Context. This pattern sequence demonstrates the
chaining of more than two patterns to perform a compre-
hensive data extraction and analysis task. It combines the
Specify Constraints, Keyword Trigger Extractor, Semantic
Extractor, and Dynamic Attribute Extractor patterns to
process complex, multi-faceted documents.

o Key Ideas. This pattern sequence combines the following
four patterns:

1) Specify Constraints, which focuses the extraction on
renewable energy projects,
2) Keyword Trigger Extractor, which identifies relevant
sections starting with “Project:”,
3) Semantic Extractor, which extracts specific struc-
tured data (name and type) for each project, and
4) Dynamic Attribute Extractor, which captures addi-
tional attributes that may vary between projects.
Chaining all these prompt patterns together into a pattern
sequence enables a comprehensive extraction that is both
focused and flexible, capturing essential data about each

renewable energy project while adapting to the varying
details provided for each.

Example Implementation.

FIRST, apply constraints: Only consider sections
related to renewable energy projects.

THEN, identify project descriptions starting with the
keyword “Project:”

NEXT, for each identified project, extract: name:
“the name of the project”, type: “the type of renew-
able energy”

FINALLY, extract: ...attributes related to the project
[each project can have different attributes]...

From the following text:

“Our company is involved in various energy initia-
tives.

Project: SolarTech

SolarTech is our flagship solar energy project located
in Arizona. It spans 500 acres and has a capacity of
100MW. The project employs cutting-edge photo-
voltaic technology and is expected to offset 150,000
tons of CO2 annually.

Project: WindForce
WindForce is an offshore wind farm off the coast
of Maine. It consists of 50 turbines, each capable of
generating 6MW. The project faced initial challenges
due to environmental concerns but has since gained
community support.

We are also considering expanding into nuclear
energy, but no concrete plans have been made yet.

Project: HydroFlow

HydroFlow is a run-of-river hydroelectric project in
Oregon. It has a capacity of 20MW and utilizes the
natural flow of the river to generate electricity. The
project has been praised for its minimal environmen-
tal impact and fish-friendly design.”

B. Considerations When Chaining Patterns into Pattern Com-
pounds or Pattern Sequences

Chaining structure data extraction patterns into pattern com-
pounds or pattern sequences allows a more nuanced approach
to data extraction, leveraging the strengths of multiple patterns
to overcome individual limitations and providing the following
benefits:

Increased precision and accuracy in complex extraction
scenarios,
Enhanced flexibility in handling diverse data structures,
Improved ability to extract contextually relevant data, and
More efficient processing of large volumes of unstruc-
tured text.

12

For instance, combining the Specify Constraints pattern with
the Semantic Extractor pattern into a pattern compound can
effectively filter large datasets before applying more computa-
tionally intensive semantic analysis, resulting in both improved
accuracy and efficiency.

However, chaining structured data extraction patterns to-
gether also requires careful consideration of several factors to
ensure optimal performance and reliability. The order in which
these prompt patterns are applied is crucial, as the sequence
in which patterns are applied can impact the extraction results
significantly. Using keywords such as “FIRST” or “THEN”
in the prompt can effectively inform the order in which the
patterns are used, providing clear guidance to the LLM.

Complexity management is equally important since it is
essential to ensure that the chained process remains compre-
hensible and maintainable, especially as the number of chained
patterns increases. This process may involve documenting
the purpose and function of each pattern in the chain, as
well as the rationale behind their ordering. Moreover, robust
validation is critical to verify that the chained patterns produce
the desired outcomes across various input scenarios. This
validation involves comprehensive testing with diverse datasets
to ensure the reliability and accuracy of the extraction process.

VIII. RELATED WORK

This section reviews the evolution of structured data ex-
traction methods, encompassing traditional rule-based and
statistical approaches, as well as emerging few-shot learning
techniques and prompt engineering strategies that leverage
LLMs.

A. Traditional Rule-based and Statistical Methods

Extracting structured data from unstructured corpora has
traditionally been performed using rule-based systems and
statistical models. Rule-based methods, such as the SystemT
project [3] and regex-based extraction methods [2], rely on
hand-crafted patterns and heuristics to parse and extract data.
These methods benefit from high precision in well-understood
domains but suffer from a lack of flexibility and scalability,
often requiring intensive manual effort for rule crafting and
maintenance.

Statistical approaches leverage a variety of machine learning
techniques, including Conditional Random Fields (CRFs) [7]
and deep learning models, that are trained on large annotated
datasets. Techniques like Named Entity Recognition (NER)
[8], [11] showcase the effectiveness of statistical methods in
identifying entity boundaries within the text. These models
can generalize better than rule-based systems, especially when
sufficient training data is available, but at the cost of expensive
data annotation and limited cross-domain applicability.

B. Emerging Few-Shot Learning and Prompt Engineering
Methods

The advent of large pre-trained language models, such as
BERT and GPT-3 (and its successors in the GP4-4 family of
models), marks a paradigm shift in structured data extraction

strategies [14]. These methods apply few-shot learning capa-
bilities inherent to LLMs and harness prompt engineering to
guide models in performing tasks with only a few examples
provided. Prompt engineering stands at the forefront of current
research to enhance the performance of LLMs in data extrac-
tion with less reliance on extensive supervised training.

While prompt engineering demonstrates promising results
in a diverse range of tasks and domains, designing and
implementing effective prompts remains a nuanced challenge.
Our contribution builds upon these advancements by intro-
ducing prompt patterns tailored for structured data extraction,
driving towards a more systematic and modular approach. By
providing users with a catalog of reusable prompt templates, as
well as pattern compounds and sequences, our work integrates
smoothly into the evolving framework of prompt engineering,
offering a standardized and scalable solution for extracting
knowledge from unstructured text [12].

IX. CONCLUDING REMARKS

This paper introduces a systematic method for constructing
structured data extraction prompts using modular, reusable
prompt patterns. Our modular prompt framework and reusable
patterns enable the development of robust extraction pipelines
that retrieve data from unstructured corpora and textual arti-
facts. The key lessons learned we have gleaned thus far from
our research on prompt patterns are summarized below:

e These prompt patterns enable robust and customizable
extraction pipelines for unstructured text. Our exploration
of patterns like Semantic Extractor, Dynamic Attribute
Extractor, and Specify Constraints demonstrates the flex-
ibility of prompts for customizing extraction to particular
use cases. Likewise, adhering to a systematic paradigm
ensures uniformity in execution across LLMs.

These prompt patterns also offer a new approach to
structured data extraction that is oriented to handling
inconsistent unstructured text. Unlike traditional rule-
based approaches, which depend on pre-defined extrac-
tion rules that often fail when encountering deviations
in text structure, extraction based on prompt patterns
leverages the interpretive capabilities of LLMs. This
ability to interpret and respond to varied textual inputs
makes prompt patterns a versatile option for retrieving
data from text that does not adhere to a consistent format.
Our work represents an important step toward democ-
ratizing these technologies by empowering expert and
novice users alike to translate textual data into actionable
insights. By refining best practices for prompt engineer-
ing, we aim to unlock the capabilities of LLMs to extract
knowledge from text corpora via user-friendly, customiz-
able extraction tools that balance human intuitions with
Al capabilities [6].

Looking ahead, we plan to expand this initial catalog of
five prompt patterns by incorporating new formats, data types,
and domains. Our goal is to enable natural language interfaces
to LLMs that mimic human-computer interaction. Just as the
SQL provides declarative, structured queries for relational

13

data, our prompt framework allows users to describe extraction
tasks at a high level for unstructured text [9].

The prompt patterns presented in this paper have been
designed to apply across different LLMs. To illustrate their
utility and practicality, these patterns have been primarily
tested using OpenAl’s GPT-4. GPT-4’s advanced natural lan-
guage understanding capabilities make it an ideal candidate
for demonstrating the effectiveness of our structured data ex-
traction methods. We encourage readers to apply these prompt
patterns with their favorite LLMs, such as ChatGPT-4, or other
advanced models available to them. Experimentation with
different LLMs is encouraged since it provides further insights
into the generalizability and adaptability of prompt patterns
across different LLM architectures and training paradigms.

ACKNOWLEDGMENTS

We thank our PLoP shepherd, Michael Weiss, for his in-
sightful feedback on earlier drafts that substantially improved
the quality and clarity of our work. We also acknowledge the
use of OpenAI’s ChatGPT-4, specifically its Advanced Data
Analysis capability, in refining the language and maintaining
consistency throughout the document. While the core concepts
and analyses are the authors’ own, ChatGPT-4 provided valu-
able support in enhancing the paper’s overall coherence and
readability.

APPENDIX A
OVERVIEW OF PROMPT PATTERN FORM

The prompt patterns presented in this paper are documented
using a form similar to classic software patterns [5], with
analogous versions of the Name, Classification, Intent, Mo-
tivation, Key Ideas, Example Implementation, and Conse-
quences sections in classic pattern form. Each section of our
prompt pattern form is outlined briefly below:

Name. A unique identifier for referring to the prompt
pattern.

Intent & Context. Summarizes the goals and rationale
for the pattern.

Motivation. Describes the situations where applying the
pattern is relevant.

Key Ideas. Outlines the key ideas and information (often
phrased as instructions or rules) that must be conveyed
to an LLM to achieve the desired capabilities.

Example Implementation. Provides a sample implemen-
tation showing how the pattern can be instantiated in any
LLM.

Consequences. Discusses the benefits and potential draw-
backs of applying the pattern.

Our prompt pattern form intentionally omits the Known
Uses section. Unlike classic software patterns, which are well-
documented and accessible through open-source repositories
across the Internet, prompts for LLMs are generally not
codified or systematically available to the public. This lack
of codification and availability poses challenges in presenting
our proposed patterns entirely in the conventional pattern form.

The use of prompts is still an emerging practice, and there
is no centralized repository or widely recognized standard
that documents their use in a systematic way. As a result,
our work aims to fill this gap by identifying, formalizing,
and sharing these prompt patterns based on our extensive
prompt engineering experience. While we understand that this
approach does not align fully with the classic pattern forms, we
hope to contribute to the foundation upon which future prompt
patterns can be more formally validated and documented.

The template of a prompt pattern often begins with a con-
versational scoping statement, such as “for the following data
extraction task” or “when processing the input text,” that sets
the context for the LLM to focus on structured data extraction.
The prompt then provides a series of statements conveying
the specific extraction capabilities the LLM should exhibit,
typically phrased as rules, guidelines, or instructions. These
rules may include conditional logic indicating when certain
extraction techniques should be applied, such as “if the text
contains numerical data, extract it in the following format.”
By codifying best practices into reusable templates, prompt
patterns enable more reliable means for instructing LLMs to
extract structured data that meets quality goals, conforms to
specified formats, and adheres to extraction principles [15].

REFERENCES
[1] Frank Buschmann, Kevlin Henney, and Douglas C. Schmidt. Pattern-
Oriented Software Architecture, Volume 5: On Patterns and Pattern
Languages. Wiley and Sons, New York, 2007.
Chia-Hui Chang, Mohammed Kayed, Moheb R. Girgis, and Khaled F.
Shaalan. A Survey of Web Information Extraction Systems. I[EEE
transactions on knowledge and data engineering, 18(10):1411-1428,
2006.
Laura Chiticariu, Rajasekar Krishnamurthy, Yunyao Li, Frederick Reiss,
and Shivakumar Vaithyanathan. SystemT: An Algebraic Approach to
Declarative Information Extraction. In Proceedings of the 48th Annual
Meeting of the Association for Computational Linguistics, pages 128—
137, 2010.
Eric Elliott. Sudolang.
sudolang-1lm-support, 2024.
Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented Software. Addison-
Wesley, Reading, MA, 1995.
Srinivasan lyer, Ioannis Konstas, Alvin Cheung, Jayant Krishnamurthy,
and Luke Zettlemoyer. Learning a Neural Semantic Parser from User
Feedback. arXiv preprint arXiv:1704.08760, 2017.
John Lafferty, Andrew McCallum, and Fernando CN Pereira. Condi-
tional Random Fields: Probabilistic Models for Segmenting and La-
beling Sequence Data. In Proceedings of the eighteenth international
conference on machine learning, ICML, volume 1, 2001.
Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya
Kawakami, and Chris Dyer. Neural Architectures for Named Entity
Recognition. arXiv preprint arXiv:1603.01360, 2016.
Fei Li and Hosagrahar V. Jagadish. Constructing an Interactive Natural
Language Interface for Relational Databases. Proceedings of the VLDB
Endowment, 8(1):73-84, 2014.
Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing Continuous
Prompts for Generation. arXiv preprint arXiv:2101.00190, 2021.
David Nadeau and Satoshi Sekine. A Survey of Named Entity Recogni-
tion and Classification. Lingvisticae Investigationes, 30(1):3-26, 2007.
Laria Reynolds and Kyle McDonell. Prompt Programming for Large
Language Models: Beyond the Few-Shot Paradigm. In Extended
Abstracts of the 2021 CHI Conference on Human Factors in Computing
Systems, pages 1-7, 2021.
Sunita Sarawagi. Information Extraction. Foundations and Trends® in
Databases, 1(3):261-377, 2008.

[2

—

[3

=

[4

=

https://github.com/paralleldrive/

[5]

[6

=

[7

—

[10]
[11]

[12]

[13]

14

[14] Richard Shin, Christopher H. Lin, Sam Thomson, Charles Chen, Subhro
Roy, Emmanouil Antonios Platanios, Adam Pauls, Dan Klein, Jason
Eisner, and Benjamin Van Durme. Constrained Language Models Yield
Few-Shot Semantic Parsers. arXiv preprint arXiv:2104.08768, 2021.

[15] Jules White, Quchen Fu, Sam Hays, Michael Sandborn, Carlos Olea,
Henry Gilbert, Ashraf Elnashar, Jesse Spencer-Smith, and Douglas C.
Schmidt. A Prompt Pattern Catalog to Enhance Prompt Engineering
with ChatGPT. In Proceedings of the 30th Pattern Languages of
Programming (PLoP) conference, Allerton Park, IL, October 2023.

