
Dynamic Policy-Driven Quality of Service in Service-Oriented Systems

Joseph P. Loyall, Matthew Gillen, Aaron Paulos
BBN Technologies, Cambridge, MA USA

e-mail: {jloyall, mgillen, apaulos}@bbn.com

Larry Bunch, Marco Carvalho
Institute for Human Machine Cognition

Ocala, FL USA
e-mail: {lbunch, mcarvalho}@ihmc.us

James Edmondson, Pooja Varshneya,
Douglas C. Schmidt

Vanderbilt University, Nashville, TN USA
e-mail: {james.r.edmondson, pooja.varshneya,

d.schmidt}@vanderbilt.edu

Andrew Martignoni III
The Boeing Company, St. Louis, MO USA

e-mail: andrew.j.martignoni-iii@boeing.com

ABSTRACT
Service-oriented architecture (SOA) middleware has

emerged as a powerful and popular distributed computing
paradigm due to its high-level abstractions for composing
systems and hiding platform-level details. Control of some
details hidden by SOA middleware is necessary, however, to
provide managed quality of service (QoS) for SOA systems
that need predictable performance and behavior. This paper
presents a policy-driven approach for managing QoS in SOA
systems. We discuss the design of several key QoS services
and empirically evaluate their ability to provide QoS under
CPU overload and bandwidth-constrained situations.

Keywords: service oriented architecture, quality of service

I. INTRODUCTION
Service-oriented architecture (SOA) middleware has

emerged as a powerful software engineering environment for
developing distributed applications and systems. SOA offers
benefits in system construction including dynamic discovery
of system components (i.e., services), high-level abstractions
for encapsulation and system composition, and lifecycle
management and virtual execution environments that hide
details about the platforms in which the system is run.

These characteristics have increased adoption of SOA in
enterprise environments, but, have limited its adoption in
other domains, such as mission-critical distributed, real-time,
and embedded (DRE) systems, that have stringent perfor-
mance, resource contention, and predictability requirements.
Conventional SOA middleware, such as J2EE and .NET,
lacks key QoS capabilities that are needed by systems in
DRE domains, including the visibility and control of shared
and constrained resources, and the mediation of competing
demands for resources. Ironically, the limitations of SOA are
at least partially due to a fundamental tension between the
higher-level abstractions it attempts to provide and the de-
tailed visibility and control needed to provide QoS effec-
tively in dynamic and heterogeneous DRE environments.

This paper describes key capabilities needed in SOA
middleware to make it suitable to support applications and
systems that require predictable QoS, including (1) task man-
agement, (2) bandwidth management, (3) aggregation of
competing resource demands, and (4) QoS policy-driven

 This research has been sponsored by the U.S. Air Force
Research Laboratory under contract FA8750-08-C-0022.

prioritization and scheduling strategies. As part of a SOA-
based QoS management system named QoS-Enabled Disse-
mination (QED) [11], we prototyped these capabilities for
the JBoss and Java Message Service (JMS) SOA middleware
and evaluated their performance in the context of CPU over-
load, constrained bandwidth, and dynamic policy changes.

The remainder of the paper is organized as follows: Sec-
tion II briefly introduces SOA and the challenges it presents
for managed QoS; Section III describes the QoS manage-
ment capabilities we designed and their prototype instantia-
tions; Section IV analyzes the results of experiments we con-
ducted to evaluate the improved QoS predictability, control,
and performance over a baseline JBoss and JMS system in
the face of CPU overload and constrained bandwidth, and
experiments to evaluate the speed of dynamic QoS policy
updates in QED; Section V compares QED with related
work; and Section VI presents some concluding remarks.

II. SERVICE ORIENTED ARCHITECTURE

A. Overview of SOA
SOA is a progression in the evolution of middleware and

distributed software engineering technologies, building upon
the basis of distributed objects and components. It encapsu-
lates business functionality as services, such as Enterprise
JavaBeans (EJB) or Managed Beans (MBeans), much in the
way that component models, such as the CORBA Compo-
nent Model (CCM), encapsulated functionality as compo-
nents. SOA service interfaces are specified in standard inter-
face description languages (IDL), such as the Web Services
Description Language (WSDL), an evolution of the IDLs
used for components and distributed objects preceding them.

SOA typically also includes an execution container mod-
el and support for inter-service communication, e.g., pro-
vided by an Enterprise Service Bus (ESB). SOA middleware,
like the component middleware that preceded it, provides an
abstract development, deployment, and execution layer that
encapsulates the details of distribution, inter-service and
client-to-service communication, threading, and runtime
execution. SOA middleware also extends the assembly and
deployment languages (often based on XML) of distributed
components to include dynamic service discovery (e.g., the
Universal Description Discovery and Integration, UDDI) and
orchestration of services, which combines assembly of ser-
vices, workflow description, and runtime control of work-
flow and service execution.

JBoss is an open-source implementation of Java 2 Enter-
prise Edition (J2EE) SOA middleware that supports the SOA
lifecycle goals of service orchestration, deployment, and
execution (e.g., JBPM for orchestration). For the purpose of
this paper we concentrate on two parts of JBoss: (1) JBoss
application server, which provides a container model in Java
for executing services, and (2) JMS for topic-based client-to-
service communication and data transfer.

B. Challenges for providing QoS in SOA environments
Although the SOA abstractions in JBoss and JMS simpl-

ify developing, composing, and executing SOA applications,
they incur challenges for managing the QoS of these applica-
tions. For example, the JBoss container hides runtime- and
platform-level details, e.g., the number of threads, invocation
of services, assignment of service invocations to threads, and
CPU thread scheduling. JBoss can thus create more threads
than can be run efficiently by the hardware (leading to CPU
overload) or fewer threads than needed by application and
system services (leading to CPU under-utilization). Like-
wise, without QoS management, important services in JBoss
can block waiting for threads, while less important services
run (leading to priority inversion). Moreover, since service
execution times vary, service invocations can tie up threads
for potentially unbounded amounts of time.

In a similar manner, the JMS communication middleware
hides details, such as the transport protocol, the amount of
bandwidth available and used, contention for bandwidth, and
communication tradeoffs (e.g., loss and delay characteris-
tics). JMS provides point-to-point and publish-subscribe
communication, reliable asynchronous communication,
guaranteed message delivery, receipt notification, and trans-
action control. JMS does not expose any queue or flow con-
trol, however, so that large rates of messages, constrained
bandwidth, or varying message sizes can end up with more
important messages being delayed (even indefinitely) while
less important messages are sent. In extreme cases, queues
can fill up or grow unbounded, leading to resource exhaus-
tion, information loss, or unbounded delay.

JBoss and JMS do each provide certain QoS parameters
and configuration choices in their specifications. For exam-
ple, JMS specifies three QoS parameters: delivery mode
(persistent or non-persistent), priority, and time-to-live, that
provide hints to JMS implementations to support QoS. There
is little support, however, for visibility into bandwidth avail-
ability and use, matching flow of information to the band-
width available, and managing contention for bandwidth
across multiple JMS connections.

JBoss includes a message bridge for sending messages
reliably across clusters, WANs, or unreliable connections
that specifies the following three levels of QoS:
• QOS_AT_MOST_ONCE specifies unreliable delivery

where messages may be lost, but will not reach their
destinations more than once.

• QOS_DUPLICATES_OKAY specifies reliable deli-
very. Messages might be delivered more than once if a
message arrives but its acknowledgement is lost.

• QOS_ONCE_AND_ONCE_ONLY specifies reliable
delivery of both a message and its acknowledgement.

Although these QoS levels specify message delivery reliabil-
ity, they do not specify the performance, resource usage, or
prioritization of messages or information flows. Moreover,
these QoS features of JMS and JBoss lack support for aggre-
gation and mediation of competing QoS requirements for
users and connections that are sharing bandwidth, for coor-
dinating CPU and bandwidth usage, and for dynamic bottle-
neck management. In contrast, the QED QoS capabilities
described in Section III provide this support.

III. QOS MANAGEMENT CAPABILITIES FOR SOA
Our work on QoS management for DRE systems in SOA

environments has yielded QED, which is SOA-based mid-
dleware whose QoS capabilities address the challenges de-
scribed in Section II.B. This section describes the following
QoS services and mechanisms we have developed for QED
shown in Figure 1: (1) An aggregate QoS management ser-
vice; (2) A QoS policy service; (3) A task management local
QoS manager; and (4) A bandwidth manager.

A. Aggregate QoS management service
The QED aggregate QoS management service creates a

set of policies guiding the behaviors of the local QoS manag-
ers that enforce CPU scheduling and bandwidth utilization.
The purpose of the aggregate QoS manager is to maintain
predictable behavior throughout the orchestrated system of
clients and services. Since the load of client and user de-
mands will vary, it is likely that there may not be enough
bandwidth or CPU resources to provide the QoS requested
by everyone. If these resources are not managed properly, no
user will get a reasonable level of QoS (i.e., leading to the
tragedy of the commons [7]). Aggregate QoS management
mediates conflicting demands for QoS management, provid-
ing available resources to the most critical services or clients.

Each local QoS manager (task, submission, and dissemi-
nation) has only a local view. The aggregate QoS manager
thus provides policies that are consistent to related control
points. For example, if a policy indicates that a service invo-
cation should have a high priority for CPU thread sche-
duling, then information produced by the service invocation
should also have high priority for dissemination to clients or
other services.

When a client is authenticated to gain access to services
(using an authentication service), the authentication creden-
tials and other information about the user, client, and orches-
tration are forwarded to the aggregate QoS manager. The
aggregate QoS manager accesses the policy store to get the
list of policies that can apply to the user, client, and opera-
tions that the client can invoke. The aggregate QoS manager
resolves the list to remove overlapping and contradictory
policies, using a configurable policy precedence scheme de-
scribed below. The equivalent of a session is created for the
client’s operations on services in its orchestration and the
relevant policies are distributed to the local QoS managers
using properties on the session.

In this way, the aggregate QoS manager translates high
level, goal- and user-specified QoS policies into actionable
QoS policies that apply to observable properties of a client,
operations it can invoke, information (e.g., parameters or

Aggregate QoS Manager

User QoS preferences; QoS requirements

Policy actions

Task Local QoS
Manager

Task queues

Insert task

Extract task

Get thread to
assign to task

Thread Pool

information messages

Insert
info

Extract
info

Policy StorePolicy

Task
Creation

Operation
task object

Operation

Client

Diss. queues

QoS Context

information
message

Bandwidth
Manager

BW allocation

Parsed
policy
values

Dissemination
Local QoS
Manager

Client

Task

Rate Limiting
Control

Client

Submission Local
QoS Manager

information
message

User authentication
and credentials

Figure 1. QED Capabilities Providing Aggregate QoS Management for SOA-based DRE Systems

Task LQM
Task queues

Insert task

Extract task

Get thread to
assign to taskThread Pool

Task

Task Worker

Service

Invoke

Client

Task Creation

Task

Figure 2. QED Local Task Manager Design

messages), and resources. The actionable policies distributed
to the local QoS managers can be checked quickly at the
local enforcement points via attribute lookups and relational
comparisons so they can be applied in the path of the control
and data flow. In contrast, policy lookup, parsing, and distri-
bution of policies by the aggregate QoS manager is out-of-
band with the control and data flow and is relatively infre-
quent compared to local policy enforcement. They occur
only on discrete events that affect the makeup of the overall
distributed system, such as the entry of new clients, resource
failure, and changes in overall QoS goals or policies.

B. QoS policies
Each QoS policy includes a condition over observable

properties of the system, which is defined as follows:

QoS Policy: f(E, M, O, R) ⇒ QoS settings

The current QED prototype supports conditions over ob-
servable properties of Entities (E) such as clients or user cre-
dentials, Information (M) such as message types or informa-
tion metadata, Operations (O) such as service invocations,
and Resources (R) such as queue lengths, threads, or band-
width. QoS settings provide guidance to the local QoS man-
agement components and are defined as the combination of
an importance (i), a set of QoS preferences (P), and a prece-
dence level (v), as follows:

QoS settings: (i, P, v)

The importance is a high-level measure of the relative value
of an operation, type, or client to a system’s overall goals.
This value is used, along with other factors such as cost, to
prioritize processing and dissemination of information. QoS
preferences define limits and tradeoffs among aspects of
QoS, such as deadlines and acceptable ranges of quality.

The precedence level aids in selecting between conflict-
ing policies; higher precedence policies are enforced in favor
of lower precedence ones. In general, more specific policies

should override less specific ones. Policies are maintained in
the Policy Store service.

C. Task management
Achieving predictable performance requires managing

the execution of all CPU intensive operations, such as ser-
vice invocations, for each CPU (or equivalent virtual ma-
chine, VM) onto which clients and services are distributed,
including the following capabilities:
• Prioritized scheduling of operations based on impor-

tance and cost (e.g., time to execute).
• Limiting the size of the thread pool to a number of

threads that can be executed on the CPU (or a portion al-
located to the VM) without overloading it.

• Scheduling according to an appropriate policy, such as
strict or weighted fair.

To manage these tasks, QED provides Local Task Man-
agers, whose design is shown in Figure 2. Each Local Task
Manager manages the CPU intensive operations for a given
CPU or VM using priority scheduling. The goal is to avoid

Server HostHost 1

Host N

Receiving
Service

N
I
C

N
I
C

CONTROL

CONTROL

N
I
C

Submission
LQM

Bandwidth
Manager

Client

Client

Bandwidth allocation per client

Dissemination
LQM

BW alloc
per host

…

Figure 3. QED Submission LQM Design

Differential Queuing for Dissemination
Aggregate Queues

Client
Queues

Disseminator

Bandwidth
Scheduler

Task

Client

Client

Client

Figure 4. QED Dissemination LQM Design

CPU overload in the form of too many threads or service
invocations and to avoid priority inversion, in the form of
lower priority service invocations getting CPU when higher
priority service invocations are awaiting execution.

When CPU-intensive operations (e.g., service invocation)
are performed, tasks are created and submitted to the Task
Manager, where they are inserted into a binned priority
queue using a configurable number of bins (queues), each
representing a priority. 1

The Task Manager assigns threads from the thread pool
to tasks according to a queue management strategy under
control of the aggregate QoS manager. QED currently has
two queue management policies implemented: strict and
weighted fair. In both the strict and weighted fair policies,
there is FIFO behavior within individual bins. In Strict, the
Task Manager always pops off the highest-priority bin that is
not empty. The weighted-fair queue management policy pro-
vides an opportunity to service all bins with a built in
weighting to service higher priority bins more often.

 Task creators calculate an impor-
tance (derived from a policy applied to the operation, infor-
mation type, and/or client) and cost for the task. The Task
Manager takes importance and cost as inputs and generates a
priority (bin assignment). Binned queues also allow QED to
support a weighted-fair policy, which is hard to implement in
a heap-based implementation. The tradeoff is that we have a
fixed granularity with which to distinguish tasks.

Estimating the cost of operations for use in the schedul-
ing decision requires an accurate model of service execution
time. Constructing such models is hard in the dynamic DRE
systems we target since service execution time can vary sig-
nificantly depending on the power of the platform on which
it is deployed and characteristics of inputs to the service. We
combine two approaches to solve this problem. First, we use
heuristics—based in part on experimental and testing runs—
to identify the conditions under which a service is more or
less costly to execute. Second, a QoS monitoring service
[11][12] that is part of our overall solution monitors service
execution and reports the measured time (stored as a time
series) to the local task manager so that its model of service
execution time improves as the system executes.

D. Bandwidth management
The Bandwidth Manager is a host-level entity that as-

signs bandwidth slices for inbound and outbound communi-
cations based on policy provided by the aggregate QoS man-
ager. For SOA architectures, bandwidth is managed at the
level of information objects, not packets, as is done by net-
work-level QoS, since the loss or delay of an individual
packet could invalidate an entire (and potentially much larg-
er) object of information. Here the inbound and outbound
managers are referred to as the Submission Local QoS Man-
ager (LQM) and Dissemination LQM, respectively. The cur-
rent version of the Bandwidth Manager provides a static
bandwidth allocation per interface and to each of the LQMs.

The Submission LQM, shown in Figure 3, manages the
consumption of inbound bandwidth by throttling external

1 Bins ensure that insertion time of newly created tasks is constant
vs. the log n insertion time needed for heap-based priority queues.

clients and providing bandwidth slices to cooperative SOA
clients, which in turn enforce the restriction on the client’s
outbound connection. When coupled with information priori-
tization (enforced by priority-driven differential queuing on
the client’s outbound side), this form of incoming message
rate control serves two purposes: (1) the rate throttling re-
duces the potential for resource overload on the service hosts
and (2) the utility of information that ultimately reaches the
invoked service is enhanced through outbound prioritization.

The Submission LQM provides a per-process service
registration interface for inbound bandwidth management.
This results in an equal sharing of inbound bandwidth re-
sources per-process. The Submission LQM invokes an out-
of-band RMI call to external SOA-clients to reallocate their
bandwidth as needed. As with the aggregate policy distribu-
tion, we expect these reallocation calls will be infrequent
compared to the service invocation and messages to services.
Factors such as the duration of the connection lifecycle, fre-
quency of connection failures and client request model for a
particular SOA-deployment should be considered when de-
termining an appropriate reallocation scheme.

The Dissemination LQM shown in Figure 4 provides ma-
naged dissemination by scheduling over differential queues.
Queue counts coincide with the same number of bins used by
the Task Manager. This modular design for managed diffe-
rential dissemination can be used to schedule and send pri-
oritized messages across outbound connections while meet-
ing strict bandwidth requirements. QED uses differential
queuing for outbound messages from services to clients, but
the dissemination approach may also be applied to service-
to-service communications in deployments where service-to-
service messages span host boundaries.

As shown in Figure 4, the resulting “write-to-client” call
from a service invocation is treated as a managed task. When
outgoing messages are to be sent to a client, the Dissemina-

Figure 5. QED Information Management Services

tion LQM calculates the importance of the information for
each receiving client, by checking the parsed policy held in
attributes on state information for each connection.

After calculating the information importance the Disse-
minator component of the LQM will distribute the infor-
mation to the appropriate ClientQueue. The ClientQueue
calculates the priority from a combination of the provided
importance and a cost measure based on the size of the in-
formation being disseminated (representing the amount of
bandwidth sending the information will consume). At this
point, the priority is used to determine which client bin
should be used to enqueue the data.

The head of each ClientQueue bin is managed by a
threaded class called the ClientBinManager, (shown here as
a thread-line on the top of each ClientQueue bin). The
ClientBinManager manages two operations for the head item
of the queue. The first operation is an aggregate level en-
queue and block. This ensures that each ClientQueue has
only one piece of information allotted per bin that can be in
contention for a chunk of the aggregate bandwidth. The
second operation is unblock-and-send on signal which is
triggered by the bandwidth scheduler upon selecting a par-
ticular client’s priority bin. Through this mechanism the dif-
ferential queuing allows for the fair scheduling across mul-
tiple client connections and priority bins.

The Bandwidth Scheduler, with operations shown with
red lines, has a scheduling thread that alternates in a
sleep/wake cycle based on the availability and use of band-
width. When awakened, the scheduling thread selects the
next dissemination task that should be processed. The sche-
duling algorithm provides identical support for the strict and
weighted fair algorithms as described in Section III.C. The
Bandwidth Scheduler calculates the amount of time to send
the information by dividing the information size by the
amount of available bandwidth. It then calls the callback of
the selected task’s ClientBinManager to notify its availability
to send the information message. The send is immediately
followed by a sleep for the amount of time calculated to send
the information. At this point, the notified ClientBinManager
removes the actual task from the appropriate bin and sends a
message with the information to the receiving client.

E. Deployment and distribution of QoS managers
There should be a local task manager for each shared

CPU resource, virtual or actual. This means that a host could
have one local task manager that schedules operations run-
ning on that CPU, or it could have several local task man-
agers, one each for the VMs running on the host with each
VM having a specific “partition” of the CPU (e.g., controlled
by the size of their available thread pool).

There should be a bandwidth manager for each occur-
rence of shared bandwidth, which could be associated with
the NIC card on a host, a virtual private network, or dedi-
cated network. True bandwidth management is only possible
in those situations where the network is controlled by the
QoS management services. Deployment of services across an
unmanaged network (such as the Internet) will result in ap-
proximate and reactive QoS management only, since the
amount of available bandwidth at any given time, the ability

to control competition for the bandwidth, and honoring of
network priorities (e.g., DiffServ Code Points) is beyond the
QoS management service purview. Increased performance
can be achieved in even these environments, however,
through active monitoring of the bandwidth achieved be-
tween two points (e.g., by monitoring the latency and
throughput of messages or using a tool such as TTCP [1])
and shaping and prioritizing traffic as if that is all the band-
width available (leaving a reserve of unallocated bandwidth
increases the delivered QoS predictability).

Likewise, there should be a submission and dissemina-
tion LQM for each occurrence of shared bandwidth used for
incoming and outgoing messages, respectively. The aggre-
gate QoS manager can be either centralized or distributed. If
it is distributed extra care should be taken to synchronize the
policy stores and policy distribution.

IV. EXPERIMENTAL RESULTS
This section evaluates the QED capabilities in the context

of a set of publication-subscription information management
(IM) services shown in Figure 5. These services include (1) a
Submission Service that receives incoming information, (2) a
Broker Service that matches incoming information to regis-
tered subscriptions, (3) an Archive Service that inserts in-
formation into a persistent database, (4) a Query Service that
handles queries for archived information, and (5) a Dissemi-
nation Service that delivers brokered information to sub-
scribers and query results to querying clients. The baseline
pub-sub IM services run on top of JBoss application server
and JMS SOA middleware.

Below we present the results of three experiments con-
ducted to evaluate the efficacy and performance of the pub-
sub IM services with the QED QoS management services.

We first measure the effect of CPU overload conditions on
the servicing of information to demonstrate QED’s differen-
tiated services and then measure the effects of a shared band-
width resource with high service contention and show how
QED provides predictable service despite the contention
(both experiments are contrasted with a baseline of the pub-

JBoss

QED

0

0.2

0.4

0.6

0.8

1

High
Med

In
fo

rm
at

io
n

ob
je

ct
s

pe
r

se
co

nd

Importance of information publisher
Figure 6. Differentiation Among High and Medium Importance

Clients in CPU Overload Scenario

JBoss

QED
0

5

10

15

20

High
Med

Low

In
fo

rm
at

io
n

ob
je

ct
s

pe
r

se
co

nd
Importance of information publisher

Figure 7. Differentiation in Second CPU Overload Scenario with
Each Publisher Type Overloading the System with Information

sub IM services without QED QoS management). Finally,
we measure the performance of applying new policies to
QED’s QoS management infrastructure to evaluate QED’s
dynamism and scalability characteristics. The experiments
indicate that QED can change policies dynamically and effi-
ciently to handle many users and policy rules.

All experiments ran on ISISLab (www.isislab.vanderbilt
.edu) using the Red Hat FC6 operating system over dual core
2.8 Ghz Xeon processors with 1 GB RAM and gigabit Ether-
net (the Bandwidth Bound experiments required custom
bandwidth limitation via the Linux kernel). Each experiment
was conducted on three nodes: one for subscribers, one for
publishers, and one for JMS and QED services.

A. CPU Overload
The first experiment evaluates QED’s ability to provide

differentiated service to important clients and information
during CPU overload. The information brokering and query
services are the most CPU intensive IM services. Each sub-
scription or query has a predicate (specified in XPath or
XQuery) that is evaluated and matched against the metadata
of newly published (for information brokering) or archived
(for query) information objects.

This experiment uses three subscribing and three publish-
ing clients (one each with high, medium, and low impor-
tance), with each subscriber matching the information ob-
jects from exactly one publisher. To introduce CPU overload
in this experiment, we created an additional 150 subscribing
clients with unique predicates that do not match any pub-
lished objects. These subscriptions create CPU load (in the
form of processing many unique predicates) without addi-
tional bandwidth usage (since the predicates do not match
any information objects, no additional messages are dissemi-
nated to subscribing clients). We then executed two scena-
rios: one in which all of the CPU load is caused by low prior-
ity information and the other in which CPU load is caused by
all information (high, medium, and low importance).

In the first scenario, the high and medium importance
publishers are publishing one information object each second
(1 Hz), while the low importance publisher is publishing 300
information objects per second. The evaluation of the 153
registered predicates against the metadata of the two high
and medium importance information objects is well within
the capacity of the CPU, while the evaluation of the 153 reg-
istered predicates against the 300 low importance informa-
tion objects (a total of 45,900 XPath/XQuery searches per
second) is more than the CPU can handle.

Figure 6 shows a comparison of the number of high and
medium importance information objects in the baseline IM
services running over JBoss and the IM services running
over JBoss with QED QoS management. The JBoss baseline
does not differentiate the operations competing for the over-
loaded CPU and, as a result, only slightly more than half of
the high and medium importance information gets through
(.58 Hz for both high and medium publishers). The QED
services, in contrast, used JBoss threads for brokering the
more important information and, as a result, achieved a rate
of .99 Hz for both the high and medium information publish-
ers, nearly the full 1 Hz publication rate. The baseline JBoss

system processes the low importance information at 16.28
Hz, while the JBoss system with QED services processes
them at a rate of 13.59 Hz, which indicates there is signifi-
cant priority inversion in the IM services running over the
baseline JBoss, i.e., lower priority information is processed
when there is higher priority information to process.

In the second scenario, all three publishers publish at a
rate of 20 information objects per second (i.e., 20 Hz). This
experiment overloads the CPU with predicate matching of
information from high, medium, and low importance pub-
lishers, each of which is sufficient by itself to overload the
CPU of our experiment host. Figure 7 shows how the IM
services running on the baseline JBoss system exhibit no
differentiation, processing almost equal rates of high, me-
dium, and low importance information (5.9 information ob-
jects per second). In contrast, the QED services cause the IM
services and JBoss to provide full differentiated service, with
the high importance information being processed at the much
higher average rate of 15.52 information objects per second.
Meanwhile, medium and low importance information are not
starved, and medium importance information is processed
twice as often (0.2 Hz) as low importance (0.1 Hz).

B. Bandwidth constrained
Outgoing messages from the Dissemination Service to re-

questing clients and incoming messages to the Submission
Service from publishing clients are the most bandwidth in-
tensive of the IM services. This experiment forced a band-
width bottleneck by constraining the shared bandwidth avail-
able from the Dissemination Service to all requesting clients
to 320 Kbps. We then evaluated the ability of the IM services

0

100

200

300

400

500

600

700

800

0 100 200 300 400 500 600

Ti
m

e
to

 c
ha

ng
e

po
lic

y
(m

s)
Number of client connections

Figure 10. Time to Add a Policy Compared to # of Client Connections

JMS

QED
0

5

10

15

20

High
Med

Low

In
fo

rm
at

io
n

ob
je

ct
s

pe
r

se
co

nd

Importance of information subscriber
Figure 8. Subscriber Differentiation by QED during Bandwidth-

constrained Operation

0

20

40

60

80

100

120

140

0 50 100 150 200 250 300 350

Ti
m

e
to

 c
ha

ng
e

po
lic

y
(m

s)

Number of policies in policy store
Figure 9. Time to Add a Policy Compared to # of Policies

to use this constrained bandwidth for important outgoing
traffic when utilizing the baseline JMS communication mid-
dleware and JMS with QED QoS management.

After constraining the outgoing bandwidth, we ran three
publishers, publishing two information objects with a 1KB
payload each second, and twelve subscribers, each with iden-
tical predicates that match all published information (i.e., all
subscribers are interested in the data being published by all
three publishers). This configuration ensured that the predi-
cate processing (i.e., the CPU) is no longer a bottleneck.
Each information object was delivered to 12 subscribing
clients, resulting in over 576 Kbps of information trying to
get through the 320 Kbps of available bandwidth.

Four of the 12 subscribers were set to high importance,
four to medium importance, and four to low importance.
Figure 8 shows that the IM services running on the baseline
JBoss do not differentiate between the important subscribers
and the less important subscribers, i.e., all subscribers suffer
equally in JMS. The IM services running on JBoss with QED
provides similar overall throughput but with better QoS to
the subscribers that were specified as the most important.

C. Policy change
This set of experiments evaluated QED’s dynamism and

scalability, measuring (1) how quickly policy changes can be
made and distributed to the LQM services in QED and (2)
how the time to change policies scales with the number of
users and existing policies. The first experiment measures
the time to add and distribute a policy when the number of
existing policies is 2, 10, 100, and 300. Figure 9 shows the
time required to check the new policy against existing poli-
cies and apply the policy change scales well with the number
of policies existing in the store. In fact, the slope of the line
decreases as the number of existing policies increases.

The next experiment measures the time needed to add
and distribute a policy as the number of client connections
increases. We made a policy change with 2, 10, 100, and 500
client connections and measured how long it takes for the
policy to take effect. The results in Figure 10 show that the
time needed to effect a policy change scales well, with only
subsecond time to effect a policy change even with several
hundred connections.

Further testing showed that this linear trend continues
when both large numbers of clients and existing policies ex-
ist at the same time, with the existing policies in the store

being the primary bottleneck. QED’s ability to quickly apply
policy changes during run time adds dynamic control and
responsiveness to the policy infrastructure.

V. RELATED WORK
QoS management in middleware and SOA. Prior work

focused on adding various QoS capabilities to middleware.
For example, [8] describes J2EE container resource manage-
ment mechanisms that provide CPU availability assurances
to applications. Likewise, 2K [19] provides QoS to applica-
tions from varied domains using a component-based runtime
middleware. In addition, [2] extends EJB containers to inte-
grate QoS features by providing negotiation interfaces which
the application developers need to implement to receive de-
sired QoS support. Synergy [14] describes a distributed
stream processing middleware that provides QoS to data
streams in real time by efficient reuse of data streams and
processing components. [13] presents an algorithm for com-
posing services to achieve global QoS requirements. In [10],
Lodi et al use clustering (load balancing services across ap-
plication servers on distributed nodes) to meet QoS require-
ments for availability, timeliness, and throughput.

Network QoS management in middleware. Prior work fo-
cused on integrating network QoS mechanisms with middle-
ware. Schantz et al. [15] show how priority- and reservation-
based OS and network QoS management can be coupled
with standards-based middleware to better support distri-
buted systems with stringent end-to-end requirements. Gen-
dy et al. [4][5] intercept application remote communications
by adding middleware modules at the OS kernel space and
dynamically reserve network resources to provide network
QoS for the application remote invocations.

Schantz et al. [16] intercept remote communications us-
ing middleware proxies and provide network QoS for remote
communications by using both DiffServ and IntServ network
QoS mechanisms. Yemini et al. [18] provide middleware
APIs to shield applications from directly interacting with
complex network QoS mechanism APIs. Middleware frame-
works transparently converted the specified application QoS
requirements into lower-level network QoS mechanism APIs
and provided network QoS assurances.

Deployment-time resource allocation. Prior work has fo-
cused on deploying applications at appropriate nodes so that
their QoS requirements can be met. For example, [9][17]
analyzed application communication and access patterns to
determine collocated placements of heavily communicating
components. Likewise, [3][6] have focused on intelligent
component placement algorithms that maps components to
nodes while satisfying their CPU requirements.

Our work on QED builds upon and enhances this prior
work on QoS-enabled middleware by providing QoS for
SOA systems that (1) works with existing standards-based
SOA middleware; (2) provides aggregate, policy-driven QoS
management; and (3) provides applications and operators
with fine-grained control of tasks and bandwidth.

VI. CONCLUDING REMARKS
This paper described the QED approach to dynamic task

and bandwidth management, aggregation of competing re-
source demands, and QoS policy-driven prioritization and
scheduling strategies. Our prototype and experiments with an
information management system show significant improve-
ment in performance, predictability, and control over the
baseline JBoss and JMS SOA middleware. Future versions
of QED will feed monitored statistics, including interface
usage, service execution, and QED internals such as priority
queue lengths, into the LQMs to supplement the existing
QoS management algorithms with feedback control and
learning. We are also incorporating disruption tolerance to
handle temporary client to service and service-to-service
communication disruptions.

We learned the following lessons from our experience
developing and evaluating QED over the past several years:
• SOA’s abstractions and portability are at odds with pro-

viding traditional QoS since key platform-level details
are hidden from applications and operators. The QED
management layers are a step toward developing effec-
tive, and largely portable, abstractions for QoS concepts.

• Overall system QoS can be improved when individual
control points in SOA middleware are coordinated.
QED's QoS management works with the QoS features
and configuration parameters emerging for SOA infra-
structure, supplemented with dynamic resource alloca-
tion, scheduling, and adaptive control mechanisms.

• As SOA middleware infrastructure evolves, so must the
QoS management capabilities to ease QoS policy confi-
guration, QoS service composition, runtime behavior
evaluation, and service deployment, which is all distri-

buted in ever increasingly pervasive and ubiquitous
computing environments. QED's policy-driven approach
to QoS management strikes an effective tradeoff be-
tween fine-grained control and ease of use.

REFERENCES
[1] Cisco, “Using Test TCP (TTCP) to Test Throughput,” Doc. 10340.
[2] M.A. de Miguel, “Integration of QoS Facilities into Component

Container Architectures,” ISORC, 2002, Washington, DC, USA.
[3] D. de Niz, R. Rajkumar, “Partitioning Bin-Packing Algorithms for

Distributed Real-time Systems,” Journal of Embedded Systems, 2005.
[4] M.A. El-Gendy, A. Bose, S. Park, K. Shin, “Paving the First Mile for

QoS-dependent Applications and Appliances,” 12th International
Workshop on Quality of Service, June 2004. Washington, DC, USA.

[5] M.A. El-Gendy, A. Bose, K. Shin, “Evolution of the Internet QoS and
Support for Soft Real-time Applications,” Proceedings of the IEEE,
Vol. 91, No. 7, July 2003.

[6] S. Gopalakrishnan, M. Caccamo, “Task Partitioning with Replication
Upon Heterogeneous Multiprocessor Systems,” Real-Time &
Embedded Technology & Apps. Symp., 2006, Washington, DC.

[7] G. Hardin, “The Tragedy of the Commons”, Science, Vol. 162, No.
3859 (December 13, 1968), pp. 1243-1248.

[8] M. Jordan, G. Czajkowski, K. Kouklinski, G. Skinner, “Extending a
J2EE Server with Dynamic and Flexible Resource Management,”
Middleware, 2004, Toronto, Canada.

[9] D. Llambiri, A. Totok, V. Karamcheti, “Efficiently Distributing
Component-Based Applications Across Wide-Area Environments,”
23rd IEEE Int’l Conf. on Distributed Computing Systems, 2003.

[10] G. Lodi, F. Panzieri, D. Rossi, E. Turrini, “Experimental Evaluation
of a QoS-aware Application Server,” Fourth Int’l Symp. on Network
Computing and Applications (NCA’05), July 27-29, 2005.

[11] J. Loyall, M. Carvalho, A. Martignoni III, D. Schmidt, A. Sinclair, M.
Gillen, J. Edmondson, L. Bunch, D. Corman, “QoS Enabled
Dissemination of Managed Information Objects in a Publish-
Subscribe-Query Information Broker,” SPIE Conference on Defense
Transformation and Net-Centric Systems, April 13-17, 2009.

[12] J. Loyall, A. Sinclair, M. Gillen, M. Carvalho, L. Bunch, A.
Martignoni III, M. Marcon. “Quality Of Service In Us Air Force
Information Management Systems,” MILCOM, October 18-21, 2009.

[13] N. Mabrouk, S. Beauche, E. Kuznetsova, N. Georgantas, V. Issarny,
“QoS-Aware Service Composition in Dynamic Service Oriented
Environments,” Middleware, Nov. 30-Dec. 4, 2009, Champaign, IL.

[14] T. Repantis, X. Gu, V. Kalogeraki, “Synergy: Sharing-Aware
Component Composition for Distributed Stream Processing
Systems,” Middleware '06, 2006, Melbourne, Australia.

[15] R. Schantz, J. Loyall, C. Rodrigues, D. Schmidt, Y. Krishnamurthy, I.
Pyarali, “Flexible and Adaptive QoS Control for Distributed Real-
Time and Embedded Middleware,” Middleware, 2003.

[16] R. Schantz, J. Zinky, D. Karr, D. Bakken, J. Megquier, J. Loyall, “An
Object-level Gateway Supporting Integrated-Property Quality of
Service,” ISORC 1999, Los Alamitos, CA.

[17] C. Stewart, K. Shen, “Performance Modeling and System
Management for Multi-component Online Services,” Symposium on
Networked Systems Design & Implementation, 2005, Berkeley, CA.

[18] P. Wang, Y. Yemini, D. Florissi, J. Zinky, “A Distributed Resource
Controller for QoS Applications,” IEEE/IFIP Network Operations
and Management Symposium, 2000, Los Alamitos, CA.

[19] D. Wichadakul, K. Nahrstedt, X. Gu, D. Xu, “2K: An Integrated
Approach of QoS Compilation and Reconfigurable, Component-
Based Run-Time Middleware for the Unified QoS Management
Framework,” Middleware, 2001, London, UK.

	Abstract
	I. Introduction
	II. Service Oriented Architecture
	A. Overview of SOA
	B. Challenges for providing QoS in SOA environments

	III. QoS Management Capabilities for SOA
	A. Aggregate QoS management service
	QoS policies
	C. Task management
	D. Bandwidth management
	E. Deployment and distribution of QoS managers

	IV. Experimental Results
	A. CPU Overload
	B. Bandwidth constrained
	C. Policy change

	V. Related Work
	VI. Concluding Remarks
	References

