
Policy Specification and Enforcement for Quality-of-
Service in Service-Oriented Information Management

Larry Bunch1, James Edmondson2, Joe Loyall3, Doug Schmidt2,
Asher Sinclair4, and Marco Carvalho1

1 Florida Institute for Human and Machine Cognition, 40 S. Alcaniz St. Pensacola, FL, USA

{lbunch, mcarvalho}@ihmc.us
2 Vanderbilt University, 2015 Terrace Place, Nashville, TN 37203, USA

{jedmondson, schmidt}@dre.vanderbilt.edu
3 BBN Technologies, 10 Moulton Street, Cambridge, MA 02138, USA

jloyall@bbn.com
4 US Air Force Research Labs, 525 Brooks Road, Rome, NY 13441, USA

Asher.Sinclair@rl.af.mil

Abstract. This paper presents a policy-driven approach to quality-of-service
(QoS) management that works with existing service-oriented data dissemination
middleware, such as the Java Messaging Service (JMS). Our approach includes
services that (1) support specifying and enforcing the QoS preferences of indi-
vidual clients, (2) mediate and aggregate QoS management on behalf of com-
peting users, and (3) shape information to improve real-time performance. This
paper makes two contributions to research on QoS-enabled data dissemination
middleware. First, we describe how our policy-driven approach bridges users to
the underlying dissemination middleware and enables QoS control based on
rich and meaningful context descriptions including users, data types, client
preferences, and information characteristics. Second, we present experimental
results that quantify the improved control, differentiation, and client-level QoS
enabled by our approach.

Keywords: Quality-of-Service, Information Management, Policy, Service Ori-
ented Architecture, Dissemination Middleware.

1 Introduction
Contemporary middleware platforms, such as Service-Oriented Architecture (SOA)
and Publish-Subscribe-Query Information Management (IM) services, provide power-
ful abstractions to develop distributed systems of significant distribution, scale, and
functionality. These middleware platforms, however, generally provide limited sup-
port for quality-of service (QoS), which is defined by the perceived state of user satis-
faction, i.e., the difference between the service delivered by a system and what is
expected by users.2 In general, the lower the difference, the higher the QoS.

One drawback with this broad definition of QoS is that large-scale distributed in-
formation systems have many users whose requirements may conflict. Moreover, the
aggregate QoS requirements of all users may conflict with QoS requirements for

1 This definition differs from the narrow networking perspective that defines QoS in terms of

traffic engineering, i.e., network resource reservation or differentiated services [1].

individual users. For example, in a disaster response scenario, an overall search and
rescue goal may be better serviced by degrading the service provided to individual
users, e.g., due to their relative lower importance to the aggregate goals.

This paper presents the QoS-Enabled Dissemination (QED) policy-driven ap-
proach to QoS management for service-oriented data dissemination middleware that
(1) enables the specification and enforcement of the QoS preferences of individual
clients, (2) mediates and aggregates QoS management on behalf of competing users,
and (3) shapes information to improve overall operational goals and user experiences.
Our prior work on QED described the QED architecture and an early prototype [2],
incorporating its QoS management capabilities in SOA middleware [3], and applying
QED to tactical information management systems [4].

This paper describes heretofore unexamined topics pertaining to QED’s QoS Pol-
icy language, which can attach policies to application and middleware observable
attributes of entities, operations, and information (as opposed to network observable
attributes of packets or classes of traffic). Policies are parsed and disseminated to
enforcement points where (1) QoS can be affected (e.g., where information or proc-
essing can be delayed) and (2) policies can be enforced rapidly along with the proc-
essing and information flow. We have prototyped the QED QoS Policy language by
extending the Phoenix [5] information system, which provides web services devel-
oped to provide JMS-based capabilities for information submission, information bro-
kering and discovery, repository, query, type management, dissemination, session
management, authorization, service brokering, and event notification.

In addition to describing the structure and functionality of QED’s QoS policy lan-
guage support, we present the results of experiments. These experiments quantify
QED’s ability to enforce policies in a way that differentiates important information
from unimportant information (according to user specifications). The experiments
also show how QED dynamically responds to situations in which the servers are
CPU-bound, bandwidth-bound, or in need of higher soft real time performance, while
still enforcing user-defined QoS policies.

2 Motivating Scenario
To motivate our work on the QoS policy language in QoS, consider a search and res-
cue operation in a flood ravaged territory; similar to what recently occurred in Nash-
ville, Tennessee during May of 2010. Search and rescue crews deployed sensors or
unmanned aerial vehicles (UAV) to aid in the search for survivors trapped in homes,
on isolated high ground, or in other critical situations. During their rescue missions,
each sensor or UAV publishes images of the environment around them, tagged as an
AerialImage data type, to interested search and rescue crews on the ground, in boats,
helicopters, etc. Each UAV may be assigned a grid on a digital map or may be free
roaming, but we assume that ground personnel can detect where the images are geo-
graphically located. Ground-based search and rescue operators may need to publish
images showing potential survivors in a larger format while other images showing no
survivors could be reduced to a small format or potentially have the payload stripped
entirely (to stop unimportant messages from flooding the dissemination mechanisms).

Along with image publishers, crews may also deploy simple XML transmitters
that relay important and unimportant rescue events to crews, including GPS informa-

tion, team objectives, or other descriptive information. When the system is under
stress, the operators may only want to disseminate important events and not bother
with unimportant events. Moreover, for both image and XML payloads, operators are
interested in fresh data (not necessarily the most complete data), as long as important
landmarks are still visible in survivor area images and enough pertinent information is
relayed in XML data that rescuers are not hampered in rescue efforts.

As shown in Table 1, each user and data type combination may result in a different
perceived importance level (according to an administrator). Likewise, each XML or
Image payload may be reduced in size to accommodate high traffic or an over-utilized
system capacity situation. Decisions for when to shape XML or Image payloads
should be configurable by an administrative user.
 In several
situations (e.g.,
Analyst subscription
to AerialImages and
GPSTrack), system
administrators
should be able to
specify that fresh
data is more impor-
tant than ordered
(and possibly stale)
data, which can help
rescuers be up-to-
date with the latest
conditions and help
prune unimportant
information. More-
over, when the sys-
tem is under duress
(e.g., CPU or band-
width capacities are
being exceeded), the middleware should be able to shape XML or Image payloads
and prioritize data delivery or processing to maximize the overall utility of the system
for current operations.

3 QoS Policy Specification in QED
The section describes QED’s QoS Policy specification language, which enables users
to describe system contexts in terms of meaningful, domain-specific concepts, such as
subscriptions to UAV imagery by ground rescue crews, and map these contexts to
high-level QoS concepts, such as the relative importance of fulfilling a request and
the types of information filtering and shaping that are desirable for that context. QoS
policies in QED are independent from the underlying information management sys-
tem implementation. These policies are also formal and readily accessible by software
for reasoning and enforcement.

Table 1. Users, Datatypes, and Importance of Info During a
Search and Rescue Mission.

User Operation Data Type Importance
All users Publish GPSTrack (XML) Low
UAV Publish AerialImage (Image) Low
Analyst Subscribe GPSTrack (XML) Low

 Subscribe AerialImage (Image) Medium

 Subscribe Capacity (XML) Low

 Publish
RescueImage (Im-
age) High

 Publish ShelterInfo (XML) Low

GroundCrew Subscribe
RescueImage (Im-
age) High

 Subscribe GPSTrack (XML) Medium

 Subscribe ShelterInfo (XML) Medium

Shelter Publish Capacity (XML) Low

3.1 QoS Policy Definition

Each QoS policy in QED defines a mapping from the conditions in which the policy
applies to the effects of the policy, i.e., QoS Policy = System Context (O,M,E)
QoS Settings (v,i,P). QoS policy conditions describe a System Context in terms of the
properties that can be observed about the system behavior and state, represented by a
Boolean function over any or all of the properties of the operations (O), information
(M), and entities (E) involved. Zero or more attributes from each category may be
used in a policy’s System Context definition.

QED’s Policy specification language enables system contexts to range from the
most general ‘default’ context (e.g., any operation by any user on image types), to
specific contexts such as analyst publishing rescue images in our scenario. The sys-
tem context may also be extended to include Resources, such queue lengths, CPU,
and bandwidth, by introducing a resource monitoring component, g(R), that adds and
removes sets of policies based on monitored resource states such that g(R)
(f(O,M,E) (v,i,P)), as described in Sections 5 and 6.

The effects of the policy describe the desired QoS Settings for the given system
context. In the QoS settings the precedence level, v, is required and it aids in selecting
between conflicting policies; higher precedence policies are enforced in favor of low-
er precedence ones. By convention, policy precedence differs based on the policy
source, such as administrator-level policies that can override policies from a rescue
mission manager. Among policies from sources with equal precedence, higher prece-
dence is assigned to those with more specific system context descriptions. The im-
portance, i, is an optional mission-level measure of the relative value of an operation,
type, or client to a mission. This value is used, along with other factors such as cost,
to prioritize processing and dissemination of information. In our motivating scenario,
the importance captures that analyst publications and ground crew subscriptions to
rescue images are the most vital to overall mission success.

QoS preferences, P, define a named set of limits and tradeoffs among aspects of
QoS, such as deadlines for delivering information objects through the IM services and
the ranges of information filtering and shaping allowed. Zero or one QoS Preference
Sets may be included in a policy and each QoS preference set includes one or more
name-value pairs from a predefined list of preference names. It is here that we capture
aspects such as GPS track information being replaceable in most contexts where only
the most recent position is useful.

The QED QoS policy specification language is implemented in via KAoS policy
framework [6] using the extensible OWL semantic web language [7]. KAoS provides
a generic construct for obligation policies that maps a context description to a desired
action or state. Within this core policy construct, we extended the OWL ontology of
policy concepts available to KAoS to include new hierarchies of domain-specific
classes of IM operations, information types, and users including roles and groups.

Fig. 1. graphically depicts the OWL classes used by the KAoS-based implemen-
tation of system context, the properties defined for these classes, and the range of
each property. The CreateServiceOrchestration shown in this figure is an abstract
action that represents the start of any new session for a client such as creating a sub-
scription. This action class defines properties for each of the observable attributes of
this type of action including the orchestration type and the information type. Policies
are defined in terms of restrictions over the properties of the action. When a compo-

Fig. 1. Graphical Representation of OWL Ontology Describing Service Orchestration

Creation Context, QoS Settings, and Attributes of the QoS Preferences Construct

nent performs a policy check, it creates an instance of this action that is then checked
against the restrictions in the policy to determine whether the policy applies to the
given instance.

The orchestrationType is an OWL object property with a range over the OWL Or-
chestrationType class with instances Publish, Subscribe, Query, and Archive. Like-
wise, the informationType is a domain-specific identifier for the type of information
such as a Rescue Request. Regular expressions can be used in policies to define the
applicable range of values. The userID is an OWL object property ranging over the
class of Actors which includes any Roles or Groups defined in the ontology. The
orchestrationUID is a String property containing the unique ID of the ‘target’ context
associated with the orchestration, this is typically a session identifier provided by the
information management system.

The QoS Settings are represented by an operation SetServiceOrchestrationQoS
with the following attributes:
• Precedence, which defines an integer ordering used to determine how to resolve
ambiguities in overlapping policies. Higher precedence policies can override policies
with lower precedence values so administrators can define wide-ranging policies that
cover most cases and then make specific exceptions to override the base case, such as
allowing compression before disseminating any images then overriding this specifi-
cally for rescue images where the fidelity must be maintained. The QED user inter-
faces currently assign a precedence automatically based first on the source of the
policy (e.g., Administrator vs. User) followed by the specificity of the rule criteria.
More specific policies are, by default, given preference in comparison with to more
general policies.
• Importance, which is an integer value representing the relative importance of infor-
mation in a given context to the overall success of the mission or operation.
• qosPreferences, which is a set of constraints on QoS behaviors that can be used to
determine how to best degrade the performance of a client’s information flow in the
face of resource bottlenecks. This OWL object property defines a range over the class

of QoSPreferences, which in turn contains the following properties: (1) MaxUsable-
DelaySeconds, which is the integer number of seconds of delay in the IM services
after which the information is no longer useful in the given context (a value of 0 indi-
cates that there is no maximum delay, i.e., indefinite delay), (2) ReplacePerPublisher
(range: 0,1), which is a boolean indication of whether an IO queued in the IM should
be replaced (dropped) if a new IO from the same publisher arrives, (3) ArchiveModi-
fier/SubMatchModifier, which are integers between -1 and 1 weighting the tradeoff
between subscription matching and archival where a higher value indicates higher
desired QoS for one over the other, and (4) ActiveFilterConfigurations, which are a
list of string values that identify the shaping operations the QED information shaping
will perform.

3.2 QoS Policy Management and Decision Making

QED defines a Policy Store component in the IM architecture to provide transactional
management of high-level policies. We also introduce a new Infospace QoS Manager
(ISQM) component to the IM architecture that maps these high-level policies to an
orchestrated combination of low-level control settings. These low-level QoS controls,
which we refer to as Local QoS Managers (LQM), are specific to the components and
services comprising the system and therefore distributed and heterogeneous.

The primary role of the ISQM is to manage the overall QoS policies for the in-
formation services and their users. It reasons about the applicable set of policies asso-
ciated with users, their information type and operations, and the resources in the sys-
tem. It also manages the distribution of the appropriate policies to the local enforce-
ment points. Each time the ISQM performs a policy check, it compares the observed

Fig. 2. The ISQM performs policy checking and conflict resolution each time the Submis-
sion and Dissemination Services create a service orchestration. The resulting QoSPrefer-
ences are set as attributes on the associated ChannelContext.

attributes and their values against the policy context definitions to decide the applica-
ble set of policies, as shown in Fig. 2.

QED Policies are maintained in the pluggable Policy Store. Two implementations
are provided in QED: one based on the KAoS policy services and another based on
POJO (Plain old java objects). The KAoS version includes a step to translate policies
into OWL; uses the features of the KAoS Directory Service to store and retrieve poli-
cies; and includes a step to parse OWL-specified policies into Java classes. This de-
sign enables the KAoS version to use ontology classes to create policies concerning
classes such as user groups and roles and abstract information types, such as all im-
ages. The POJO version stores the policies in the Java classes directly and provides
Java methods to store and retrieve policies. The POJO version is limited to lists of
individual users and information types.

Since multiple policies may apply to the context of a single ISQM action,
f(O,M,E), and these policies may specify conflicting QoS Settings (v,i,P), a mecha-
nism to resolve these conflicts is required. The ISQM class contains the logic to re-
solve conflicts among a set of applicable QoS policies to arrive at a single Importance
value (i) and a single value for each of the QoS Preference. This algorithm depends
upon the relative precedence values (v) for the policies as well as the relative impor-
tance values associated with the policies to calculate a single aggregate value for the
importance (i) and each of the QoS preferences (p) according to the following rules:
• Importance (i): find the highest precedence level (v) at which (i) is specified, then
take the highest (i) with that precedence; Importance = max(i, max (vi)).
• QoS Preference (p): find the highest precedence level (v) at which (p) is specified,
then find the highest importance value (i) associated with (p); QoS Preference =
max(p, max(ip, max(vp))).

3.3 Dissemination of QoS Policies
A QoSContext object is created when a client initiates a session, which occurs when a
client use createSession to create a new session with the SessionManagementService,
representing the authentication step. The client then gets a reference to the service
with which it needs to interoperate, e.g., the SubmissionService for a publication or
the DisseminationService for a subscription, through a ServiceBrokeringService or
other means. The client then creates a channel instance to the service, e.g., by calling
createOutputChannel for publication, and passing a SessionTrack containing the
client’s session. This last step creates a QoSContext object, which contains the Phoe-
nix Contexts for one of a set of orchestration context patterns, as shown in Fig. 3 for a
Publication Orchestration instance. Our QED prototype defines four core orchestra-
tion context patterns as part of the QED configuration, corresponding to the publica-
tion, archive, subscription, and query operations.

When a new QoSContext is instantiated, the ISQM looks up the set of policies
that pertain to that context and reduces it to the smallest non-contradictory set of ap-
plicable policies. The relevant parts of the policy (e.g., the importance and QoS pref-
erences) are stored as attributes on Phoenix contexts referenced in the QoSContext.
The use of context attributes in Phoenix contexts referenced in QoSContexts serves
the following purposes:

Target Context

Actor Context

FilterOrchestrationContext

Input Channel Context

Filter Context Filter Context• • •

SubmissionServiceContext

InformationBrokeringServiceContext DisseminationServiceContext

OutputChannel Context

Fig. 3. Example of a QoSContext object representing a client publication session.

• Policy lookup and parsing, which can take some time, are attached to the relatively
infrequent operations of creating new QoS contexts (when new client sessions are
created).
• Policy enforcement, which is in the mainline of IO publication, processing, and
dissemination, is very quick because it consists of attribute lookups on local Phoenix
contexts.
• Policy updates to attributes in Phoenix context attributes in a QoSContext are trans-
actional, helping maintain consistent policies.
• Policy distribution is automatic and efficient, since Phoenix contexts are visible to
the LQMs.

4 QoS Policy Enforcement
This section describes the mechanisms that QED provides to enforce QoS Policies
specified via the language techniques presented in Section 3.

4.1 Task management
Achieving predictable performance requires managing the execution of all CPU inten-
sive operations, such as service invocations, for each CPU (or equivalent virtual ma-
chine, VM) onto which clients and services are distributed, including the following
capabilities:
• Prioritized scheduling of operations based on importance and cost (e.g., time to
execute).
• Limiting the size of the thread pool to a number of threads that can be executed on
the CPU (or a portion allocated to the VM) without overloading it.
• Scheduling according to an appropriate policy, such as strict or weighted fair.

To manage these tasks, QED provides Local Task Managers, whose design is
shown in Fig. 4. Each Local Task Manager manages the CPU intensive operations for
a given CPU or VM using priority scheduling. The goal is to avoid CPU overload in
the form of too many threads or service invocations and to avoid priority inversion, in
the form of lower priority service invocations getting CPU when higher priority service

Task LQM
Task queues

Insert task

Extract task

Get thread to
assign to taskThread Pool

Task

Task Worker

Service

Invoke

Client

Task Creation

Task

Fig. 4. QED Local Task Manager De-
sign

invocations are awaiting execution.
When CPU-intensive operations (e.g.,

service invocation) are performed, tasks are
created and submitted to the Task Manager,
where they are inserted into a binned pri-
ority queue using a configurable number of
bins (queues), each representing a priority.
Task creators calculate an importance (de-
rived from a policy applied to the opera-
tion, information type, and/or client) and
cost for the task. The Task Manager takes
importance and cost as inputs and gene-
rates a priority (bin assignment). Binned
queues also allow QED to support a
weighted-fair policy, which is hard to
implement in a heap-based implementation.
The tradeoff is that we have a fixed
granularity with which to distinguish tasks.

The Task Manager assigns threads from the thread pool to tasks according to a
queue management strategy under control of the aggregate QoS manager. In this man-
ner, the Task Manager gracefully handles CPU overload by scheduling the highest
priority tasks with the available threads. QED currently has two queue management
policies implemented: strict and weighted fair. In both the strict and weighted fair
policies, there is FIFO behavior within individual bins. In Strict, the Task Manager
always pops off the highest-priority bin that is not empty. The weighted-fair queue
management policy provides an opportunity to service all bins with a built in weight-
ing to service higher priority bins more often.

4.2 Bandwidth Management in QED
The Bandwidth Manager is a host-level entity that assigns bandwidth slices for in-
bound and outbound communications based on policy provided by the aggregate QoS
manager. For SOA architectures, bandwidth is managed at the level of information
objects, not packets, as it is usually done in network-level QoS, since the loss or delay
of an individual packet could invalidate an entire information object, which is possibly
much larger than individual data packets.

The inbound and outbound managers are referred to as the Submission LQM and
Dissemination LQM, respectively. The current version of the Bandwidth Manager
provides a static bandwidth allocation per interface and to each of the LQMs.

The Submission LQM, shown in Fig. 5, manages the consumption of inbound
bandwidth by throttling external clients and providing bandwidth slices to cooperative
SOA clients, which in turn enforce the restriction on the client’s outbound connection.
When coupled with information prioritization (enforced by priority-driven differential
queuing on the client’s outbound side), this form of incoming message rate control
serves two purposes: (1) the rate throttling reduces the potential for resource overload
on the service hosts and (2) the utility of information that ultimately reaches the in-
voked service is enhanced through outbound prioritization.

Differential Queuing for Dissemination

Aggregate Queues

Client
Queues

Disseminator

Bandwidth
Scheduler

Task

Client
Client

Client

Fig. 6. QED Dissemination LQM Design

Server HostHost 1

Host N

Receiving
Service

N
I
C

N
I
C

CONTROL

CONTROL

N
I
C

Submission
LQM

Bandwidth
Manager

Client

Client

Bandwidth allocation per client

Dissemination
LQM

BW alloc
per host

…

Fig. 5. QED Submission LQM Design

The Submission
LQM provides a per-
process service regis-
tration interface for
inbound bandwidth
management. This
results in an equal
sharing of inbound
bandwidth resources
per-process. The
Submission LQM
invokes an out-of-
band RMI call to external SOA-clients to reallocate their bandwidth as needed. As with
the aggregate policy distribution, we expect these reallocation calls will be infrequent
compared to the service invocation and messages to services. Factors such as the dura-
tion of the connection lifecycle, frequency of connection failures and client request
model for a particular SOA-deployment should be considered when determining an
appropriate reallocation scheme.

The Dissemination LQM shown in Fig. 6 provides managed dissemination by
scheduling over differential queues. Queue counts coincide with the same number of
bins used by the Task Manager. This modular design for managed differential dissemi-
nation can be used to schedule and send prioritized messages across outbound connec-
tions while meeting strict bandwidth requirements. QED uses differential queuing for
outbound messages from services to clients, but the dissemination approach may also
be applied to service-to-service communications in deployments where service-to-
service messages span host boundaries.

As shown in Fig. 6, the resulting “write-to-client” call from a service invocation is
treated as a managed task. When outgoing messages are to be sent to a client, the Dis-
semination LQM calculates the importance of the information for each receiving client,
by checking the parsed policy held in attributes on state information for each connec-
tion.

After calculating the
information importance
the Disseminator com-
ponent of the LQM will
distribute the infor-
mation to the appropri-
ate ClientQueue. The
ClientQueue calculates
the priority from a
combination of the pro-
vided importance and a
cost measure based on
the size of the informa-
tion being disseminated
(representing the
amount of bandwidth

sending the information will consume). At this point, the priority is used to determine
which client bin should be used to enqueue the data.

The head of each ClientQueue bin is managed by a threaded class called the Cli-
entBinManager, (shown here as a thread-line on the top of each ClientQueue bin). The
ClientBinManager manages two operations for the head item of the queue. The first
operation is an aggregate level enqueue and block. This ensures that each ClientQueue
has only one piece of information allotted per bin that can be in contention for a chunk
of the aggregate bandwidth. The second operation is unblock-and-send on signal which
is triggered by the bandwidth scheduler upon selecting a particular client’s priority bin.
Through this mechanism the differential queuing allows for the fair scheduling across
multiple client connections and priority bins.

The Bandwidth Scheduler has a scheduling thread that alternates in a sleep/wake
cycle based on the availability and use of bandwidth. When awakened, the scheduling
thread selects the next dissemination task that should be processed. The scheduling
algorithm provides support for strict and weighted fair algorithms. The Bandwidth
Scheduler calculates the amount of time to send the information by dividing the in-
formation size by the amount of available bandwidth. It then calls the callback of the
selected task’s ClientBinManager to notify its availability to send the information
message. The send is immediately followed by a sleep for the amount of time calcu-
lated to send the information. At this point, the notified ClientBinManager removes
the actual task from the appropriate bin and sends a message with the information to
the receiving client.

5 QoS Monitoring
The QoS Monitoring service collects statistics about a wide range of metrics, both at
the system level as well as at the application level. QoS Monitoring relies on the
Cross-layer (XLayer) [8] substrate capability of storing time-series containing sets of
values for each desired metric and providing real-time statistics resulting from the
collected data. Moreover, using the XLayer the metric information can be seamlessly
propagated between the IM services and the clients (e.g., publishers and subscribers).

5.1 Monitoring Service

The Monitoring Service is the main component of QED’s QoS Monitoring. It is im-
plemented as a Phoenix service (extending BaseService) with related stub and connec-
tor, operating as a high-level interface for the monitoring functionalities provided by
the XLayer substrate. In particular it contains two sets of functionalities: the first set
manages the registration of new metrics provided by monitoring components and
enables the update of existing metrics. The second set of operations allows other ser-
vices to retrieve statistics about the currently monitored metrics, either by polling or
via the subscription mechanism.

The Monitoring Service is implemented to be flexible. Other services in Phoenix
may define their own monitoring components and dynamically add them to the main
Monitoring Service. Also, each monitoring component is allowed to define custom-
ized metrics it wishes to monitor, registering them with the Monitoring Service and
specifying itself as a provider. Once a metric is registered the Monitoring Service

Fig. 7. The QoS Resource Service activates and deactivates sets of QoS policies by the
name of the folder on disk containing the related policy and preferences files.

returns (and stores) a reference to the related Metric Recorder. The Metric Recorder
exposes the API to update the values for the metric to which it is related.

The Monitoring Service takes care of interacting with the XLayer substrate, which
supports the metrics storage and retrieval at a lower level. Moreover XLayer incorpo-
rates a set of built-in system-related metrics (e.g., CPU and memory utilization and
network traffic per interface).

6 Resource-Driven QoS Policy
This section describes how the resource-driven QoS policy feature of QED enables
the ISQM to add and remove sets of QoS policies as the monitored states of IM ser-
vices resources increase and abate. This capability supports an autonomic response of
the system to recognize when resources are becoming scarce and adjust information
handling policy to alleviate the scarce resource conditions. An example of the poten-
tial benefit of this feature is QED automatically recognizing that the Dissemination
service is bandwidth-bound and adjusting QoS policy to perform additional compres-
sion on image types to conserve bandwidth resources.

The QoS Resource Service (QRCS) provides the resource-driven QoS policy func-
tionality. This service is configured with sets of QoS policies and related QoS prefer-
ences, each named according to the resource condition it represents (e.g., Re-
sources.CPU in Fig. 7). The #max or #min suffix on the policy set name indicates

which of the metric thresholds must be violated to activate the policy set. A policy set
can contain multiple policies and preferences, all of which will be added and removed
as the policy set is activated and deactivated respectively.

The QRCS relies upon the Monitoring service (described in Section 5) to recog-
nize the changes in resource states. The Monitoring service is configured at startup
time with metrics that apply to resources such as CPU and LQM-reported queue sizes.
The Monitoring Service notifies when the resource usage exceeds the Metric’s thre-
shold value (if max) or falls below the threshold (if min). The QRCS subscribes to the
notification about the Metrics that apply to the QoS policy sets defined for the QRCS.
When the QRCS starts receiving notifications that a resource Metric has crossed its
threshold, the QRCS service adds the policies in the policy set with the same name as
the Metric. Similarly, when the QRCS stops receiving notification about a Metric it
removes the policies in the associated resource policy set after a configurable amount
of time.

The QoS Resource Service interacts with the ISQM to add and remove its QoS
policies and preferences. In this way, the QRCS relies upon the ISQM for the dis-
semination and enforcement of the QoS policies that the QRCS manages. The QoS
Resource Service operates autonomously according to its configuration; therefore no
runtime interaction with the service is necessary. The public interface of the QRCS is
primarily intended to provide information about the resource-driven policies that are
available and that are in currently active.

7 Experimental Results
To validate our solution approach, we constructed a set of experiments to gauge the
effectiveness of our QED prototype in meeting QoS and soft real-time needs in situa-
tions similar to the search and rescue operations outlined in the Section 2. We gauge
QED effectiveness in several different scenarios: (1) situations in which the server is
CPU bound, (2) situations in which the dissemination bandwidth is insufficient for all
information, and situations in which (3) images and (4) XML documents are needed
quickly and within a reliable time window.

Our hypothesis for the experiments outlined in Section 7.1 and 7.2 is that policy-
driven QoS enforcement will result in more delivery of important information than
less important information (as defined by the user), which according to our motivating
scenario should result in vital information about survivors being delivered before
lower priority data. Our hypothesis for the shaping experiments in Section 7.3 and 7.4
is that applying image and XML shaping to large payloads will result in decreased
latency and jitter and consequently improved soft real time performance, which
should result in fresh survivor information arriving in a timely, prompt manner. Tests
were run on three nodes (a publisher node, subscriber node, and a QED Phoenix ser-
vices node) with dual core 2.8Ghz Intel Xeon processors with 1 GB RAM running
Fedora Core 10 and connected via gigabit Ethernet on Vanderbilt ISISlab
(www.isislab.vanderbilt.edu), which is a cluster running a version of the Emulab
system that provides the ability to restrict bandwidth between nodes and emulate
other network conditions where necessary.

7.1 CPU Overload Experiments

Even in quad-core processor systems, CPU usage can often spike to 100% utilization
and remain there indefinitely, given a particular system load. The ability of a middle-
ware system to be able to respond to this type of situation and prefer processing of
important information is extremely valuable – especially in a real time or mission
critical environment. The CPU overload experiments evaluate QED’s ability to en-
force information importance, informed by user-defined policies.

Setup. We analyze two experiments involving CPU overload. The first scenario
mimics a situation where a high importance publisher (1hz) and medium importance
publisher (1hz) are being overwhelmed by traffic from a low importance publisher
(300hz). The second scenario presents a situation where high, medium, and low im-
portance publishers are overwhelming the system equally, and we want to see if the
middleware properly differentiates between them.

The metadata for each task submitted to the system is being evaluated against an
XPath expression to drive CPU usage to 100% (consequently, evaluating tasks ac-
cording to user-defined importance makes sense here). We evaluate two different
middleware implementations: a baseline version of the Phoenix architecture for refer-
ence and a QED version.

Analysis of results. Figure 8 shows the results of the first CPU overload scenario,
where high and medium importance publishers are attempting to publish at 1hz while
a low importance publisher is overwhelming the system at 300hz, the middleware is
able to differentiate high importance traffic at 74% of its optimal. Medium importance
traffic is similar to the baseline performance, however. Ideally, both high and medium
importance publication rates should trend towards their theoretical limits of 1hz. This
scenario outlines room for improvement in the QoS enforcement mechanisms.

Fig. 8. Publication rate of high importance
and medium importance information in the
first tested scenario (1hz high, 1hz me-
dium, and 300hz low).

Fig. 9. Publication rate of high, medium,
and low importance information in the 2nd
scenario (20hz high, 20hz medium, and
20hz low).

Figure 9 shows the results of the second CPU overload scenario, where each high,
medium, and low importance publisher is operating at 20hz with cpu-intensive tasks,
the high and medium importance traffic is differentiated according to the user’s
wishes. High importance traffic is getting through at nearly the optimal hz (19.80hz),
and medium importance information is able get through in the remaining system ca-

pacity (10.59hz). No low importance traffic gets through. The differentiation is sig-
nificant compared to the Base Phoenix implementation, which lacks QoS features.

7.2 Bandwidth Bound Experiments

Setup. Bandwidth is constricted between the subscribers and the Phoenix node to
just 320kbit (40KB). We place 3 publishers operating at 1hz with 1KB payloads on
the publisher node and 15 subscribers on the subscriber node. Each subscriber is in-
terested in all information from all publishers, causing a large amount of information
to be disseminated through a constricted network connection. We evaluate two differ-
ent middleware implementations: a baseline version of the Phoenix architecture for
reference and a QED version.
Analysis of results. The results for this scenario in Figure 10 Show how the QED
Phoenix middleware
correctly differentiates
the delivery of traffic
by importance, accord-
ing to the user-
specified policy file.
High importance in-
formation is preferred
over medium impor-
tance information dur-
ing dissemination, and
very few low impor-
tance information get
through, due to band-
width constraints.

7.3 Image Shaping Experiments

We next present experiments to show QED’s capability to shape image payloads into
smaller images in order to attempt reducing message latency and jitter. For simplicity
and analyzability, we did not form long filter chains of image shaping operations.
Instead, we analyzed the available image shaping operations individually to show
overhead associated with each type of filter.

Setup. Each experiment takes a 280KB USGS satellite image and attempts to con-
vert it into a 35KB–40KB image using scaling, cropping, or compression. We also
report overall data throughput rate, which can be an important indicator of system
performance. Tests were run on two nodes (a publisher and subscriber) with dual core
2.8Ghz Intel Xeon processors with 1 GB RAM running Fedora Core 10 and con-
nected via gigabit Ethernet. Publication hertz was stepped from 5hz to 10hz to show
differences in overhead. All tests were run for 6 minutes.

Analysis of results. Figures 11-16 show results of the various experiments out-
lined in setup. Quality indicates image compression, Crop indicates cropping an im-
age to a target size around its center, and Resize indicates scaling an image to a par-

Fig. 10. Delivery rate of high, medium, and low importance
information in the bandwidth bound scenario.

ticular size. Quality 1 resulted in shaping the image down to 38KB, Crop 480x360
resulted in shaping the image to 36KB, and Resize 480x360 resulted in shaping the
image to 40KB. Jitter was calculated as the standard deviation of latency.

The results for unshaped data were not included in the results graphs due to scaling
issues. Latency and jitter were orders of magnitude larger for unshaped data versus
even the worst case of shaped data (compression). Overall payload delivery rate,
however, was also slightly higher. In general, the smaller the resulting payload size,
the lower the latency and jitter. The overall payload data throughput goes down, how-
ever, because we are sending more packets (and thus suffer more overhead from me-
tadata). Lower overall data throughput may also be an artifact of using pure Java
libraries and deep copies of several 40KB payloads vs. one deep copy of 280KB hav-
ing different performance profiles.

Fig. 11. Payload data throughput rate for

image shaping operations at 5hz publication
rate.

Fig. 12. Payload data rate for image shaping

operations at 10hz

Fig. 13. Average Latency for image shaping

operations at 5hz.

Fig. 14. Average Latency for image shaping

operations at 10hz

Fig. 15. Jitter for image shaping operations at

5hz.

Fig. 16. Jitter for image shaping operations at

10hz.

To meet soft real-time constraints (as required in the motivating scenario), we fo-
cus more on data timeliness (latency and jitter) than on overall throughput. In a search
and rescue mission, being able to see four images of potential survivors in smaller
pictures (but still being able to distinguish landmarks) can be invaluable compared to
middleware only being able to support viewing a single, large image showing one of
four survivors in needs of rescue.

Another observation from these results is that each image operation is not created
equal. Compressing an image to the same size as a resize produces an order of magni-
tude more overhead and unpredictability than cropping. As we scale up the publish
rate of the publishers from 5hz to 10hz, the differences between compressing and
cropping become even more pronounced. Resizing the image presents more overhead
than cropping as well, but is more likely to result in a usable image (i.e., we will be
more likely to recognize landmarks in the area) since cropping discards parts of the
image completely.

7.4 XML Shaping Experiments

Below we present experiments which shape XML documents into smaller ones by
selectively copying over elements via XSLT based on values of elements (in this case
we key off of the “Priority” of the XML element).

Setup. Each experiment took a 300KB XML file containing a list of tracked areas
(following our motivating scenario outlined in Section 2), and each area contained
four fields: priority, image size, coordinates, and description. An XSLT was con-
structed to reduce the file into ½ or ¼ of its previous size. The following code shows
an example XSLT template which reduces the 300KB file to 72KB. Experiments
were conducted at 50hz on the same hardware indicated in Section 5.1 setup.

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="1.0">
<xsl:template match="/">
 <events>
 <xsl:for-each select="events/detail[priority='high']">
 <xsl:copy-of select="self::node()" />
 </xsl:for-each>
 </events>
</xsl:template>
</xsl:stylesheet>

Analysis of results. Figures 17-19 show results of the various XML experiments

outlined in setup. The original document was shaped down to half (148KB) and
fourth (72KB) sizes. Jitter was calculated as the standard deviation of latency. The
outcome of these particular XSLT template transformations is similar to the perform-
ance differences in image shaping. The smaller the transformed payload, the better the
latency and jitter, but XSLT transforms appear to result in much more predictable soft
real time performance versus image shaping.

This result is likely caused by image shaping being a more processor intensive op-
eration than simply copying text elements from an XML document. Performing image
shaping with vector processors (like those found in IBM’s Cell processor) may result
in a better comparisons between image shaping and XSLT, but such hardware was not
available to us at the time of the writing of this paper. Our hypothesis, however, was
that we could improve latency and jitter through policy-driven XML shaping before
dissemination, and these results validate that hypothesis in all XSLT test scenarios.

Fig. 17. Payload data rate for xml shaping at
50hz.

Fig. 18. Average latency for xml shaping at
50hz.

8 Related Work
This section compares QED’s

policy language support with related
work. Our approach to QoS specifica-
tion, dissemination, and enforcement
offers more application-level and
aggregate QoS support than offered by
QoS parameters in conventional dis-
tribution middleware, such as the Data
Distribution Service (DDS) and Java
Message Service (JMS). It also offers better support for overall QoS than existing
services-based policy languages, such as XACML [9].

XACML is an OASIS standard designed to address a subset of QoS—access con-
trol policy—which is a subset of security (itself one property of QoS). XACML
specifies several roles for policy authoring, decision making, and enforcement, in-
cluding a Policy Decision Point (PDP) and Policy Enforcement Point (PEP). XACML

Fig. 19. Jitter for xml shaping at 50hz.

specifically states that the PEP initiates decision requests, i.e., an entity tries to gain
access to a resource through a PEP and the PEP then asks the PDP to evaluate current
policies and provide a response by which the PEP can either grant or deny access.
This approach fits the local scope of access control, i.e., control is granted to a local
resource, but not that of broader QoS properties. Aggregate QoS management re-
quires higher-level (i.e., incorporating aggregate- and application-level priorities and
context) and broader (i.e., encompassing many PEPs) scope. Managing access to, and
use of, a single resource may or may not contribute to overall application, aggregate,
or mission-level QoS, and is not sufficient by itself to provide application, aggregate,
or mission-level QoS.

What this means is that the PEP-PDP dataflow in the XACML specification lan-
guage is not sufficient for the general context aware QoS case. Providing QoS re-
quires the coordination of many PEPs, based on higher-level, aggregate and mission-
based policies, and therefore cannot be initiated solely by PEPs. Instead policies must
be evaluated at PDPs when needed and the results of the policy evaluation should be
pushed to the PEPs, which then enforce it. This approach provides part of the coordi-
nation needed since a PDP that makes an aggregate QoS decision will push consistent
results to the PEPs, which then ensures consistent, coordinated QoS management if
the PEPs enforce the policy decision as they are directed.

In contrast, QED decouples policy selection, parsing, and dissemination, which
constitute the aggregate decision making and occur on discrete epochs, such as when
users come and go or resource availability changes, from policy enforcement, which
can be done in-line with processing and information dissemination, where resources
are actually consumed but which can happen much more frequently and rapidly.

Similarly, conventional data dissemination middleware, such as DDS and JMS,
provide parameters and features that control aspects of QoS in-line during information
dissemination. QED complements these and supplement them with the application
level policy, client QoS preferences, and aggregate QoS management that these mid-
dleware packages lack.

9 Concluding Remarks
The ability to differentiate QoS according to rich, domain-specific contexts is critical
to providing data dissemination middleware that is capable of assuring that the most
mission-critical information gets through and is resilient to overload situations [10].
This paper presents a policy-driven approach to QoS management called QED that
works with existing data dissemination middleware, such as the JMS and DDS. Our
experience demonstrates the importance of monitoring resource utilization to detect
and characterize overload situations and respond with appropriate filtering and shap-
ing to maintain service for the most important operations, users, and information.

Empirical results from our QED prototype show the effectiveness of a top-down
approach to QoS policy specification and enforcement through middleware compo-
nents that map mission-oriented system contexts and preferences to a variety of low-
level settings that can be efficiently and independently enforced. QED is complemen-
tary to existing lower-level QoS capabilities, such as DDS, and provides a framework
through which these and service-based QoS capabilities (such as priority task queuing
and dissemination bandwidth management) can be orchestrated by an intermediate

component to achieve system-wide enforcement of client preferences. The QED QoS
policy specification and SOA components described here are extensible and future
work includes providing richer and more dynamic context descriptions, such as the
distance between a rescue crew and the survivors in our motivating scenario.

References
1. E. Crawley, R. Nair, B. Rajagopalan, H. Sandick, “A Framework for QoS-based Routing

in the Internet,” IETF Internet Draft, RFC 2386, August 1998.
2. J. Loyall, M. Carvalho, A. Martignoni III, D. Schmidt, A. Sinclair, M. Gillen, J. Edmond-

son, L. Bunch, and D. Corman, “QoS-Enabled Dissemination of Managed Information
Objects in a Publish-Subscribe-Query Information Broker,” In Proceedings of the SPIE
Conference on Defense Transformation and Net-Centric Systems, Orlando, FL, April 13-
17, 2009.

3. J. Loyall, M. Gillen, A. Paulos, L. Bunch, M. Carvalho, J. Edmondson, P. Varshneya, D.
Schmidt, A. Martignoni III, “Dynamic Policy-Driven Quality of Service in Service-
Oriented Systems,” IEEE International Symposium on Object-oriented Real-time Distrib-
uted Computing (ISORC), Carmona (Parador de Carmona), Spain, May 5-6, 2010.

4. J. Loyall, A. Sinclair, M. Carvalho, A. Martignoni III, M. Gillen, L. Bunch, M. Marcon,
“Quality of Service in US Air Force Information Management Systems.” Proceedings of
MILCOM, Boston, MA, October 18-21, 2009.

5. R. Grant, C. Combs, J. Hanna, B. Lipa, and J. Reilly, "Phoenix: SOA Based Information
Management Services," Proceedings of the 2009 SPIE Defense Transformation and Net-
Centric Systems Conference, Orlando, Fl, April 2009.

6. A. Uszok, J.M. Bradshaw, M. Breedy, L. Bunch, P. Feltovich, M. Johnson, H. Jung, “New
Developments in Ontology-based Policy Management: Increasing the Practicality and
Comprehensiveness of KAoS,” Proceedings of the 2008 IEEE Conference on Policy, Pali-
sades, NY, June 2-4, 2008.

7. World Wide Web Consortium, OWL Web Ontology Language Overview, W3C Recom-
mendation, February 10, 2004. www.w3.org/TR/owl-features/.

8. M. Carvalho, A. Granados, W. Naqvi, A. Brothers, J. Hanna, and K. Turck, “A Cross-
Layer Communications Substrate for Tactical Information Management Systems,” Pro-
ceedings of MILCOM, IEEE, San Diego, CA, 2008.

9. OASIS, eXtensible Access Control Markup Language (XACML) Version 2.0, OASIS
Standard, docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf, 1
February 2005.

10. C. Wang, G. Wang, A. Chen, and H. Wang, "A Policy-Based Approach for QoS Specifi-
cation and Enforcement in Distributed Service-Oriented Architecture," IEEE International
Conference on Services Computing (SCC'05) Vol-1, 2005.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

