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Abstract—This paper describes our experiences applying a
test and evaluation (T&E) middleware framework called the
Open-source Architecture for Software Instrumentation Systems
(OASIS) to the Unified SHIP platform, which is a representa-
tive system for next-generation shipboard computing systems.
The OASIS middleware framework discussed in this paper
enables instrumenting distributed real-time and embedded
(DRE) systems to collect and extract metrics without a priori
knowledge of the metrics collected. The flexibility of OASIS’s
metametrics-driven approach to instrumentation and data col-
lection increased developer and tester knowledge and analytical
capabilities of end-to-end QoS in shipboard computing systems.

I. INTRODUCTION

Shipboard computing systems are a class of enterprise
distributed real-time and embedded (DRE) systems with
stringent quality-of-service (QoS) requirements (such as
latency, response time, and scalability) that must be met
in addition to functional requirements [1]. To ensure QoS
requirements of such DRE systems, developers must analyze
and optimize end-to-end performance throughout the soft-
ware lifecycle. Ideally, this test and evaluation (T&E) [2]
process should start in the architectural design phase of
shipboard computing, as opposed to waiting until final
system integration later in the lifecycle when it is more
expensive to fix problems.

T&E of shipboard computing system QoS requirements
typically employs software instrumentation techniques [1],
[3]–[5] that collect metrics of interest (e.g., CPU utilization,
memory usage, response of received events, and heartbeat
of an application) while the system executes in its target
environment. Performance analysis tools then evaluate the
collected metrics and inform system developers and testers
whether the system meets its QoS requirements. These
tools can also identify bottlenecks in system and application
components that exhibit high and/or unpredictable resource
usage [6], [7].

Although software instrumentation facilitates T&E of
shipboard computing system QoS requirements, conven-
tional techniques for collecting metrics are typically highly-
coupled to the system’s implementation [1], [2], [8]. For ex-
ample, shipboard computing developers often decide during

the system design phase what metrics to collect for T&E,
as shown in Figure 1. Developers then incorporate into the
system’s design the necessary probes to collect these metrics
from the distributed environment.
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Figure 1. Conventional Way to Instrument Shipboard Computing Systems

The drawback with a tightly-coupled approach is that
shipboard computing developers must either (1) redesign the
system to incorporate the new/different metrics or (2) use
ad hoc techniques, such as augmenting existing code with
the necessary interfaces without understanding its impact to
the overall system’s design and maintainability, to collect
such metrics. Developers therefore need better techniques
to simplify instrumenting shipboard computing systems for
collecting and extracting metrics—especially when the de-
sired metrics are not known a priori.

The Embedded Instrumentation Systems Architecture
(EISA) [9] initiative defines a metadata-driven method for
heterogeneous data collection and aggregation in a syn-
chronized and time-correlated fashion [9], as opposed to
an interface-centric method [10] used in conventional DRE
systems. Instead of integrating many interfaces and methods
to extract and collect metrics into the system’s design, EISA
treats all metrics as arbitrary data that flows over a common
reusable channel and discoverable via metametrics.1 EISA
thus helps reduce the coupling between system design and

1Metametrics are metadata that describe metrics collected at runtime
without knowing its structure and quantity a priori.
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Figure 2. Conventional Approach vs. EISA’s Approach to T&E

instrumentation logic incurred with the conventional T&E
techniques described above [11], as shown in Figure 2.

Initial implementations of the EISA standard focused
mainly on hardware instrumentation. To apply the EISA
standard in the software domain, we developed the Open-
source Architecture for Software Instrumentation of Systems
(OASIS). This experience report discusses our insights and
lessons learned while developing and applying OASIS to
a representative shipboard computing project. The main
contributions of this experience report include:
• A discussion of design choices made while designing

and implementing OASIS,
• An analysis of current limitations of the OASIS archi-

tecture, as well as insights on how such limitations can
be addressed,

• A summary of open research challenges associated with
instrumenting DRE systems.

Our experiences gained from developing and applying
OASIS to shipboard computing show that EISA’s metadata-
driven approach to instrumentation and data collection pro-
vides flexibility that can increase DRE system developers
and tester’s knowledge base and analytical capabilities of
end-to-end QoS. OASIS also provides a solid foundation
for addressing open problems associated with instrumenting
DRE systems.

Paper organization. The remainder of this paper is orga-
nized as follows: Section II provides an overview the repre-
sentative shipboard computing system we use as a case study
for our work, and of OASIS focusing on key instrumentation
challenges; Section III describes how OASIS addresses these
challenges; Section IV compares OASIS with related work;
and Section V presents concluding remarks.

II. CASE STUDY: THE UNIFIED SHIP PLATFORM

EISA-based tools have primarily been used to instrument
hardware components (e.g., sensor hardware components) of
DRE systems [9]. These systems, however, are composed
of both hardware and software components. Ideally, end-to-
end QoS evaluation of shipboard computing systems should
employ performance analysis of both hardware and software
components.

To help evaluate EISA in a representative enterprise
DRE system, we created the Unified Software/Hardware

Instrumentation Proof-of-concept (Unified SHIP) platform,
which provides a representative environment for investi-
gating technical challenges of next-generation shipboard
computing systems. The Unified SHIP platform contains
software components (i.e., the rectangles in Figure 3) imple-
mented using the Component Integrated ACE ORB (www.
dre.vanderbilt.edu/CIAO), which is a C++ implementation of
the Lightweight CORBA Component Model [12]. Likewise,
performance analysis tools are implemented using a variety
of programming languages, such as C++, C#, and Java. The
software applications run on real-time Linux and Solaris
operating systems, whereas performance analysis tools run
on Windows and conventional Linux operating systems.

Figure 3 also shows how the Unified SHIP platform
consists of EISA-compliant sensor hardware components
and a collection of software components that performed the
following operational capabilities for shipboard computing
systems: 4 components are trackers that monitor events in
the operational environment, 3 components are planners that
process data from the sensor components, 1 component
performs configuration of the effectors, 3 components are
effectors that react to commands from the configuration
component, 3 components allow operators to send com-
mands to the planner components, and 1 component is a
gateway that authenticates login credentials from the opera-
tor components. The directed line between each component
in Figure 3 represents inter-component communication, such
as sending an event between two different components.

Existing techniques for instrumenting shipboard comput-
ing systems assume software instrumentation concerns (e.g.,
what metrics to collect and how to extract metrics from the
system) are incorporated into the system’s design. Since the
Unified SHIP platform consists of hardware and software
components at various degrees of maturity and deployment,
it is hard to use existing instrumentation techniques to collect
and extract metrics for QoS evaluation during early phases
of the software lifecycle. In particular, developers and testers
of the Unified SHIP platform faced the following challenges:

• Challenge 1: Describing metametrics in a platform-
and language-independent manner. The heterogeity
of the Unified SHIP platform’s software and hardware
components makes it undesirable to tightly couple
performance analysis tools to the target platform and



!"#$%&'()*+,-./01-0'20/

34,256,217/

(1.2+&0//

8129'2(,-&1/,-,*:0+0/.''*/

;<2,&=12>/

;<2,&=12>/

;<2,&=12>/

;<2,&=12>/

;8*,--12>/ ;8*,--12>/ ;8*,--12>/ ;?'-@AB)>/

;!C1&.'2>/

;!C1&.'2>/

;!C1&.'2>/

;D,.16,:>/

;B)12,.'2>/ ;B)12,.'2>/ ;B)12,.'2>/

Operational scenario 

(software) 

321,507/

Figure 3. Overview of the Unified SHIP Platform

language of software and hardware components to
collect and analyze metrics. Platform- and language-
independent techniques and tools are therefore needed
that will enable description of metrics collected from
hardware and software components.

• Challenge 2: Collecting metrics without a priori
knowledge of its structure and quantity. Metrics
collected via instrumentation in the Unified SHIP plat-
form come from heterogenous sources, which make
it tedious and error-prone for system developers and
testers to tightly couple the systems implementation
to understand each metric and technology a priori.
Techniques are therefore needed that will enable the
collection of metrics from the Unified SHIP platform
for QoS evaluation without a priori knowledge of which
metrics are collected.

The remainder of this experience report discusses how dif-
ferent design choices in OASIS enabled us to address these
two challenges in context of the Unified SHIP platform.

III. EXPERIENCES FROM APPLYING OASIS TO THE
UNIFIED SHIP PLATFORM

This section discusses our experience applying OASIS to
the Unified SHIP Platform introduced in Section II. For each
experience discussed in this paper, we first introduce the
experience topic and then give a detailed account of our
experience—both positive and negative when applicable.

A. Brief Overview of OASIS

OASIS is dynamic instrumentation middleware for DRE
systems that uses a metametics-driven design integrated with
loosely coupled data collection facilities. Metametrics are
defined as software probes, which are autonomous agents

that collect both system and application-level metrics. List-
ing 1 highlights an example software probe—written in
OASIS’s Probe Definition Language (PDL)—that collects
memory statistics. OASIS’s PDL compiler uses such defini-
tions to generate a stub, skeleton, and base implementation
for the target programming language, and a XML Schema
Definition (XSD) file that details the structure of a mem-
ory probe’s data (see Figure 4). The stub is used in the
Performance Analysis Tool (shown as PAT in Figure 4) to
recall data, the skeleton and base implementation are used
in the instrumented application (App. in Figure 4) to collect
metrics, and the XSD file is used for dynamic discovery of
metrics.
1 [ uu id ( ed970279−247d−42ca−aeaa−bef0239ca3b3 ) ; v e r s i o n ( 1 . 0 ) ]
2 p robe MemoryProbe {
3 u i n t 6 4 t o t a l p h y s i c a l m e m o r y ;
4 u i n t 6 4 a v a i l p h y s i c a l m e m o r y ;
5 u i n t 6 4 t o t a l v i r t u a l m e m o r y ;
6 u i n t 6 4 a v a i l v i r t u a l m e m o r y ;
7 u i n t 6 4 cache ;
8 u i n t 6 4 c o m m i t l i m i t ;
9 u i n t 6 4 c o m m i t t o t a l ;

10 } ;

Listing 1. Definition of a memory probe in OASIS.

Figure 5 shows a high-level diagram of OASIS architec-
ture and data collection facilities. As shown in this figure,
this portion of OASIS consists of the following entities:
• Embedded instrumentation node (EINode), which is

responsible for receiving metrics from software probes.
OASIS has one EINode per application-context, which
is a domain of commonly related data. Examples of
an application-context include a single component, an
executable, or a single host in the target environment.
The application-context for an EINode, however, is
locality constrained to ensure data transmission from
a software probe to an EINode need not cross network
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Figure 4. Overview of Files Generated from a PDL Probe by OASIS
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Figure 5. Architectural Overview of the OASIS Middleware

boundaries, only process boundaries. Moreover, the
EINode controls the flow of data it receives from
software probes and submits to the data and acquisition
controller described next. Each EINode is distinguished
by a unique user-defined UUID and corresponding
human-readable name.

• Data acquisition and controller (DAC), which re-
ceives data from an EINode and archives it for acquisi-
tion by performance analysis tools, such as querying the
performance of the latest state of component collected
by a application-level software probe. The DAC is a
persistent database with a consistent location in the
target environment that can be located via a naming
service. This design decouples an EINode from a DAC
and enables an EINode to dynamically discover at
creation time which DAC it will submit data. Moreover,
if a DAC fails during at runtime the EINode can
(re)discover a new DAC to submit data. The DAC
registers itself when the test and evaluation manager
(see below) when it is created and is identifiable by a
unique user-defined UUID and corresponding human-
readable name.

• Test and Evaluation (T&E) manager , which is the
main entry point for user applications (see below) into
OASIS. The T&E manager gathers data from each
DAC that has registered with it. The T&E manager
also enables user applications to send signals to each
software probe in the system at runtime to alter its
behavior, e.g., by decreasing/increasing the hertz of the

heartbeat software probe in the Unified SHIP platform
scenario. This dynamic behavior is possible because the
T&E manager is aware of all its DACs in the system,
the DACs are aware of all its EINodes, and the EINodes
are aware of all their registered software probes.

• Performance analysis tools, which are domain-specific
tools, such as distributed resource managers and real-
time monitoring and display consoles from the Unified
SHIP platform, that interact with OASIS by requesting
metrics collected from different software probes via the
T&E manager. Tools can also send signals/commands
to software probes to alter their behavior at runtime.
This design enables system developers and testers and
performance analysis tools to control the effects of
software instrumentation at runtime and minimize the
affects on overall system performance.

Figure 6 shows the integration of OASIS with the Unified
SHIP platform. Each hardware and software component is
associated with an EINode that contains a set of software
probes (or instruments in the case of hardware compo-
nents [11]) that collect and submit metrics for extraction
from the system. When an EINode receives metrics from
a software probe (or instrument), it sends it to a DAC for
storage and on-demand retrieval. Performance analysis tools
then request collected metrics via the T&E manager, which
locates the appropriate metrics in a DAC.

!"#$%&'#()

!"#$%&'#()

!"#$%&'#()

!"#$%&'#()

!*+$,,'#() !*+$,,'#() !*+$,,'#() !-.,/012()

!34'%5.#()

!34'%5.#()

!34'%5.#()

!6$5'7$8()

!12'#$5.#() !12'#$5.#() !12'#$5.#()

Operational scenario 

(software) 

*'#9.#:$,%')$,$+8;<;)

5..+)

=>?'#<';@) AB-)
"C3)

=#'5#<'D';@)

:'5#<%;)

3EFBG%.:2+<$,5);',;.#;)

=H$#I7$#'@)

Figure 6. Integration of OASIS with the Unified SHIP Platform

Using this architecture, it is possible for the OASIS mid-
dleware framework to collect and analyze metrics without
a priori knowledge of either the structure and complexity.
The remainder of this section discusses how different design
choices have impacted our experience using OASIS on the
Unified SHIP Platform.

Experience 1: On Separating Metrics from Metametrics

In OASIS, metrics are separated from metametrics (i.e.,
information that describes the metric’s structure and types).
The metametics are defined using XML Schema Definition
(XSD) (see Listing 2 for an example), whereas metrics



are packaged as blobs of data. As shown in Figure 7, the
software probes package the data, prepend a header, and
pass the metrics to the EINode. The EINode then prepends
its header information and forwards it to the DAC. During
this packaging process, however, no metametrics are stored
with the actual metrics. Instead, the metametrics are sent to
the DAC for storage when an EINode registers itself with a
DAC.

!"#$%&'(

)&"*'(

+,-".'(

/01(

2'3&45(

*6"*(

2'3&45(

*6"*(

2'3&45(

7'%.'&(

2'3&45((

*6"*(

+,-".'(

7'%.'&(

2'3&458(

2'3&45(

*6"*(

Figure 7. The Metric Collection and Packaging Process in OASIS

Based on our experience applying OASIS to the Unified
SHIP platform, we learned that separating metrics from
metametics has the following advantages:

A1. Portability across different architectures. For ex-
ample, the Unified SHIP platform consists of many differ-
ent middleware technologies, such as the Common Object
Request Broker Architecture (CORBA) [10], [13], [14], the
Data Distribution Services [15], and Microsoft .NET [16].
None of these technologies, however, provide a straight-
forward or standard method for discovering metametrics
that is portable across programming languages, middleware
technologies, and platforms.

Moreover, the technologies used in the Unified SHIP
platform assume that communication occurs between two
strongly-typed endpoints. For example, in CORBA the client
and server use strongly-typed interfaces that know what
data types are sent across the network. The CORBA::Any
element type is used in CORBA to send data without a
priori knowledge. This element type knows the data type
(e.g., tk_long, tk_short, and tk_boolean). It does
not, however, know the structure of complex types (e.g.,
tk_struct), which makes it hard for the DAC to store
metrics in its database.

For example, there is no standard method for discovering
a metrics structure or serializing it to a blob of data us-
ing the generic CORBA::Any type. In some programming
languages, such as Java and C#, it is possible to use
reflection to support this requirement. This approach is only
possible, however, because metametrics are built into the
programming language. The serialization problem can also
be solved by forcing the DAC to know each kind of metrics
collected by a software probe. When a new metric arrives at
the DAC, the DAC locates a corresponding software probe
stub that can serialize data contained in the generic type.
This approach, however, requires the DAC to know a priori
all the software probes used in the Unified SHIP platform,
which is not possible since developers can add new probes

as they identify more data types to instrument and collect.
A2. Self-containment for offline analysis. Another ad-

vantage of separating metrics from metametrics is self-
contained storage for offline analysis of data since the DAC
stores both metametrics and metrics for a given execution
of the Unified SHIP platform in a single database. This
database can then be archived and recalled later to compare
results of different test executions of the Unified SHIP
platform. Moreover, developers can create new analysis tools
at later dates to analyze different aspects of the data.

In our experience applying OASIS to the Unified SHIP
platform we have not yet found any disadvantages to sepa-
rating metrics and metametrics. Its self-contained and stan-
dard method for storing and recalling metrics is platform-,
language-, and technology-independent.

Experience 2: On Using XML Schema Definition to Describe
Metametrics

Metametrics in OASIS are defined using XSD files (as
shown in Listing 2).

1 <? xml v e r s i o n = ’ 1 . 0 ’ ?>
2 <xsd : schema>
3 <x s d : e l e m e n t name= ’ p r o b e M e t a d a t a ’ t y p e = ’ s t a t e T y p e ’ />
4 <xsd :complexType name= ’ s t a t e T y p e ’>
5 <x s d : s e q u e n c e>
6 <x s d : e l e m e n t name= ’ component ’ t y p e = ’ x s d : s t r i n g ’ />
7 <x s d : e l e m e n t name= ’ s t a t e ’ t y p e = ’ x s d : i n t e g e r ’ />
8 </ x s d : s e q u e n c e>
9 </ xsd :complexType>

10 </ x sd : schema>

Listing 2. An Example XML Schema Definition that Describes Component
State Metrics Collected by a Software Probe.

When an EINode registers itself with the DAC, this infor-
mation is sent to the DAC. The use of XSD to describe
metametrics has the following advantage:

A3. GUI support. The main motivation for using XSD
files to define metametics in OASIS is that there are existing
tools that can create a graphical user interface (GUI) from
a XSD file [17], which made it easier for Unified SHIP
platform developers to visualize collected metrics as new
software probes were added to the system. XSD is a verbose
language since it is based on XML, e.g., the metametrics in
Listing 2 is approximately 300 bytes of data just to describe
the metric’s type name and its structure.

Using XSD to describe metametrics, however, has the
following disadvantage:

D1. High processing overhead. Processing XSD files,
which are XML files, can have high overhead and impact
real-time performance. In OASIS, however, we do not
process XSD files in real-time. Instead, they are processed
at initialization time or when new metric types are dis-
covered. Based on our experience with the Unified SHIP
platform, the rate of discovering new metrics is not frequent
enough to warrant using a less verbose method for defining
metametrics—even when implementing generic performance
analysis tools.



Experience 3: On Software Probe Definition and Stucture

Software probes in OASIS are defined using PDL. De-
velopers define the metrics collected by a software probe,
as shown in Listing 1 in the overview of OASIS. The
OASIS compiler then generates the appropriate stubs and
skeletons for using the software probe for instrumentation.
The current implementation of OASIS does not support
hierarchical software probe definitions, which means that
each software probe definition is its own entity. This design
choice, however, presented the following disadvantage:

D2. Lack of hierarchy increases instrumentation com-
plexity. Based on our experience applying OASIS to the
Unified SHIP platform, the lack of hierarchical software
probe definitions increases the complexity of instrumenting
such systems since developers must either:
• Define a software probe such that it is too broad in

scope,
• Define a software probe that is too narrow in scope, or
• Create separate software probes that collect similar

information with slight differences.
The problem with broad software probes is that they collect
more information than is needed, i.e., have fields that have
no data on different platforms. Likewise, narrow software
probes must sacrifice data in certain situations, such as not
collecting a specific metric on the Linux platform since there
is not an equivalent metrics on the Windows platform.

For example, in the Unified SHIP platform, software
components execute on either a Windows or Linux platform.
If developers want to collect memory metrics from either
platform they would have to decide either to implement a
broad or narrow software probe since each platform provides
different information about memory usage, as shown in
Table I. If a broad software probe were implemented the
Unified SHIP platform developers would have to ensure that
all metrics in Table I were covered. If a narrow software
probe were implemented, conversely, they would only cover
8 common memory metrics (i.e., MemTotal, MemFree,
Cached, CommittedLimit, Committed AS, VmallocTotal,
VmallocUsed, and AvailVirtual), which also fails to account
for mapping similar metrics to a common name and unit in
the software probe’s implementation.

Ideally, it should be possible for Unified SHIP
platform developers to define hierarchical software
probes to show relations between them. For example,
Unified SHIP platform developers should be able to
define a MemoryProbe that contains all metrics
common across all platforms, as shown in Figure 8.
Each specific platform-specific memory probe (e.g.,
LinuxMemoryProbe and WindowsMemoryProbe)
then extends the MemoryProbe definition, as needed.

Based on our needs, we have realized that supporting
hierarchical software probe definitions, however, has the
following advantages:
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Figure 8. An Example of Hierarchically Defining the Memory Software
Probe in OASIS

A4. Metric reuse. When we define software probes hier-
archical as done in object-oriented programming languages,
such as C++, C#, and Java, it allows similar software
probes to reuse metric definitions. Unified SHIP Platform
developers therefore need not make critical decisions as to
whether they should implement broad or narrow software
probes.

A5. Platform-specific vs. general-purpose performance
analysis tools. OASIS allows performance analysis tools
to request real-time updates when new data arrives. The
hierarchical software probe definitions give performance
analysis tools greater flexibility when registering for real-
time updates. For example, they can request general mem-
ory probe data, i.e., data collected by a probe of type
MemoryProbe, or specific memory probe data, i.e., ei-
ther WindowsMemoryProbe or LinuxMemoryProbe
data. The Unified SHIP platform developers can therefore
implement general-purpose performance analysis tools or
platform-specific performance analysis tools.

Experience 4: Observing Other Roles of the T&E Manager

The T&E Manager is the main entry point into the OASIS
architecture for performance analysis tools, as described
in Section II. This manager assists with gathering and
correlating data requested by performance analysis tools. It
also routes commands to software probes—via the DAC and
EINode—to enable dynamic runtime behavior modifications,
such as reducing its data collection frequency. Based on our
experience applying OASIS to the Unified SHIP Platform,
the T&E Manager has the following advantages:

A6. Domain-specific naming service. Based on our
experience applying OASIS to the Unified SHIP platform,
the T&E Manager is also a domain-specific naming service
that keeps track of available DACs since the T&E manager
must know all DACs available in test execution. Otherwise,
it is hard for performance analysis tools to send commands
to software probes. In addition, it is hard for performance
analysis tools to register for real-time updates, which must
be done by first locating an appropriate DACs via the T&E
manager.

A7. Gateway and policy manager. Another role of the



Table I
COMPARISON OF MEMORY METRICS COLLECTED ON LINUX VS. WINDOWS PLATFORMS

Linux (/proc/meminfo) Windows (Memory Performance Info [18]) Description
MemTotal PhysicalTotal Total amount of memory (avail. + used)
MemFree PhysicalAvail Total amount of memory free
Buffers Amount of physical RAM used for file buffers
Cached SystemCache Amount of physical RAM used as cache memory

SwapCache Amount of Swap used as cache memory
InActive Total amount of buffer or page cache memory that are free and available
Active Total amount of buffer or page cache memory, that is active

HighTotal Total amount of memory in the high region
LowTotal Total amount of non-highmem memory
LowFree Amount of free memory of the low memory region

KernelTotal Sum of memory currently in paged and nonpaged kernel pools, in pages.
KernelPaged Memory currently in paged kernel pool, in pages.

KernelNonpaged Memory currently in nonpaged kernel pool, in pages.
PageSize Size of a page, in bytes

SwapTotal Total amount of physical swap memory
SwapFree Total amount of swap memory free

Dirty The total amount of memory waiting to be written back to the disk.
WriteBack The total amount of memory actively being written back to the disk

CommitPeak Max number of pages simultaneously in committed state
CommittedLimit CommitLimit Max memory available without extending paging files
Committed AS CommitTotal Number of pages currently committed by the system
VmallocTotal TotalVirtual Total size of vmalloc memory area
VmallocUsed TotalVirtual - AvailVirtual Amount of virtual memory used

VmallocTotal - VmallocUsed AvailVirtual Amount of virtual memory available for allocation
VmallocChunk Largest contiguous block of virtual memory that is free

T&E Manager that we learned is that it can be a gateway/-
policy manager. In the Unified SHIP platform, some metrics
collected by software probes should not be available to all
performance analysis tools. For example, software metrics
that would be considered sensitive metrics should not be
available to performance analysis tools that do not have the
correct privileges. The T&E Manager can therefore enforce
such policies. Realizing this role of the T&E Manager also
requires security enhancements at the DAC since metrics are
stored in a database therefore for offline processing.

There is, however, a disadvantage to observing other roles
of the T&E manager:

D3. The “god” T&E manager. If done incorrectly, the
T&E manager could become a “god’ T&E manager.2 This
superordination occurs when all roles of the T&E manager
are condensed into a single entity, instead of decomposing it
into distinct entities. We can overcome this design challenge
via the Component Configurator [19] pattern, where each
role is realized as a dynamically loadable component. The
T&E manager then loads different components/roles as
needed, ensuring the T&E manager is as lightweight as
possible.

IV. RELATED WORK

This section compares our work on OASIS with related
work.

2This name is derived from the “god” class [6] software performance
antipattern where a single class contains all functionality, instead of
modularizing it into a family of related classes.

Dynamic binary instrumentation (DBI) frameworks.
Pin [20] and DynamoRIO [21] are examples of DBI frame-
works. Unlike OASIS, both Pin and DynamoRIO do not
require modification of existing source code to enable instru-
mentation. Instead, software developers use Pin to execute
the application, and during the process Pin inserts points of
instrumentation based on C/C++ user-created instrumenta-
tion tools—similar to performance analysis tools in OASIS.
Although DBI frameworks address different problems, we
believe they can work together in that software probes
can be implemented as third-party analysis tools for DBI
frameworks. This combination would allow OASIS to collect
instrumentation information from the DBI framework that
instruments a DRE system in real-time without modifying
any of the existing source code—as done traditionally with
OASIS.

DTrace [4] is another DBI framework. Unlike Pin and Dy-
namoRIO, DTrace provides a scripting language for writing
performance analysis tools. DTrace also has the ability to
write custom software probes, which can be easily integrated
into DTrace’s collection facilities. DTrace’s software probe
design is therefore similar to OASIS in that it is extensible
without a priori knowledge. It differs in that software
metrics cannot be extracted from the host machine where
software instrumentation is taking place.

Distributed data collection. Distributed Data Collector
(DDC) [22] is a framework for collecting resource metrics,
such as CPU and disk usage, from Windows personal com-
puters (PCs). In DDC, software probe metrics are collected
from PCs and stored in a central location. Unlike OASIS,



each software probe’s metrics are stored its own file, which
is then parsed by analysis tools. OASIS improves upon this
design by storing all metrics in a single database, instead of
separate files. Likewise, OASIS’s data collection framework
is platform-, language-, and architecture-independent (i.e.,
not bound to only Windows PCs and Windows-specific
software probes).

General-purpose middleware solutions can be used for
distributed data collection. For example, the DDS is an
event-based middleware specification that treats data as first-
class entities. This concept is similar to OASIS in that events
are similar to software probe metrics. The main difference
is that DDS is a strongly-typed middleware solution in that
both endpoints know the data type a priori. Moreover, there
is not standard way to serialize the data in a DDS event.
This therefore makes it hard to store metrics in the DAC’s
database.

V. CONCLUDING REMARKS

Test and evaluation (T&E) of shipboard computing system
QoS during early phases of the software lifecycle helps
increase confidence that the system being developed will
meet it functional and QoS requirements. Conventional
T&E instrumentation mechanisms, however, are tightly cou-
pled with the system’s design and implementation. This
experience report therefore described how design choices
in OASIS’s implementation of the EISA standard helped
reduced these coupling concerns. In addition, it also high-
lighted several revelations about different design choices
that are currently being addressed in the OASIS middleware
framework.

Based on our experience with OASIS, we found the
following open research challenges, which extend the re-
search directions presented in prior work [23], remain when
instrumenting DRE systems:
• Complex Event Processing. Complex event process-

ing [24] involves processing many different events and
streams of data, across all layers of a domain, identi-
fying meaningful events, and determining their impact
on a given concern, such as performance, functionality,
and scalability. Each software probe in OASIS can be
viewed as stream of data and the DAC can be viewed
as a data source with historical records. Likewise,
performance analysis tools can register for real-time
delivery of software probe data.
Future research directions therefore include imple-
menting complex event processing support in OASIS.
Adding this support will be hard because the tradi-
tional use of complex event processing engines involves
viewing results via a graphical user interface, which is
considered one form of a performance analysis tool in
OASIS. In reality, many different performance analy-
sis tools (such as real-time monitoring and feedback
performance analysis tools) should be able to leverage

complex event processing support. Likewise, complex
event processing has not been applied to general-
purpose instrumentation middleware for DRE systems.

• Data Fusion and Data Integration. Data fusion [25]
is the process of combining data from multiple sources
for inference. The motivation for data fusion is that
multiple data sources will be more accurate that a
single data source. Although data fusion can be used
to support complex event processing, it is a separate
research area. Data integration [26], however, is the
process of combining data from different sources to
provide a unified view.
When we examine the OASIS middleware framework,
and each of its entities that play a major role in col-
lecting and storing data (e.g., software probe, EINode,
and DAC), it is clear that data fusion and data integra-
tion techniques can be applied readily. The challenge,
however, is understanding how both data fusion and
data integration can be integrated with the real-time
aspects of OASIS. Future research directions therefore
involves addressing these challenges in OASIS so we
can provide a general-purpose middleware solution for
data fusion and data integration in OASIS.

As we apply OASIS to other application domains, such as
resource-constrained embedded systems and mobile devices,
we will continue identifying new research challenges. Since
OASIS is an open-source middleware framework, it provides
an effective foundation for ensuring that solutions to these
open research challenges will be available to the T&E
community.

OASIS is currently integrated into CUTS and is freely
available for download in open-source format from cuts.cs.
iupui.edu.
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