
1

Dynamic Policy-Driven Quality of Service in Service-Oriented
Information Management Systems

Joseph P. Loyall,1 Matthew Gillen,1 Aaron Paulos,1 Larry Bunch,2 Marco Carvalho,2 James
Edmondson,3 Douglas C. Schmidt,3 Andrew Martignoni III4, and Asher Sinclair5

1BBN Technologies, Cambridge, MA USA
2Institute for Human Machine Cognition, Pensacola, FL USA
3Institute for Software Integrated Systems, Vanderbilt University, Nashville, TN USA
4The Boeing Company, St. Louis, MO USA
5Air Force Research Laboratory, Rome, NY USA

ABSTRACT

Service-oriented architecture (SOA) middleware has emerged as a powerful and popular distributed
computing paradigm due to its high-level abstractions for composing systems and encapsulating plat-
form-level details and complexities. Control of some details encapsulated by SOA middleware is ne-
cessary, however, to provide managed quality-of-service (QoS) for SOA systems that require pre-
dictable performance and behavior. This paper presents a policy-driven approach for managing QoS
in SOA systems called QoS Enabled Dissemination (QED). QED includes services for (1) specifying
and enforcing the QoS preferences of individual clients, (2) mediating and aggregating QoS man-
agement on behalf of competing users, and (3) shaping information exchange to improve real-time
performance. We describe QED’s QoS services and mechanisms in the context of managing QoS for
a set of Publish-Subscribe-Query information management services. These services provide a repre-
sentative case study in which CPU and network bottlenecks can occur, client QoS preferences can
conflict, and system-level QoS requirements are based on higher level, aggregate end-to-end goals.
We also discuss the design of several key QoS services and describe how QED’s policy-driven ap-
proach bridges users to the underlying middleware and enables QoS control based on rich and mea-
ningful context descriptions, including users, data types, client preferences, and information charac-
teristics. In addition, we present experimental results that quantify the improved control, differen-
tiation, and client-level QoS enabled by QED.

KEY WORDS: Service Oriented Architecture, Quality of Service, Information Management

1. Introduction
Information management (IM) services have emerged as necessary concepts for informa-
tion exchange in net-centric operations [

25, 41, 42], including Net-Centric Enterprise Sys-
tems (NCES) [10], which provide a set of services that enable access to—and use of—the
Global Information Grid (GIG) [14]. The core concept of IM is an active information
management model where clients are information publishers and consumers that commu-
nicate anonymously with other clients via shared IM services, such as publication, discov-
ery, brokering, archiving, and querying [8, 18]. Information is published in the form of
typed information objects (IOs) consisting of payload and indexable metadata describing
the object and its payload. Consumers make requests for future (subscription) or past

This research has been sponsored by the U.S. Air Force Research Laboratory under con-
tract FA8750-08-C-0022.

2

Figure 1. The Core IM services are Submission (of published information), Arc-
hive, Brokering, Dissemination, and Query services.

Submission Service

Dissemination
Service

Producers

Registered
Predicates

Broker Service

Subscribers

Query clients

Register
Subscription

Archive

Query predicate

Query resultsQuery
results

Published IO

Archive
Service

Query
Service

Information
Object (IO)=

IO
Repository

(query) information using predicates (e.g., via XPath [51] or XQuery [52]) over IO types
and metadata values.

Common IM services include brokering (i.e., matching future published IOs to sub-
scriptions), archiving of IOs, querying for archived objects, and dissemination of IOs to
subscribing and querying clients, as shown in Figure 1. This approach is similar in concept
to other publish-subscribe middleware, such as the Java Message Service (JMS) [20], the
Data Distribution Service (DDS) [35], CORBA Notification Service [36], or Web Services
Notification (WS-N) [34]. In contrast to these other middleware packages, however, the
core functionality of the IM process (e.g., submission, brokering, archiving, query, and
dissemination) is encapsulated as Service-Oriented Architecture (SOA) middleware, i.e.,
as individual services that can be distributed, orchestrated in various patterns, dynamically
composed, and implemented in various ways.

SOA middleware has emerged as a powerful environment for developing distributed
applications and systems. It offers benefits in system construction, including dynamic dis-
covery of system components (i.e., services), high-level abstractions for encapsulation and
system composition, and lifecycle management and virtual execution environments that
hide details about the platforms upon which the system is run. While IM services are es-
sential to support net-centric operations, the decoupled information management, broker-
ing, and exchange they provide is insufficient for dynamic, mission-critical, and time-
critical operations. In particular, IM services require quality-of-service (QoS) in their dis-
semination of information to meet varied quality requirements of users and the missions
they undertake in a manner that is reliable, real-time, and resilient to the constrained, con-
tended, and dynamically changing conditions in many environments.

3

QoS management is a key element of the design and runtime behavior of net-centric in-
formation systems, but it is often defined in terms of management of individual resources,
e.g., the admission control provided by network management or CPU scheduling mechan-
isms or services. While individual resource management is necessary, it is not sufficient in
net-centric information systems for the following reasons:
• Effective QoS management spans individual resources. Providing appropriate QoS to

an information consumer includes managing the CPU required to process information
(e.g., brokering), the network required to deliver information (e.g., submission and
dissemination), and the memory required to store information (e.g., caching, queuing,
and archiving).

• QoS requirements are decoupled from QoS enforcement. Information consumers spe-
cify their QoS requirements (e.g., the precision, rate, size, and content needed to meet
their functional requirements), which may change over time. The points at which QoS
enforcement occurs, however, are those at which information is created, processed,
and disseminated, which can be distributed far away from consumers.

• Management of individual resources implies a local view. In contrast, effective end-to-
end resource management must account for the aggregate requirements of the system’s
mission, the relative importance of resource users to the aggregate requirements, and
what constitutes effective resource usage to achieve the aggregate requirements.

• Effective QoS management must mediate the contention for resources from many si-
multaneously operating applications, streams of information, and systems. The num-
ber and demand of users of resources will change dynamically and can be bursty.
Mediation of this demand must frequently deny resources to some in favor of others,
or no user might get sufficient resources, and should be made based upon which use
benefits the overall goals of the system the most.

• There might be multiple, simultaneous bottlenecks (i.e., the most constrained re-
sources) and the bottlenecks might change over time. Local enforcement to remove a
single bottleneck might be ineffective if there are other bottlenecks present at the same
time. Likewise, local enforcement to remove a bottleneck can simply expose or cause
another bottleneck.

Management of resource consumption and system parameters are means available to
help satisfy user and aggregate QoS requirements. Specifying, analyzing, monitoring, and
providing QoS thus involves linking the platform and resource parameters, controls, and
attributes to the broader aggregate and user-based requirements that they satisfy.

This paper describes our QoS Enabled Dissemination (QED) system, which provides a
set of QoS services and mechanisms for SOA-based publish-subscribe middleware ser-
vices that support applications and systems with predictable QoS requirements. Our pre-
vious work on QED has outlined QED’s high-level architecture [28], a prototype imple-
mentation [29], and selected mechanisms and services [30]. This paper explores pre-
viously unexamined dimensions of QED, including its application to publish-subscribe IM
services and experimental results that quantify its efficiency and efficacy.

This paper’s main contributions include the following:
• An approach to Service-Oriented QoS management. This approach includes new QoS

management services and QoS-enabled infrastructure services that make SOA suitable
for applications with strict QoS requirements. QED exposes the controllable bottle-

4

necks usually hidden behind SOA abstractions in a way that enables dynamic manage-
ment of service execution and information dissemination for predictable QoS.

• QoS management for decoupled information-centric systems. A set of QoS-enabled
publish-subscribe-query services that support an information-centric view of system
construction. This view includes new approaches for aggregate QoS management
based on policies over characteristics of decoupled clients, information, and opera-
tions; management of the fanout caused by dissemination to multiple consumers and
multiple results to requests; and dynamic prioritization as the information demands
and clients change.

• Multi-layered, mission-driven QoS management. QED provides a general-purpose
QoS notation supporting mission-, user-, and client-level QoS policies based on actors,
information, operations, and resources. QED’s multiple QoS layers combine high-
level policies, enforcement points, and enforcement mechanisms.

The remainder of the paper is organized as follows: Section 2 describes key QoS re-
quirements in SOA-based IM services; Section 3 describes challenges associated with
managing QoS for SOA-based IM services; Section 4 presents existing research and ap-
proaches; Section 5 describes how QED provides policy-driven QoS management services
and mechanisms for SOA-based IM services; Section 6 analyzes the results of experi-
ments we conducted to evaluate QED’s effectiveness in providing QoS management in
constrained and contended environments; and Section 7 presents concluding remarks and
lessons learned.

2. Requirements for QoS in SOA-based Information Management Services
In theory, ideal QoS support for IM services would consist of information that leaves a
publisher or archive and always reaches every consumer immediately, completely, and
consistently. Moreover, every response to a request should convey the smallest amount of
information that matches user needs exactly. In practice, this ideal QoS is unachievable
since broker and retrieval processing—as well as network delivery—introduces delay into
information dissemination. Likewise, resource failures and overload situations can induce
information loss. Moreover, variations in the time to process requests, burstiness of client
traffic, and competition with other processes can introduce variation into the system per-
formance (jitter). Client requests for information do not always capture exactly the best
qualities that they can use, and the attempt to capture these qualities frequently reduces the
probability that they will match any published objects at all. Clients’ demands on the IM
services can also come into conflict, making it hard/infeasible to provide high QoS to one
without reducing QoS to others.

QoS management services, such as QED, must manage the tradeoffs involved in pro-
viding higher aggregate levels of QoS across the users of IM services. Higher criticality
operations should be provided preferential service. Loss and delay should be introduced
where each can best be tolerated and the choice of which to introduce (when both are un-
avoidable) should depend on which is better tolerated.

Ideally, the pursuit of higher QoS should not introduce thrashing, i.e., higher but unsus-
tainable QoS levels are not necessarily better than slightly degraded—but consistent—
quality. The best information matches should be preferred, sometimes even over more in-
formation matches. Moreover, in those situations where not all information can be deli-

5

vered, the information delivered should be the most important information to the most im-
portant users with respect to the goals of the overall system requirements.

The following are key dimensions of perceived quality and some ways that IM services
can affect them:
• Timeliness – The speed at which brokering happens or the latency through the IM sys-

tem, e.g., how fast a published IO reaches subscribers and how fast query responses
reach the querying client. In general, the greater the timeliness (and conversely, the
lower the latency), the better the perceived QoS.

• Completeness – The number of IOs that reach requesters from those available (i.e.,
published into the IM services) that are relevant (i.e., that match requests).

• Fidelity – A measure of the amount of information in each individual IO. Fidelity con-
cerns whether a requester receives the entire amount (metadata and payload) of a pub-
lished IO.

• Accuracy – A measure of the correctness of information delivered, i.e., whether IOs
delivered to a requesting client have any errors introduced into them (e.g., during
transformation, brokering, or other operations).

• Smoothness – The predictability of performance and consistent latency. In many cases,
perceived QoS is higher if a user receives a consistent and expected quality than if
high quality is interspersed with low quality, to the point where there is a wide varia-
tion and a user cannot know what to expect.

• Suitability – The better a response matches a user’s needs, the higher the perceived
QoS. This means that higher resolution and higher precision IOs are generally recog-
nized as higher QoS than lower resolution or precision. Other characteristics of IOs,
such as source, currency, content, trust, format, and so forth, can make them more or
less suitable for a given request and therefore affect their perceived QoS.

Table 1 describes how QoS can be affected by each IM service shown in Figure 1. These
IM services can adversely affect each of the QoS requirements (and therefore need QoS
management) with the exception of fidelity; there are no IM operations in the core IM ser-
vices that specifically affect the fidelity of individual IOs. Likewise, there is nothing in the
IM services that specifically affects the accuracy or suitability of IOS, although certainly
errors in IOs could be introduced accidentally as the result of errors in implementation.
Moreover, suitability can be affected by the default semantics of the IM service imple-
mentation which return IOs in the order they are published into the system and returned by
the database, even if they are less suitable than something else currently queued for bro-
kering or dissemination.

3. Challenges in Providing QoS in SOA-Based Information Management Services
This section describes the QoS management challenges arising from the use of high-level
abstractions in SOA infrastructure and IM services.

3.1 QoS Management Challenges Due to SOA Infrastructure
SOA is a progression in the evolution of middleware and distributed software engineering
technologies, building upon the basis of distributed objects and components. It encapsu-
lates business functionality as services, such as Enterprise JavaBeans (EJB) or Managed
Beans (MBeans), much in the way that component models, such as the CORBA Compo-
nent Model (CCM), encapsulated functionality as components. Service interfaces in SOA-

6

based systems are specified in standard interface description languages (IDL), such as the
Web Services Description Language (WSDL), which represents an evolution of the IDLs
used for components and distributed objects that preceded the SOA paradigm.

SOA-based systems also typically include an execution container model and support
for inter-service communication, e.g., provided by an Enterprise Service Bus (ESB). Like
the component middleware that preceded it, SOA middleware provides an abstract devel-
opment, deployment, and execution layer that encapsulates the details of distribution, in-
ter-service and client-to-service communication, threading, and runtime execution. SOA
middleware also extends the assembly and deployment languages (often based on XML)
of distributed components to include dynamic service discovery (e.g., the Universal De-
scription, Discovery and Integration, UDDI) and orchestration of services, which com-
bines assembly of services, workflow description, and runtime control of workflow and
service execution.

Although middleware abstractions, such as those in SOA, simplify developing, com-
posing, and executing applications, they incur challenges for managing application QoS.

Table 1. Resources Used and QoS Affected by IM Services
Control
Point

Description Resources Used QoS affected

Submission
Service

Receiving IOs entering
the system as the result
of publishing.

Network bandwidth;
memory to store ob-
jects until they are
processed.

Timeliness, completeness: If the rate,
number, and size of published ob-
jects exceed the bandwidth capacity
it will introduce delay or loss. If the
rate of published objects exceeds the
rate at which they can be processed,
delay will be introduced as objects
are enqueued awaiting processing.

Brokering Predicate evaluation to
match published IOs
with registered subscrip-
tions.

CPU Timeliness, smoothness: Introduces
latency; calls to the predicate evalua-
tor can take differing amounts of
time, depending on the size and
complexity of the metadata and pre-
dicates, thereby introducing jitter.

Archiving Insertion of a published
IO into the IO Repository

CPU to process arc-
hive. Disk space to
store IO.

Timeliness: Introduces latency.

Query
processing

Evaluation of a query
operation and subsequent
retrieval of results.

CPU to process the
query operation.
Memory to store the
results (potentially
many).

Timeliness, smoothness: Introduces
latency. Queries can take differing
amounts of time and result in differ-
ent size result sets, thereby introduc-
ing jitter.

Dissemination Delivery of the results of
brokering (a single IO) to
matched clients (poten-
tially many). Delivery of
the results of a query
(potentially many IOs) to
the requestor (a single
querying client).

Memory to store the
IOs being delivered.
Bandwidth to deliver
the IOs.

Timeliness, completeness, smooth-
ness: If the rate, number, and size of
IOs exceed the amount of bandwidth
capacity available to send them, de-
lay or loss will be introduced. Since
IOs will vary in size, they will take
different amounts of time and band-
width to send, introducing jitter.

7

We describe these challenges in the following paragraphs in terms of SOA, but they are
common to infrastructure middleware with similar aims as SOA.

SOA Infrastructure Challenge 1 – SOA infrastructure abstracts away the visibility
and control necessary to manage QoS. For example, JBoss, which is an open-source im-
plementation of Java 2 Enterprise Edition (J2EE), includes an Application Server (AS) that
provides a container model in Java for executing services. The JBoss AS container hides
runtime- and platform-level details useful for QoS management, including the number of
threads, invocation of services, assignment of service invocations to threads, and CPU
thread scheduling. JBoss can thus create more threads than can be run efficiently by the
hardware (leading to CPU over-utilization) or fewer threads than needed by application
and system services (leading to CPU under-utilization). Likewise, without QoS manage-
ment, important services in JBoss can block waiting for threads, while less important ser-
vices run (leading to priority inversion). Moreover, since service execution times vary,
service invocations can tie up threads for potentially unbounded amounts of time.

As another example, the JMS communication middleware hides details, such as the
transport protocol, the amount of bandwidth available and used, contention for bandwidth,
and communication tradeoffs (e.g., loss and delay characteristics). JMS provides point-to-
point and publish-subscribe communication, reliable asynchronous communication, guar-
anteed message delivery, receipt notification, and transaction control, but does not expose
any queue or flow control, so that large rates of messages, constrained bandwidth, or vary-
ing message sizes can end up with more important messages being delayed (even indefi-
nitely) while less important messages are sent. In extreme cases, queues can fill up or
grow unbounded, leading to resource exhaustion, information loss, or unbounded delay.

SOA Infrastructure Challenge 2 – Many QoS parameters and configuration options
are low-level whereas QoS requirements and the SOA concepts they work within are
higher level. Many SOA implementations provide certain QoS parameters and configura-
tion choices that are useful, but not sufficient, to support higher-level QoS provisioning.
For example, JMS provides hints that allow JMS implementations to support QoS via
three parameters: delivery mode (persistent or non-persistent), priority, and time-to-live.
There is little/no support, however, for visibility into bandwidth availability and use,
matching flow of information to the bandwidth available, and managing contention for
bandwidth across multiple JMS connections. Likewise, JBoss includes a message bridge
for sending messages reliably across clusters, WANs, or unreliable connections that speci-
fies the following three levels of QoS:
• QOS_AT_MOST_ONCE specifies unreliable delivery, where messages may be lost,

but will not reach their destinations more than once.
• QOS_DUPLICATES_OKAY specifies reliable delivery, where messages might be

delivered more than once if a message arrives, but its acknowledgement is lost.
• QOS_ONCE_AND_ONCE_ONLY specifies reliable delivery of both a message and

its acknowledgement.
Although these QoS levels specify message delivery reliability, they do not specify the

performance, resource usage, or prioritization of messages or information flows. Moreo-
ver, these QoS features lack support for aggregation and mediation of competing QoS re-
quirements for users and connections that are sharing bandwidth, for coordinating CPU
and bandwidth usage, and for dynamic bottleneck management. In contrast, the QED QoS
capabilities described in Section 5 provide this support.

8

3.2 QoS Management Challenges Due to IM Service Middleware Abstractions
While SOA environments present challenges for QoS management, IM services provide
another layer that incurs additional challenges by encapsulating low-level details and pre-
senting an information-centric abstraction (based on a publish-subscribe-query communi-
cation model) that enables the discovery and dissemination of information based on topic
and content. This abstraction hides the details of the processing needed for brokering, the
bandwidth needed for transmitting and disseminating information, the memory needed for
storing and caching information, and the contention for these resources between de-
coupled clients (i.e., with no fixed connections), varying data rates and sizes, and varying
numbers of users.

Providing QoS management in IM services is similar in spirit to traditional operating
system scheduling problems (e.g., the scheduling of tasks that use CPU, such as brokering
and query processing, or tasks that use bandwidth, such as dissemination), and network
flow control problems, (e.g., optimizing the flow of IOs through the information broker).
The following significant differences, however, make QoS management in IM services
and the publish-subscribe-query operations they support even more challenging:
• IM Service Challenge 1 – Data size is not uniform. Network routers can assume a

maximum transmission unit, which is a relatively small (and sometimes fixed) packet
size. In contrast, IOs can differ significantly in size and complexity, both in metadata
and payload. This diversity makes it hard to estimate the resource usage (e.g., band-
width to send and memory and disk space to store) and time for processing a priori.

• IM Service Challenge 2 – Processing can vary significantly in time. Predicate evalu-
ation and query processing are affected by the number of predicates and subscribers;
predicate complexity; and the size and complexity of metadata.

• IM Service Challenge 3 – The destination of information is unknown when infor-
mation enters the system. There is no opportunity for end-to-end QoS management or
prioritized treatment based on the importance of information destination or knowledge
of its use.

• IM Service Challenge 4 – There are two occurrences of fanout. A single published
IO can match multiple subscribers and a single query can result in many IOs to de-
liver. This fanout means that the downstream resource usage (e.g., during dissemina-
tion) of a published IO or a query is hard to predict and take into consideration in up-
stream management (e.g., during submission, brokering, and query processing).

4. Related Work
Previous research in QoS management strategies for distributed systems has primarily in-
volved dynamic or pro-active allocation of resources for service provisioning, as well as
the application of QoS capabilities at different levels of the infrastructure. This section
presents prior work in several related areas.

QoS management in middleware and SOA. Prior work focused on adding various QoS
capabilities to middleware. For example, [24] describes J2EE container resource manage-
ment mechanisms that provide CPU availability assurances to applications. Likewise, 2K
[49] provides QoS to applications from varied domains using a component-based runtime
middleware. In addition, [11] extends EJB containers to integrate QoS features by provid-
ing negotiation interfaces which the application developers need to implement to receive
desired QoS support. Synergy [37] describes a distributed stream processing middleware

9

that provides QoS to data streams in real time by efficient reuse of data streams and
processing components. [31] presents an algorithm for composing services to achieve
global QoS requirements. In [27], Lodi et al use clustering (load balancing services across
application servers on distributed nodes) to meet QoS requirements for availability, timeli-
ness, and throughput.

The DCBL Middleware [47] uses a reinforcement learning approach combined with a
control mechanism to improve and adapt QoS for a set of heterogeneous applications in a
dynamic environment. G-QoSM [1] describes a mechanism for QoS management in a grid
computing architecture by reserving some of the system capacity for utilization for certain
classes of operations if there is resource failure or congestion. In [5] and [54], the authors
show genetic algorithm based approaches for QoS-aware selection and composition of
web-services and discrete operating modes for pre-defined QoS allocations.

Publish-subscribe middleware. Eugster et al provide an overview of the pub-sub inter-
action pattern, highlighting the decoupled nature of publishers and subscribers in time,
space, and synchronization [4]. A few researchers have investigated QoS management in
pub-sub middleware. Mahambre et al present a taxonomy of pub-sub middleware with
QoS features, acknowledging significant gaps in the provision of QoS features to the ex-
tent that some environments need [32]. Likewise, a comparison of two common pub-sub
systems, the Java Message Service (JMS) and the Data Distribution Service (DDS), focus-
ing on their QoS features, is provided in [9]. For those pub-sub systems with QoS parame-
ters, Hoffert et al provide machine learning techniques for configuring the QoS parameters
[22]. Behnel et al provide a set of QoS metrics described in the context of publish-
subscribe systems [3].

The research described in this paper improves on these pub-sub systems in the follow-
ing ways. First, while the systems are similar in their loose coupling of information pro-
ducers and information consumers, many of the existing pub-sub systems simply provide
an interface for disseminating information, rather than the rich, active information man-
agement of the IM services. In some cases, this limits the matching to “topics”, which is a
coarse division of all information into logical groups based on a shared topic name. In
contrast, the IM services that we describe support pluggable brokering that can match over
rich sets of metadata using predicate languages like XQuery and XPath. Many existing
pub-sub middleware implementations also only support future information in the form of
subscriptions. That is, consumers register interest in a topic and get information for that
topic that is published from that point onward. There is little or no support for archival of
information and matching and retrieval of past information without programming the sup-
port outside the pub-sub middleware.

Second, while several of the existing pub-sub middleware systems provide QoS para-
meters, they do not, in general, support the aggregate, dynamic, and policy-driven QoS
that the QED system provides. For example, DDS’s QoS parameters apply to a particular
connection, even though multiple connections can contend for shared bandwidth. The oth-
er pub-sub systems expose the QoS parameters to the application layer, but do not provide
a language for expressing the QoS requirements based on application-level concerns, i.e.,
users, operations, information, and resources. They also do not provide the means for de-
conflicting inconsistent or competing QoS requirements.

Network QoS management in middleware. Prior work focused on integrating network
QoS mechanisms with middleware. Schantz et al [39] show how priority- and reservation-

10

based OS and network QoS management can be coupled with standards-based middleware
to better support distributed systems with stringent end-to-end requirements. El-Gendy et
al [15, 16] intercept application remote communications by adding middleware modules at
the OS kernel space and dynamically reserve network resources to provide network QoS
for the application remote invocations. In [38], the authors proposed a statistical traffic
signature method to identify different classes of service for QoS management.

Schantz et al [40] intercept remote communications using middleware proxies and pro-
vide network QoS for remote communications by using both DiffServ and IntServ net-
work QoS mechanisms. Wang et al [48] provide middleware APIs to shield applications
from directly interacting with complex network QoS mechanism APIs. Middleware
frameworks transparently converted the specified application QoS requirements into low-
er-level network QoS mechanism APIs and provided network QoS assurances.

Deployment-time resource allocation. Other prior work has focused on deploying ap-
plications at appropriate nodes so that their QoS requirements can be met. For example,
[26, 45] analyzed application communication and access patterns to determine collocated
placements of heavily communicating components. In [6], the authors focus on the service
pre-allocation problem in the context of multi-media applications, for distributed indexing
management. The approach relies on pre-allocation of resources for index management
and load distribution. Likewise, [13, 17] have focused on intelligent component placement
algorithms that map components to nodes while satisfying their CPU requirements.

Model-based design tools. Prior work has also been done on model-based design tools
for specifying and enforcing QoS in middleware and applications. For example, PICML
[2] enables distributed real-time and embedded system developers to define component
interfaces, their implementations, and assemblies, facilitating deployment of Lightweight
CORBA Component Model (CCM)-based applications. VEST [44] and AIRES [19] ana-
lyze domain-specific models of embedded real-time systems to perform schedulability
analysis and provides automated allocation of components to processors. SysWeaver [12]
supports design-time timing behavior verification of real-time systems and automatic code
generation and weaving for multiple target platforms. In contrast, NetQoPE provides
model-driven capabilities to specify network QoS requirements on DRE system applica-
tion flows, and subsequently allocate network resources automatically using network QoS
mechanisms. NetQoPE thus helps assure that application network QoS requirements are
met at deployment-time, rather than design-time or runtime.

QoS policy languages. XACML [33] is an OASIS standard designed to address a sub-
set of QoS—access control policy—which is a subset of security (itself one property of
QoS). XACML specifies several roles for policy authoring, decision making, and enforce-
ment, including a Policy Decision Point (PDP) and Policy Enforcement Point (PEP).
XACML specifically states that the PEP initiates decision requests, i.e., an entity tries to
gain access to a resource through a PEP and the PEP then asks the PDP to evaluate current
policies and provide a response by which the PEP can either grant or deny access. This
approach fits the local scope of access control, i.e., control is granted to a local resource,
but not that of broader QoS properties. Aggregate QoS management requires higher-level
(i.e., incorporating aggregate- and application-level priorities and context) and broader
(i.e., encompassing many PEPs) scope. Managing access to, and use of, a single resource
may or may not contribute to overall application, aggregate, or mission-level QoS, and is
inadequate by itself to provide application, aggregate, or mission-level QoS. The PEP-

11

PDP dataflow in the XACML specification language is thus not sufficient for the general
context aware QoS case. Providing QoS requires the coordination of many PEPs, based on
higher-level, aggregate and mission-based policies, and therefore cannot be initiated solely
by PEPs. Instead policies must be evaluated at PDPs when needed and the results of the
policy evaluation should be pushed to the PEPs, which then enforce it. This approach pro-
vides part of the coordination needed since a PDP that makes an aggregate QoS decision
will push consistent results to the PEPs, which then ensures consistent, coordinated QoS
management if the PEPs enforce the policy decision as they are directed.

As described in the remainder of this paper, our work on QED builds upon and en-
hances prior work on QoS-enabled middleware and model-based tools by providing QoS
for SOA-based IM services that (1) works with existing standards-based SOA middle-
ware; (2) provides aggregate, policy-driven QoS management; and (3) provides applica-
tions and operators with fine-grained control of tasks and bandwidth. In addition, QED
decouples policy selection, parsing, and dissemination, which constitute the aggregate de-
cision making and occur on discrete epochs, such as when users come and go or resource
availability changes, from policy enforcement, which can be done in-line with processing
and information dissemination, where resources are actually consumed, but which can
happen much more frequently and rapidly.

5. QoS Management Capabilities for SOA-Based IM Services
This section describes how we developed the QoS-Enabled Dissemination (QED) middle-
ware to meet the requirements for QoS in SOA-based IM systems described in Section 2
and address the challenges
presented in Section 3. The
QED middleware contains
the layers shown in Figure 2
and described below:
• An aggregate QoS man-

agement layer that man-
ages overall QoS policies,
mediates conflicting de-
mands for QoS across
clients of the IM services,
and monitors delivered
QoS for the overall sys-
tem;

• A local QoS management
layer that manages QoS
policies at individual pol-
icy enforcement points;
and

• A QoS enforcement me-
chanism layer with spe-
cific QoS enforcement
mechanisms.

Figure 2. QED’s SOA-based Layered Architecture.

Aggregate QoS Management
• Mediate and allocate QoS policy across multiple users

and enforcement points
• Distribute parsed policy to local enforcement points

Local QoS Management

• Control access to resources
• Select, configure, and execute QoS mechanisms

QoS Enforcement Mechanisms
• Set thread priorities and schedule threads
• Allocate bandwidth and differentiated priorities
• Shape information and processing (rate control,

compression, filtering, etc.)

12

QED’s policy-driven QoS mechanisms ensure the timely brokering and dissemination
of important information through the IM services, ensure smoothness of information bro-
kering and dissemination, make tradeoffs to favor completeness or fidelity when systems
are overloaded, and enforce client preferences and priorities to increase suitability.

We have implemented prototype versions of the QED architecture based on the JBoss
Application Server [23] and the Spring application framework [43]. These prototype im-
plementations of QED include two Local QoS Managers (LQMs): (1) a Task Management
LQM that manages access to the CPU by scheduling CPU intensive tasks, such as broker-
ing, by managing the size of the thread pool, assigning threads to processing, and setting
thread priorities, and (2) a Dissemination Service LQM that manages access to shared
network bandwidth by prioritizing outgoing IOs based on importance, size, and policy.
Likewise, the QED prototype implementations include the following QoS mechanisms:
(1) differentiated queues that prioritize operations and dissemination tasks, (2) IO shaping
that reduces the amount of bandwidth consumed and matches client preferences, utilizing
compression, cropping, scaling, filtering, and transformations (using XSLT [53]), and (3)
partitioned predicates that group and prioritize registered predicates to enable finer
grained control over the time to broker IOs.

With these capabilities, QED addresses the challenges of providing QoS in SOA and
IM systems identified in Section 3 in the following ways:
• It addresses SOA Infrastructure Challenge 1 by managing the scheduling of threads

and bandwidth typically hidden behind SOA interfaces.
• It addresses SOA Infrastructure Challenge 2 by providing and enforcing QoS policy

that is specified at a high level, based on user, information, and system concepts.
• It addresses IM Service Challenges 1 and 2 through the use of binned queues, band-

width estimation, and task management to handle information that varies in size and
processing that varies in time.

• It addresses IM Service Challenge 3 by providing policy-driven aggregate QoS man-
agement across control points and across users, despite the publishing and consuming
users being decoupled from one another.

• It addresses IM Service Challenge 4 by separately scheduling the brokering of re-
quests and dissemination of information, so that fanout is managed. Important re-
quests are brokered before less important requests, and results are delivered to impor-
tant consumers in preference to delivery to less important consumers.

The QED prototype also includes a Web Services-based QoS administration interface
that supports entry/selection of QoS policies and monitoring of delivered QoS, as well as a
QoS monitoring service that collects statistics on resource usage and delivered QoS for
feedback into QoS managers and for visualization through QoS administration interface.

The remainder of this section describes the structure and functionality of the QED ca-
pabilities shown in Figure 3 (i.e., aggregate QoS management, QoS policy, task manage-
ment local QoS management, and bandwidth management) and explains how these capa-
bilities address the challenges described in Section 3.

5.1 Aggregate QoS Management
The QED aggregate QoS management service creates a set of policies guiding the beha-
viors of the local QoS managers that enforce CPU scheduling and bandwidth utilization.

13

The purpose of the aggregate QoS manager is to maintain predictable behavior throughout
the orchestrated system of clients and services. Since the load of client and user demands
will vary, it is likely that there may not be enough bandwidth or CPU resources to provide
the QoS requested by everyone. If these resources are not managed properly, no user will
get a reasonable level of QoS (i.e., leading to the tragedy of the commons [21]). Aggregate
QoS management mediates conflicting demands for QoS management, providing availa-
ble resources to the most critical services or clients.

Each local QoS manager (task, submission, and dissemination) has only a local view.
The aggregate QoS manager thus provides policies that are consistent to related control
points. For example, if a policy indicates that a service invocation should have a high
priority for CPU thread scheduling, then information produced by the service invocation
should also have high priority for dissemination to clients or other services. This design
addresses the IM Service Challenge 3 to support consistent management of QoS from pub-
lication through brokering and dissemination.

When a client is authenticated (using an authentication service) to gain access to ser-
vices, the authentication credentials and other information about the user, client, and or-
chestration are forwarded to the aggregate QoS manager. The aggregate QoS manager ac-
cesses the policy store to get the list of policies that can apply to the user, client, and oper-
ations that the client can invoke. The aggregate QoS manager resolves the list to remove
overlapping and contradictory policies, using a configurable policy precedence scheme de-
scribed below. The equivalent of a session is created for the client’s operations on services
in its orchestration and the relevant policies are distributed to the local QoS managers us-
ing properties on the session.

In this way, the aggregate QoS manager translates high-level, goal- and user-specified
QoS policies into actionable QoS policies that apply to observable properties of a client,

Figure 3. QED Aggregate QoS Management Capabilities for SOA-based IM
Services.

Aggregate QoS Manager

User QoS preferences; QoS requirements

Policy actions

Task Local QoS
Manager

Task queues

Insert task

Extract task

Get thread to
assign to task

Thread Pool

information messages

Insert
info

Extract
info

Policy StorePolicy

Task
Creation

Operation
task object

Operation

Client

Diss. queues

QoS Context

inform
mess

Bandwidth
Manager

BW allocation

Parsed
policy
values

Dissemination
Local QoS
Manager

Client

Task

Rate Limiting
Control

Client

Submission Local
QoS Manager

information
message

User authentication
and credentials

14

operations it can invoke, information (e.g., parameters or messages), and resources, which
addresses the SOA Infrastructure Challenge 2 by mapping the high-level QoS policies to
lower-level QoS controls. The actionable policies distributed to local QoS managers can
be checked quickly at local enforcement points via attribute lookups and relational com-
parisons so they can be applied in the control and data flow path. In contrast, policy loo-
kup, parsing, and distribution of policies by the aggregate QoS manager is out-of-band
with the control and data flow and is relatively infrequent compared to local policy en-
forcement. They occur only on discrete events that affect the overall distributed system,
such as the entry of new clients, resource failure, and changes in overall QoS goals or poli-
cies.

5.2 QED QoS Policies
QED’s QoS Policy specification language enables users to describe system contexts via
meaningful, domain-specific concepts (such as subscriptions to imagery by ground rescue
crews) and map these contexts to QoS concepts (such as the relative importance of fulfil-
ling a request and the types of information filtering and shaping that are desirable for that
context). Through its high-level specifications and its mapping to QoS concepts, QED
QoS policy language helps address SOA Infrastructure Challenge 2. QoS policies in QED
are independent of the underlying IM service implementation. These policies are also for-
mal and readily accessible by software for reasoning and enforcement, as described below.

QoS policy definition. Each QoS policy in QED defines a mapping from the conditions
in which the policy applies to the effects of the policy, i.e., QoS Policy = System Context
(O,M,E) QoS Settings (v,i,P). QoS policy conditions describe a System Context in terms
of the properties that can be observed about the system behavior and state, represented by
a Boolean function over any or all of the properties of the operations (O), information (M),
and entities (E) involved. Zero or more attributes from each category may be used in a
policy’s System Context definition.

QED’s Policy specification language enables system contexts to range from the most
general ‘default’ context (e.g., any operation by any user on image types), to specific con-
texts such as analyst publishing rescue images. The system context is extended to include
Resources, such as queue lengths, CPU, and bandwidth, by introducing a resource moni-
toring component, g(R), that adds and removes sets of policies based on monitored re-
source states such that g(R) (f(O,M,E) (v,i,P)).

The effects of the policy describe the desired QoS Settings for the given system con-
text. In the QoS Settings the precedence level, v, is required and aids in selecting between
conflicting policies; higher precedence policies are enforced in favor of lower precedence
ones. By convention, policy precedence differs based on the policy source, such as admin-
istrator-level policies that can override policies from a less privileged user. Among poli-
cies from sources with equal precedence, higher precedence is assigned to those with more
specific system context descriptions.

The importance, i, is an optional domain-specific measure of the relative value of an
operation, type, or client to an overall system’s goals. This value is used, along with other
factors such as cost, to prioritize processing and dissemination of information.

QoS preferences, P, define a named set of limits and tradeoffs among aspects of QoS,
such as deadlines for delivering IOs through the IM services and the ranges of information
filtering and shaping allowed. Zero or one QoS Preference Sets may be included in a pol-

15

icy and each QoS preference set includes one or more name-value pairs from a predefined
list of preference names. It is here that we capture aspects such as GPS track information
being replaceable in most contexts where only the most recent position is useful.

The QED QoS policy specification language is implemented in the KAoS policy
framework [46] using the extensible OWL semantic web language [50]. KAoS provides a
generic construct for obligation policies that maps a context description to a desired action
or state. Within this core policy construct, we extended the OWL ontology of policy con-
cepts available to KAoS to include new hierarchies of domain-specific classes of IM oper-
ations, information types, and users including roles and groups.

Figure 4 graphically depicts the OWL classes used by the KAoS-based implementa-
tion, the properties defined for these classes, and the range of each property. The Create-
ServiceOrchestration shown in this figure is an abstract action that represents the start of
any new session for a client such as creating a subscription. This action class defines prop-
erties for each of the observable attributes of this type of action including the orchestration
type and the information type. Policies are defined in terms of restrictions over the proper-
ties of the action. When a component performs a policy check, it creates an instance of the
action that is then checked against the restrictions in the policy to determine whether the
policy applies to the given instance.

The orchestrationType is an OWL object property with a range over the OWL Orche-
strationType class, with instances Publish, Subscribe, and Query for the IM service con-
text in which the QED QoS policies are defined. In QED, an orchestration represents an
aggregate composition of services over which policies apply. For example, the IM Publish
orchestration instance refers to a composition of the Submission, Brokering, Archive, and

Figure 4. Representation of OWL Ontology Describing Service Orchestration
Creation Context, QoS Settings, and Attributes of QED QoS Preferences.

16

Dissemination services needed to
process a published IO, as shown in
Figure 5.

Each IM service includes an object,
called a Context, that holds information
about the service’s state. The properties
of a service orchestration therefore hold
all the observable information about the
entity (i.e., the actor), operation, and
information that makes up the condition
of a QoS policy rule. QED uses orches-
tration instances to store parsed policies
and to disseminate policies to the local
enforcement points, as described below. The orchestrationUID is a string property con-
taining the unique ID of an orchestration instance associated with a client’s connection to
the IM services.

The informationType is a domain-specific identifier for the type of information, such as
MapImage or ATODocument. Regular expressions can be used in policies to define the
applicable range of values. The userID is an OWL object property ranging over the class
of Actors which includes any Roles or Groups defined in the ontology.

Matching the condition of a QoS policy rule obligates the setting of QoS attributes, i.e.,
the effect of the QoS policy. The QoS Settings are represented by an operation SetServi-
ceOrchestrationQoS which specifies setting the following attributes on the context objects
in the appropriate Service Orchestration instance:
• Precedence, which defines an integer ordering used to determine how to resolve am-

biguities in overlapping policies. Higher precedence policies can override policies
with lower precedence values so administrators can define wide-ranging policies that
cover most cases and then make specific exceptions to override the base case. For ex-
ample, allowing compression before disseminating any images could be the default
case, overridden by a higher precedence policy for specific image types and opera-
tions for which the fidelity must be maintained. QED currently assigns a precedence
automatically based on the source of the policy (e.g., Administrator vs. User) fol-
lowed by the specificity of the rule criteria. More specific policies are, by default,
given preference in comparison with more general policies.

• Importance, which is an integer value representing the relative importance of infor-
mation in a given context to the overall success of the mission or operation.

• qosPreferences, which is a set of constraints on QoS behaviors that can be used to
determine how to best adjust the performance of a client’s information flow in the
face of resource bottlenecks. This OWL object property defines a range over the class
of QoSPreferences, which in turn contains the following properties: (1) MaxUsable-
DelaySeconds, which is the integer number of seconds of delay in the IM services af-
ter which the information is no longer useful in the given context (a value of 0 indi-
cates that there is no maximum delay, i.e., indefinite delay), (2) ReplacePerPublisher
(range: 0,1), which is a Boolean indication of whether an IO queued in the IM should
be replaced (dropped) if a new IO from the same publisher arrives, (3) ArchiveMo-

Figure 5. The IM Publish Orchestration

SubmissionService

InformationBrokeringService ArchiveService

[Producer client]

DisseminationService

[Consumer client]

17

difier/SubMatchModifier, which are integers between -1 and 1 weighting the tradeoff
between subscription matching and archival where a higher value indicates higher de-
sired QoS for one over the other, and (4) ActiveFilterConfigurations, which is a list of
string values that identifies the shaping operations that QED can perform.

QoS Policy Management and Decision Making. QED includes a Policy Store compo-
nent, as shown in Figure 3, that maintains the set of policies available and provides trans-
actional management of policy storage, retrieval, parsing, deconfliction, and dissemina-
tion. The primary role of the Aggregate QoS Manager is to manage the overall QoS poli-
cies for the information services and their users and disseminate the appropriate policies to
the points at which they can be enforced. It reasons about the applicable set of policies as-
sociated with users, their information type and operations, and the resources in the system.
It also manages the distribution of the appropriate policies to the local enforcement points,
as described below. The QED Aggregate QoS Manager performs policy checking and
conflict resolution when Submission and Dissemination Services create a service orches-
tration and the resulting QoS Preferences are set as attributes on the appropriate context
object, as shown in Figure 6.

QED includes two implementations of the Policy Store: one based on the KAoS policy
services and another implemented with Plain Old Java Objects (POJOs). The KAoS ver-
sion includes a step to translate policies into OWL, uses the features of the KAoS Direc-
tory Service to store and retrieve policies, and includes a step to parse OWL-specified pol-
icies into Java classes. This design enables the KAoS version to use ontology classes to
create policies concerning classes such as user groups and roles and abstract information
types, such as all images. The POJO version stores the policies in the Java classes directly
and provides Java methods to store and retrieve policies. The POJO version is limited to

Figure 6. The QED Aggregate QoS Manager Workflow

18

lists of individual users and information types.
Since multiple policies may apply to the

context of a single action, f(O,M,E), and these
policies may specify conflicting QoS Settings
(v,i,P), a mechanism to resolve these conflicts
is required. The Aggregate QoS Management
class contains the logic to resolve conflicts
among a set of applicable QoS policies to ar-
rive at a single Importance value (i) and a sin-
gle value for each of the QoS Preference. This
algorithm depends upon the relative precedence
values (v) for the policies as well as the relative
importance values associated with the policies
to calculate a single aggregate value for the im-
portance (i) and each of the QoS preferences
(p) according to the following rules:
• Importance (i): find the highest precedence

level (v) at which (i) is specified, then take
the highest (i) with that precedence; Impor-
tance = max(i, max (vi)).

• QoS Preference (p): find the highest precedence level (v) at which (p) is specified,
then find the highest importance value (i) associated with (p); QoS Preference =
max(p, max(ip, max(vp))).

Dissemination of QoS Policy. The aggregate QoS manager uses orchestration instances
to disseminate policy to the local QoS managers. When a client creates a connection to the
IM services to publish, subscribe, or query, the appropriate orchestration instance is instan-
tiated and assigned a unique identifier as its orchestrationUID. The aggregate QoS man-
ager selects the policies that apply to the client, information types it registers, and opera-
tions, deconflicts the policies, parses them, and sets attributes on the orchestration in-
stance’s context objects. The parsed policy is then available through efficient attribute loo-
kups at each of the local QoS enforcement points, e.g., where CPU or bandwidth is con-
sumed by invocations of the Brokering or Dissemination services, respectively.

5.3 QED Task Management
Predictable performance requires managing the execution of all CPU intensive operations,
such as IM Broker Service invocations, for each CPU (or equivalent virtual machine, VM)
onto which clients and services are distributed, including the following capabilities:
• Prioritized scheduling of operations based on importance and cost (e.g., time to ex-

ecute).
• Limiting the size of the thread pool to a number of threads that can be executed on the

CPU (or a portion allocated to the VM) without overloading it.
• Scheduling according to an appropriate policy, such as strict or weighted fair.

To manage these tasks, QED provides Local Task Managers, whose design is shown in
Figure 7. Each Local Task Manager manages the CPU intensive operations for a given
CPU or VM using priority scheduling, which addresses IM Service Challenge 2. The goal

Figure 7. QED Local Task

Manager Design

Task LQM
Task queues

Insert task

Extract task

Get thread to
assign to taskThread Pool

Task

Task Worker

Service

Invoke

Client

Task Creation

Task

19

is to avoid CPU overload in the form of too many threads or service invocations and to
avoid priority inversion, in the form of lower priority service invocations getting CPU
when higher priority service invocations are awaiting execution.

When CPU-intensive operations such as invocations of the Broker Service are per-
formed, tasks are created and submitted to the Task Manager, where they are inserted into
a binned priority queue using a configurable number of bins (queues), each representing a
priority.1

5.2
 Task creators calculate an importance (derived from policy applied to the opera-

tion, information type, and/or client as described in Section) and cost for the task. The
Task Manager takes importance and cost as inputs and generates a priority (bin assign-
ment). Binned queues also allow QED to support a weighted-fair policy, which is hard to
implement in a heap-based implementation. The tradeoff is that QED has a fixed granular-
ity with which to distinguish tasks.

The QED Task Manager assigns threads from the thread pool to tasks according to a
queue management strategy under control of the aggregate QoS manager. In this manner,
the Task Manager gracefully handles CPU overload by scheduling the highest priority
tasks with the available threads and thus addresses SOA Infrastructure Challenge 1 by
managing the Application Server’s thread pool. QED currently has two queue manage-
ment policies implemented: strict and weighted fair. In both the strict and weighted fair
policies, there is FIFO behavior within individual bins. In Strict, the Task Manager always
pops off the highest-priority bin that is not empty. The weighted-fair queue management
policy provides an opportunity to service all bins with a built in weighting to service high-
er priority bins more often.

Estimating the cost of operations for use in the scheduling decision requires an accurate
model of service execution time. Constructing such models is hard in the dynamic IM sys-
tems we target since service execution time can vary significantly depending on the power
of the platform on which it is deployed and characteristics of inputs to the service (the ba-
sis of IM Service Challenge 2). For example, the time to execute the Broker Service de-
pends heavily on the complexity of registered predicates for subscriptions (expressed in
XPath or XQuery) and the complexity of the metadata of IOs. We combine two ap-
proaches to solve this problem. First, we use heuristics—based on experimental and test-
ing runs—to identify the conditions under which a service is more or less costly to ex-
ecute. Second, a QoS monitoring service [28, 29] that is part of our overall solution moni-
tors service execution and reports the measured time (stored as a time series) to the local
task manager so that its model of service execution time improves as the system executes.

5.4 QED Bandwidth Management
The QED Bandwidth Manager is a host-level entity that assigns bandwidth slices for in-
bound and outbound communications based on policy provided by the aggregate QoS
manager. For SOA architectures, bandwidth is managed at the level of information ob-
jects, not packets, as is done by network-level QoS, since the loss or delay of an individual
packet could invalidate an entire (and potentially much larger) object of information. By
managing bandwidth at the granularity of an information object, the QED bandwidth man-
ager helps address SOA Infrastructure Challenge 2. The inbound and outbound managers
are referred to as the Submission LQM and Dissemination LQM, respectively. The current

1 Bins ensure that insertion time of newly created tasks is constant vs. the log n insertion time needed for heap-based
priority queues.

20

version of the Band-
width Manager provides
a static bandwidth allo-
cation per interface and
to each of the LQMs.

The Submission
LQM architecture,
shown in Figure 8, man-
ages the consumption of
inbound bandwidth by
throttling external clients
and providing band-
width slices to cooperative SOA clients, which in turn enforce the restriction on the
client’s outbound connection. When coupled with information prioritization (enforced by
priority-driven differential queuing on the client’s outbound side), this form of incoming
message rate control serves two purposes: (1) the rate throttling reduces the potential for
resource overload on the service hosts and (2) the utility of information that ultimately
reaches the invoked service is enhanced through outbound prioritization.

The Submission LQM provides a per-process service registration interface for inbound
bandwidth management. This results in an equal sharing of inbound bandwidth resources
per-process. The Submission LQM invokes an out-of-band RMI call to external SOA-
clients to reallocate their bandwidth as needed. As with the aggregate policy distribution,
we expect these reallocation calls will be infrequent compared to the service invocation
and messages to services. Factors such as the duration of the connection lifecycle, fre-
quency of connection failures and client request model for a particular SOA-deployment
should be considered when determining an appropriate reallocation scheme.

The Dissemination LQM architecture, shown in Figure 9, provides managed dissemi-
nation by scheduling over differential queues. Queue counts coincide with the same num-
ber of bins used by the Task Manager. This modular design for managed differential dis-
semination can be used to schedule and send prioritized messages across outbound con-
nections while meeting strict bandwidth requirements. QED uses differential queuing for
outbound messages from services to clients, but the dissemination approach may also be
applied to service-to-
service communica-
tions in deployments
where service-to-
service messages
span host bounda-
ries.

As shown in Fig-
ure 9, the resulting
“write-to-client” call
from a service invo-
cation is treated as a
managed task. When
outgoing messages

Figure 9. QED Dissemination LQM Architecture

Differential Queuing for Dissemination
Aggregate Queues

Client
Queues

Disseminator

Bandwidth
Scheduler

Task

Client
Client

Client

Figure 8. QED Submission LQM Architecture

Server HostHost 1

Host N

Receiving
Service

N
I
C

N
I
C

CONTROL

CONTROL

N
I
C

Submission
LQM

Bandwidth
Manager

Client

Client

Bandwidth allocation per client

Dissemination
LQM

BW alloc
per host

…

21

are to be sent to a client, the Dissemination LQM calculates the importance of the infor-
mation for each receiving client, by checking the parsed policy held in attributes on state
information for each connection. Treating each information-receiving client pair as a dis-
tinct schedulable event controllable by policy addresses the fanout identified in IM Service
Challenge 4.

After calculating the information importance, the Disseminator component of the LQM
will distribute the information to the appropriate ClientQueue. The ClientQueue calculates
the priority from a combination of the provided importance and a cost measure based on
the size of the information being disseminated (representing the amount of bandwidth the
information will consume when sent). At this point, the priority is used to determine
which client bin should be used to enqueue the data.

The head of each ClientQueue bin is managed by a threaded class called the Client-
BinManager, (shown here as a thread-line on the top of each ClientQueue bin). The
ClientBinManager manages two operations for the head item of the queue. The first opera-
tion is an aggregate level enqueue and block. This ensures that each ClientQueue has only
one piece of information allotted per bin that can be in contention for a chunk of the ag-
gregate bandwidth. The second operation is unblock-and-send on signal which is triggered
by the bandwidth scheduler upon selecting a particular client’s priority bin. Through this
mechanism the differential queuing allows for the fair scheduling across multiple client
connections and priority bins.

The Bandwidth Scheduler has a scheduling thread that alternates in a sleep/wake cycle
based on the availability and use of bandwidth. When awakened, the scheduling thread
selects the next dissemination task that should be processed. The scheduling algorithm
provides identical support for the strict and weighted fair algorithms as described in Sec-
tion 5.3. The Bandwidth Scheduler calculates the amount of time to send the information
by dividing the information size by the amount of available bandwidth. It then calls the
callback of the selected task’s ClientBinManager to notify its availability to send the in-
formation message. The send is immediately followed by a sleep for the amount of time
calculated to send the information. At this point, the notified ClientBinManager removes
the actual task from the appropriate bin and sends a message with the information to the
receiving client. By taking information size into account when scheduling an object and
when determining how long it will take to send, QED addresses IM Service Challenge 1.

5.5 Deployment and Distribution of QoS Managers
QED can be configured to allocate a local task manager for each shared CPU resource,
virtual or actual. A host could therefore have one local task manager that schedules opera-
tions running on each CPU. Conversely, it could have several local task managers, one
each for the VMs running on the host with each VM having a specific “partition” of the
CPU (e.g., controlled by the size of their available thread pool).

QED can also be configured to allocate a bandwidth manager for each occurrence of
shared bandwidth, which could be associated with the Network Interface Card (NIC) on a
host, a virtual private network, or dedicated network. True bandwidth management is only
possible in those situations where the network is controlled by the QoS management ser-
vices. Deployment of services across an unmanaged network (such as the Internet) will
result in approximate and reactive QoS management only since the amount of available
bandwidth at any given time, the ability to control competition for the bandwidth, and ho-

22

noring of network priorities (e.g., DiffServ Code Points) is beyond the QoS management
service purview.

Increased performance can be achieved in even these environments, however, through
active monitoring of the bandwidth achieved between two points (e.g., by monitoring the
latency and throughput of messages or using a tool such as TTCP [7]) and shaping and
prioritizing traffic as if that is all the bandwidth available (leaving a reserve of unallocated
bandwidth increases the delivered QoS predictability). QED can also be configured to em-
ploy a bandwidth management technique in environments in which the amount of availa-
ble bandwidth is unknown by using TCP acknowledgements to indicate when the next IO
should be sent. In this configuration, TCP’s congestion control provides an approximation
of the amount of bandwidth available to a connection. This approach comes with some
risk of slight under-utilization of the bandwidth that can be alleviated using heuristics such
as keeping one IO “in transit.”

Likewise, QED can be configured to use a submission and dissemination LQM for
each occurrence of shared bandwidth for incoming and outgoing messages, respectively.
The aggregate QoS manager can be either centralized or distributed. If it is distributed, the
policy stores and policy distribution need to be synchronized.

6. Experimental Results
This section emperically evaluates the QED capabilities described in Section 5 in the con-
text of the publication-subscription (pub-sub) IM services shown in Figure 1 [8, 18, 25],
including (1) a Submission Service that receives incoming information, (2) a Broker Ser-
vice that matches incoming information to registered subscriptions, (3) an Archive Service
that inserts information into a persistent database, (4) a Query Service that handles queries
for archived information, and (5) a Dissemination Service that delivers brokered informa-
tion to subscribers and query results to querying clients.

Below we present the results of the following five sets of experiments conducted to
evaluate the efficacy and performance of the pub-sub IM services implemented using the
QED QoS management services:
1. Evaluate the effect of CPU overload conditions on the servicing of information to

demonstrate QED’s differentiated services.
2. Evaluate the effects of a shared bandwidth resource with high service contention and

show how QED provides predictable service despite the contention (both experiments
are contrasted with a baseline of the pub-sub IM services without QED QoS manage-
ment).

3. Evaluate the performance of applying new policies to QED’s QoS management infra-
structure and QED’s ability to change policies dynamically and efficiently to handle
many users and policy rules.

4. Evaluate QED’s ability to shape information characteristics (e.g., size and rate) to
match the available bandwidth and improve overall QoS.

5. Evaluate QED’s ability to deconflict policies when multiple policies apply in a dy-
namic situation.

All experiments were run on ISISLab (www.isislab.vanderbilt.edu) using the Red Hat
FC6 operating system over dual core 2.8 Ghz Xeon processors with 1 GB RAM and giga-
bit Ethernet (the Bandwidth Bound experiments required custom bandwidth limitation via

23

the Linux kernel). Each experiment was conducted on three nodes: one for subscribers,
one for publishers, and one for JMS and QED services.

5.1 Experiment 1: Evaluating QED’s Differentiated Service During CPU Overload
This experiment evaluated QED’s ability to differentiate service to important clients and
information during CPU overload situations. The information brokering and query ser-
vices are the most CPU intensive IM services. Each subscription or query has a predicate
(specified in XPath or XQuery) that is evaluated and matched against metadata of newly
published (for information brokering) or archived (for query) information objects.

The experiment used three subscribing and three publishing clients (one each with
high, medium, and low importance), with each subscriber matching the information ob-
jects from exactly one publisher. To introduce CPU overload, we created an additional
150 subscribing clients with unique predicates that do not match any published objects.
These subscriptions create CPU load (in the form of processing many unique predicates)
without additional bandwidth usage (since the predicates do not match any IOs, no addi-
tional messages are disseminated to subscribing clients). We then executed two scenarios:
one in which all CPU load is caused by low priority information and the other in which
CPU load is caused by all information (high, medium, and low importance).

In the first scenario, the high and medium importance publishers publish one informa-
tion object each second (1 Hz), while the low importance publisher publishes 300 infor-
mation objects per second (300 Hz). The evaluation of the 153 registered predicates
against the metadata of the two high and medium importance information objects is well
within the capacity of the CPU, while the evaluation of the 153 registered predicates
against the 300 low importance information objects (a total of 45,900 XPath/XQuery
searches per second) is more than the CPU can handle.

Figure 10 shows a comparison of the number of high and medium importance informa-
tion objects in the baseline IM services running over JBoss and the IM services running
over JBoss with QED QoS management. The JBoss baseline does not differentiate the op-
erations competing for the overloaded CPU. As a result, therefore, only slightly more than
half of the high and medium importance information is delivered (.58 Hz for both high
and medium publish-
ers).

In contrast, The
QED services used
JBoss threads to bro-
ker the more impor-
tant information. As a
result, they achieved a
rate of .99 Hz for both
the high and medium
information publish-
ers, nearly the full 1
Hz publication rate,
prioritizing both over
the low importance
information that is

Figure 10. Differentiation among High and Medium Im-
portance Clients in a CPU Overload Scenario.

0

0.2

0.4

0.6

0.8

1

1.2

High Med

In
fo

rm
at

io
n

ob
je

ct
s p

er
 se

co
nd

Importance of information publisher

JMS

QED

24

overloading the system. The baseline JBoss system processes the low importance informa-
tion at 16.28 Hz, while the JBoss system with QED services processes them at a rate of
13.59 Hz, which indicates there is significant priority inversion in the IM services running
over the baseline JBoss, i.e., lower priority information is processed when there is higher
priority information to process.

In the second scenario, all three publishers publish at a rate of 20 information objects
per second (i.e., 20 Hz). This experiment overloads the CPU with predicate matching of
information from high, medium, and low importance publishers, each of which is suffi-
cient by itself to overload the CPU of our experiment host. Figure 11 shows how the IM
services running on
the baseline JBoss
system exhibit no
differentiation,
processing almost
equal rates of high,
medium, and low
importance informa-
tion (5.9 informa-
tion objects per
second). In contrast,
the QED services
cause the IM servic-
es and JBoss to pro-
vide full differen-
tiated service, with
the high importance
information being
processed at the much higher average rate of 15.52 information objects per second.
Meanwhile, medium and low importance information are not starved, and medium impor-
tance information is processed twice as often (0.2 Hz) as low importance (0.1 Hz).

5.2 Experiment 2: Evaluating QED’s QoS on Bandwidth Constrained Links
Outgoing messages from the Dissemination Service to requesting clients and incoming
messages to the Submission Service from publishing clients are the most bandwidth inten-
sive IM services. This experiment forced a bandwidth bottleneck by constraining the
shared bandwidth available from the Dissemination Service to all requesting clients to 320
Kbps. We then evaluated the ability of the IM services to use this constrained bandwidth
for important outgoing traffic when utilizing the baseline JMS communication middleware
and JMS with QED QoS management.

After constraining the outgoing bandwidth, we ran three publishers, publishing two in-
formation objects with a 1KB payload each second, and twelve subscribers, each with
identical predicates that match all published information (i.e., all subscribers are interested
in the data being published by all three publishers). This configuration ensured that the
predicate processing (i.e., the CPU) is no longer a bottleneck. Each information object was
delivered to 12 subscribing clients, resulting in over 576 Kbps of information trying to get
through the 320 Kbps of available bandwidth.

Figure 11. Differentiation in Second CPU Overload Scena-
rio with Each Publisher Type Overloading the System with
Information.

0
2
4
6
8

10
12
14
16
18

High Med Low

In
fo

rm
at

io
n

ob
je

ct
s p

er
 se

co
nd

Importance of information publisher

JMS

QED

25

Four of the 12
subscribers were set
to high importance,
four to medium im-
portance, and four to
low importance.
Figure 12 shows
that the IM services
running on the base-
line JBoss do not
differentiate be-
tween the important
subscribers and the
less important sub-
scribers, i.e., all
subscribers suffer
equally in JMS. The IM services running on JBoss with QED provides similar overall
throughput, but with better QoS to subscribers that were specified as the most important.

5.3 Experiment 3: Evaluating QED’s Policy Change Dynamism and Scalability
This set of experiments evaluated QED’s dynamism and scalability, measuring (1) how
quickly policy changes can be made and distributed to the LQM services in QED and (2)
how the time to change policies scales with the number of users and existing policies. The
first experiment measured the time to add and distribute a policy when the number of ex-
isting policies is 2, 10, 100, and 300. Figure 13 shows that the time required to check the
new policy against existing
policies and apply the policy
change scales well with the
number of policies existing in
the store. In fact, the slope of
the line decreases as the num-
ber of existing policies in-
creases.

The next experiment meas-
ured the time needed to add
and distribute a policy as the
number of client connections
increases. We made a policy
change with 2, 10, 100, and
500 client connections and
measured the time that elapsed before the policy took effect. The results in Figure 14 show
that the time needed to effect a policy change scales well, with subsecond times to effect a
policy change even with several hundred connections.

Further testing showed that this linear trend continues when both large numbers of
clients and existing policies exist at the same time, with the existing policies in the store

Figure 12. Subscriber Differentiation during Bandwidth-
constrained Operation.

0
2
4
6
8

10
12
14
16
18

High Med Low
In

fo
rm

at
io

n
ob

je
ct

s p
er

 se
co

nd

Importance of subscriber

JMS

QED

Figure 13. Time to Add a Policy Compared to the
Number of Policies.

0

20

40

60

80

100

120

140

0 50 100 150 200 250 300 350

Ti
m

e
to

 ch
an

ge
 p

ol
ic

y (
m

s)

Number of policies in policy store

26

being the primary bottleneck.
QED’s ability to quickly apply
policy changes during run time
adds dynamic control and res-
ponsiveness to the IM policy
infrastructure.

5.4 Experiment 4:
Evaluating QED’s Data
Shaping Capabilities

This set of experiments eva-
luated QED’s ability to dy-
namically change image and
XML payloads to reduce la-
tency and jitter experienced by
end to end users. We conducted four experiments: three that shaped IOs containing im-
agery payload by applying image specific transformations and one that shaped more gen-
eral document-oriented IOs by performing XML transformations.

Image shaping. QED supports a variety of image shaping operations, including crop-
ping, resizing, and compression. Cropping reduces image size by removing less important
or unneeded parts of the image. Resizing involves reducing the image scale by shrinking
the image dimensions (e.g., from 1200x800 to 300x200). Image compression uses com-
pression algorithms (e.g., JPEG) to retain the original image dimensions but accomplish a
smaller size in bytes.

The image shaping experiments all involved a client publishing IOs with payloads con-
taining 1,200x800 images (225 KB size), publishing 3 IOs each second (3 Hz), with a sin-
gle subscriber subscribing to all IOs, and bandwidth limited to 100 KBps. We then confi-
gured the QED services to have a policy that enables each of three specific shaping opera-
tions for the payload of the disseminated IOs. The three shaping configurations were
JPEG compression to a particular image quality (resulting in a payload approximately 38
KB in size), cropping the image to 480x360 (resulting in a payload of 35 KB size), and
resizing the image to 480x360 (resulting in a payload of 40 KB size).

Figure 15 shows the throughput achieved with the three image shaping strategies, com-
pared to a baseline that does no image shaping. As expected, image shaping is able to in-
crease the throughput dramatically with the relative increases in throughput consistent
with the differences in resulting size indicated above. Note that the 3 Hz rate is not
achievable in any of the cases since the image shaping only affects the payload, not the
metadata and transport overhead, such as TCP headers that also contribute to bandwidth
usage.

Combining image shaping with replacement policy can increase the perceived quality
for imagery significantly, by keeping the latency for delivered imagery low and delivering
the freshest imagery available. Figure 16 and Figure 17 show the average latency and jitter
(i.e., standard deviation) of each of the image shaping with replacement strategies. In the
baseline, queues are growing unbounded because the IOs are simply too large to dissemi-
nate at the rate they are being produced. IO shaping transforms IOs to a size that is more
closely matched to the available bandwidth, enabling the QED dissemination service to

Figure 14. Time to Add a Policy Compared to the
Number of Client Connections.

0

100

200

300

400

500

600

700

800

0 100 200 300 400 500 600

Ti
m

e
to

 ch
an

ge
 p

ol
ic

y
(m

s)

Number of client connections

27

better keep up with the rate of publication and keep the average latency to around a second
with low jitter, while the replacement policy flushes old information from the queues.

Figure 16. Average Latency for QED with Image Shaping.

JPEG
Compression Crop 480x360 Resize

480x360

Ave. latency (ms) 1,108.70 736.71 880.18

-

200.00

400.00

600.00

800.00

1,000.00

1,200.00

Av
er

ag
e

la
te

nc
y

(m
s)

Figure 15. Throughput of the Image Shaping Operations Compared to a Baseline
with No Shaping, in a Bandwidth Constrained Scenario.

No Shaping JPEG
Compression Crop 480x360 Resize

480x360

IOs/sec 0.44 1.23 1.85 1.31

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
N

um
be

r I
O

s/
se

c

28

With IO shaping and replacement, QED exhibits orders of magnitude improvements in

average latency over the baseline. Figure 18a shows the latency of the IO processing and
dissemination on a logarithmic scale. The trend of ever increasing latency for the un-
shaped IOs is clear, while the shaping and replacement of IOs is able to better match the
IO size to available bandwidth and control the queue growth, resulting in more controlla-
ble latency. Figure 18 also shows the relative lack of jitter and the ability of QED to main-
tain the latency not just on average, but consistently, within about a second. Figure 18b
shows a closeup of the IO shaping strategies on a linear scale.

XML shaping. QED’s IO shaping supports pluggable algorithms. As an alternative to
image shaping, we tested QED’s implementation of document transformation using
XSLT. We ran an experiment using the xsl:copy-of operation to copy elements selectively
from an XML source payload element-by-element, according to a user specified file and
policy set. The specific XSLT transformation we used is shown below:

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="1.0">
<xsl:template match="/">
 <events>
 <xsl:for-each select="events/detail[priority='high']">
 <xsl:copy-of select="self::node()" />
 </xsl:for-each>
 </events>
</xsl:template>
</xsl:stylesheet>

This XSL transformation takes an IO with an XML payload and only copies those en-
tries that have a priority element set to ‘high’. To gauge the effectiveness of QED’s XML
shaping to reduce latency and jitter, we created three targeted experiments, each with a 50

Figure 17. Standard Deviation (Jitter) of Latency for QED with Image Shaping.

JPEG
Compression Crop 480x360 Resize 480x360

Std. Dev. 127.68 158.70 190.25

-
20.00
40.00
60.00
80.00

100.00
120.00
140.00
160.00
180.00
200.00

St
d

de
vi

at
io

n
of

 la
te

nc
y

29

Hz publisher of IOs with a 300 KB XML document payload, and a subscriber to all of the
IOs. The first experiment had no XML shaping enabled, the second experiment reduced
the XML payload to half size (150 KB) via the above transform shown above, and the
third experiment reduced the XML payload to a quarter (75 KB) of its original size.

Figure 19 shows the throughput achieved with the two XML shaping strategies, com-
pared to a baseline that does no shaping. XML shaping increases the throughput dramati-
cally. As with the image shaping, the increase in throughput is not equal to the difference
in payload size, due to the unshaped metadata and transport overhead.

Figure 20 and Figure 21 show the average latency and standard deviation of the XML
shaping compared to the baseline. Similar to the results for image shaping, reducing the
XML payload results in greatly improved latency. Selectively copying over half of the ele-
ments results a 67% reduction in average latency and over a 94% reduction in jitter. Re-
ducing the XML payload to only a quarter of its original size resulted in a 79% reduction
in average latency and slightly better jitter than seen in the half reduction.

(a) Plotted on a logarithmic scale with the no shaping case

(b) Removing the no shaping case and plotted on a linear scale

Figure 18. Latency of IOs in Shaping Experiments.

1

10

100

1000

10000

100000

1000000

1 51 101 151

La
te

nc
y

(m
s)

IO Number

No Shaping Latency

JPEG Compression Latency

Crop Latency

Resize Latency

0

500

1000

1500

2000

2500

1 51 101 151

La
te

nc
y

(m
s)

IO Number

JPEG Compression Latency

Crop Latency

Resize Latency

30

Figure 20. Average Latency for QED with XML Shaping Versus a Baseline with
No Shaping.

No Shaping Half Remain Quarter
Remain

Ave. latency (ms) 2,793.43 908.86 585.60

-

500.00

1,000.00

1,500.00

2,000.00

2,500.00

3,000.00

A
ve

ra
ge

 la
te

nc
y

(m
s)

Figure 19. Throughput of the XML Shaping Operations Compared To a Baseline
with No Shaping.

No Shaping Half Remain Quarter Remain

IOs/sec 1 1.43 2.6

0

0.5

1

1.5

2

2.5

3

IO
s/

se
c

31

The image and XML data shaping operations supported by QED offer users powerful

policy-driven mechanisms to match information size and rate to the available bandwidth.
When combined with CPU and bandwidth bound prioritization and deadline enforcement,
QED’s information shaping can help keep queue growth (and therefore latency) of impor-
tant IOs bounded (approximating real-time delivery), resulting in increased quality of ser-
vice, improved performance, and a better overall end user experience.

5.5 Experiment 5: Evaluating QED’s Policy Deconfliction Capabilities
This experiment demonstrates how QED uses policy precedence for deconfliction in situa-
tions in which two or more policies apply to the same operation, information, or actor. In
the case of conflicting policy statements, QED uses the policy deconfliction algorithm de-
scribed in Section 5.2 to select the policy statement that supersedes the others.

The experiment consists of two subscribers (JTAC and TOC) and two publishers
(UAV1 and UAV2), the four policy statements shown in Table 2, and a constrained band-
width link set at 24,576 Bytes/sec. All IOs generated are tailored to be exactly 8,192
Bytes, and the bandwidth limit is set to allow three IOs per second to be disseminated. The
experiment includes two information types, Blueforcetrack and Targeting. Initially UAV1
is publishing Blueforcetrack IOs. Halfway into the experiment, UAV2 begins to publish
targeting information. Both subscribers, JTAC and TOC, maintain subscriptions to both
IO types.

Figure 21. Standard Deviation (Jitter) of Latency for QED with XML Shaping

No Shaping Half Remain Quarter Remain

Std. Dev. 1,991.15 118.00 107.03

-

500.00

1,000.00

1,500.00

2,000.00

2,500.00

St
d

de
vi

at
io

n
of

 la
te

nc
y

32

Table 2. Policies used in Experiment 5.

No. Policy Name Operation IO Type Actor Importance Precedence
1 BFT Subscribe Blueforcetrack ─ 5 1
2 TOC#BFT Subscribe Blueforcetrack TOC 7 2
3 Targeting Subscribe Targeting ─ 3 1
4 JTAC#Targeting Subscribe Targeting JTAC 9 2

The experiment shows deconfliction for both information types. Each IO type has a

base policy at precedence 1 (Policy 1 for Blueforcetrack and Policy 3 for Targeting).
These policies (which specify an IO type and operation, but no actor) apply to a subscrip-
tion by any client for Blueforcetrack and Targeting IOs, respectively.

Policies 2 and 4 are user-specific policies at higher precedence levels (precedence 2)
than the base policies. A TOC client subscribing to Blueforcetrack IOs will match policies
1 and 2, which conflict because they assign different importances (5 and 7, respectively).
Similarly, a JTAC client subscribing to Targeting IOs will match policies 3 and 4, which
conflict because they also assign different importances (3 and 9, respectively). Notice also
that in this experiment, when the base policies (1 and 3) apply, subscribers to Blueforce-
track IOs are more important than subscribers to Targeting IOs. However, JTAC clients
subscribing to Targeting IOs are more important (importance of 9) than any other users
subscribing to any IO type, if QED deconfliction performs properly.

During the first part of the experiment, while UAV1 is publishing two Blueforcetrack
IOs per second, policy 1 will apply to both the TOC and JTAC client subscriptions and
policy 2 will apply to the TOC client subscription. Since there are four IOs to disseminate
each second (two Blueforcetrack IOs to each of the two subscribers) and bandwidth to dis-
seminate only three, we expect the TOC client to receive twice as many IOs as the JTAC
client if deconfliction functions correctly (resulting in the higher precedence policy 2 ap-
plying to the TOC client subscription).

When the UAV2 publisher starts publishing one Targeting IO per second, there will be
six IOs to fit into the 3 IO per second constrained bandwidth. We expect the JTAC to re-
ceive one Targeting IO per second (in place of the Blueforcetrack IO it was receiving).
This requires policy deconfliction to work correctly and apply policy 4, since the other
policies applicable to the JTAC would result in delivery of Blueforcetrack IOs. The TOC
subscriber should continue to receive its two Blueforcetrack IOs (but no Targeting IOs due
to the relatively lower importance assigned by policy 3).

Figure 22 shows the aggregate throughput results from a four minute run in terms of
IOs received over one second intervals. Across the entire run, the TOC subscriber receives
approximately two Blueforcetrack IOs per second (the TOC-BFT graph), showing that
policy 2 is correctly selected during the deconfliction of policies 1 and 2 that both apply to
the TOC subscription for Blueforcetracks. During the first two minutes, the JTAC receives
approximately one Blueforcetrack IO per second (JTAC-BFT). At the two minute mark,
UAV2 begins publishing Targeting IOs. The second case of policy deconfliction occurs,
resulting in the correct application of policy 4 to the JTAC subscription to Targeting IOs,
elevating that operation to the highest priority. The graph in Figure 22 shows the behavior
that we expected and that the policies should enforce. Also as expected, Targeting IOs are
not received by the TOC subscriber at any time during the experiment run. The base pol-

33

icy (policy 3) for Targeting applies to this subscription and the importance assigned (3) is
the lowest assigned by any policy, so that IOs of this type for this subscriber never get
scheduled for dissemination.
7. Concluding Remarks
Service-Oriented Architecture and Information Management are emerging as two popular
paradigms for modern net-centric systems. Each provide powerful abstractions for encap-
sulating details and supporting the engineering of complex, distributed systems, enabling
systems to be developed around the concept of composable services and semantically-rich
information objects, respectively. Moreover, information management services have
emerged as a critical set of core services in SOA-based net-centric systems, to handle the
provision, processing, and dissemination of information. QoS-enabled IM services are es-
sential to support dependable and timely information exchange in net-centric systems.
SOA environments and IM services, however, present significant challenges for providing
QoS, which is a key requirement for many mission-critical domains and systems.

This paper presented the QED approach to providing QoS for IM services in SOA en-
vironments. QED addresses many of the challenges associated with providing QoS for IM
services in SOA environments. Our QED prototype and experiments with representative
IM systems show significant improvement in performance, predictability, and control over
the baseline Phoenix [18] and Apollo [8] IM services, and over the JBoss and JMS SOA
middleware. QED includes a high-level QoS policy language, mapping of policies to en-
forcement points and QoS mechanisms, dynamic task and bandwidth management, aggre-
gation of competing resource demands, and QoS policy-driven prioritization and schedul-
ing strategies.

We learned the following lessons from our experience developing and evaluating QED
during the past several years:

Figure 22. Number of IOs disseminated during policy deconfliction experiment.

0

1

2

3

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 10
6

11
3

12
0

12
7

13
4

14
1

14
8

15
5

16
2

16
9

17
6

18
3

19
0

19
7

20
4

21
1

21
8

22
5

23
2

23
9

In
fo

rm
at

io
n

O
bj

ec
ts

 R
ec

ei
ve

d

1-Second Intervals

TOC-BFT

TOC-TGT

JTAC-BFT

JTAC-TGT

34

• QoS management in distributed systems is about managing tradeoffs, not about
providing guarantees. The dynamic numbers of users, competing demands, and
fluctuations in resource availability and usage means that providing desired QoS to
every user will frequently not be possible. Users and system designers must be pro-
vided with a high-level interface (like QED’s policy language) to express their de-
sired tradeoffs, such as the relative importance of users, information, and operations;
whether loss or delay is more tolerable in overload situations; and whether complete
information or the newest information is most important.

• SOA’s abstractions and portability are at odds with providing traditional QoS.
Since conventional SOA abstractions shield applications and operators from key plat-
form-level details it is hard to provide traditional QoS assurance. The QED manage-
ment layers are an important step toward developing effective, and largely portable,
abstractions for QoS concepts.

• The layered approach is effective in achieving aggregate QoS across the de-
coupled information publishers and consumers in IM systems. Disseminating
high-level policies (in parsed form) to local enforcement points enables smooth, QoS
managed flow of information from publication, through processing, to dissemination,
with coordinated policies applying at each enforcement point, e.g., publisher policies
apply at the entry of information into the system, consumer policies apply at the dis-
semination point, and a combination of policies apply when published information is
being matched to subscriptions.

• Overall system QoS can be improved when individual control points in SOA
middleware are coordinated. QED's QoS management works with the QoS features
and configuration parameters emerging for SOA infrastructure, supplemented with
dynamic resource allocation, scheduling, and adaptive control mechanisms.

• QED is an effective and efficient platform for providing QoS as a normal feature
of IM services. We have successfully integrated QED with two generations of exist-
ing IM services and integrated it into those software systems. Moreover, the results
presented in this paper validate that QED provides a solid basis for QoS management
features in SOA infrastructure in general, not limited solely to IM services.

• QED's policy-driven approach to QoS management strikes an effective tradeoff
between fine-grained control and ease of use. As SOA middleware infrastructure
and IM service instantiations evolve, so must the QoS management capabilities to
ease QoS policy configuration, QoS service composition, runtime behavior evalua-
tion, and service deployment, which are distributed in ever increasingly pervasive and
ubiquitous computing environments.

Our future work on QED will extend it to feed monitored statistics, including interface
usage, service execution, and QED internals such as priority queue lengths, into the LQMs
to supplement the existing QoS management algorithms with feedback control and learn-
ing. We are also incorporating disruption tolerance to handle temporary client to service
and service-to-service communication disruptions.

35

References
1. R. Al-Ali, A. Hafid, O. Rana, and D. Walker, “An approach for quality of service

adaptation in service-oriented grids,” Concurrency and Computation: Practice and
Experience, (15)5:401-412, 2004.

2. K. Balasubramanian, J. Balasubramanian, J. Parsons, A. Gokhale, and D. C. Schmidt,
“A platform-independent component modeling language for distributed real-time and
embedded systems,” Journal of Computer Systems Science, 73(2):171–185, 2007.

3. S. Behnel, L. Fiege, and G. Muhl, “On quality-of-service and publish-subscribe,”
Proc. 26th IEEE International Conf. on Distributed Computing Systems Workshops
(ICDCSW’06), July 4-7, 2006, Lisboa, Portugal.

4. P. Eugster, P. Felber, R. Guerraoui, and A.-M. Kermarrec, “The many faces of
publish/subscribe,” ACM Computing Surveys, 35(2):114-131, 2003.

5. G. Canfora, M. Di Penta, R. Esposito, and M.L. Villani, “An approach for QoS-aware
service composition based on genetic algorithms,” Proc. 2005 Genetic and
Evolutionary Computation Conference, June 25-29, 2005, Washington, D.C.

6. F. Cao, J. Smith, and K. Takahashi, “An architecture of distributed media servers for
supporting guaranteed QoS and media indexing,” Proc. IEEE International
Conference on Multimedia Computing and Systems, June 7-11, 1999, Florence, Italy.

7. Cisco, “Using Test TCP (TTCP) to Test Throughput,” Doc. 10340.
8. Combs, V., Hillman, R., Muccio, M., and McKeel, R., “Joint battlespace infosphere:

information management within a C2 enterprise,” Proc. 10th Int. Command and
Control Research and Technology Symp. (ICCRTS), June 13-16, 2005, McLean, VA.

9. A. Corsaro, L. Querzoni, S. Scipioni, S. Piergiovanni, and A. Virgillito, “Quality of
service in publish/subscribe middleware,” Global Data Management, IOS Press,
2006.

10. Defense Information Systems Agency, “Net-centric enterprise services,”
http://www.disa.mil/nces/.

11. M.A. de Miguel, “Integration of QoS facilities into component container
architectures,” Proc. 5th IEEE Int. Symp. on Object-oriented Real-time distributed
computing (ISORC), April 29-May 1, 2002, Crystal City, VA.

12. D. de Niz, G. Bhatia, and R. Rajkumar, “Model-based development of embedded
systems: the SysWeaver approach,” Proc. IEEE Real-Time and Embedded
Technology and Applications Symp. (RTAS), April 4-7, 2006, San Jose, CA.

13. D. de Niz and R. Rajkumar, “Partitioning bin-packing algorithms for distributed real-
time systems,” International Journal of Embedded Systems, 2(3/4):196-208, 2006.

14. DoD CIO, “Department of defense global information grid architectural vision, vision
for a net-centric, service-oriented DoD enterprise, version 1.0,” 2007.
http://www.defenselink.mil/cio-nii/docs/GIGArchVision.pdf.

15. M.A. El-Gendy, A. Bose, S. Park, and K. Shin, “Paving the first mile for QoS-

36

dependent applications and appliances,” Proc. 12th Int. Workshop on Quality of
Service, June 7-9, 2004, Montreal, Canada.

16. M.A. El-Gendy, A. Bose, and K. Shin, “Evolution of the Internet QoS and support for
soft real-time applications,” Proceedings of the IEEE, 91(7):1086-1104, 2003.

17. S. Gopalakrishnan and M. Caccamo, “Task Partitioning with Replication Upon
Heterogeneous Multiprocessor Systems,” Proc. IEEE Real-Time and Embedded
Technology and Applications Symp. (RTAS), April 4-7, 2006, San Jose, CA.

18. R. Grant, C. Combs, J. Hanna, B. Lipa, and J. Reilly, "Phoenix: SOA based
information management services," Proc. SPIE Defense Transformation and Net-
Centric Systems Conference, April 13-17, 2009, Orlando, FL.

19. Z. Gu, S. Kodase, S. Wang, and K. G. Shin, “A model-based approach to system-
level dependency and realtime analysis of embedded software,” Proc. IEEE Real-
Time and Embedded Technology and Applications Symp. (RTAS), May 27-30, 2003,
Washington, DC.

20. M. Hapner, R. Burridge, R. Sharma, J. Fialli, and K. Stout. “Java message service
version 1.1” Sun Microsystems, April 12, 2002, http://java.sun.com/products/jms/.

21. G. Hardin, “The Tragedy of the Commons”, Science, 162(3859):1243-1248, 1968.
22. J. Hoffert, D. Mack, and D. Schmidt, “Using machine learning to maintain pub/sub

system qos in dynamic environments,” Proc. 8th Workshop on Adaptive and
Reflective Middleware (ARM), December 1, 2009, Urbana-Champaign, IL.

23. JBoss Community, “JBoss application server,” http://jboss.org/jbossas/.
24. M. Jordan, G. Czajkowski, K. Kouklinski, and G. Skinner, “Extending a J2EE server

with dynamic and flexible resource management,” Proc. 5th Int. Middleware
Conference, October 18-22, 2004, Toronto, Canada.

25. M. Linderman, B. Siegel, D. Ouellet, J. Brichacek, S. Haines, G. Chase, and J.
O’May, “A reference model for information management to support coalition
information sharing needs,” Proc. 10th Int. Command and Control Research and
Technology Symp. (ICCRTS), June 13-16, 2005, McLean, VA.

26. D. Llambiri, A. Totok, and V. Karamcheti, “Efficiently distributing component-based
applications across wide-area environments,” 23rd IEEE Int. Conference on
Distributed Computing Systems (ICDCS), May 19-22, 2003, Providence, RI.

27. G. Lodi, F. Panzieri, D. Rossi, and E. Turrini, “Experimental evaluation of a QoS-
aware application server,” Proc. 4th Int. Symp. on Network Computing and
Applications (NCA), July 27-29, 2005, Cambridge, MA.

28. J. Loyall, M. Carvalho, A. Martignoni III, D. Schmidt, A. Sinclair, M. Gillen, J.
Edmondson, L. Bunch, and D. Corman, “QoS enabled dissemination of managed
information objects in a publish-subscribe-query information broker,” Proc. SPIE
Defense Transformation and Net-Centric Systems Conference, April 13-17, 2009,
Orlando, FL.

29. J. Loyall, A. Sinclair, M. Gillen, M. Carvalho, L. Bunch, A. Martignoni III, and M.

37

Marcon. “Quality of service in US Air Force information management systems,”
Proc. Military Communications Conference (MILCOM), October 18-21, 2009,
Boston, MA.

30. J. Loyall, M. Gillen, A. Paulos, J. Edmondson, P. Varshneya, D. Schmidt, L. Bunch,
M. Carvalho, and A. Martignoni III. “Dynamic policy-driven quality of service in
service-oriented systems,” Proc. 13th IEEE Computer Society Symp. on
Object/component/service-oriented Real-Time distributed Computing (ISORC), May
5-6, 2010, Carmona, Spain.

31. N. Mabrouk, S. Beauche, E. Kuznetsova, N. Georgantas, and V. Issarny, “QoS-aware
service composition in dynamic service oriented environments,” Proc. 10th Int.
Middleware Conference, Nov. 30-Dec. 4, 2009, Champaign, IL.

32. S. Mahambre, M. Kumar, and U. Bellur, “A taxonomy of QoS-aware, adaptive event-
dissemination middleware,” IEEE Internet Computing, 11(4):35-44, 2007.

33. OASIS, “Extensible access control markup language (XACML) version 2.0,” OASIS
Standard, docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf,
February 1, 2005.

34. OASIS, “Web services-notification,” www.oasis-open.org/committees/wsn.
35. Object Management Group. “Data distribution service for real-time systems, version

1.2,” OMG Specification, formal/07-01-01, January 2007. http://www.omg.org/cgi-
bin/doc?formal/07-01-01.

36. Object Management Group. “Notification service, version 1.1,” OMG Specification,
formal/2004-10-11, October 2004.
http://www.omg.org/technology/documents/formal/notification_service.htm.

37. T. Repantis, X. Gu, and V. Kalogeraki, “Synergy: Sharing-aware component
composition for distributed stream processing systems,” Proc. 7th Int. Middleware
Conference, November 27-December 1, 2006, Melbourne, Australia.

38. M. Roughan, S. Sen, O. Spatscheck, and N. Duffield, “Class-of-service mapping for
QoS: a statistical signature-based approach to IP traffic classification,” Proc. 4th
ACM SIGCOMM Conference on Internet Measurement, August 30 – September 3,
2004, Portland, OR.

39. R. Schantz, J. Loyall, C. Rodrigues, D. Schmidt, Y. Krishnamurthy, and I. Pyarali,
“Flexible and adaptive qos control for distributed real-time and embedded
middleware,” Proc. 4th Int. Middleware Conference, June 16-20, 2003, Rio de
Janeiro, Brazil.

40. R. Schantz, J. Zinky, D. Karr, D. Bakken, J. Megquier, and J. Loyall, “An object-
level gateway supporting integrated-property quality of service,” Proc. 2nd Int. Symp.
on Object-Oriented Real-Time Distributed Computing (ISORC), May 2-5, 1999,
Saint Malo, France.

41. Scientific Advisory Board (Air Force), “Building the joint battlespace infosphere
volume 1: summary,” SAB-TR-99-02, December 17, 1999.

38

42. Scientific Advisory Board (Air Force), “Building the joint battlespace infosphere
volume 2: interactive information technologies,” SAB-TR-99-02, December 17,
1999.

43. Springsource Community, Spring, http://www.springsource.org/.
44. J. A. Stankovic, R. Zhu, R. Poornalingam, C. Lu, Z. Yu, M. Humphrey, and B. Ellis,

“Vest: an aspect-based composition tool for real-time systems,” Proc. IEEE Real-
Time and Embedded Technology and Applications Symp. (RTAS), May 27-30, 2003,
Washington, DC.

45. C. Stewart and K. Shen, “Performance modeling and system management for multi-
component online services,” Proc. 2nd Symp. on Networked Systems Design &
Implementation (NSDI), May 2-4, 2005, Boston, MA.

46. A. Uszok, J.M. Bradshaw, M. Breedy, L. Bunch, P. Feltovich, M. Johnson, and H.
Jung, “New developments in ontology-based policy management: increasing the
practicality and comprehensiveness of KAoS,” Proc. IEEE Workshop on Policies for
Distributed Systems and Networks, June 2-4, 2008, Palisades, NY.

47. P. Vienne and J.L. Sourrouille, “A middleware for autonomic QoS management
based on learning,” Proc. 5th Int. Workshop on Software Engineering and
Middleware, September 5-6, 2005, Lisbon, Portugal.

48. P. Wang, Y. Yemini, D. Florissi, and J. Zinky, “A distributed resource controller for
QoS applications,” Proc. 7th IEEE/IFIP Network Operations and Management
Symposium (NOMS), April 10-14, 2000, Honolulu, HI.

49. D. Wichadakul, K. Nahrstedt, X. Gu, and D. Xu, “2K: an integrated approach of QoS
compilation and reconfigurable, component-based run-time middleware for the
unified QoS management framework,” Proc. Int. Middleware Conference, November
12-16, 2001, Heidelberg, Germany.

50. World Wide Web Consortium, “OWL web ontology language overview,” W3C
Recommendation, February 10, 2004. http://www.w3.org/TR/owl-features/.

51. World Wide Web Consortium, “XML path language (XPath) version 1.0,” W3C
Recommendation, November 16, 1999. http://www.w3.org/TR/xpath.

52. World Wide Web Consortium, “XQuery 1.0: an XML query language,” W3C
Recommendation, December 14, 2010. http://www.w3.org/TR/xquery.

53. World Wide Web Consortium, “XSL transformations (XSLT) version 1.0,”
November 16, 1999. http://www.w3.org/TR/xslt.

54. C.W. Zhang, S. Su, and J.L. Chen, “Genetic algorithm on web services selection
supporting QoS,” Chinese Journal of Computers, 29(7):1029-1037, 2006.

	1. Introduction(
	2. Requirements for QoS in SOA-based Information Management Services
	3. Challenges in Providing QoS in SOA-Based Information Management Services
	3.1 QoS Management Challenges Due to SOA Infrastructure
	3.2 QoS Management Challenges Due to IM Service Middleware Abstractions

	4. Related Work
	5. QoS Management Capabilities for SOA-Based IM Services
	Aggregate QoS Management
	5.2 QED QoS Policies
	5.3 QED Task Management
	5.4 QED Bandwidth Management
	5.5 Deployment and Distribution of QoS Managers

	6. Experimental Results
	5.1 Experiment 1: Evaluating QED’s Differentiated Service During CPU Overload
	5.2 Experiment 2: Evaluating QED’s QoS on Bandwidth Constrained Links
	5.3 Experiment 3: Evaluating QED’s Policy Change Dynamism and Scalability
	5.4 Experiment 4: Evaluating QED’s Data Shaping Capabilities
	5.5 Experiment 5: Evaluating QED’s Policy Deconfliction Capabilities

	7. Concluding Remarks
	References

