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ABSTRACT 

Net-centric information spaces have become a necessary concept to support information exchange for tactical warfight-
ing missions using a publish-subscribe-query paradigm. To support dynamic, mission-critical and time-critical opera-
tions, information spaces require quality of service (QoS)-enabled dissemination (QED) of information. This paper de-
scribes the results of research we are conducting to provide QED information exchange in tactical environments. We 
have developed a prototype QoS-enabled publish-subscribe-query information broker that provides timely delivery of 
information needed by tactical warfighters in mobile scenarios with time-critical emergent targets. This broker enables 
tailoring and prioritizing of information based on mission needs and responds rapidly to priority shifts and unfolding 
situations. This paper describes the QED architecture, prototype implementation, testing infrastructure, and empirical 
evaluations we have conducted based on our prototype.   
Keywords: Quality of service, information management 

1. INTRODUCTION 
Information management services have emerged as necessary concepts for information exchange in net-centric opera-
tions, growing out of the Joint Battlespace Infosphere (JBI) [10], [11], [12], a US Air Force initiative supporting net-
centric warfare concepts. JBI is related to other net-centric warfare initiatives, including Net-Centric Enterprise Systems 
(NCES) [6], a set of services enabling access to and use of the Global Information Grid (GIG) [7]. The JBI defines an 
active information management model, in which clients are information publishers and consumers, communicating ano-
nymously with other clients via shared information management services (IMS), such as publication, discovery, broker-
ing, archiving, and querying [5]. Published information is in the form of typed managed information objects (MIOs) 
consisting of payload and XML metadata describing the object and its payload. Consumers make requests for future 
(subscription) or past (query) information using predicates, e.g., via XPath [16] or XQuery [17], over MIO types and 
metadata values. The information management services include brokering (i.e., matching MIOs to subscriptions), arc-
hiving of MIOs, querying for archived objects, and dissemination of MIOs to subscribing and querying clients. 

While information management services have become necessary concepts to support net-centric operations, the de-
coupled information management and publish-subscribe-query information exchange they provide is not sufficient for 
dynamic, mission-critical and time-critical operations. Information management services require quality of service (QoS) 
enabled dissemination (QED) of information. The aim of QED information dissemination is to meet the various quality 
requirements of users and the missions they are undertaking in a manner that is reliable, real-time, and resilient to the 
changing, hostile conditions of tactical environments. 

To motivate the need for QoS-enabled information management, consider a scenario involving a convoy of troops on 
patrol in an urban area, as shown in Figure 1. The troops develop their initial route and create subscriptions and queries 
for information based on their mission and route. The IMS handles the requests by delivering relevant information, both 
historical and real-time, to the troops, providing situation awareness (SA) and understanding.  
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As the troops travel along their route, the sit-
uation evolves and dynamic events cause ur-
gent changes in user needs. For example, a 
UAV may publish data that shows the planned 
route is blocked by a stalled truck. Upon re-
ceipt of this information by the troops, it trig-
gers them to replan their route and adjust their 
subscriptions for information along the new 
route.  

As the troops advance, the IMS delivers in-
formation to the troops of a threat ahead that 
will jeopardize their on-going operations. 
Command and Control (C2) publishes orders 
to provide close air support (CAS) to eliminate 
the threat. The CAS information and subse-
quent battle damage imagery are published to 
the IMS and received by subscribers including 
C2 and the troops on patrol. To users, it ap-
pears that their information needs are being 
fulfilled by a highly responsive, mission-aware information system. When highly detailed imagery is needed, it appears. 
When rapid SA updates are important, they arrive with requisite detail and speed.  

This scenario is only possible with the capabilities being developed for QED. QED combines technologies addressing 
mission-based QoS management, aggregate QoS management, resource management, QoS policy, information dissemi-
nation mechanisms, QoS monitoring, and disruption tolerance. The QED software system we are developing includes 
the following capabilities: 

• Providing timely delivery of information needed by tactical users in mobile scenarios 
• Tailoring and prioritizing information based on mission needs and importance 
• Responding rapidly to priority shifts and unfolding situations 
• Operating in a manner that is robust to failures and intermittent communications. 

This paper describes the QED QoS-enabled information broker we are developing, building upon the Apollo [1] IMS 
baseline. Apollo is a set of information management services developed by the US Air Force Research Laboratory as a 
JBI reference implementation. Section 2 describes the requirements for QoS management in IMS. Section 3 describes 
the QED architecture. Section 4 describes the design of individual QED services and components. Section 5 describes 
the current state of the prototype QED software system and experimental results describing its operation and perfor-
mance. Finally, Section 6 presents concluding remarks. 

2. REQUIREMENTS FOR QOS IN INFORMATION MANAGEMENT SERVICES 
The ideal QoS support for IMS would consist of information that leaves a publisher or archive and reaches every con-
sumer client immediately, completely, and consistently every time, and that would respond to every request with the 
smallest amount of information exactly matching what the user needs. Of course, the ideal QoS is unachievable. The 
processing of the brokering and retrieval functions and the delivery over networks introduce delay into information dis-
semination. Resource failures and overload situations can cause information loss. Variations in the time to process re-
quests, burstiness of client traffic, and competition with other processes can introduce variation into the system perfor-
mance (jitter). Client requests for information do not always capture exactly the best qualities that they can use, and the 
attempt to capture these qualities frequently reduces the probability that they will match any published objects at all. 
Moreover, clients’ demands on the information management services can come into conflict, making it impossible to 
provide high QoS to one without reducing QoS to others. 

QoS management services such as QED have to manage the tradeoffs involved in providing higher aggregate levels of 
QoS across the users of information management services. Higher criticality operations should be provided preferential 
service. Loss and delay should be introduced where each can best be tolerated and the choice of which to introduce 
(when both are unavoidable) should depend on which is better tolerated. The pursuit of higher QoS should not introduce 
thrashing, i.e., higher but unsustainable QoS levels are not necessarily better than slightly degraded but consistent quali-

 
Figure 1. A Motivating Scenario for QoS-Enabled Dissemination (QED) 
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Figure 2. Control Points in the Information Brokering Server 

ty. The best information matches 
should be preferred, sometimes 
even over more information 
matches. Moreover, in those situa-
tions where not all information can 
be delivered, the information deli-
vered should be the most important 
information to the most important 
users with respect to the overall 
mission being performed. 

The following are aspects of per-
ceived quality and the way informa-
tion management services such as 
QED can affect them: 

• Timeliness – The speed at 
which brokering happens or the 
latency through the information 
management system. For ex-
ample, when an information object is published, how fast it reaches subscribers. When a query is issued, how fast 
responses reach the querying client. In general, the greater the timeliness (and conversely, the lower the latency), the 
better the perceived QoS. 

• Completeness – The number of information objects that reach requesters from those available (i.e., published into 
the information management system) that are relevant (i.e., that match requests).  

• Fidelity – A measure of the amount of information in each individual information object. Fidelity concerns whether 
a requester receives the entire amount (metadata and payload) of a published information object. 

• Accuracy – A measure of the correctness of information delivered, i.e., whether information objects delivered to a 
requesting client have any errors introduced into them (e.g., during transformation, brokering, or other operations). 

• Smoothness – The predictability of performance and consistent latency. In many cases, perceived QoS is higher if a 
user receives a consistent and expected quality than if high quality is interspersed with low quality, to the point 
where there is a wide variation and a user cannot know what to expect. 

• Suitability – The better a response matches a user’s needs, the higher the perceived QoS. This means that higher 
resolution and higher precision information objects are generally recognized as higher QoS than lower resolution or 
precision. Other characteristics of information objects, such as source, currency, content, trust, format, and so forth, 
can make them more or less suitable for a given request and therefore affect their perceived QoS.  

Figure 2 shows the set of core information management services for net-centric operations in a non-QED baseline IMS 
such as Apollo [1]. These serve as control points, i.e., places at which QoS can be affected. Table 1 describes each con-
trol point and the ways in which it can affect QoS. 

There are no operations in the core information management services that specifically affect the fidelity of individual 
MIOs. The JBI definition includes fuselets [4], information transformation services that live in the JBI core, which can 
change the fidelity of MIOs, but addressing them is an area for future research. Likewise, there is nothing in the informa-
tion management services that affects the accuracy or suitability of MIOS, although certainly errors in MIOs could be 
introduced accidentally as the result of errors in implementation. Moreover, suitability can be affected by the default 
semantics of the current implementation. Specifically, the Apollo IMS returns MIOs in the order in which they are pub-
lished into the system and returned by the database, even if they are less suitable than something else currently queued 
for brokering or dissemination. 

 

 



 
 

 
 

Table 1. Resources Used and QoS Affected at Control Points in the Information Brokering Server 
Control Point Description Resources Used QoS affected 

1. Submission 
Service 

Receiving information objects 
entering the system as the 
result of publishing. 

Network bandwidth; mem-
ory to store objects until 
they are processed. 

Timeliness, completeness: If the rate, number, 
and size of published objects exceed the 
bandwidth capacity it will introduce delay or 
loss; If the rate of published objects exceeds 
the rate at which they can be processed, delay 
will be introduced as objects are enqueued 
awaiting processing. 

2. Brokering 
Predicate evaluation to match 
published MIOs with registered 
subscriptions. 

CPU 

Timeliness, smoothness: Introduces latency; 
Calls to the predicate evaluator can take dif-
fering amounts of time depending on the size 
and complexity of the metadata and predi-
cates, introducing jitter. 

3. Archiving 
Insertion of a published MIO 
into the Information Object 
Repository (IOR) 

CPU to process archive; 
Disk space to store MIO. Timeliness: Introduces latency 

4. Query 
processing 

Evaluation of a query operation 
and subsequent retrieval of 
results. 

CPU to process the query 
operation; Memory to 
store the results (potential-
ly many) 

Timeliness, smoothness: Introduces latency; 
Queries can take differing amounts of time 
and result in different size result sets, intro-
ducing jitter. 

5. Dissemination 

• Delivery of the results of 
brokering (a single MIO) to 
matched clients (potentially 
many) 

• Delivery of the results of a 
query (potentially many 
MIOs) to the requestor (a 
single querying client). 

Memory to store the MIOs 
being delivered; Band-
width to deliver the MIOs 

Timeliness, completeness, smoothness: If the 
rate, number, and size of MIOs exceed the 
amount of bandwidth capacity available to 
send them, delay or loss will be introduced. 
Since MIOs will vary in size, they will take 
different amounts of time and bandwidth to 
send, introducing jitter. 

3. OVERVIEW OF THE QED ARCHITECTURE  
The QED architecture includes components and services that enforce QoS at each local control point, under management 
of an aggregate QoS manager that can mediate conflicting demands and enforce system-wide QoS policies. As shown in 
Figure 3, the QED architecture consists of the following components: 

• QoS administration – Allows the specification of mission-level policies to set the relative importance of clients and 
MIOs and specify the aspects and limits of QoS desired by clients. 

• Information space QoS manager (ISQM) – Serves as an aggregate policy decision point, interpreting QoS policies in 
terms of the collection of users and the tasks that can be performed (archiving, predicate evaluation, dissemination, 
etc.). Schedules the tasks and creates local policies (for each control point) and distributes policies to the LQMs. 

• Local QoS manager (LQM) – Enforces local QoS policies (created and distributed by the ISQM) at each control 
point, i.e., incoming and outgoing queues, predicate evaluator, and the archiving and query evaluation processes.  

• QoS monitoring – Gathers information useful for QoS decision making, enforcement, and visualization. This in-
cludes information about resource usage and availability, application and data characteristics, and delivered QoS. 

• QoS mechanisms – Enforcement mechanisms used at each control point. These include differentiated queues for 
prioritizing tasks and MIOs, ordering and control of predicate evaluation, archiving, query evaluation, and informa-
tion shaping, such as compression or filtering. 

• Transport protocol – Serves as the network endpoint, enabling information objects and requests to be sent from the 
server to clients or from clients to the server, with control over prioritization, reliability, replacement, and ordering. 

4. DESIGN OF THE QED COMPONENTS 
This section describes the design of the components in the QED architecture in more detail. 



 
 

 
 

Figure 3. The QED Architecture Includes Components for Aggregate and Local QoS Management, QoS Administration, QoS
Monitoring, and QoS Enforcement 

4.1 QoS Administration and Mission Management 
The QoS Administration service of QED provides a graphical user interface to define client preferences, rules, and other 
mission-level information useful for managing QoS. The interface enables access to change QoS behavior during run-
time, to dynamically adjust to the changing mission parameters. The following are the main goals of the QoS Adminis-
tration interface: 

• Observability – The ability to view what is happening in the system using the tools provided, including visibility 
into delivered QoS provided by the QoS monitoring service (Section 4.4).  

• Understandability – The system can be understood in the function it performs. Systems that relate to the real world 
more than a computer language tend to be more understandable. 

• Expressive power – The flexibility in selecting behavior, based on the system’s language to communicate prefe-
rences. This language should be as expressive as possible while meeting other goals. 

• Ease of use – The system is easy to use without extensive training. This involves choosing interfaces and presenta-
tion styles with which the users are already familiar. 

• Robustness – The ability to handle any sequence of actions on the part of the administrator and clients. 

The QoS Administration capability enables customization of a set of rules that contain the mission- and client-specific 
configuration information to make the necessary QoS management decisions. These rules may be added or changed dy-
namically throughout the lifetime of the system to meet the changing needs of the tactical environment. The rule editing 
component is extensible so that new rule templates can be defined and added to the set provided. The interface allows 
the entry of high-level QoS requirements and constraints for mission elements, providing reasonable defaults for data not 
specifically mentioned in a rule.  

QoS Administration also provides visibility into the runtime behavior of the system by displaying information provided 
by the QoS Monitoring component. By combining and displaying relevant mission and QoS information the administra-
tor can keep track of events to handle, such as extreme overload or doctrine violations. 

4.2 QoS Management and Policies 
The ISQM translates the mission management information from the QoS Administration service into a set of actionable 
policies that are enforced by the LQM at each control point in the IMS. While the ISQM provides direction to each 
LQM, many LQM decisions are parameterized on runtime information such as the size of objects; the expected time it 
will take to process an object or request; the available bandwidth, threads, or memory; or the size of queues. Therefore, 



 
 

 
 

LQMs make decisions using lookup tables or utility functions, which compute the relative benefit of particular enforce-
ment options within the limits imposed by the ISQM supplied policy. QED utilizes the KAoS Policy and Doman Servic-
es [14] for policy management, including the following: 

• Policy Representation – the underlying formal and extensible language based on the W3C standard Web Ontology 
Language (OWL) [15] for representing the rules and preferences defined by the QoS Administration service. 

• Policy Distribution – distribution of applicable policies and IMS state information to the local policy decision point 
associated with each of the QoS Mechanisms described in the next section. 

• Policy Reasoning – the automated reasoning necessary to determine the applicable policies at each control point 
based on the current context. 

Each QoS policy associates an action in the IMS with the aspects of QoS required for the action and the relative impor-
tance of performing the action. 

QoS Policy: <IMS Action, MIO Attributes, Clients, IMS State> → <Importance, QoS Preferences> 

The antecedent of each policy describes the applicable context for the policy in terms of the IMS action being per-
formed (e.g., Publish, Archive), the observable attributes of the object (MIO) being processed (e.g., type, size), the iden-
tity of the clients involved in the action (e.g., publisher, subscriber), and the current state of the IMS as exposed through 
the QoS Monitoring component.  

The KAoS domain services enable the definition of roles and groups to which clients may be assigned at runtime, thus 
enabling policies to be pre-defined for classes of clients which are resolved at runtime based on the assignment of clients 
to such roles and groups. The use of OWL for policy representation similarly enables the definition of class hierarchies 
for each antecedent term. This allows the definition of policies at an appropriate level of abstraction and helps prevent 
having to specify a policy for every combination of system conditions. A key enabler for this is the ability to set prece-
dence among policies to override one (typically more general) policy with another (typically more specific) one. For 
example, the default policy may establish that performing the Publish action for Surveillance MIOs has Low importance, 
but this policy can be overridden by a policy stating that Publishing Surveillance for clients in a particular group or mis-
sion are of High importance. 

The consequent of each policy establishes either 1) the relative importance of performing IMS actions that match the 
policy conditions at a given control point or 2) the QoS preferences describing tradeoffs to be made when service is de-
graded (e.g., delay before drop). QoS preferences may also establish limits for service degradation (e.g., a deadline after 
which information is not useful). Actions that are assigned higher importance levels are given precedence over lower 
importance actions. The importance levels and preferences are enforced at each control point by the LQM and QoS me-
chanisms described in Section 4.3. As the IMS becomes overloaded the lowest importance processing contexts are de-
graded first, according to the QoS preferences (e.g., degrade timeliness before completeness). In this way, Importance 
determines when service will be degraded and QoS Preferences determine how QoS will be degraded. 

4.3 QoS Mechanisms 
QED includes QoS mechanisms that are specific to the control points presented in Table 1 and the ways in which QoS 
can be affected at those points. QED’s QoS mechanisms and how they provide control at each control point are de-
scribed below: 

• Differentiated queues at the submission and dissemination services (control points 1, 3, and 5) to prioritize incoming 
and outgoing MIOs according to their relative importance and cost (the time to process or amount of bandwidth 
needed). 

• Preemptive brokering – Registered predicates are grouped by type and importance, e.g., based on the client’s impor-
tance relative to other clients. When an object is ready for brokering (control point 2), the MIO is matched against 
each set in order of importance. After the completion of each set, the MIO is forwarded for dissemination to any 
clients that it matches and the predicate matching can be preempted in favor of processing more important MIOs 
that have arrived in the system. This results in faster servicing of important clients’ subscriptions (they don’t have to 
wait for all predicates to be processed), important MIOs are not blocked as long waiting for a previous MIO of less-
er importance to be processed, and no additional memory is used (a reference to the MIO – stored in the heap – is all 
that is transferred to the dissemination service. 
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Figure 5. The QED Monitoring Service Architecture 

• Preemptive queries – The underlying information broker utilizes a cursor-based query, in which the initial query 
returns an estimate of the number of results and the results are retrieved by a subsequent sequence of getNextResult-
Set calls, each of which can be scheduled separately by the task scheduler (control point 4, see task scheduling be-
low). 

• MIO shaping – When there are more MIOs awaiting dissemination (enqueued) than can be sent immediately, but 
there are extra CPU cycles, the MIOs can be shaped reducing the amount of bandwidth and time needed to send 
them (control point 5). MIO shaping is type specific and based on client preferences (such as the formats that are 
acceptable and the ranges of MIO size, resolution, and fidelity requested) and can include compression, cropping, 
scaling, and content filtering. 

• Task scheduling – Control points 2, 3, and 4 represent potentially CPU intensive tasks. The baseline information 
broker services them from a common thread pool in FIFO manner, with no preemption. To support better control, 
prevent locking up the CPU while higher priority tasks are waiting, and to support the preemption mentioned above 
for brokering and queries, we have designed a priority based task scheduler, as shown in Figure 4. Publish and query 
events in the system create tasks that are enqueued. The threadpool manager selects the highest priority task to ex-
ecute when a thread is available (priority is based on simple importance, weighted importance, or a benefit/cost ra-
tio. Tasks can be preempted if an urgent task is created and there are no threads available. The monitoring capability 
described in Section 4.4 is used to measure the time needed to execute tasks with particular characteristics to im-
prove task execution cost estimates. Creating these tasks also allows us to include client preferences, such as dead-
lines, into the QoS management. If a task does not complete before the deadline passes, the thread can be halted and 
returned to the thread 
pool. 

4.4 QoS Monitoring 
The QoS monitoring ser-
vice provides a common 
infrastructure-wide me-
chanism to store and re-
trieve system and applica-
tion metrics useful for 
QoS decision making and 
visualization. The server-
side QoS monitoring is 
deployed as a service in-
side the IMS providing an 
API accessible from the 
other services. On the 
client-side, the monitoring 
is a Java library loaded as 
needed to monitor conditions on the client’s node. 

QoS monitoring relies on three main components shown in 
Figure 5: the XLayer [3], the XLayer Java Proxy, and the 
Monitoring service. The XLayer is a cross-layer commu-
nications substrate that, among other things, monitors re-
source conditions. The XLayer Java Proxy allows Java 
code to access the XLayer substrate functionalities. The 
Monitoring service provides the API to access stored me-
trics. Each time-varying metric is stored as a short time 
series so it can be reported (via the API) by its average 
value, variance, last value, or trend.  

The XLayer has a set of built-in metrics (e.g., CPU and 
memory utilization, network utilization per interface) 
which are always available through the monitoring service. 
In addition to that, the monitoring service provides an in-
terface that enables the development of customized moni-
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toring components. A customized monitoring component can be seen as a sensor for a particular metric or set of metrics. 
When a monitoring component is instantiated it registers itself as a provider for one or more metrics. Other services (or 
parts of an application) can then be instrumented to get an instance of a specific component and provide values for the 
registered metrics.  

The monitoring service provides two types of subscriptions for metric monitoring, both handled at the level of the cross-
layer substrate. The first method is defined as an ongoing subscription, in which the subscriber is notified every time a 
metric changes. The second is the ‘one-time’ subscription, which takes an optional threshold as an argument. In this type 
of subscription, the subscriber is notified the first time (and only the first time) a metric is updated and whenever the new 
value (or the timed-average) is outside the specified threshold. 

An important feature implemented in the QoS monitoring is efficient sharing of statistics between nodes across the net-
work. Each node running the Monitoring service has the ability to query or subscribe for metrics related to the other 
nodes. The XLayer will take care of the propagation of the metrics between different hosts (e.g., publishers, subscribers 
and IMS in our case) as shown in Figure 6. 

4.5 QoS Transport 
The transport capability supports the transmission and reception of control and data between clients and the IMS. The 
primary goal of the transport protocol is to maximize the timeliness of delivery of data, while minimizing the overhead 
in providing this delivery capability. The design of the QoS transport is based on the Mockets library [13], which pro-
vides reliable and/or sequenced delivery of data, as required by the semantics of the communication. Information and 
statistics available at the transport layer are exported to the QED monitoring service (described in Section 4.4). The 
transport layer also provides flexible control interfaces to allow the other components to customize the behavior and 
operation of the transport layer. For example, the transport layer allows readjustment of priorities of messages, deletion 
of messages, or replacement of messages even after the messages have been handed off to the transport layer, but are 
still awaiting transmission or acknowledgement. 

The experiment described in Section 5.2 exploits the capability of message replacement, which is a useful capability to 
address bandwidth constrained links. Under conditions of low bandwidth, data tends to accumulate in queues awaiting 
transmission, which increases the end to end latency. For periodic data such as position updates (for example, blue force 
tracking), more recent data invalidates old data. Message replacement is a way to override older data in the queue with 
newer data, improving the timeliness of the delivery of the data. 

Mockets also support the notion of message tagging, which allows an application to differentiate between different types 
of traffic, e.g., each type of MIO might be assigned a different tag. Alternatively, each subscription from a client can be 
assigned a different tag. Tagging data allows Mockets to maintain detailed statistics about each type of data (or each 
subscription), set independent priorities for each type of data, and control bandwidth utilized for each type of data. 



 
 

 
 

Figure 7. Screenshot of the QED QoS Administration Interface 

5. DESCRIPTION OF QED PROTOTYPE 
We have implemented a prototype of the QED design presented in Section 4. This section describes the prototype and 
presents results of experiments we have conducted using the prototype. 

5.1 Description of Current Prototype 
The current QED prototype was developed to enhance the US Air Force Research Laboratory Apollo 1.0 IMS [1], which 
is developed using Java and JBoss [9]. Our QED prototype extends the Apollo baseline by modifying existing Apollo 
services, adding new services and interfaces, and providing clients of the system with new protocol options. This proto-
type includes an initial QoS administration interface, aggregate and local QoS managers, differentiated queues for the 
submission and dissemination services, and client side monitoring of QoS behavior. The following paragraphs describe 
each of these components. 

The prototype administration interface is shown in Figure 7. We extended Apollo’s existing administrative interface to 
include a new section dedicated to QoS management. Apollo’s administrative interface is built using Struts [2], an open 
source Web Services framework, within the JBoss server, and so we followed suit. The administrative interface supports 
a simple notion of “workflows”, which are related groupings of clients and MIOs, defined a priori via configuration 
files. The administration interface provides a means to order the workflows in terms of importance and set an overall 
policy (“Strict” or “Weighted Fair”). In the Strict policy the object of the highest importance is always served, though 
this can starve other objects (i.e., they never get serviced) if the rate of publication of high importance objects is greater 
than the rate at which the information broker can service and disseminate them. In the Weighted Fair policy, all objects 
(eventually) get serviced, but higher importance objects get serviced more frequently. The weights attached to impor-
tance levels determine the ratio at which objects of each importance level are serviced.  

The administration interface updates the policy in the ISQM, which interprets the high-level policies, translates them 
into an intermediate form, and distributes them to the LQMs. The QED prototype performs a straightforward mapping of 
importance into priorities for the LQMs and distributes the policies using the Java Message Service (JMS). Currently, 
the ISQM is a JMS publisher and the LQMs are JMS subscribers. 

We have implemented two LQMs, each managing a mechanism that controls the behavior of the system. The first han-
dles the submission queues. Once a published MIO reaches the server, it gets enqueued before the potentially CPU-
intensive job of performing subscription matching. We implemented importance-based binned queues with a loop that 
pops off MIOs from the queue according to the overall policy (strict or weighted fair). 

The other LQM we implemented manages a new protocol option for clients of the system. The baseline client-side libra-
ries use standard J2EE mechanisms to interact with the server (RMI over TCP/IP, and in some cases JMS), i.e., all TCP-
based. We added the option for the clients to use Mockets, described in Section 4.5, which uses a UDP-based protocol 
but provides options for ordered, reliable delivery (thus allowing it to be used as a drop-in replacement for TCP). Mock-
ets supports the notion of 
priority within its own 
queues, allowing us to con-
trol the ordering of MIOs 
being delivered to an indi-
vidual client (each sub-
scriber has a single Mocket 
with its own independent 
queue). Mockets supports 
only the weighted fair poli-
cy. 

All the QoS management 
we implemented results in 
client-visible differences 
from the baseline, so we 
implemented a subscriber-
client to display client-
visible metrics. Specifical-
ly, we display the end-to-



 
 

 
 

Relatively high rate and low latency
Lower performance, but no 
starvation

Type1 (higher importance) is green; Type2 (lower importance) is blue

Figure 8. The QoS GUI Displays the Client-visible Behavior Under QED control, including 
Throughput and Latency 

Figure 9. CUTS Model of a QED Test Scenario 

end latency (of the last IO 
received) and the current 
rate (as an average over a 
5-second window). We 
displayed these on a per-
publisher basis, as shown 
in Figure 8. Each MIO con-
tains an opaque publisher-
ID as part of its metadata, 
which allows subscribers to 
differentiate the sources of 
MIOs.   

5.2 Experimental Results 
The QED testing metho-
dology involves three types 
of test scenarios. Class 1 
scenarios are defined to 
evaluate specific features 
of QED under controlled 
situations. Class 2 scena-
rios test aggregate QoS 
behaviors, including scena-
rios of operationally relevant behaviors, but with fixed policies. 
Class 3 scenarios also test aggregate QoS behavior, but changes 
policy dynamically, and are used to test the speed and effectiveness 
of changing, disseminating, and enforcing dynamic QoS policies. 

Each scenario is created using the Coworker Utilization Testing 
Suite (CUTS) [8]. CUTS uses model-driven engineering tools and 
emulation techniques to benchmark and analyze the performance of 
deployments and configurations of distributed real-time and embedded systems, such as QED. The constraint-based 
CUTS tool enables the modeling of tests in all three classes. For example, Figure 9 shows a model of a Class 1 test with 
dynamic publishing rates. CUTS supports the rapid modeling of tests, automatic translation into Java code and project 
build files, and execution of the tests using a set of custom Perl scripts. 

The experimental results presented below are for Class 1 scenarios evaluating the effectiveness of QED to manage CPU 
overload at the submission service, i.e., MIOs published into the information broker faster than the predicate evaluation 
service can process them, and bandwidth constraints at the dissemination service, i.e., insufficient bandwidth to keep up 
with the rate of MIOs needing to be sent to subscribers. A burn in period was used to allow the system to stabilize, and 
then results were recorded for several minutes. These results quantify the effectiveness of the differentiated submission 
queues, differentiated dissemination service, LQMs, and importance based policies to provide more predictable perfor-
mance to important information in CPU and network overload situations when compared to the IMS baseline. 

Overview of Test 1. The experimental configuration for the first test involved two workflows, each containing 40 sub-
scribers and 3 publishers. Each workflow had a unique MIO type, which its publishers published as fast as they could. 
All subscribers had registered predicates, but only one subscriber in each workflow matched the workflow’s published 
MIOs. This configuration resulted in the CPU being a bottleneck since the predicate evaluation service had to evaluate 
the full set of registered predicates for each MIO published, but only one would match, resulting in the MIO being dis-
seminated to only one client.  

In Test 1 the CPU cannot process MIOs as fast as they are entering the system, though there is sufficient bandwidth to 
deliver all the matched MIOs. We compared the receive rate (i.e., throughput) and latency of the workflows running on 
the baseline system (Base, Apollo with no priority), QED with both workflows having equal importance (Equal), QED 
with workflow 1 having higher importance than workflow 2 and weighted fair policy (Weighted), and QED with 
workflow 1 having higher importance than workflow 2 and using the strict policy (Strict). 



 
 

 
 

 (a) Equal priorities  (b) Workflow 1 has higher priority 

Figure 10. Graphs of Throughput in QED with Weighted Fair Policy 

Table 2. Latency and Receive Rate in CPU Bound Test 

 Mean Receive Rate (MIOs/sec) Mean Latency (sec) 
Base Equal Weighted Strict Base Equal Weighted Strict 

Workflow 1 17.3 17.5 33.8 34.9 8.6 3.2 3.1 3.0 
Workflow 2 17.3 17.5 0.5 0 9.0 3.1 > 100 Infinite 

Analysis of Test 1 results. 
Table 2 shows the results 
of running Test 1 for five 
minutes. QED provides 
significantly higher 
throughput (i.e., receive 
rate) to the more important 
workflow (Workflow 1), 
while providing the control 
to either starve (strict poli-
cy) or provide degraded 
service (weighted fair poli-
cy) to the less important 
workflow (Workflow 2). 
With equal priorities, the 
throughput of QED tracks 
the baseline Apollo closely. 
QED also provides signifi-
cantly lower latency to the 
more important workflow, 
although the latency im-
provements of QED with 
equal importance over the 
Apollo baseline are due to running with different limits on queue sizes. Figure 10 shows graphs of one publisher from 
each workflow (a) with equal priorities and (b) with Workflow 1 having higher priority, using the weighted fair policy. 
The graphs show that when the workflows have equal priorities, their throughput tracks each other closely, but when 
Workflow 1 (green line with circles) has a higher priority, it gets a much higher rate of MIOs through the IMS, while 
Workflow 2 (blue line with diamonds) is not starved. 

Overview of Test 2. The second test limited the network bandwidth between the subscribers and publishers to 300 kbps. 
The Test 2 configuration consisted of the same two workflows as in Test 1, but each now has 3 publishers and only 1 
subscriber with a predicate that matched every MIO published in the workflow. This configuration kept the CPU from 
being a bottleneck since there was only one predicate per type to evaluate. Every published MIO, however, must be dis-
seminated to a receiving client, which constitutes a larger amount of data than could be handled by the 300 kbps link. 
The Mockets transport provided differentiated service to the traffic from the more important workflow when the 
workflows had different importances. Since Mockets is based on a weighted algorithm, we were unable to set the priori-
ty strategy to strict for these 
tests. 

Analysis of Test 2 results.  
Table 3 shows the results 
from running Test 2 for 5 
minutes. The results show 
that for the network bound 
case (which is common in a sensor or wireless network) the differentiated queue-based transport provides significantly 
higher throughput and lower latency to the higher importance workflow. In addition, QED provides significantly better 
throughput even in the case of equal priorities than the baseline. The increase in equal receive rate over the baseline is 
due to the higher performance of Mockets than the JMS used by Apollo. The decrease in latency of the equal case over 
the baseline is again due to running QED with different limits on queue sizes. 

6. CONCLUDING REMARKS 
This paper has presented our initial results creating QED, which provides a QoS management capability for publication-
subscription-query information management services. The following are lessons learned from our efforts thus far: 

• Our initial results show a significant improvement over the baseline Apollo IMS without QoS.  In particular, manag-
ing the particular bottlenecks associated with processing and disseminating information, matching the information 

Table 3. Latency and Receive Rate in Network Bound Test 

 Mean Receive Rate (MIOs/sec) Mean Latency (sec) 
Base Equal Weighted Strict Base Equal Weighted Strict 

Workflow 1 3.9 6.4 8.3 N/A > 100 4.6 2.4 N/A 
Workflow 2 3.8 6.1 4.2 N/A > 100 4.3 62 N/A 



 
 

 
 

processing and rates to the resources available, and prioritizing operations based on mission-level importance all 
contribute to improved performance and control. 

• The IMS is a highly dynamic system, and can be used for scenarios with very different interactions and usage pat-
terns. To realize the goals laid out in this paper—and to realize the QED services that we have designed—we need 
to develop the interfaces and policies to enable the specification of mission-based groupings and preferences, the 
translation functionality to refine them into actionable policies, and the runtime monitoring and algorithms to effec-
tively enforce the policies based on current conditions.  

• Despite the promise of our initial results, significant R&D challenges remain. In particular, optimization heuristics 
to achieve aggregate QoS for pub-sub systems, service level agreements (i.e., satisfying client preferences) when 
clients are decoupled, and capturing mission-level abstractions in policy that is actionable are all significant research 
topics in themselves.  

Our future activities will be to build upon the QED prototype described in this paper to fully realize the QED capabilities 
and to evaluate them in operationally-based demonstrations and all three classes of experiments. 
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