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Abstract

Persons with diabetes must per- form many self-management tasks each day

to obtain optimal control of blood glucose. Psychosocial and contextual factors

impact the ability to perform those tasks. Ecological momentary assessment

(EMA) uses technology-mediated approaches to monitor and assess psychosocial

and contextual variables that may impact self-management. To utilize EMA

data in applied settings, however, feasible methods are needed to automate

prioritization of the many factors that can impact health behaviors.

This study uniquely applies machine learning algorithms to demographic and

EMA-generated psychosocial data to predict self-management in adolescents

with type 1 diabetes (T1D). The results suggest certain domains of factors

more accurately predict on self-management than others and have promise for

prioritization in future research. Results have implications for scaling up this

combination of assessment and analytic approaches in population health.
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1. Introduction

Type 1 diabetes (T1D) is a prevalent chronic illness with increasing inci-

dence rates reported worldwide [1, 2]. It is an autoimmune disorder where the

body does not produce insulin and requires patients to perform critical self-

management tasks multiple times per day [3]. Two key self-management tasks

in T1D involve frequent monitoring of blood glucose and administering insulin.

These tasks help manage glycemic control to avoid or delay serious short- and

long- term consequences, such as retinopathy, neuropathy, and mortality [4, 5, 6].

Adolescents and young adults have the worst glycemic control of any age

groups [4]. For young people with diabetes, living successfully with T1D is

particularly hard due to many potential psychosocial and contextual barriers

to self-management [7, 8, 9]. Mealtimes are a critical time for diabetes self-

management.

A recommended approach used to improve self-management of diabetes in-

volves promoting and supporting problem solving skills to reduce barriers [10].

To identify problems related to self-management, patients, caregivers, and clin-

icians must rely on blood glucose and insulin administration data from devices

along with a patient-generated recall of potentially relevant behavioral, emo-

tional, and/or contextual events that could pose barriers to self-management.

However, utilizing retrospective memory or recall for events that are days or

weeks in the past has been identified as generally unreliable and potentially

biased in nature [11]. Unreliable recall of events in diabetes problem solving

could result in modifications to the insulin regimen that are not based on reliable

information.

To address the limitations of human recall and bias in health behavior re-

search, ecological momentary assessment (EMA) methods have been developed

and successfully utilized in a range of health conditions. EMA methods pro-

vide a more proximal (and often more accurate) technology-mediated method

to monitor and assess the contexts, subjective experiences, and processes that

surround health decisions in daily life [12, 13]. In contrast to traditional assess-
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ment methods, EMA utilizes more frequent and in-vivo ambulatory assessment

of factors that impact health behaviors and decision-making. This approach

provides more relevant, proximal, and frequent observations per patient, EMA

(also known as experience sampling) methods generate rich data to more ac-

curately assess previously identified correlates of health behavior and identify

novel correlates for intervention [14].

Many studies in the EMA literature have used hierarchical linear modeling

(HLM) or other similar analytic approaches. These studyes, however, have not

identified a model for prioritizing variables or automating analyses. Machine

learning (ML) has promise for integration with EMA for those purposes.

The goal of the study reported in this paper was to use ML to identify

patterns of psychosocial and contextual factors that may impact diabetes self-

management assessed by EMA. To achive this goal, we devised a learned filtering

architecture (LFA) to identify phenotype groups that are related to two self-

management behaviors: insulin administration (IA) and self-monitoring of blood

glucose (SMBG).

The data generated from EMA systems is well suited to analytic techniques

that identify patterns. In particular, ML methods have been employed to de-

tect type 2 diabetes and identify targets for improvement in diabetes man-

agement and outcomes [15, 16, 17]. These advanced ML methods, however,

have not been used to examine patient-generated data, behavioral patterns,

and self-management in diabetes. Research indicates that ML methods have

the potential to efficiently and effectively identify meaningful sub-groups of self-

management styles and phenotypes upon which to base personalized behavioral

treatments [18].

The remainder of this paper is organized as follows: Section 2 summarizes

the background of our research, focusing on the use of EMA methods, our

rationale behind the construction of the LFA, and a comparison with related

work; Section 3 describes the design and methods we employed in this study;

Section 4 analyzes the results obtained from the LFA we constructed; Section 5

discusses our main findings and analyzes limitations regarding our work; and

3



Section ?? presents concluding remarks and outlines future work.

2. Background and Related Work

Much prior research using traditional retrospective questionnaire methods

has focused on identifying psychosocial correlates and predictors of self-management

in chronic illness in general and specifically in diabetes [9]. With few exceptions,

little research using EMA has been conducted in diabetes. The few studies con-

ducted have uniquely identified time-based factors such as time of day and mo-

mentary negative emotions as related to self-management behaviors [19, 20, 21].

Our study focuses on advancing assessment for factors that have been pre-

viously associated with self-management, such as stress [22], mood [23, 24],

stigma [9, 25] and social context [8, 12]. We also uniquely assess novel factors

not previously studied in this population, such as fatigue [26], location [27],

social contexts [8], contextual factors such as rushing and traveling.

Machine learning (ML) analyses have been applied in various studies focusing

on the improvement of diabetes management and control. Studies constructed

and fine-tuned different ML models to predict future blood glucose levels based

on historical physiological data, [28, 29, 30], detect incorrect blood glucose mea-

surements in [31], predict hypoglycemia [32, 33], manage insulin dosing [34], and

applied to provide lifestyle support integrating food recognition, and energy ex-

penditures [35, 36].

In this study, we apply a learned filter algorithm (LFA) to psychosocial

EMA data to predict self-management behaviors. Our application of predictive

analytics differs from other studies outlined above. Previous studies focused pri-

marily on how accurately a model can predict a specific outcome such as glucose

values or hypoglycemia. In contrast, our study focuses on understanding what

types or group(s) of factors have the greatest relative accuracy in predicting the

presence or absence of an event.

Our study focuses on reducing the amount of variables used to predict an

outcome by filtering one or more domains of variables with the LFA, yet still
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extracting the necessary behavioral insight(s).

3. Materials and Methods

This study analyzed data from a feasibility trial of the mobile EMA and feed-

back app called MyDay, which is an IoT-based, multi-faceted self-management

problem solving tool for pediatric T1D patients, using a 30-day assessment pe-

riod [37]. Youth from the Vanderbilt Eskind Pediatrics Diabetes Clinic were

invited to participate if they were between the age of 13 and 19, had been di-

agnosed of T1D for at least 6 months, owned a smartphone, understood and

spoke English, and were willing to use a Bluetooth meter during the study.

A total of 48 participants were recruited for the pilot study. Three par-

ticipants dropped out of the study noting competing demands, and one was

eliminated due to lack of data, leaving 44 for our analyses. Subjects were ran-

domized on a 2:1 ratio to the app + Bluetooth blood glucose meter group (n=31)

and a control group (n=14) who provided BG data only using Bluetooth BG

meters. Design processes [38] and feasibility/engagement results for MyDay

were previously published [39].

3.1. Momentary Assessments and Glucose Meter Data

All SMBG data was objectively assessed using iHealth [40] Bluetooth me-

ters that uploaded data automatically to the iHealth server. App condition

participants were instructed to use MyDay at each mealtime and bedtime to

answer questions focused on factors likely to impact diabetes self-management,

including stress, fatigue, mood, social context, and contextual barriers to self-

care [37]. Mealtime BG monitoring was assessed objectively via data transfer

from the Bluetooth meters. Likewise, mealtime IA was self-reported into My-

Day.

MyDay provided notifications to complete the EMA assessment personalized

to typical mealtimes identified by participants as a reminder to complete EMA.
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Timestamps were associated with all data entries. Bedtime EMA was not in-

cluded in analyses since self-management tasks could not be reliably expected

at that specific time. Only mealtime EMA were used in analyses.

Variables analyzed in relation to self-management outcomes were organized

into the following subsets. The first two domains of variables were collected for

all participants: (1) Demographics obtained at baseline (gender, age, fathers

education, mothers education, family income, and race) and (2) Time variables

that were passively coded: weekday, weekend, and mealtime (breakfast, lunch,

dinner).

The next three domains of EMA data were available only for the MyDay

app group: (3) Context related to who was with the youth at time of self-

management (parent, sibling, alone, casual friend, close friend, other family,

other person, strangers, and boyfriend/girlfriend) and location (home, school,

work, restaurant, friends house, or on the road), (4) Stress, fatigue, mood:

scored as 0-100 with higher scores indicating greater stress, more fatigue, and

worse negative mood, and (5) Situational barriers (including rushing, sick, on

the road, hungry, wanting privacy, busy, without supplies, having fun).

3.2. Outcomes

We examined three self-management behavioral outcomes:

• Daily SMBG Frequency of ”less than 4” or ”4 or more” times a day.

Four glucose checks per day is generally considered the minimum recom-

mended [? ],

• Missed SMBG at mealtimes,

• Missed insulin administration (IA) at mealtimes

Data from all subjects were available (n=44) for analyses examining daily

number of SMBG from meters. The data that was available for all subjects were

demographic and time variables. Analyses examining outcomes 2 and 3 used

data from participants who used the MyDay EMA app ( n=31) which obtained

mealtimes.
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3.3. The Learned Filtering Architecture (LFA)

For this study we devised a learned filtering architecture (LFA) using a Ran-

dom Forest (RF) [41] classifier. We applied this classifier to extract domains

of variables to predict IA and SMBG self-management behaviors. Figure 1

presents the workflow of our learned filtering architecture (LFA) [42]. As shown

Figure 1: Iterative Process of Our Learned Filtering Architecture (LFA).

in the figure, SMBG data and the EMA data collected from the MyDay app

were integrated as a complete dataset fed into the LFA (steps 1 and 2). The

LFA then performed necessary pre-processing and data sanitation, such as nor-

malizing numeric values and removing empty entries (step 3). After this step,

data filtering process began where subsets of variables were extracted from the

cleaned data either based on configurable human input or automatic selection.

The variables were grouped as described above to create multiple data sub-

sets that were then split for training and testing (steps 4a and 4b). The training

set was used to train an ML classifier i.e., RF in this study (step 5), and the

test set is used to evaluate the trained model (step 6).

Specifically, we used the following metrics to assess our models: (1) accuracy,

which is the of correct predictions and all predictions, (2) precision, which is

the ratio of true positive and all predicted positive that evaluates if a model can
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discriminate only the related data, (3) recall, which is the ratio of true positive

and all positive data that evaluates if a model is able to find all related data,

and (4) F1 score, which evenly weights precision and recall.

Figure 1 presents the workflow of our learned filtering architecture (LFA)

for processing, analyzing, and extracting insights from the data collection. The

classification results obtained from the current feature subset were then sent to

the Filter component, which compared them with other feature subsets (step

7). The filter component has a configurable tolerance value, which was used to

select feature subset(s) that have relatively good classification results compared

to the best performing model(s) or other benchmark(s).

Next, the LFA checked whether other variable groups were available for

processing (step 8). If so, the Feature Selection process was repeated to create

the next subset (step 9). Otherwise, the filtering process terminated and output

the filtered results, i.e., variable groups with relatively strong predictive power

of the target outcomes (step 10).

A large portion (75%) of the combined input data formed a structured train-

ing set used to construct a classifier. The remaining data was a hold-out test

set for evaluating the classifier. The classification results then went through a

filter that extracted the best predictor group(s) of the target class variable. For

example, if the performance metrics exceed their threshold values, the predic-

tor group was added to the final output queue. When all variable groups were

evaluated, LFA returned the final insights obtained from the input.

Although the number of observations per participant was substantial, the

overall number of participants was relatively small. As a result, the collected

data had some imbalance in the distribution of the outcomes, with missed meal-

time insulin being a relatively less frequent event. Classification models con-

structed using imbalanced datasets may result in the minority class being ne-

glected [43]. To avoid this problem, we applied an imbalanced learning algorithm

that combined the Synthetic Minority Oversampling Technique (SMOTE) [44]

and Tomek link (T-link) [45] Both techniques have been used effectively for

training imbalanced data, especially for small datasets [46, 47, 48].
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We employed SMOTE to enrich the minority class by creating artificial ex-

amples in the minority class rather than replicating existing samples to prevent

overfitting. SMOTE creates new samples from linear combinations of two or

more similar samples selected from the minority class using a distance measure.

Each instance was created by perturbing the original sample’s attributes one at

a time at a random amount within the difference to the neighbouring instances.

We applied T-link to remove noisy data (which may have been introduced

by SMOTE) from the majority class. Potential noisy data was detected by

comparing the distances between any two samples from different classes and the

distances between an arbitrary sample and one of the two samples [45]. If the

distance between the former pair is smaller, then either sample in that pair is

a noise or both are border-line instances [49]. SMOTE and T-link were applied

only to the training set to ensure integrity of the test set.

4. Results

This section analyzes the results obtained from the LFA we constructed using

the method described in Section 3.

4.1. Descriptive Statistics of the Sample

The sample of n=44 participants were on average 15.33 years of age (SD

1.67), were 53.33% female, 86.67% White, 68.80% used an insulin pump and

had a mean HbA1c (indicating overall glycemic control) of 8.56% (SD 1.88).

4.1.1. Daily SMBG Frequency

We obtained 6,524 blood glucose (BG) measurements from Bluetooth meters

from all participants (n=44)For this analysis we related the demographic and

time variables to the outcome of SMBG frequency per day. SMBG frequency

ranged between 0-12 measurements per day. We aggregated the measurements

on a daily basis to obtain a new dataset of 1,244 entries, with each entry per

participant being the total number of measurements an individual had each day

during the study period.
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We observed the following distributions of SMBG daily frequency: there

were 595 days with ”Below 4” frequency and 649 day with ”4 or Above”. We

trained a Random Forest classifier (the best performing model compared to

several other classifiers we chose, such as Support Vector Machine and Naive

Bayes) with a 10-fold cross validation and obtained the classification results

using the test data.

The results of our analysis are shown in Table 1 for SMBG frequency Below

4 or 4 and Above. The filter then compared the benchmark value with the

Table 1: SMBG Classification of ”Below 4” or ”4 and Above” Performance Metrics

Feature Group Accuracy Precision Recall F1 Score

Demographics 75.2% 0.75 0.75 0.75

Time variables 48.2% 0.48 0.48 0.47

All 67.5% 0.68 0.68 0.68

outcome classification results obtained from each variable group. We configured

a tolerance value of 15% for the filter to select subsets with significant predictive

power. As shown, the demographics variable group for SMBG frequency resulted

in a better performance than time variables and all variables.

4.2. Missed Mealtime SMBG and Insulin Administration

From the app group (n=31), we had 1,855 entries that were associated with

breakfast, lunch, or dinner to analyze factor(s) that could impact SMBG and

IA. Missed IA had a distribution of 1:6 for True (missed) vs False (administered)

outcomes; whereas the outcome missed SMBG had a class distribution of 1:5

for True (missed) vs False (completed). LFA created classification models for

each variable group (demographic, time, social context, psychosocial) using the

75%/25% split for training and testing.

An RF classifier with a 10-fold cross validation was the best performing

model. Tables 2 and 3 present the classification results of missed SMBG and

missed IA. The RF filter selected demographics as the variable group that most

accurately predicted missed SMBG. Stress/fatigue/mood and social contexts

10



Table 2: Missed SMBG Classification Performance Metrics

Feature Group Accuracy Precision Recall F1 Score

Demographics 85.5% 0.85 0.85 0.85

Time Variables 71.8% 0.61 0.72 0.64

Social Context 71.3% 0.73 0.71 0.72

Stress, Fatigue, Mood 73.1% 0.71 0.73 0.71

Contextual Barriers 75.4% 0.70 0.75 0.68

All 86.7% 0.87 0.87 0.87

Table 3: Missed Mealtime Insulin Administration (IA) Classification Performance Metrics

Feature Group Accuracy Precision Recall F1 Score

Demographics 65.9% 0.84 0.66 0.71

Time Variables 56.7% 0.79 0.57 0.63

Social Context 62.1% 0.78 0.62 0.67

Stress, Fatigue, Mood 72.5% 0.78 0.73 0.75

Contextual Barriers 75.6% 0.77 0.76 0.76

All 80.1% 0.84 0.80 0.82

were the next best sets of variables associated with Missed SMBG. Table 3 shows

that the variable group with contextual barriers had the greatest accuracy in

predicting IA and stress/fatigue/mood was the variable group with the next

best accuracy for predicting IA.

5. Discussion

This section discusses our main findings and analyzes limitations regarding

our work.

5.1. Main Findings

To better understand the factors impacting self-management behavior of

adolescents with T1D, our study applied ML analyses to construct a learn-

ing filter architecture (LFA) using demographic, novel momentary psychosocial
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data and self-management data. We compared the relative association of five

domains of variables for predictability of self-management behaviors using all

the variables collectively as the benchmark.

The results indicated that demographic variables were most associated with

average daily SMBG frequency. These were the only non-EMA variables in-

cluded in the study. The results highlight the value of social determinants of

health, as defined by demographics. While demographic factors are generally

not modifiable, social determinants of health are increasingly used to adapt

care to for those who are most vulnerable and may not receive the full benefit

of current approaches to healthcare [50, 51].

A limitation of our results is that only demographic and time-related vari-

ables were available for analyses of the SMBG frequency outcome. Demographic

variables were not directly tested against the other EMA variables. Future re-

search is needed to contrast all of the current variable domains within one

sample.

Our results support the feasibility and value of integrating EMA and ML to

improve behavioral assessment and automate behavioral pattern recognition in

healthcare [52]. Our methods show promise to quantify the impact of psychoso-

cial factors on self-management. In previous studies [53, 54] using behavioral

observation in the context of identifying patterns of hand hygiene compliance

monitoring, from which we obtained very useful initial insights into which do-

mains of variables had the most impact on compliance behavior. Based on the

current findings, similar experiments are needed with larger samples to priori-

tize multiple potential domains of influence on health behaviors, and advance

the assessment and analytic approaches utilized here.

For small datasets that have disparities in the frequencies of observed classes

or outcomes, applying an over-sampling technique is a strategy to mitigate the

negative impact this imbalance has on model fitting. Nevertheless, synthetic

sampling (under-sampling or over-sampling) methods may overestimate per-

formance. The trained model with synthetic samples may not reflect the class

imbalance future studies may encounter, potentially leading to overly optimistic
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estimates performance. Relatedly, synthetic samples could induce model uncer-

tainty. Depending on how accurately the synthesized samples represent the

actual samples, the prediction outcomes may be better or worse, so the model

could appear more or less effective than it actually is.

The use of primarily passive psychosocial and behavioral data streams com-

bined with ML moving forward will provide the basis for a population-based

monitoring system that can help guide automated pattern detection for clinical

management. For example, experimental unobtrusive indicators of mealtimes

are in development [55] and insulin administration is available via pumps but

not in real time [55]. If successful, additional passive data streams would greatly

improve our methodological rigor and reach [56].

Finally, the LFA machine learning methods employed here should be applied

to a large diverse sample of patients to confirm and expand results reported in

this paper. Although passive methods are increasingly used to infer behavior

and psychosocial status [57, 58], there are important subjective experiences,

such as mood, which may continue to require self-report. For the foreseeable

future, both self-reported real-time data and passive data, such as social net-

working [59], may be integrated to optimize insights for healthcare.

6. Concluding Remarks

This paper reported the results of a study that applied EMA and ML meth-

ods to better understand psychosocial and contextual aspects of self-management

behavior in adolescents with T1D. Combining EMA data with ML methods may

result in enhanced identification of barriers or facilitators or health behaviors

and automated identification and prioritization of relevant factors [60]. Using

LFA, we systematically identified relevant variables by filtering out data with

relatively less impact on the outcomes.

The results of our study suggested that LFA can reduce the scale and com-

plexity of EMA datasets. As EMA is used to collect larger-scale data in public

health settings, the filtering capability will be useful to reduce complexity yet
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guarantee relatively accurate insights![54]. The trade-off in reducing complexity

in this case, is a reduction in specificity for individual variables as targets for in-

tervention. Future systems will benefit from combining self-report of subjective

human experiences along with passive indicators of factors that impact health

behavior decision-making in daily life.
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[31] J. Bondia, C. Taŕın, W. Garćıa-Gabin, E. Esteve, J. M. Fernández-Real,

W. Ricart, J. Veh́ı, Using support vector machines to detect therapeutically

incorrect measurements by the minimed cgms R©, Journal of diabetes science

and technology 2 (4) (2008) 622–629.

[32] B. Sudharsan, M. Peeples, M. Shomali, Hypoglycemia prediction using ma-

chine learning models for patients with type 2 diabetes, Journal of diabetes

science and technology 9 (1) (2014) 86–90.

[33] T. Biester, O. Kordonouri, M. Holder, K. Remus, D. Kieninger-Baum,

T. Wadien, T. Danne, let the algorithm do the work: Reduction of hy-

poglycemia using sensor-augmented pump therapy with predictive insulin

suspension (smartguard) in pediatric type 1 diabetes patients, Diabetes

technology & therapeutics 19 (3) (2017) 173–182.

[34] M. Bastani, Model-free intelligent diabetes management using machine

learning, Ph.D. thesis, University of Alberta (2014).

[35] Y. Kawano, K. Yanai, Real-time mobile food recognition system, in: Com-

puter Vision and Pattern Recognition Workshops (CVPRW), 2013 IEEE

Conference on, IEEE, 2013, pp. 1–7.

[36] K. Ellis, J. Kerr, S. Godbole, G. Lanckriet, D. Wing, S. Marshall, A random

forest classifier for the prediction of energy expenditure and type of physi-

cal activity from wrist and hip accelerometers, Physiological measurement

35 (11) (2014) 2191.

[37] H. K. L. C. C. R. W. L. S. D. J. K. D. M. L. L. Mulvaney SA, Vaala SV,

Mobile momentary assessment and bio-behavioral feedback for adolescents

with type 1 diabetes: feasibility and engagement patterns., Diabetes Tech-

nology and Therapeutics.

18



[38] P. Zhang, D. C. Schmidt, J. White, S. A. Mulvaney, Towards precision

behavioral medicine with iot: Iterative design and optimization of a self-

management tool for type 1 diabetes, 2018 IEEE International Conference

on Healthcare Informatics.

[39] S. A. Mulvaney, S. Vaala, K. K. Hood, C. Lybarger, R. Carroll, L. Williams,

D. C. Schmidt, K. Johnson, M. S. Dietrich, L. Laffel, Mobile momentary

assessment and biobehavioral feedback for adolescents with type 1 diabetes:

Feasibility and engagement patterns, Diabetes technology & therapeutics

20 (7) (2018) 465–474.

[40] iHealth Labs Inc. [link].

URL https://ihealthlabs.com

[41] A. Liaw, M. Wiener, et al., Classification and regression by randomforest,

R news 2 (3) (2002) 18–22.

[42] P. Zhang, J. White, D. Schmidt, Architectures and patterns for leveraging

high-frequency, low-fidelity data in the healthcare domain, in: 2018 IEEE

International Conference on Healthcare Informatics (ICHI), IEEE, 2018,

pp. 463–464.

[43] N. V. Chawla, N. Japkowicz, A. Kotcz, Special issue on learning from

imbalanced data sets, ACM Sigkdd Explorations Newsletter 6 (1) (2004)

1–6.

[44] N. V. Chawla, K. W. Bowyer, L. O. Hall, W. P. Kegelmeyer, Smote: syn-

thetic minority over-sampling technique, Journal of artificial intelligence

research 16 (2002) 321–357.

[45] I. Tomek, An experiment with the edited nearest-neighbor rule, IEEE

Transactions on systems, Man, and Cybernetics (6) (1976) 448–452.

[46] L. Lusa, et al., Smote for high-dimensional class-imbalanced data, BMC

bioinformatics 14 (1) (2013) 106.

19

https://ihealthlabs.com
https://ihealthlabs.com


[47] T. Elhassan, M. Aljurf, F. Al-Mohanna, M. Shoukri, Classification of imbal-

ance data using tomek link (t-link) combined with random under-sampling

(rus) as a data reduction method, Journal of Informatics and Data Mining.

[48] N. Thai-Nghe, D. Nghi, L. Schmidt-Thieme, Learning optimal threshold on

resampling data to deal with class imbalance, in: Proc. IEEE RIVF Inter-

national Conference on Computing and Telecommunication Technologies,

2010, pp. 71–76.

[49] S. Kotsiantis, D. Kanellopoulos, P. Pintelas, et al., Handling imbalanced

datasets: A review, GESTS International Transactions on Computer Sci-

ence and Engineering 30 (1) (2006) 25–36.

[50] A. M. Butler, Social determinants of health and racial/ethnic disparities in

type 2 diabetes in youth, Current diabetes reports 17 (8) (2017) 60.

[51] L. A. Cummings, A. Clarke, E. Sochett, D. Daneman, D. Z. Cherney, H. N.

Reich, J. W. Scholey, D. B. Dunger, F. H. Mahmud, Social determinants of

health are associated with markers of renal injury in adolescents with type

1 diabetes, The Journal of pediatrics 198 (2018) 247–253.

[52] C. on the Recommended Social, B. Domains, M. forElectronic

Health Records, Capturing social and behavioral domains and measures

in electronic health records (Jan 2015).

URL https://www.ncbi.nlm.nih.gov/books/NBK268995/

[53] P. Zhang, M. Rodriguez-Cancio, D. C. Schmidt, J. White, T. Dennis, Dis-

cussions of a preliminary hand hygiene compliance monitoring application-

as-a-service., in: HEALTHINF, 2017, pp. 537–544.

[54] P. Zhang, J. White, D. Schmidt, T. Dennis, Applying machine learning

methods to predict hand hygiene compliance characteristics, in: Biomedical

& Health Informatics (BHI), 2017 IEEE EMBS International Conference

on, IEEE, 2017, pp. 353–356.

20

https://www.ncbi.nlm.nih.gov/books/NBK268995/
https://www.ncbi.nlm.nih.gov/books/NBK268995/
https://www.ncbi.nlm.nih.gov/books/NBK268995/


[55] M. Farooq, E. Sazonov, Accelerometer-based detection of food intake in

free-living individuals, IEEE sensors journal 18 (9) (2018) 3752–3758.

[56] S. Samadi, M. Rashid, K. Turksoy, J. Feng, I. Hajizadeh, N. Hobbs,

C. Lazaro, M. Sevil, E. Littlejohn, A. Cinar, Automatic detection and esti-

mation of unannounced meals for multivariable artificial pancreas system,

Diabetes technology & therapeutics 20 (3) (2018) 235–246.

[57] H. Gimpel, C. Regal, M. Schmidt, mystress: Unobtrusive smartphone-

based stress detection., in: ECIS, 2015.

[58] J. Asselbergs, J. Ruwaard, M. Ejdys, N. Schrader, M. Sijbrandij, H. Riper,

Mobile phone-based unobtrusive ecological momentary assessment of day-

to-day mood: an explorative study, Journal of medical Internet research

18 (3) (2016) e72.

[59] L. Laranjo, A. Arguel, A. L. Neves, A. M. Gallagher, R. Kaplan, N. Mor-

timer, G. A. Mendes, A. Y. Lau, The influence of social networking sites

on health behavior change: a systematic review and meta-analysis, Journal

of the American Medical Informatics Association 22 (1) (2014) 243–256.

[60] I. Nahum-Shani, S. N. Smith, B. J. Spring, L. M. Collins, K. Witkiewitz,

A. Tewari, S. A. Murphy, Just-in-time adaptive interventions (jitais) in

mobile health: key components and design principles for ongoing health

behavior support, Annals of Behavioral Medicine.

21


	Introduction
	Background and Related Work
	Materials and Methods
	Momentary Assessments and Glucose Meter Data
	Outcomes
	The Learned Filtering Architecture (LFA)

	Results
	Descriptive Statistics of the Sample
	Daily SMBG Frequency

	Missed Mealtime SMBG and Insulin Administration

	Discussion
	Main Findings

	Concluding Remarks

