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sign Tools and Techniques—Model-driven software engineering; multi-resource allocation; D.2.11 [Soft-

ware Engineering]: Software Architectures—Domain-specific Architectures; Reusable Libraries1. INTRODUCTION
Emerging trends and motivation. Component middleware, such as CORBA Com-
ponent Model (CCM), J2EE, and .NET, is increasingly being used to develop and
deploy next-generation distributed real-time and embedded (DRE) systems, such as
shipboard computing environments [Schmidt et al. 2001], inventory tracking sys-
tems [Nechypurenko et al. 2004], avionics mission computing systems [Sharp and
Roll 2003], intelligence, surveillance and reconnaissance systems [Sharma et al.
2004], and smart buildings [Snoonian 2003].

Such systems consist of applications that participate in multiple end-to-end ap-
plication flows and operate in resource-constrained environments that are highly
dynamic with varying levels of CPU, and network bandwidth availabilities. For
example, smart buildings can host different types of (1) embedded devices (e.g.,
fire/temperature sensors and voice-over-IP phones), (2) applications with diverse
CPU QoS requirements (e.g., personal desktop applications versus fire sensor data
analyzers), and (3) applications flows with diverse network QoS requirements (e.g.,
transport of e-mails versus transport of security-related information). In such dy-
namic and heterogeneous environments, DRE systems need to provide services with
diverse performance and quality-of-service (QoS) requirements, such as satisfactory
average response times and throughput. For example, applications of a smart build-
ing environment need to share multiple heterogeneous resources while providing
services with diverse end-to-end QoS requirements.

Problem description. With the advent of low-cost high-speed processors, and
large network bandwidth availabilities, it seems conceptually simple to overprovi-
sion network bandwidth and CPU resources to ensure sufficient QoS for applica-
tions in dynamic DRE systems. In practice, however, the QoS provisioning prob-
lem is more complex due to the need to differentiate applications and application
flows at the processors and the underlying network elements, respectively so that
mission-critical applications receive better performance than non-critical applica-
tions [Nahrstedt 1999; Schantz et al. 2006]. Moreover, overprovisioning is not a
viable option in cost- and resource-constrained environments in which DRE sys-
tems are often deployed, e.g. in emerging markets that cannot afford the expense
of overprovisioning.

What is needed, therefore, are effective resource management mechanisms that
can efficiently provision CPU and network resources so that DRE applications can
share scarce resources in resource-constrained dynamic environments, yet still have
their QoS requirements satisfied end-to-end. In particular, these mechanisms must
address the following two limitations in current research:

Limitation 1: Need for integrated allocation of multiple resources. Prior
research has advanced the state-of-the-art on network and CPU resource reserva-
tion and scheduling mechanisms through various architectures, algorithms, and
protocols. To configure required CPU resources for applications, prior work has
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focused on resource allocation algorithms [de Niz and Rajkumar 2006; Gopalakr-
ishnan and Caccamo 2006] that satisfy timing requirements of applications in a
DRE system. After allocating applications to a processor, scheduling algorithms,
such as rate-monotonic scheduling algorithm [Lehoczky et al. 1989], could be used
to differentiate application operations and provide diverse CPU performance assur-
ances for applications. Similarly, to configure the required network resources for
application flows, prior research on network quality of service (QoS) mechanisms,
such as integrated services (IntServ) [L. Zhang and S. Berson and S. Herzog and
S. Jamin 1997] and differentiated services (DiffServ) [Blake et al. 1998], manage
the available network bandwidth and support a range of network service levels for
applications in DRE systems.

While QoS mechanisms for a single resource in isolation (e.g., CPU or network)
has been studied extensively, relatively little work has focused on deployment and
configuration of applications with integrated allocation of multiple heterogeneous
resources so that applications can have their QoS requirements satisfied end-to-end.
In the absence of coordinated mechanisms that allocate multiple resources, appli-
cations in DRE systems may not meet their QoS goals. For example, application
developers may erroneously believe that determining the source and destination
nodes for the communicating entities of their applications using CPU QoS mecha-
nisms, such as bin-packing algorithms [de Niz and Rajkumar 2006], can also as-
sure network QoS. An application CPU allocation algorithm [Urgaonkar et al. 2007;
Stewart and Shen 2005], however, could dictate multiple placement choices for ap-
plication(s), but not all of those placement choices could provide the network QoS
that is required simultaneously with CPU QoS. Mechanisms are therefore needed
to allocate CPU and network resources in an integrated and coordinated manner.

Limitation 2: Need for an application non-invasive resource management
framework. Although QoS mechanisms (e.g., DiffServ) provide schemes for reserv-
ing resources (e.g., network bandwidth), applications are ultimately responsible for
determining and allocating the required resources. Conventionally, applications in-
teract directly with provided low-level APIs written imperatively in third-generation
languages, such as C++ or Java, to leverage the services of the QoS mechanisms.
For example, applications must make multiple invocations on network QoS mech-
anisms (e.g., DiffServ Bandwidth Broker [Foster et al. 2004]) to accomplish key
network QoS activities, such as QoS mapping, admission control, and packet mark-
ing.

To address this problem, middleware-based network QoS provisioning solutio-
ns [Wang et al. 2000; Schantz et al. 1999; Schantz et al. 2003; Miguel 2002;
El-Gendy et al. 2004] as well as middleware-based CPU QoS provisioning solu-
tions [Eide et al. 2004; Nahrstedt et al. 2001; Urgaonkar and Shenoy 2004; Pyarali
et al. 2003; Krishna et al. 2004] have been developed that allow applications
to specify their coordinates (source and destination IP and port addresses), CPU
utilization requirements, and per-flow network QoS requirements via higher-level
frameworks. The middleware frameworks—rather than the applications—are thus
responsible for converting high-level specifications of QoS intent into low-level net-
work and CPU QoS mechanism APIs for allocating the required CPU and network
resources.
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Although middleware frameworks alleviate many accidental complexities of us-

ing low-level network QoS mechanism APIs, applications can still be hard to evolve
and extend. In particular, application source code changes may be necessary when-
ever changes occur to the deployment contexts (e.g., source and destination nodes
of applications), per-flow network resource requirements, per-application CPU re-
source requirements, IP packet identifiers, or middleware APIs. To address the
limitations with current approaches described above, therefore, what is needed are
higher-level integrated CPU and network QoS provisioning technologies that can
decouple application source code from the variabilities (e.g., different source and
destination node deployments, different QoS requirement specifications) associated
with their QoS provisioning needs. This decoupling enhances application reuse
across a wider range of deployment contexts (e.g., different deployment instances
each with different QoS requirements), thereby increasing deployment flexibility.

Solution approach → A model-driven deployment and configuration mid-
dleware framework, called Network QoS Provisioning Engine (NetQoPE), that inte-
grates CPU and network QoS provisioning via declarative domain-specific modeling
languages (DSML) [Balasubramanian et al. 2007]. To address the limitations with
current solutions described above, NetQoPE provides end-to-end QoS assurances
for applications by providing application non-invasive mechanisms to (1) employ
well-known CPU QoS mechanisms such as bin-packing algorithms [de Niz and Ra-
jkumar 2006] to find all the feasible CPU deployments for the applications to be de-
ployed, (2) refine these CPU allocation decisions and ensure that the network traffic
demands for the incoming and outgoing traffic are met by employing network QoS
mechanisms such as DiffServ and its associated Bandwidth Broker [Dasarathy et al.
2007; Foster et al. 2004; Mahajan and Parashar 2003], and (3) enforce the required
network QoS at runtime by configuring the underlying middleware.

To allocate CPU and network resources for applications—and to provision QoS
needs of applications in an application-independent manner—NetQoPE raises the
level of abstraction of DRE system design higher than using imperative third-g-
eneration programming languages. This design allows system engineers and soft-
ware developers to perform deployment-time analysis (such as schedulability anal-
ysis [Gu et al. 2003]) of non-functional system properties (such as CPU and net-
work QoS assurances for end-to-end application flows). The result is enhanced
deployment-time assurance that application QoS requirements will be satisfied.
NetQoPE provides multiple resource provisioning by leveraging existing CPU QoS
provisioning mechanisms and complementing them with network QoS provisioning
mechanisms in an application non-invasive manner.

To allocate CPU and network resources for applications in an integrated manner,
NetQoPE provides a domain-specific modeling language [Karsai et al. 2003], called
Network QoS Specification Language (NetQoS), that allows specification of required
resources and QoS needs according to the the deployed contexts of the applica-
tions. On behalf of the applications, NetQoS initiates mapping of the captured QoS
specifications to QoS-specific parameters and APIs [Dasarathy et al. 2007; Foster
et al. 2004; de Niz and Rajkumar 2006] using a resource allocation middleware
called Network Resource Allocation Framework (NetRAF).

NetRAF and NetQoS shield application developers from the complexity of inter-
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acting with complex QoS mechanism APIs (either directly or through middleware)
to allocate CPU and network resources in an integrated manner. NetQoPE’s Network

QoS Configurator (NetCON) deploys applications in their allocated hosts, and auto-
configures the underlying middleware to enforce network QoS at runtime (e.g., by
adding DiffServ Codepoints (DSCPs) to IP packets). This paper focuses on the de-
sign of the NetQoPE framework and demonstrates its efficiency using an empirical
evaluation. Our results evaluate the flexibility and overhead of using NetQoPE to
provide CPU and network QoS assurance to end-to-end application flows.

Paper organization. The remainder of the paper is organized as follows: Sec-
tion 2 describes a case study that motivates common requirements associated with
provisioning QoS for DRE systems; Section 3 explains how NetQoPE addresses
those requirements via its multistage model-driven component middleware frame-
work; Section 4 empirically evaluates the capabilities provided by NetQoPE; Sec-
tion 5 compares our work on NetQoPE with related research; and Section 6 presents
concluding remarks and lessons learned.2. MOTIVATING NETQOPE'S QOS PROVISIONING CAPABILITIES
This section presents a case study of a representative DRE system taken from a
smart office enterprise environment. We use this case study throughout the paper
to motivate and evaluate NetQoPE’s model-driven, middleware-guided CPU and
network QoS provisioning capabilities.2.1 Overview of the Smart O�e Case Study
As shown in Figure 1, smart office enterprises belong to a domain of systems called
Smart Buildings [Snoonian 2003] and showcase state-of-the-art computing and
communication infrastructure in its offices, and meeting rooms. Sensors and ac-
tuators pervade across a smart office enterprise, and control different functionality
within the enterprise. For example, ventilation and air conditioning systems are
controlled by sensors that monitor and send current room temperatures to an air
conditioning service in the command and operations center using the communi-
cation infrastructures of the smart office enterprise. The air conditioning service
analyzes the sensory data and automatically configures the actuators in response
to control room temperatures.

In addition to the network traffic associated with the sensors, actuators, and
other related embedded systems, the communication infrastructure of a smart of-
fice enterprise is also shared by the network traffic associated with the day-to-day
enterprise operations of the employees (e.g., e-mail, video conferencing). The dif-
ferent services provided by a smart office have different mission criticalities, and
hence different and diverse QoS requirements. Below we describe some services
in a smart office in the context of their capabilities and the QoS requirements they
expect from the underlying platform:

—Fire and smoke management. Detectors in different rooms send periodic sensory
information to a fire and smoke management service. In the event of a fire, this
service activates the sprinkler system in the right places, activates the public ad-
dress system announcing the right evacuation paths for occupants of the building,
and notifies external entities, such as fire stations and hospitals of the incident
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Fig. 1: Network Configuration in a Smart Office Enterprise

with the right details. Although the emergency mode operation of this service is
infrequent, the delivery of sensory data to the service—and the outgoing traffic
from this service—is high priority, and thus should always obtain the desired CPU
and network resources. Moreover, sensory and actuation traffic must be reliable.

—Security surveillance. This service uses a feed from cameras and audio sensors
fitted in different rooms and performs appropriate audio and image processing,
and pattern matching operations to detect intruders. In the event of an intruder
being detected, this service immediately notifies the security control room. It
can also activate the mechanical control of the doors of the impacted rooms
to lock automatically. Since this service receives a stream of video information
from cameras, the input feed requires high bandwidth for the multimedia traffic,
while the outgoing alert notifications and activation of door controls require high
priority.

—Air conditioning and lighting control. The air conditioning and lighting control
service maintains appropriate ambient temperatures and lighting, respectively,
in different parts of the office including business offices, conference rooms and
server rooms. It also turns off lights when rooms are not occupied thereby saving
energy. This service receives sensory data from thermostats and motion sensors,
and controls the air conditioning vents and light switches. This service requires
reliable transmission of information but does not necessarily require high priority.

—Video and teleconferencing. Offices often provide several conference rooms with
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simultaneously conducted meetings. These meetings usually require video and
teleconferencing facilities. It is therefore important to provision high bandwidth
for these meetings. A moderator of each meeting submits a request for bandwidth
to this service, which must be reliably transmitted to the service. The service in
turn must provision the appropriate bandwidth for the multimedia traffic. This
service can also actuate a public address system informing people of a meeting.
These public address announcements belong to the best effort class of traffic.

—Email and other web traffic. Offices also involve a number of other kinds of traf-
fic including email, calendar management, and web traffic. This service must
manage these best effort class of traffic on behalf of the people.

As described above, assuring the correct operation of a smart office enterprise
involves provisioning the diverse QoS needs of its different services that share the
scarce resources across the different embedded and information systems of the
smart office enterprise. The right set of CPU allocations need to be made for the
services (e.g., air conditioning service) to run on the shared cluster such that their
QoS needs are met. Not all CPU allocations, however, always ensure the avail-
ability of network bandwidth, which these services require for processing sensory
data from their respective sensors and controlling the actuators (e.g., air condition-
ing controllers in the meeting rooms). For example, while the same CPU may be
allocated to two or more multimedia tasks belonging to different services, their
bandwidth requirements may make the CPU allocation decision inappropriate.

A smart office environment therefore needs algorithms and techniques that can
(1) find all the feasible CPU deployments for the services, (2) refine these CPU
allocation decisions by ensuring that the network traffic demands for the incoming
and outgoing traffic are met, and (3) enforce the required network QoS at runtime.2.2 Underlying Tehnologies
The individual tasks of each service in our case study were developed using (1)
Lightweight CCM (LwCCM) to configure QoS aspects of the application separately
from the functional aspects of the application [Wang et al. 2004] and (2) a Band-
width Broker [Dasarathy et al. 2007] to manage network resources using DiffServ
network QoS mechanisms, as described below.1

2.2.1 Overview of Lightweight CORBA Component Model and CIAO. The OMG
Lightweight CCM (LwCCM) [Object Management Group 2003] specification is a
subset of the complete CCM specification [Object Management Group 2008] de-
signed to minimize code size for embedded environments and processing overhead
for performance-sensitive applications. Components in LwCCM are the implemen-
tation entities that export a set of interfaces usable by conventional middleware
clients as well as other components. Components can also express their intent to
collaborate with other components by defining ports, including (1) facets, which
define an interface that accepts point-to-point method invocations from other com-
ponents, (2) receptacles, which indicate a dependency on point-to-point method in-
terface provided by another component, and (3) event sources/sinks, which indicate

1Although the case study in this paper focuses on LwCCM and DiffServ, NetQoPE can be used with other
network QoS mechanisms (e.g., IntServ) and component middleware technologies (e.g., J2EE).
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a willingness to exchange typed messages with one or more components. Homes

are factories that shield clients from the details of component creation strategies
and subsequent queries to locate component instances. Figure 2 shows the layered
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Fig. 2: Overview of LwCCM

architecture of LwCCM, which includes the following entities:

—LwCCM sits atop an object request broker (ORB) and provides containers that en-
capsulate and enhance the CORBA portable object adapter (POA) demultiplexing
mechanisms. Containers support various pre-defined hooks and strategies, such
as persistence, event notification, transaction, and security, to the components it
manages.

—A component server plays the role of a process that manages the homes, contain-
ers, and components.

—Each container manages one type of component and is responsible for initializing
instances of this component type and connecting them to other components and
common middleware services.

—The component implementation framework (CIF) consists of patterns, languages
and tools that simplify and automate the development of component implemen-
tations which are called as executors. Executors actually provide the component’s
business logic.

—To initialize an instance of a component type, a container creates a component
home. The component home creates instances of servants and executors and
combines them to export component implementations to the external world.

—Executors use servants to communicate with the underlying middleware and ser-
vants delegate business logic requests to executors. Client invocations made on
the component are intercepted by the servants, which then delegate the invo-
cations to the executors. Moreover, the containers can configure the underlying
middleware to add more specialized services such as integrating event channel to
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allow components to communicate, add Portable Interceptors to intercept com-
ponent requests, etc.

Assembly, which is an abstraction that groups components, in LwCCM is de-
scribed using XML descriptors (mainly the deployment plan descriptor) defined by
the OMG D&C [OMG 2006] specification. The deployment plan includes details
about the components, their implementations, and their connections to other com-
ponents. The deployment plan also has a placeholder configProperty that is asso-
ciated with elements (e.g., components, connections) to specify their properties
(e.g., priorities) and resource requirements. Components are hosted in containers

that provide the runtime operating environment (e.g., load balancing, security, and
event notification) for components to invoke remote operations.

The smart office enterprise software controllers we developed for this case study
were build using CIAO, which is an open-source2 implementation of the LwCCM
and Real-time CORBA [Object Management Group 2002] specifications built atop
The ACE ORB (TAO) [Schmidt et al. 1998]. CIAO’s architecture is designed us-
ing patterns [Buschmann et al. 2007] for composing component-based middleware
and reflective middleware techniques to enable mechanisms within the component-
based middleware to support different QoS aspects, such as CPU scheduling prior-
ity [Wang et al. 2004].

2.2.2 Overview of Telcordia’s Bandwidth Broker. Telcordia has developed a net-
work management solution for QoS provisioning called the Bandwidth Broker -
[Dasarathy et al. 2005], which leverages widely available mechanisms [Blake et al.
1998] that support Layer-3 DiffServ (Differentiated Services) and Layer-2 Class of
Service (CoS) features in commercial routers and switches. DiffServ and CoS have
two major QoS functionality/enforcement mechanisms:

—At the ingress of the network, traffic belonging to a flow is classified based on
the 5-tuple (source IP address and port, destination IP address and port, and
protocol) and DSCP (assigned by the Bandwidth Broker) or any subset of this
information. The classified traffic is marked/re-marked with a DSCP as belonging
to a particular class and may be policed or shaped to ensure that traffic does not
exceed a certain rate or deviate from a certain profile.

—In the network core, traffic is placed into different classes based on the DSCP
marking and provided differentiated, but consistent per-class treatment. Differ-
entiated treatment is achieved by scheduling mechanisms that assign weights or
priorities to different traffic classes (such as weighted fair queuing and/or prior-
ity queuing), and buffer management techniques that include assigning relative
buffer sizes for different classes and packet discard algorithms, such as Random
Early Detection (RED) and Weighted Random Early Detection (WRED).

These two features by themselves are insufficient to ensure end-to-end network
QoS because the traffic presented to the network must be made to match the net-
work capacity. What is also needed, therefore, is an adaptive admission control
entity that ensures there are adequate network resources for a given traffic flow
on any given link that the flow may traverse. The admission control entity should

2CIAO is available from www.dre.vanderbilt.edu/CIAO.
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be aware of the path being traversed by each flow, track how much bandwidth is
being committed on each link for each traffic class, and estimate whether the traffic
demands of new flows can be accommodated. In Layer-3 networks, there is more
than one equal-cost between a source and destination; so we employ Dijkstra’s all-
pair shortest path algorithms. In Layer-2 network, we discover the VLAN tree to
find the path between any two hosts.

Figure 3 illustrates the architecture (described in detail in [Dasarathy et al. 2005;
Dasarathy et al. 2007; Gadgil et al. 2007]) of our network management solution
for providing application QoS. The four components of the QoS management archi-

Fig. 3: Overview of Telcordia’s Bandwidth Broker

tecture are (1) Bandwidth Broker, (2) Flow Provisioner, (3) (Network) Performance

Monitor, and (4) (Network) Fault Monitor. Our network QoS components provide
adaptive admission control that ensures there are adequate network resources to
match the needs of admitted flows.

The Bandwidth Broker is responsible for admission control and assigning the
appropriate traffic class to each flow. It tracks bandwidth allocations on all net-
work links, rejecting new flow requests when bandwidth is not available. The Flow
Provisioner enforces Bandwidth Broker admission control decisions by configuring
ingress network elements to ensure that no admitted flow exceeds its allocated
bandwidth. The Flow Provisioner translates technology-independent configura-
tion directives generated by the Bandwidth Broker into vendor-specific router and
switch commands to classify, mark, and police packets belonging to a flow. The
Fault Monitor is the main feedback mechanism for adapting to network faults and
the Performance Monitor provides information on the current performance infor-
mation of flows and traffic classes. The Bandwidth Broker uses this information to
adapt its admission control decisions.

The Bandwidth Broker admission decision for a flow is not based solely on re-
quested capacity or bandwidth on each link traversed by the flow, but is also
based on delay bounds requested for the flow. The delay bounds for new flows
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must be assured without damaging the delay bounds for previously admitted flows
and without redoing the expensive job of readmitting every previously admitted
flow. We have developed computational techniques to provide both determinis-
tic and statistical delay-bound assurance [Dasarathy et al. 2007]. This assurance
is based on relatively expensive computations of occupancy or utilization bounds
for various classes of traffic, performed only at the time of network configura-
tion/reconfiguration, and relatively inexpensive checking for a violation of these
bounds at the time of admission of a new flow.2.3 QoS Management in the Smart O�e Enterprise.
Although state-of-the-art advances [de Niz and Rajkumar 2006; Foster et al. 2004;
Dasarathy et al. 2007] have been made to reserve CPU and network resources,
applications are still largely responsible for determining and specifying how much
capacity of each resource must be reserved to meet the application’s end-to-end
QoS requirements. In particular, LwCCM-based applications in our smart office
enterprise case study use bin-packing algorithms and Bandwidth Broker services
via the following middleware-guided steps:

(1) CPU utilization requirements are specified for each application, and bin-packing
algorithms are used to determine the physical hosts to deploy the applications

(2) Network QoS requirements are specified on each application flow, along with
information on the source/destination IP/port addresses that were determined
by bin-packing algorithms

(3) The Bandwidth Broker is invoked to reserve network resources along the net-
work paths for each application flow, configure the corresponding network
routers, and obtain per-flow DSCP values to help enforce network QoS, and

(4) Remote operations are invoked with appropriate DSCP values added to the IP
packets so that configured routers can provide per-flow differentiated perfor-
mance.

Section 3 describes the challenges we encountered when implementing these steps
in DRE systems, such as our case study, and shows how NetQoPE’s multistage ar-
chitecture shown in Figure 4 helps resolve these challenges.3. NETQOPE'S MULTISTAGE NETWORK QOS PROVISIONING ARCHITECTURE
This section describes how NetQoPE addresses limitations with conventional tech-
niques for CPU allocation and providing network QoS to applications in DRE sys-
tems. As discussed in Section 1, these limitations include requiring the modification
of application source code to specify deployment context-specific network QoS re-
quirements and integrate functionality from network QoS mechanisms at runtime.
In contrast, NetQoPE deploys and configures component middleware-based appli-
cations in DRE systems and enforces their network and CPU QoS requirements
using the multistage (i.e., design-, pre-deployment-, deployment-, and run-time)
architecture shown in Figure 4. NetQoPE’s multistage architecture consists of the
following elements:
• The Network QoS Specification Language (NetQoS), which is a DSML that

supports design-time specification of per-application CPU resource requirements, as
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Fig. 4: NetQoPE’s Multistage Architecture

well as per-flow network QoS requirements, such as bandwidth and delay across a
flow. By allowing application developers to focus on functionality—rather than the
different deployment contexts (e.g., different CPU, bandwidth, and delay require-
ments) where they will be used—NetQoS simplifies the deployment of applications
in contexts that have different CPU and network QoS needs, e.g., different band-
width requirements. Section 3.1 describes NetQoS in more detail.
• The Network Resource Allocation Framework (NetRAF), which is a middle-

ware-based resource allocator framework that uses the network QoS requirements
captured by NetQoS as input at pre-deployment time to help guide QoS provision-
ing requests on the underlying network and CPU QoS mechanisms at deployment
time. NetRAF provides an application-transparent and pre-deployment time per-
application CPU resource allocation capabilities using bin-packing algorithms [de Niz
and Rajkumar 2006] and per-flow resource allocation capabilities using a Band-
width Broker [Dasarathy et al. 2007] that coordinates CPU utilization and network
bandwidth assurances for applications and their end-to-end application flows. Sec-
tion 3.2 describes NetRAF in more detail.
• The Network QoS Configurator (NetCON), which is a middleware-based net-

work QoS configurator that provides deployment-time configuration of compo-
nent middleware containers. NetCON adds flow-specific identifiers (e.g., DSCPs)
to IP packets at runtime when applications invoke remote operations. By provid-
ing container-mediated and application-transparent capabilities to enforce runtime
network QoS, NetCON allows DRE systems to leverage the QoS services of con-
figured routers without modifying application source code. Section 3.3 describes
NetCON in more detail.

Figure 4 shows how the output of each stage in NetQoPE’s multistage archi-
tecture serves as input for the next stage, which helps automate the deployment
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and configuration of DRE applications with CPU and network QoS support in a
non-invasive manner. The remainder of this section describes each element in the
NetQoPE’s multistage architecture and explains how they provide the functionality
required to meet the end-to-end QoS requirements of applications in DRE systems.3.1 NetQoS: Alleviating Complexities in CPU and Network QoS Requirements Spe-i�ation
Context. As discussed in Section 1, integrated allocation and scheduling of multi-
ple heterogeneous resources is required to allocate both CPU and network resources
for applications and to provision per-application end-to-end QoS needs. To allocate
CPU resources for applications using a bin-packing algorithm [de Niz and Rajkumar
2006; Chen et al. 2007], CPU utilization requirements need to be specified. Bin-
packing algorithms determine the appropriate physical hosts for deployment and
applications obtain their required CPU resources. To allocate network resources for
each application flow in the system, application developers and deployers need to
specify a required level of service (e.g., high priority vs. low priority), the source
and destination IP and port addresses, and ingress and egress bandwidth require-
ments. A network QoS mechanism (e.g., a Bandwidth Broker [Foster et al. 2004])
uses this information to configure network resources between two endpoint nodes
to provide the required QoS.
Problem. Although state-of-the-art advances [de Niz and Rajkumar 2006; Foster
et al. 2004] have been made to reserve CPU and network resources, it is still the
responsibility of the applications to determine and specify how much capacity of
each resource is reserved to meet the application’s end-to-end QoS requirements.
Conventional techniques, such as hard-coded API approaches [de Miguel 2002], re-
quire application source code modifications for specifying resource requirements.
Manual modifications to the application source code to specify both CPU and net-
work QoS requirements is tedious, error-prone, and non-scalable.

In particular, applications could have different resource requirements depending
on the context in which they are deployed. For example, in our smart office case
study described in Section 2, depending on where they are deployed, fire sensors
(which send their sensory data to monitors in the command and control center)
will have different importance levels. For example, fire sensors deployed in the
parking lot have a lower importance than those in the server room. The sensor
to monitor flows thus have different network QoS requirements, even though the
reusable software controllers (developed in LwCCM) managing the fire sensor and
the monitor have the same functionality. It is hard to envision at development time
all the contexts in which source code will be deployed; if such information is readily
available, application source code can be modified to specify resource requirements
for each of those contexts.

This problem is further complicated because of the need to provision both CPU
and network resources in an integrated fashion. In particular, network bandwidth
allocations depend on CPU allocations. It is important to know the source and desti-
nation addresses of an application flow before network resources could be reserved
across the nodes for the particular application flow [Dasarathy et al. 2005; Foster
et al. 2004]. The source and destination addresses of an application flow, however,
are determined by the CPU allocation algorithms used to deploy the applications.
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Multiple feasible CPU allocations are possible with a given set of component CPU

requirements [de Niz and Rajkumar 2006]. For example, a component could be
deployed on any node that has the capacity available to satisfy the component’s
CPU utilization requirement. Depending on the node chosen to deploy the compo-
nent, the deployment of other components in the system can also change. Not all
those placement choices, however, could provide the network QoS that is required
simultaneously with CPU QoS. The need to know source and destination addresses
of an application—coupled with the fact that multiple choices are possible for de-
ploying applications—makes changing application source code to specify resource
requirements inflexible and non-scalable.
Solution approach → Model-driven declarative CPU and network requirements
specification. To resolve the above described problems, each application in NetQoP-
E specifies its resource requirements at application deployment-time using a do-
main specific modeling language (DSML) called the Network QoS Specification Lan-

guage (NetQoS). Since NetQoS allows specifying resource requirements right be-
fore applications are deployed and configured in the target environment, its declar-
ative mechanisms decouple this responsibility from application source code, and
also specialize the process of specifying resource requirements for the particular de-
ployment and usecase. Further, on behalf of the applications, NetQoS initiates the
integrated CPU and network resource allocations for all the applications. It thus
relieves application developers and deployers of the responsibilities to (1) specify
multiple resource requirements, and (2) initiate resource reservations using CPU
and network QoS mechanisms.
Declarative specification of resource requirements. NetQoS, which is built us-
ing Generic Modeling Environment (GME) [Ákos Lédeczi et al. 2001] and the
Platform Independent Component Modeling Language (PICML) [Balasubramanian
et al. 2005], provides applications with an application-independent, and declara-
tive (as opposed to application-intrusive [de Miguel 2002], middleware-dependen-
t [Eide et al. 2004], and OS-dependent [Mehra et al. 2000]) mechanism to specify
multi-resource requirements.

DRE system developers can use NetQoS to (1) model application elements, such
as interfaces, components, connections, and component assemblies, (2) specify
CPU utilization of components, and (3) specify the network QoS classes, such as
HIGH PRIORITY (HP), HIGH RELIABILITY (HR), MULTIMEDIA (MM), and BEST EFFORT

(BE), bi-directional bandwidth requirements on the modeled application elements3.
NetQoS’s network QoS classes correspond to the DiffServ levels of service provided
by our Bandwidth Broker [Dasarathy et al. 2005].4 For example, the HP class repre-
sents the highest importance and lowest latency traffic (e.g., fire detection reporting
in the server room) whereas the HR class represents traffic with low drop rate (e.g.,
surveillance data).
Flexible enforcement of network QoS. In certain application flows in the smart

3In LwCCM, components communicate using ports (described in Section 2.2) that provide application-
level communication endpoints. NetQoS provides capabilities to annotate communication ports with
the network QoS requirement specification capabilities.
4NetQoS’s DSML capabilities can also be extended to provide requirements specification conforming to
other network QoS mechanisms, such as IntServ.
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office case study, (e.g., a monitor requesting location coordinates from a fire sensor
in our case study) clients control the network priorities at which requests/replies
are sent. In other application flows (e.g., a temperature sensor sends temperature
sensory information to monitors), servers control the reception and processing of
client requests. If such design intents are not captured, applications could poten-
tially misuse network resources at runtime, and also affect the performance of other
applications that share the network. For example, multiple applications (irrespec-
tive of their mission criticality and importance) could potentially invoke remote
operations by using HIGH PRIORITY (HP) network service class in DiffServ, thereby
affecting QoS of applications that are really mission critical.

To support both models of communication (i.e., whether clients vs. servers con-
trol network QoS for a flow), NetQoS supports annotating each bi-directional flow
using either:

—The CLIENT_PROPAGATED network priority model, which allows clients to request
real-time network QoS assurance even in the presence of network congestion or

—The SERVER_DECLARED network priority model, which allows servers to dictate
the service that they wish to provide to the clients to prevent clients from wasting
network resources on non-critical communication.

On behalf of applications, NetQoS initiates the allocation of CPU and network re-
sources, and in Section 3.3, we will describe how NetQoPE uses component mid-
dleware frameworks at runtime to realize the design intent captured by NetQoS
and enforce network QoS for applications.
Early detection of QoS specification errors. Defining network and CPU QoS spec-
ifications in source code or through NetQoS is a human-intensive process. Errors
in these specifications may remain undetected until later stages of development,
such as deployment and runtime, when they are much more costly to identify and
fix. To identify common errors in network QoS requirement specification early in
the development phase, NetQoS uses built-in constraints specified via the OMG Ob-
ject Constraint Language (OCL) that check the application model annotated with
network and CPU priority models.

For example, NetQoS detects and flags specification network resource specifica-
tion errors, such as negative or zero bandwidth. It also enforces the semantics
of network priority models via syntactic constraints in its DSML. For example, the
CLIENT_PROPAGATED model can be associated with ports in the client role only (e.g.,
required interfaces), whereas the SERVER_DECLARED model can be associated with
ports in the server role only (e.g., provided interfaces). Figure 5 shows other exam-
ples of network priority models supports by NetQoS.

A server using the SERVER_DECLARED network priority model can also dictate
that the total ingress bandwidth from all communicating clients cannot exceed a
designated network bandwidth (e.g., 30 Mbps). NetQoS checks the aggregation
of egress bandwidth requested using all clients that communicate with the server
and raise an error if the total exceeds the preferred total bandwidth. Without this
capability, applications could fail at runtime where clients invoke remote operations
on servers after reserving more network bandwidth than the server’s reply will use,
which wastes available network bandwidth that could be used by other application
flows. NetQoS provides this capability so application deployers can provision the

ACM Transactions on Embedded Systems, Vol. V, No. N, Month 20YY.



16 · Jaiganesh Balasubramanian et al.

Fig. 5: Network QoS Models Supported by NetQoS

underlying network QoS mechanisms efficiently and flexibly.
Preparation for allocating CPU and network resources. After a model has been
created and checked for type violations using built-in constraints, the specified net-
work resource requirements need to be captured so that a network QoS mecha-
nism [Dasarathy et al. 2007; Foster et al. 2004] can be used to allocate network
resources for the application flows. However, as described before, this process re-
quires determination of source and destination IP addresses of the applications.

NetQoS allows the specification of CPU utilization requirements of each compo-
nent and also the target environment where components are deployed. NetQoS’s
model interpreter traverses CPU requirements of each application component and
generates a set of feasible deployment plans (described in Section 2.2) using CPU
allocation algorithms, such as first fit, best fit, and worst fit, as well as max and
decreasing variants of these algorithms. NetQoS can be used to choose the de-
sired CPU allocation algorithm and to generate the appropriate deployment plans
automatically, thereby shielding developers from tedious and error-prone manual
component-to-node allocations.

To perform network resource allocations (described in Section 3.2), NetQoS’s
model interpreter captures the details about (1) the components, (2) their deploy-
ment locations (determined by the CPU allocation algorithms), and (3) the network
QoS requirements for each application flow they are part of, using the deployment

plan configProperty tags (see Section 2.2). Section 3.2 describes how a later stage
in NetQoPE allocates network resources based on requirements specified in the
deployment plan descriptor.
Application to the case study. Figure 6 shows a NetQoS model that highlights
many of the capabilities described above. In this model, multiple instances of
the same reusable application components (e.g., FireSensorParking and FireSen-
sorServer components) are annotated with different QoS attributes using an intu-
itive drag and drop technique. Specifying QoS requirements via NetQoS is much
simpler than modifying application code for each deployment context, as shown in
Section 4.2.
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Fig. 6: Applying NetQoS Capabilities to the Case Study

Our case study also has scores of application flows with different client- and
server-dictated network QoS specifications, which are modeled using CLIENT_PR-
OPAGATED and SERVER_DECLARED network priority models, respectively. The well-
formedness of these specifications are checked using NetQoS’s built-in constraints.
In addition, the same QoS attribute (e.g., HR_1000 in Figure 6) can be reused
across multiple connections, which increases the scalability of expressing require-
ments for the number of connections prevalent in large-scale DRE systems, such as
our smart office enterprise environment case study.

Finally, NetQoS’s support to plug-in different bin-packing algorithms to deter-
mine CPU allocations decouples the applications from the responsibility of manu-
ally specifying all possible allocations to allocate network resources. This feature of
NetQoS coupled with its declarative mechanisms to specify resource requirements,
completely shields applications (and hence modifications to its source code) from
the complexities of QoS specification and allocation. Section 4.2 validates these
capabilities provided by NetQoS.3.2 NetRAF: Alleviating Complexities in Network Resoure Alloation and Con�gura-tion
Context. After deciding where to deploy components on source and destination
nodes, DRE systems must communicate with a network QoS mechanism API (e.g.,
Bandwidth Broker for DiffServ networks) to allocate and configure network re-
sources based on the network QoS requirements specified on the application flows.
Problem. It is often undesirable to tightly couple application components (e.g.,
the temperature sensor software controller code in our case study) with a network
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QoS mechanism API. This coupling complicates deploying the same application
component in a different context (e.g., the temperate sensor software controllers for
sensing the temperature at the server room and the conference room) with different
network QoS requirements. Manually programming application components to
handle all possible combinations of network resources is tedious and error-prone.

Moreover, network QoS mechanism APIs that allocate network resources require
IP addresses for hosts where the resources are allocated. Components that require
network QoS must therefore know the physical node placement of the components
with which they communicate. This component deployment information may be
unknown at development time since deployments are often not finalized until CPU
allocation algorithms decide them. Maintaining such deployment information at
the source code level or querying it at runtime is unnecessarily complex. Ideally,
network resources should be allocated without modifying application source code
and should handle difficulties associated with specifying application source and
destination nodes, which could vary depending on the deployment context.

Solution approach → Middleware-based Resource Allocator Framework. NetQo-
PE’s Network Resource Allocator Framework (NetRAF) is a resource allocator en-
gine that allocates network resources for DRE systems using DiffServ network QoS
mechanisms. NetRAF does not sit between the applications and the underlying
operating system kernel; rather, it complements the functionality of the operating
system kernel, and applications are oblivious to NetRAF.

NetRAF allocates network resources for application flows on behalf of the appli-
cations and shields applications from interacting with complex network QoS mech-
anism APIs. To ensure compatibility with different implementations of network QoS
mechanisms (e.g., multiple DiffServ Bandwidth Broker implementations [Dasarathy
et al. 2007; Foster et al. 2004]), NetRAF works with XML descriptors that capture
CPU and network resource requirement specifications (which were specified using
NetQoS in the previous stage) in QoS-independent manner. These specifications
are then mapped to QoS-specific parameters depending on the chosen network QoS
mechanism. The task of enforcing those QoS specifications are then left to the net-
work QoS mechanism implementation (with configuration support required from
applications, which we discuss in detail in the context of NetQoPE in Section 3.3).
This provides a clean separation of functionality between resource reservation (pro-
vided by NetRAF) and QoS enforcement (done by underlying network elements).

Network resource allocations. As shown in Figure 7, input to NetRAF is the set of
feasible deployment plans generated by the NetQoS model interpreter, which also
embeds per-flow network QoS requirements. The modeled deployment context
could have many instances of the same reusable source code, e.g., the temperature
sensor software controller could be instantiated two times: one for the server room
and one for the conference room. When using NetQoS, however, application devel-
opers annotate only the connection between the instance at the server room and
the monitor software controller. Since NetRAF operates on the deployment plan that
captures this modeling effort, network QoS mechanisms are used only for the con-
nection on which QoS attributes are added. NetRAF thus improves conventional
approaches [Schantz et al. 1999] that modify application source code to work with
network QoS mechanisms, which become complex when source code is reused in a
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Fig. 7: NetRAF’s Network Resource Allocation Capabilities

wide range of deployment contexts.
NetRAF’s Network Resource Allocator Manager accepts application QoS requests

at pre-deployment-time. It processes these requests in conjunction with a Diff-

Serv Allocator, using deployment specific information (e.g., source and destination
nodes) of components and per-flow network QoS requirements embedded in the
deployment plan created by NetQoS. This capability shields applications from in-
teracting directly with complex APIs of network QoS mechanisms thereby enhanc-
ing the flexibility NetQoPE for a range of deployment contexts. Moreover, since
NetRAF provides the capability to request network resource allocations on behalf
of components, developers need not write source code to request network resource
allocations for all applications flows, which simplifies the creation and evolution of
application logic, as validated in Section 4.2.
Integrated CPU and network QoS provisioning. While interacting with network
QoS mechanism specific allocators (e.g., a Bandwidth Broker), NetRAF’s Network
Resource Allocator Manager may need to handle exceptional conditions, such as
failures in resource allocation. Failures during allocation may occur due to insuf-
ficient network resources between the source and destination nodes hosting the
components. Although NetQoS checks the well-formedness of network require-
ment specifications at application level, it cannot identify every situation that may
lead to failures during actual resource allocation.

To handle failure scenarios gracefully, NetRAF provides hints to regenerate CPU
allocations for components using the CPU allocation algorithm selected by appli-
cation developers using NetQoS. For example, if network resource allocations fails
for a pair of components deployed in a particular source and destination node,
NetRAF requests revised CPU allocations by adding a constraint to not deploy the
components in the same source and destination nodes. After the revised CPU al-
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locations are computed, NetRAF will (re)attempt to allocate network resources for
the components.

NetRAF automates the network resource allocation process by iterating over the
set of deployment plans until a deployment plan is found that satisfies both types
of requirements (i.e., both the CPU and network resource requirements) thereby
simplifying system deployment via the following two-phase protocol:

(1) It first invokes the API of the QoS mechanism-specific allocator, providing it
one flow at a time without actually reserving network resources.

(2) It then commits the network resources if and only if the first phase is completely
successful and resources for all the flows can be successfully reserved.

This protocol prevents the delay that would otherwise be incurred if resources al-
located for a subset of flows must be released due to failures occurring at a later
allocation stage. If no deployment plan yields a successful resource allocation, the
network QoS requirements of component flows must be reduced using NetQoS.
Application to the case study. Since our case study is based on DiffServ, NetRAF
uses the DiffServ Allocator to allocate network resources, which in turn invokes
the Bandwidth Broker’s admission control capabilities [Dasarathy et al. 2005] by
feeding it one application flow at a time. If all flows cannot be admitted, NetRAF
provides developers with an option to modify the deployment context since ap-
plications have not yet been deployed. Example modifications include changing
component implementations to consume fewer resources or change the source/-
destination nodes. As shown in Section 4.2, this capability helps NetRAF incur
lower overhead than conventional approaches [Wang et al. 2000; Schantz et al.
1999] that perform validation decisions when applications are deployed and oper-
ated at runtime.

NetRAF’s DiffServ Allocator instructs the Bandwidth Broker to reserve bi-dire-
ctional resources in the specified network QoS classes, as described in Section 3.1.
The Bandwidth Broker determines the bi-directional DSCPs and NetRAF encodes
those values as connection attributes in the deployment plan. In addition, the
Bandwidth Broker uses its Flow Provisioner [Dasarathy et al. 2007] to configure the
routers to provide appropriate per-hop behavior when they receive IP packets with
the specified DSCP values. Section 3.3 describes how component containers are
auto-configured to add these DSCPs when applications invoke remote operations.3.3 NetCON: Alleviating Complexities in Network QoS Settings Con�guration
Context. After network resources are allocated and network routers are config-
ured, applications in DRE systems need to invoke remote operations using the cho-
sen network QoS settings (e.g., DSCP markings) so the network can differentiate
application traffic and provision appropriate QoS to each flow.
Problem. Application developers have historically written code that instructs the
middleware to provide the appropriate runtime services, e.g., DSCP markings in
IP packets [Schantz et al. 2003]. For example, fire sensors in our case study from
Section 2 can be deployed in different QoS contexts that are managed by reusable
software controllers. Modifying application code to instruct the middleware to
add network QoS settings is tedious, error-prone, and non-scalable because (1)
the same application code could be used in different contexts requiring different
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network QoS settings and (2) application developers might not (and ideally should
not) know the different QoS contexts in which the applications are used during the
development process. Application-transparent mechanisms are therefore needed
to configure the middleware to add these network QoS settings depending on the
application deployment context.
Solution approach → Deployment and runtime component middleware mech-
anisms. Section 2.2 describes how LwCCM containers provide a runtime environ-
ment for components.5 NetQoPE’s Network QoS Configurator (NetCON) can auto-
configure these containers by adding DSCPs to IP packets when applications invoke
remote operations. NetRAF performs network resource allocations, determines the
bi-directional DSCP values to use for each application flow and encodes those DSCP
values in the deployment plan, as shown in Figure 8.

Fig. 8: NetCON’s Container Auto-configurations

During deployment, NetCON parses the deployment plan and its connection tags
to determine (1) source and destination components, (2) the network priority
model to use for their communication, (3) the bi-directional DSCP values (obtained
via NetRAF), and (4) the target nodes on which the components are deployed. Net-
CON deploys the components on their respective containers and creates the associ-
ated object references for use by clients in a remote invocation. When a component
invokes a remote operation in LwCCM, its container’s context information provides
the object reference of the destination component.

NetCON’s container programming model can transparently add DSCPs and en-
force the network priority models described in Section 3.1. To support the SER-
VER_DECLARED network priority model, NetCON encodes a SERVER_DECLARED pol-
icy and the associated request/reply DSCPs on the server’s object reference. When

5Other component middleware provide similar capabilities via containers, e.g., EJB applications interact
with containers to obtain the right runtime operating environment.
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a client invokes a remote operation with this object reference, the client-side mid-
dleware checks the policy on the object reference, decodes the request DSCP, and
includes it in the request IP packets. Before sending the reply, the server-side mid-
dleware checks the policy again and the reply DSCP is added to the associated IP
packets.

To support the CLIENT_PROPAGATED network priority model, NetCON configures
the containers to apply a CLIENT_PROPAGATED policy at the point of binding an
object reference with the client. In contrast to the SERVER_DECLARED policy, the
CLIENT_PROPAGATED policy allows the clients to control the network priorities with
which their requests and replies traverse the underlying network and different
clients can access the servers with different network priorities. When the source
component invokes a remote operation using the policy-applied object reference,
NetCON adds the associated forward and reverse DSCP markings on the IP packets,
thereby providing network QoS to the application flow. A NetQoPE-enabled con-
tainer can therefore transparently add both forward and reverse DSCP values when
components invoke remote operations using the container services.
Application to the case study. In our case study shown in Figure 6, the FireSensor
software controller component is deployed in two different instances to control the
operation of the fire sensors in the parking lot and the server room. There is a sin-
gle MonitorController software component (MonitorController3 in Figure 6) that
communicates with the deployed FireSensor components. Due to differences in im-
portance of the FireSensor components deployed, however, the MonitorController
software component uses CLIENT_PROPAGATED network priority model to commu-
nicate with the FireSensor components with different network QoS requirements.

After software components are modeled using NetQoS—and the required net-
work resources are allocated using NetRAF—NetCON configures the container host-
ing the MonitorController3 component with the CLIENT_PROPAGATED policy, which
corresponds to the CLIENT_PROPAGATED network priority model defined on the
component by NetQoS. This capability is provided automatically by containers to
ensure that, at runtime appropriate DSCP values are added to both forward and
reverse communication paths when the MonitorController3 component communi-
cates with either the FireSensorParking or FireSensorServer component. Commu-
nication between the MonitorController3 and the FireSensorParking or FireSen-
sorServer components thus receives the required network QoS since NetRAF con-
figures the routers between the MonitorController3 and FireSensorParking compo-
nents with the source IP address, destination IP address, and DSCP tuple.

NetCON therefore allows application developers in DRE systems to focus on their
application component logic (e.g., the MonitorController component in the case
study), rather than wrestling with low-level mechanisms for provisioning network
QoS. Moreover, NetCON provides these capabilities without modifying application
code, thereby simplifying development and minimizing runtime overhead, as vali-
dated in Section 4.3.4. EMPIRICAL EVALUATION OF NETQOPE
This section empirically evaluates the flexibility and overhead of using NetQoPE
to provide CPU and network QoS assurance to end-to-end application flows. We
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first demonstrate how NetQoPE’s model-driven QoS provisioning capabilities can
significantly reduce application development effort compared with conventional
approaches. We then validate that NetQoPE’s automated model-driven approach
can provide differentiated network performance for a variety of applications in
DRE systems, such as our case study in Section 2.4.1 Evaluation Senario
Hardware and software testbed. Our empirical evaluation of NetQoPE was con-
ducted at ISISlab (www.dre.vanderbilt.edu/ISISlab), which consists of (1) 56
dual-CPU blades running 2.8 GHz XEONs with 1 GB memory, 40 GB disks, and 4
NICs per blade, and (2) 6 Cisco 3750G switches with 24 10/100/1000 MPS ports
per switch. As shown in Figure 9, our experiments were conducted on 15 of dual
CPU blades in ISISlab, where (1) 7 blades (A, B, D, E, F, G, and H) hosted our
smart office enterprise case study software components (e.g., a fire sensor software
controller) and (2) 8 other blades (P, Q, R, S, T, U, V, and W) hosted Linux router
software.

Fig. 9: Experimental Setup

The software controller components were developed using the CIAO middleware,
which is an open-source LwCCM implementation developed atop the TAO real-time
CORBA object request broker [Schmidt et al. 2002]. Our evaluations used DiffServ
QoS and the associated Bandwidth Broker [Dasarathy et al. 2007] software was
hosted on blade C. All blades ran Fedora Core 4 Linux distribution configured using
the real-time scheduling class. The blades were connected over a 1 Gbps LAN via
virtual 100 Mbps links.
Evaluation scenario. In our evaluation scenario, a number of sensory and im-
agery software controllers sent their monitored information to monitor controllers
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so that appropriate control actions could be performed by enterprise supervisors
monitoring abnormal events. For example, Figure 9 shows two fire sensor controller

components deployed on hosts A and B. These components sent their monitored
information to monitor controller components deployed on hosts D and F. Each of
these software controller components have their own CPU resource requirements
and the physical node allocations for those components were determined by the
CPU allocation algorithms employed by NetQoS. Further, communication between
these software controllers used one of the traffic classes (e.g., HIGH PRIORITY (HP))
defined in Section 3.1 with the following capacities on all links: HP = 20 Mbps,
HR = 30 Mbps, and MM = 30 Mbps. The BE class used the remaining available
bandwidth in the network.

To emulate the CPU and network behavior of the software controllers when dif-
ferent QoS requirements are provisioned, we created the TestNetQoPEperformance
benchmark suite.6 We used TestNetQoPE to evaluate the flexibility, overhead, and
performance of using NetQoPE to provide CPU and network QoS assurance to end-
to-end application flows. In particular, we used TestNetQoPE to specify and mea-
sure diverse CPU and network QoS requirements of the different software compo-
nents that were deployed via NetQoPE, such as the application flow between the
fire sensor controller component on host A and the monitor controller component
on host D. These tests create a session for component-to-component communica-
tion with configurable bandwidth consumption (components also consume a con-
figurable percentage of CPU resource on their hosted processors). High-resolution
timer probes were used to measure roundtrip latency accurately for each client
invocation.

We now describe the experiments performed using the ISISlab configuration de-
scribed in Section 4.1 and analyze the results.4.2 Evaluating NetQoPE's Model-driven QoS Provisioning Capabilities
Rationale. As discussed in Section 3, NetQoPE provides extensible provisioning
of application CPU and network QoS mechanisms. This experiment evaluates the
effort application developers spend using NetQoPE to (re)deploy applications and
provision QoS and compares this effort against the effort needed to provision QoS
for applications via conventional approaches.
Methodology. We first identified four flows from Figure 9 whose network QoS
requirements are described as follows:

—A fire sensor controller component on host A uses the high reliability (HR) class to
send potential fire alarms in the parking lot to the monitor controller component
on host D.

—A fire sensor controller component on host B uses the high priority (HP) class to
send potential fire alarms in the server room to the monitor controller component
on host F.

—A camera controller component on host E uses the multimedia (MM) class and
sends imagery information from the break room to the monitor controller com-

6TestNetQoPE can be downloaded as part of the CIAO open-source middleware available at (www.dre.vanderbilt.edu/CIAO).
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ponent on host G.

—A temperature sensor controller component on host A uses the best effort (BE)
class and sends temperature readings to the monitor controller component on
host F.

The clients dictated the network priority for requests and replies in all flows ex-

cept for the temperature sensor and monitor controller component flow, where the
server dictated the priority. TCP was used as the transport protocol and 20 Mbps of
forward and reverse bandwidth was requested for each type of network QoS traffic.

We also define a taxonomy for evaluating technologies that provide CPU and
network QoS assurances to end-to-end DRE application flows. This taxonomy is
used to compare NetQoPE’s methodology of provisioning network QoS for these
flows with conventional approaches, including (1) object-oriented [El-Gendy et al.
2004; Schantz et al. 1999; Wang et al. 2000; Schantz et al. 2003], (2) aspect-
oriented [Duzan et al. 2004], and (3) component middleware-based [de Miguel
2002; Sharma et al. 2004] approaches. Below we describe how each approach
provides the following functionality needed to leverage network QoS mechanism
capabilities:
• QoS Requirements specification. In conventional approaches applications

use (1) middleware-based APIs [El-Gendy et al. 2004; Wang et al. 2000], (2) con-
tract definition languages [Schantz et al. 1999; Schantz et al. 2003], (3) runtime
aspects [Duzan et al. 2004], or (4) specialized component middleware container
interfaces [de Miguel 2002] to specify QoS requirements. These approaches do
not, however, provide capabilities to specify both CPU and network requirements
and assume that physical node placement for all components are decided (i.e., ap-
plications are already deployed in appropriate hosts) before the network resource
allocations are requested using the appropriate APIs. This assumption allows those
applications to specify the source and destination IP addresses of the applications
when requesting network resources for an end-to-end application flow.

Moreover, application source code must change whenever the deployment con-
text (e.g., different physical node allocations, component deployment for a different
usecase) and the associated QoS requirements (e.g., CPU or network resource re-
quirements) change, which limits reusability. In contrast, NetQoS provides domain-
specific, declarative techniques that increase reusability across different deploy-
ment contexts and alleviate the need to specify QoS requirements programmati-
cally, as described in Section 3.1.
• Resource allocation. Conventional approaches require application deploy-

ment before their per-flow network resource requirements can be provisioned by
network QoS mechanisms. Recall that appropriate hosts for each application is
determined by intelligent CPU allocation algorithms [de Niz and Rajkumar 2006]
before their per-flow network resource requirements can be provisioned by network
QoS mechanisms. If the required network resources cannot be allocated for these
applications after a CPU allocation decision is made, however, the following steps
occur:

(1) The applications must be stopped
(2) Their source code must be modified to specify new resource requirements (e.g.,

either source and destination nodes of the components can be changed, forcing
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application re-deployments as well or for the same pair of source and destina-
tion nodes the network resource requirements could be changed) and

(3) The resource reservation process must be restarted.

This approach is tedious since applications may be deployed and re-deployed mul-
tiple times, potentially on different nodes. In contrast, NetRAF handles deployment
changes via NetQoS models (see Section 3.2) at pre-deployment, i.e., before appli-
cations have been deployed, thereby reducing the effort needed to change deploy-
ment topology or application QoS requirements.
• Network QoS enforcement. Conventional approaches modify application

source code [Schantz et al. 2003] or programming model [de Miguel 2002] to
instruct the middleware to enforce runtime QoS for their remote invocations. Ap-
plications must therefore be designed to handle two different usecases—to enforce
QoS and when no QoS is required—thereby limiting application reusability. In con-
trast, NetCON uses a container programming model that transparently enforces
runtime QoS for applications without changing their source code or programming
model, as described in Section 3.3.

We now compare the effort required to provision end-to-end QoS to the 4 end-
to-end application flows described above using conventional manual approaches
vs. the NetQoPE model-driven approach. We decompose this effort across the fol-
lowing general steps: (1) implementation, where software developers write code
to specify resource requirements and allocate needed resources, (2) deployment,
where system deployers map (or stop) application components on their target
nodes, and (3) modeling tool use, where application developers use NetQoPE to
model a DRE application structure, specify per-application CPU resource and per-
flow network resource requirements, and allocate needed CPU and network re-
sources. In our evaluation, a complete QoS provisioning lifecycle consists of speci-
fying resource requirements, allocating both CPU and network resources, deploying
applications, and stopping applications when they are finished.

To compare NetQoPE with other conventional efforts, we devised a realistic sce-
nario for the 4 end-to-end application flows described above. In this scenario, three
sets of experiments were conducted with the following deployment variants7:
• Baseline deployment. This variant configured all 4 end-to-end application

flows with the CPU and network QoS requirements as described above. The manual
effort required using conventional approaches for the baseline deployment involved
10 steps: (1) modify source code for each of the 8 components to specify their QoS
requirements (8 implementation steps – note that CPU allocation algorithms were
used to determine the appropriate physical node allocations for the applications
before network resources were requested for each application flow), (2) deploy all
components (1 deployment step), and (3) shutdown all components (1 deployment
step).

In contrast, the effort required using NetQoPE involved the following 4 steps:
(1) model the DRE application structure of all 4 end-to-end application flows using
NetQoS (1 modeling step), (2) annotate QoS specifications on each application

7In each of the experiment variants, we kept the same per-application CPU resource requirements, but
varied the network resource requirements for the application flows.
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and each end-to-end application flow (1 modeling step), (3) deploy all components
(1 deployment step – this step also involved allocation of both CPU and network
resources for applications using NetRAF’s two step allocation process described in
Section 3.2), and (4) shutdown all components (1 deployment step).
• QoS modification deployment. This variant demonstrated the effect of changes

in QoS requirements on manual efforts by modifying the bandwidth requirements
from 20 Mbps to 12 Mbps for each end-to-end flow. As with the baseline variant
above, the effort required using a conventional approach for the second deploy-
ment was 10 steps since source code modifications were needed as the deployment
contexts changed (in this case the bandwidth requirements changed across 4 differ-
ent deployment contexts – however, the CPU resource requirements did not change,
and hence the application physical node allocations did not change as well).

In contrast, the effort required using NetQoPE involved 3 steps: (1) annotate
QoS specifications on each end-to-end application flow (1 modeling step), (2) de-
ploy all components (1 deployment step), and (3) shutdown all components (1
deployment step). Application developers also reused NetQoS’ application struc-
ture model created for the initial deployment, which helped reduce the required
efforts by a step.
• Resource (re)reservation deployment. This variant demonstrated the effect

of changes in QoS requirements and resource (re)reservations taken together on
manual efforts. We modified bandwidth requirements of all flows from 12 Mbps to
16 Mbps. We also changed the temperature sensor controller component to use the
high reliability (HR) class instead of the best effort BE class. Finally, we increased
the background HR class traffic across the hosts so that the resource reservation re-
quest for the flow between temperature sensor and monitor controller components
fails. In response, deployment contexts (e.g., bandwidth requirements, source and
destination nodes) were changed and resource re-reservation was performed.

The effort required using a conventional approach for the third deployment in-
volved 13 steps: (1) modify source code for each of the 8 components to specify
their QoS requirements (8 implementation steps), (2) deploy all components (1 de-
ployment step), (3) shutdown the temperature sensor component (1 deployment
step – note that the resource allocation failed for the component), (4) modify source
code of temperature sensor component back to use BE network QoS class (deploy-
ment context change) (1 implementation step), (5) redeploy the temperature sen-
sor component (1 deployment step – note that the CPU allocation algorithms were
rerun to change physical node allocations), and (6) shutdown all components (1
deployment step).

In contrast, the effort required using NetQoPE for the third deployment involved
4 steps: (1) annotate QoS specifications on each end-to-end application flow (1
modeling step), (2) begin deployment of all components, though NetRAF’s pre-
deployment-time allocation capabilities determined the resource allocation failure
and prompted the NetQoPE application developer to change the QoS requirements
(1 pre-deployment step), (3) re-annotate QoS requirements for the temperature
sensor component flow (1 modeling step) (4) deploy all components (1 deployment
step), and (5) shutdown all components (1 deployment step).

Table I summarizes the step-by-step analysis described above. These results show
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Approaches # Steps in Experiment Variants

First Second Third

NetQoPE 4 3 5
Conventional 10 10 13

Table I: Comparison of Manual Efforts Incurred in Conventional and NetQoPE Approaches

that conventional approaches incurred roughly an order of magnitude more effort
than NetQoPE to provide CPU and network QoS assurance for end-to-end appli-
cation flows. Closer examination shows that in conventional approaches, applica-
tion developers spend substantially more effort developing software that can work
across different deployment contexts. Moreover, this process must be repeated
when deployment contexts and their associated QoS requirements change. In addi-
tion, conventional implementations are complex since the requirements are speci-
fied directly using middleware [Wang et al. 2000] and/or network QoS mechanism
APIs [L. Zhang and S. Berson and S. Herzog and S. Jamin 1997].

Application (re)deployments are also required whenever reservation requests
fail. In this experiment only 1 flow required re-reservation and that incurred ad-
ditional effort of 3 steps. If there are large number of flows—and enterprise DRE
systems like our case study often have scores of flows—conventional approaches
require significantly more effort.

In contrast, NetQoPE’s ability to “write once, deploy multiple times for different
QoS requirements” increases deployment flexibility and extensibility in environ-
ments that deploy many reusable software components. To provide this flexibility,
NetQoS generates XML-based deployment descriptors that capture context-specific
QoS requirements of applications. For our experiment, communication between
fire sensor and monitor controllers was deployed in multiple deployment contexts,
i.e., with bandwidth reservations of 20 Mbps, 12 Mbps, and 16 Mbps. In DRE
systems like our case study, however, the same communication patterns between
components could occur in many deployment contexts.

For example, the same communication patterns could use any of the four network
QoS classes (HP, HR, MM, and BE). The communication patterns that use the same
network QoS class could make different forward and reverse bandwidth reserva-
tions (e.g., 4, 8, or 10 Mbps). As shown in Table II, NetQoS auto-generates over
1,300 lines of XML code for these scenarios, which would otherwise be handcrafted
by application developers. These results demonstrate that NetQoPE’s model-driven

Deployment contextsNumber of communications
2 5 10 20

1 23 50 95 185
5 47 110 215 425
10 77 185 365 725
20 137 335 665 1325

Table II: Generated Lines of XML Code

CPU and network QoS provisioning capabilities significantly reduce application de-
velopment effort compared with conventional approaches. Moreover, NetQoPE also
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provides increased flexibility when deploying and provisioning multiple application
end-to-end flows in multiple deployment and diverse QoS contexts.4.3 Evaluating the Overhead of NetQoPE for Normal Operations
Rationale. NetQoPE provides network QoS to applications via the multi-stage ar-
chitecture shown in Figure 4. This experiment evaluates the runtime performance
overhead of using NetQoPE to enforce network QoS.
Methodology. DRE system developers can use NetQoPE at design time to spec-
ify network QoS requirements on the application flows, as described in Section 3.1.
Based on the specified network QoS requirements, NetRAF interacts with the Band-
width Broker to allocate per-flow network resources at pre-deployment time. By
providing design- and pre-deployment-time capabilities, NetQoS and NetRAF thus
incur no runtime overhead. In contrast, NetCON configures component middle-
ware containers at post-deployment-time by adding DSCP markings to IP packets
when applications invoke remote operations (see Section 3.3). NetCON may there-
fore incur runtime overhead, e.g., when containers apply a network policy models
to provide the source application with an object reference to the destination appli-
cation.

To measure NetCON’s overhead, we conducted an experiment to determine the
runtime overhead of the container when it performs extra work to apply the policies
that add DSCPs to IP packets. This experiment had the following variants: (1) the
client container was not configured by NetCON (no network QoS required), (2)
the client container was configured by NetCON to apply the CLIENT_PROPAGATED

network policy, and (3) the client container was configured by NetCON to apply the
SERVER_DECLARED network policy. This experiment had no background network
load to isolate the effects of each variant.

Our experiment had no network congestion, so QoS support was thus not needed8.
The network priority models were therefore configured with DSCP values of 0 for
both the forward and reverse direction flows. TestNetQoPEwas configured to make
200,000 invocations that generated a load of 6 Mbps and average roundtrip latency
was calculated for each experiment variant. The routers were not configured to per-
form DiffServ processing (provide routing behavior based on the DSCP markings),
so no edge router processing overhead was incurred. We configured the experiment
to pinpoint only the overhead of the container no other entities in the path of client
remote communications.
Analysis of results. Figure 10 shows the average roundtrip latencies experienced
by clients in the three experiment variants (in this figure CP is the CLIENT_PROPAGAT-
ED network priority model and SD is the SERVER_DECLARED model). To honor the
network policy models, the NetQoPE middleware added the request/reply DSCPs
to the IP packets. The latency results shown in Figure 10 are all similar, which
shows that NetCON is efficient and adds negligible overhead to applications. If an-
other variant of the experiment was run with background network loads, network
resources will be allocated and the appropriate DSCP values used for those appli-
cation flows. The NetCON runtime overhead will remain the same, however, since

8Our experimentation goal was to measure the runtime overhead of using NetQoPE middleware to en-
force network QoS. So we wanted to remove other effects in the experiment such as network congestion.
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Fig. 10: Overhead of NetQoPE’s Policy Framework

the same middleware infrastructure is used, only with different DSCP values.4.4 Evaluating NetQoPE's QoS Customization Capabilities
Rationale. NetQoPE’s model-driven approach enhances flexibility by enabling the
reuse of application source code in different deployment contexts. It can also ad-
dress the QoS needs of a wide variety of applications by supporting multiple Diff-
Serv classes and network priority models. This experiment evaluates the benefits
of these capabilities empirically.
Methodology. We identified four flows from Figure 9 and modeled them using
NetQoS as follows:

—A fire sensor controller component on blade A uses the high reliability (HR) class
to send potential fire alarms in the parking lot to the monitor controller compo-
nent on blade D.

—A fire sensor controller component on blade B uses the high priority (HP) class to
send potential fire alarms in the server room to the monitor controller component
on blade F.

—A camera controller component on blade E uses the multimedia (MM) class and
sends imagery information of the break room to the monitor controller compo-
nent on blade G.

—A temperature sensor controller component on blade A uses the best effort (BE)
class and sends temperature readings to the monitor controller component on
blade F.

The CLIENT_PROPAGATED network policy was used for all flows, except for the
temperature sensor and monitor controller component flow, which used the SER-
VER_DECLARED network policy.

We executed two variants of this experiment. The first variant used TCP as the
transport protocol and requested 20 Mbps of forward and reverse bandwidth for
each type of QoS traffic. TestNetQoPE configured each application flow to gen-
erate a load of 20 Mbps and the average roundtrip latency over 200,000 itera-
tions was calculated. The second variant used UDP as the transport protocol andTestNetQoPE was configured to make oneway invocations with a payload of 500
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Background Traffic in MbpsTraffic Type

BE HP HR MM

BE (TS - MS) 85 to 100
HP (FS - MS) 30 to 40 28 to 33 28 to 33
HR (FS - MS) 30 to 40 12 to 20 14 to 15 30 to 31
MM (CS - MS) 30 to 40 12 to 20 14 to 15 30 to 31

Table III: Application Background Traffic

bytes for 100,000 iterations. We used high-resolution timer probes to measure the
network delay for each invocation on the receiver side of the communication.

At the end of the second experiment we recorded 100,000 network delay values
(in milliseconds) for each network QoS class. Those network delay values were
then sorted in increasing order and every value was subtracted from the minimum
value in the whole sample, i.e., they were normalized with respect to the respective
class minimum latency. The samples were divided into fourteen buckets based on
their resulting values. For example, the 1 ms bucket contained only samples that
are <= to 1 ms in their resultant value, the 2 ms bucket contained only samples
whose resultant values were <= 2 ms but > 1 ms, etc.

To evaluate application performance in the presence of background network
loads, several other applications were run in both experiments, as described in
Table III (in this table TS stands for “temperature sensor controller,” MS stands
for “monitor controller”, FS stands for “fire sensor controller,” and CS stands for
“camera controller”). NetRAF allocated the network resources for each flow and
determined which DSCP values to use9. After deploying the applications, NetCON
configured the containers to use the appropriate network priority models to add
DSCP values to IP packets when applications invoked remote operations.
Analysis of results. Figure 11 shows the results of experiments when the deployed
applications were configured with different network QoS classes and sent TCP traf-
fic.
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Fig. 11: Average Latency under Different Network QoS Classes

9To allocate network resources for each flow, NetRAF used the physical node allocations determined by
the CPU allocation algorithms employed by NetQoS.
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This figure shows that irrespective of the heavy background traffic, the average

latency experienced by the fire sensor controller component using the HP network
QoS class is lower than the average latency experienced by all other components.
In contrast, the traffic from the BE class is not differentiated from the competing
background traffic and thus incurs a high latency (i.e., throughput is very low).
Moreover, the latency increases while using the HR and MM classes when compared
to the HP class.

Figure 12 shows the (1) cardinality of the network delay groupings for different
network QoS classes under different ms buckets and (2) losses incurred by each
network QoS class. These results show that the jitter values experienced by the
application using the BE class are spread across all the buckets, i.e., are highly
unpredictable. When combined with packet or invocation losses, this property is
undesirable in DRE systems. In contrast, the predictability and loss-ratio improves
when using the HP class, as evidenced by the spread of network delays across just
two buckets. The application’s jitter is almost constant and is not affected by heavy
background traffic.

The results in Figure 12 also show that the application using the MM class ex-
perienced more predictable latency than applications using BE and HR class. Ap-
proximately 94% of the MM class invocations had their normalized delays within 1
ms. This result occurs because the queue size at the routers is smaller for the MM

class than the queue size for the HR class, so UDP packets sent by the invocations
do not experience as much queuing delay in the core routers as packets belonging
to the HR class. The HR class provides better loss-ratio, however, because the queue
sizes at the routers are large enough to hold more packets when the network is
congested.

Fig. 12: Jitter Distribution under Different Network QoS Classes

These results demonstrate that NetQoPE’s automated model-driven middleware-
guided mechanisms (1) support the needs of a wide variety of applications by
simplifying the modeling of QoS requirements via various DiffServ network QoS
classes, and (2) provide those modeled applications with differentiated network
performance validating the automated network resource allocation and configura-
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tion process. By using NetQoPE, therefore, applications can leverage the capabili-
ties of network QoS mechanisms with minimal effort, as described in Section 4.2.

These results also demonstrate the following QoS customization possibilities for
a set of application communications (e.g., fire sensor and monitor controller com-
ponent):

—Different network QoS performance, e.g., HP communication between blades A and
D, and HR communication between blades B and F.

—Different transport protocols for communication, e.g., TCP and UDP.
—Different network access models, e.g., monitor controller components were ac-

cessed using the CLIENT_PROPAGATED network priority model and the SERVER_DE-
CLARED network priority model.

These results show how NetQoPE’s ability to “write once, deploy multiple times for
different QoS requirements” increased deployment flexibility and extensibility for
environments where many reusable software components are deployed. To provide
this flexibility, NetQoS generates XML-based deployment descriptors that capture
context-specific QoS requirements of applications. For our experiment, communi-
cation between fire sensor and monitor controllers was deployed in multiple de-
ployment contexts, i.e., HR and HP QoS requirements.5. RELATED WORK
This section compares our R&D activities on NetQoPE with related work on middle-
ware-based QoS management and model-based design tools.
Network QoS management in middleware. Prior work on integrating network
QoS mechanisms with middleware [Wang et al. 2000; Schantz et al. 1999; Schantz
et al. 2003; El-Gendy et al. 2004] focused on providing middleware APIs to shield
applications from directly interacting with complex network QoS mechanism APIs.
Middleware frameworks transparently converted the specified application QoS re-
quirements into lower-level network QoS mechanism APIs and provided network
QoS assurances. These approaches, however, modified applications to dictate QoS
behavior for the various flows. NetQoPE differs from this related work by pro-
viding application-transparent and automated solutions to leverage network QoS
mechanisms, thereby significantly reducing manual design and development effort
to obtain network QoS.
QoS management in middleware. Prior research has focused on adding various
types of QoS capabilities to middleware. For example, [Jordan et al. 2004] de-
scribes J2EE container resource management mechanisms that provide CPU avail-
ability assurances to applications. Likewise, 2K [Wichadakul et al. 2001] provides
QoS to applications from varied domains using a component-based runtime middle-
ware. In addition, [de Miguel 2002] extends EJB containers to integrate QoS fea-
tures by providing negotiation interfaces which the application developers need to
implement to receive desired QoS support. Synergy [Repantis et al. 2006] describes
a distributed stream processing middleware that provides QoS to data streams in
real time by efficient reuse of data streams and processing components. These ap-
proaches are restricted to CPU QoS assurances or application-level adaptations to
resource-constrained scenarios. NetQoPE differs by providing network QoS assur-
ances in a application-agnostic fashion.
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Our previous work [Wang et al. 2004] has focused on mechanisms that add real-

time QoS aspects into a component middleware, so that component middleware
applications can enforce CPU QoS at runtime in a non-invasive manner. NetQoPE
builds on that work but solves the following orthogonal but important problems -
how to decide what all applications need to operate in a particular processor such
that both their CPU and network resources can be provisioned, and how to enforce
network QoS for such applications at runtime. Combined with our previous work,
NetQoPE can thus manage and enforce both CPU and network QoS for applications.
The work reported in this paper, however, focuses on how to combine CPU alloca-
tion algorithms with network QoS mechanisms and provision and enforce network
QoS for applications.
Deployment-time resource allocation. Prior work has focused on deploying ap-
plications at appropriate nodes so that their QoS requirements can be met. For
example, prior work [Llambiri et al. 2003; Stewart and Shen 2005] has studied
and analyzed application communication and access patterns to determine collo-
cated placements of heavily communicating components. Other research [de Niz
and Rajkumar 2006; Gopalakrishnan and Caccamo 2006] has focused on intelligent
component allocation algorithms that maps components to nodes while satisfying
their CPU requirements. NetQoPE differs from these approaches by leveraging net-
work QoS mechanisms to allocate network resources at pre-deployment-time and
enforcing network QoS at runtime.
Model-based design tools. Prior work has been done on model-based design tools.
PICML [Balasubramanian et al. 2007] enables DRE system developers to define
component interfaces, their implementations, and assemblies, facilitating deploy-
ment of LwCCM-based applications. VEST [Stankovic et al. 2003] and AIRES [Gu
et al. 2003] analyze domain-specific models of embedded real-time systems to per-
form schedulability analysis and provides automated allocation of components to
processors. SysWeaver [de Niz et al. 2006] supports design-time timing behavior
verification of real-time systems and automatic code generation and weaving for
multiple target platforms. In contrast, NetQoPE provides model-driven capabilities
to specify network QoS requirements on DRE system application flows, and subse-
quently allocate network resources automatically using network QoS mechanisms.
NetQoPE thus helps assure that application network QoS requirements are met at
deployment-time, rather than design-time or runtime.6. CONCLUDING REMARKS
This paper describes the design and evaluation of NetQoPE, which is a model-
driven component middleware framework that manages CPU and network QoS for
applications in distributed real-time and embedded (DRE) systems. The lessons we
learned developing NetQoPE and applying it to a representative DRE system case
study thus far include:

—NetQoPE’s domain-specific modeling languages (e.g., NetQoS) help capture per-
deployment QoS requirements of applications so that CPU and network resources
can be allocated appropriately. Application business logic consequently need not
be modified to specify deployment-specific QoS requirements, thereby increasing
software reuse and flexibility across a range of deployment contexts, as shown in
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Section 3.1.

—Programming network QoS mechanisms directly in application code requires the
deployment and execution of applications before they can determine if the re-
quired network resources are available to meet QoS needs. Conversely, provid-
ing these capabilities via NetQoPE’s model-driven, middleware framework helps
guide resource allocation strategies before application deployment, thereby sim-
plifying validation and adaptation decisions, as shown in Section 3.2.

—NetQoPE’s model-driven deployment and configuration tools help configure the
underlying component middleware transparently on behalf of applications to
add context-specific network QoS settings. These settings can be enforced by
NetQoPE’s runtime middleware framework without modifying the programming
model used by applications. Applications therefore need not change how they
communicate at runtime since network QoS settings can be added transparently,
as shown in Section 3.3.

—NetQoPE’s strategy of allocating network resources to applications before deploy-
ment may be too limiting for certain types of DRE systems. In particular, appli-
cations in open DRE systems [Wang et al. 2007] might not consume all their
resource allotment at runtime, in which case NetQoPE may underutilize system
resources. Our future work is therefore extending NetQoPE to overprovision re-
sources for applications on the assumption that not all applications will use their
allotment. If runtime resource contentions occur, we are also integrating dy-
namic resource management algorithms [Lardieri et al. 2007] with NetQoPE to
provide predictable network performance for applications in open DRE systems.

Most of NetQoPE’s model-driven middleware platforms and tools described in
this paper and used in the experiments are available in open-source format fromwww.dre.vanderbilt.edu/osmi and in the CIAO component middleware avail-
able at www.dre.vanderbilt.edu. The one exception is the Bandwidth Broker,
which is a product licensed by Telcordia.REFERENCES
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