
Evaluating Transport Protocols for Real-time Event Stream Processing

Middleware and Applications

ABSTRACT
Real-time event stream processing (RT-ESP) applications
must synchronize continuous data streams, e.g., infrared
scans and video monitoring for survivor detection after a
natural disaster, despite fluctuations in resource availability.
Satisfying these needs of RT-ESP applications requires pre-
dictable QoS from the underlying publish/subscribe (pub/sub)
middleware. If a transport protocol is not capable of meet-
ing the QoS requirements within a dynamic environment,
the middleware must be able to adapt the transport proto-
col at runtime to react to changing operating conditions.

Realizing such adaptive RT-ESP pub/sub middleware re-
quires a thorough understanding of how different transport
protocols behave under different operating conditions. This
paper makes three contributions to work on achieving that
understanding. First, we define a composite evaluation met-
ric that combines packet latency and reliability to evaluate
transport protocol performance. Second, we use this metric
to quantify the performance of various transport protocols
integrated with the OMG’s Data Distribution Service (DDS)
QoS-enabled pub/sub middleware standard. Third, we use
our metric to pinpoint configurations involving sending rate,
network loss, and number of receivers that exhibit the pros
and cons of the protocols.

Our results show that a NAK-based reliable multicast pro-
tocol and a lateral error correction protocol provide the best
performance. Moreover, the reliable multicast protocol pro-
vides lower average latency with small number of receivers
and small network loss, whereas the lateral error correction
protocol provides greater consistency in overall performance
and the flexibility to trade-off lower average latency with
network bandwidth usage.

Categories and Subject Descriptors
D.2.8 [Software]: SOFTWARE ENGINEERING—Metrics,
Performance measures

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DEBS 2009, July 6-9, 2009, Nashville, TN, USA
Copyright 2009 ACM NNN-N-NNNNN-NNN-DD/YY/DD ...$5.00.

Keywords
Pub/sub Middleware, Event-based Distributed Systems, Real-
time Event Based Streaming, Transport Protocol Evalua-
tion, Data Distribution Service

1. INTRODUCTION
Emerging trends and challenges. Real-time Event

Stream Processing (RT-ESP) applications support mission-
critical systems (such as collaboration of weather monitor-
ing radars to predict life-threatening weather [4]) by man-
aging and coordinating multiple streams of event data that
have (possibly distinct) timeliness requirements. Streams
of event data may originate from sensors (e.g., surveillance
cameras, temperature probes), as well as other types of mon-
itors (e.g., online stock trade feeds). These continuously
generated data streams differ from streaming the contents
of a data file (such as a fixed-size movie) since the end of
RT-ESP data is not known a priori. In general, streamed
file data demand less stringent delivery and deadline require-
ments, instead emphasizing a continuous flow of data to an
application.

RT-ESP applications require (1) timeliness of the event
stream data and (2) reliability so that sufficient data are re-
ceived to make the result usable. Moreover, RT-ESP appli-
cations encompass multiple senders and receivers, e.g., mul-
tiple continuous data streams can be produced and multiple
receivers can consume the data streams. With the growing
complexity of RT-ESP application requirements (e.g., large
number of senders/receivers, variety of event types, event
filtering, QoS, and platform heterogeneity), developers are
increasingly leveraging pub/sub middleware to help manage
the complexity and increase productivity [14, 7].

To address the complex requirements of RT-ESP appli-
cations, the underlying pub/sub middleware must support
a flexible communication infrastructure. This flexibility re-
quirement is manifest in several ways, including the follow-
ing:

• Large-scale RT-ESP applications require flexible com-
munication infrastructure due to the complexity inherent in
the scale involved. As the number and type of event data
streams continues to increase the communication infrastruc-
ture must be able coordinate these streams so that publish-
ers and subscribers are connected appropriately. Flexible
communication infrastructure must adapt to (1) fluctuat-
ing demands for various event streams and (2) environment
changes to maintain acceptable levels of service.

• Certain types of large-scale RT-ESP applications ag-
gravate the demands of flexible communication infrastruc-

1

ture due to their dynamic and ad hoc nature. The environ-
ments for these applications cause fluctuations in available
resources as they include mobile assets with intermittent
connectivity and underprovisioned or temporary assets from
emergency responders. Examples of ad hoc large-scale RT-
ESP applications include tactical information grids, in situ
weather monitoring for impending hurricanes, and emer-
gency response networks in the aftermath of a regional or
national disaster.

Achieving a flexible communication infrastructure requires
an understanding of the capabilities that the underlying
transport protocols provide. Building on this understand-
ing, pub/sub middleware can help ameliorate the complexity
of managing multiple event streams. QoS-enabled pub/sub
middleware can then maintain real-time QoS for multiple
event streams in highly dynamic environments.

Several pub/sub middleware platforms have been devel-
oped to support large-scale data-centric distributed systems,
such as the Java Message Service (java.sun.com/products/
jms), Web Services Brokered Notification (docs.oasis-open.
org/wsn/wsn-ws_brokered_notification-1.3-spec-os.pdf),
and the CORBA Event Service (www.omg.org/technology/
documents/formal/event_service.htm). These platforms,
however, do not support fine-grained and robust QoS. Some
large-scale distributed system platforms, such as the Global
Information Grid (www.nsa.gov/ia/programs/global_industry_
grid) and Network-centric Enterprise Services (www.disa.
mil/nces), require rapid response, reliability, bandwidth guar-
antees, scalability, and fault-tolerance. Moreover, these sys-
tems are required to perform under stressful conditions and
over connections with less than ideal behavior, such as la-
tency and bandwidth variability, bursty loss, and route flaps.

Solution approach → ADAptive Middleware And
Network Transports (ADAMANT). ADAMANT is a
QoS-enabled pub/sub middleware platform that provides re-
liable and timely delivery of data for RT-ESP applications
by integrating and enhancing the following technologies:

• The Adaptive Network Transports (ANT) framework,
which provides an infrastructure for composing transport
protocols that builds upon the properties provided by the
scalable reliable multicast-based Ricochet transport proto-
col [20]. Ricochet provides a trade-off between latency and
reliability which are desirable qualities for middleware sup-
porting RT-ESP applications. Ricochet also supports modi-
fication of parameters to affect latency, reliability, and band-
width usage.

• OpenDDS (www.opendds.org), which is an open-source
implementation of the OMG Data Distribution Service (DDS)
standard (www.omg.org/spec/DDS) that enables applications
to communicate by publishing information they have and
subscribing to information they need in a timely manner.
OpenDDS provides support for various transport protocols,
including TCP, UDP, IP multicast, and a reliable multi-
cast protocol. OpenDDS also provides a pluggable trans-
port framework that allows integration of custom transport
protocols within OpenDDS.

This paper describes how ADAMANT’s integration of—
and enhancements to—ANT and OpenDDS provide fine-
grained QoS control and standardized QoS-enabled pub/sub
middleware atop a multicast protocol framework that en-
ables runtime modification of transport protocols.

To evaluate the impact of various transport protocols on
the ADAMANT QoS-enabled pub/sub middleware we devel-

oped the ReLate composite metrics to evaluate the reliability
and latency of received data for various experimental config-
urations involving parameters such as sending rate, network
loss, and number of receivers. This paper applies the ReLate
metrics across various ADAMANT transport protocols. It
then empirically quantifies the results and analyze the pros
and cons of various transport protocol configurations in the
context of ADAMANT.

Paper organization. The remainder of this paper is or-
ganized as follows: Section 2 describes a representative RT-
ESP application to motivate the challenges that ADAMANT
is designed to address; Section 3.1 examines the structure
and functionality of ADAMANT and the ReLate metrics
we created to evaluate ADAMANT and its adaptive trans-
port protocol framework; Section 4 analyzes the results of
experiments conducted by applying the ReLate metrics to
ADAMANT; Section 5 compares ADAMANT with related
work; and Section 6 presents concluding remarks.

2. MOTIVATING THE NEED FOR ADAMANT
This section describes a representative RT-ESP applica-

tion to motivate the challenges that ADAMANT is designed
to address.

2.1 Search and Rescue (SAR) Operations for
Disaster Recovery

To highlight the challenges of providing timely and re-
liable event stream processing for RT-ESP applications, we
focused our ADAMANT work on supporting search and res-
cue (SAR) operations. These operations help locate and ex-
tract survivors in a large metropolitan area after a regional
catastrophe, such as a hurricane, earthquake, or tornado.
SAR operations use unmanned aerial vehicles (UAVs), exist-
ing operational monitoring infrastructure (e.g., building or
traffic light mounted cameras intended for security or traffic
monitoring), and (temporary) datacenters to receive, pro-
cess, and transmit event stream data from various sensors
and monitors to emergency vehicles that can be dispatched
to areas where survivors are identified.

Figure 1 shows an example SAR scenario where infrared
scans along with GPS coordinates are provided by UAVs
and video feeds are provided by existing infrastructure cam-
eras. These infrared scans and video feeds are then sent

UAV providing
infrared scan

stream

Infrastructure
camera

providing
video stream

Ad-hoc
datacenter

Rescue helicopter
Disaster victims

Figure 1: Search and Rescue Motivating Example

to a datacenter, where they are processed by fusion appli-

2

cations to detect survivors. Once a survivor is detected the
application will develop a three dimensional view and highly
accurate position information so that rescue operations can
commence.

A key requirement of the data fusion applications within
the datacenter is tight timing bounds on correlated event
streams such as the infrared scans coming from UAVs and
video coming from cameras mounted atop traffic lights. The
event streams need to match up closely so the survivor detec-
tion application can produce accurate results. If an infrared
data stream is out of sync with a video data stream the
survivor detection application can generate a false negative
and fail to initiate needed rescue operations. Likewise, with-
out timely data coordination the survivor detection software
can generate a false positive tying up scarce resources such
as rescue workers, rescue vehicles, and data center coordi-
nators in an unwarranted effort.

2.2 Key Challenges in Supporting Search and
Rescue Operations

Meeting the requirements of SAR operations outlined in
Section 2.1 is hard due to the inherent complexity of syn-
chronizing multiple event data streams. These requirements
are exacerbated since SAR operations often run in tumul-
tuous environments where resource availability can change
abruptly. These changes can restrict the availability of re-
sources (e.g., data stream dropouts and subnetwork failure
due to ongoing environment upheaval) as well as increase
them (e.g., network resources being added due to the stabi-
lization of the regional situation). The remainder of this sec-
tion describes four challenges that ADAMANT must address
to support the communication requirements of the SAR op-
erations presented above.

2.2.1 Challenge 1: Maintaining Data Timeliness and
Reliability

SAR operations must receive sufficient data reliability and
timeliness so that multiple data streams can be fused ap-
propriately. For example, the SAR operation example de-
scribed above highlights the exploitation of data streams
(such as infrared scan and video streams) by several appli-
cations simultaneously in a datacenter. Figure 2 shows how
fire detection applications and power grid assessment appli-
cations can use infrared scans to detect fires and working
HVAC systems respectively. Likewise, Figure 3 shows how
security monitoring and structural damage applications can
use video stream data to detect looting and unsafe buildings
respectively.

Sections 3.2.1 and 3.2.2 describe how ADAMANT ad-
dresses this challenge by incorporating transport protocols
that balance reliability and low latency.

2.2.2 Challenge 2: Managing Subscription of Event
Data Streams Dynamically

SAR operations must seamlessly incorporate and remove
particular event data streams dynamically as needed. Ide-
ally, an application for SAR operations should be shielded
from the details of when other applications begin to use
common event data streams. Moreover, applications should
be able to switch to higher fidelity streams as they become
available. Section 3.1 describes how we address this chal-
lenge by using anonymous QoS-enabled pub/sub middle-
ware that seamlessly manages subscription and publication

UAV providing
infrared scan

stream

Ad-hoc
datacenter

SAR operations
Power grid
assessment

Fire Detection

Figure 2: Uses of Infrared Scans during Disaster
Recovery

of data streams as needed.

2.2.3 Challenge 3: Providing Predictable Performance
in Dynamic Environment Configurations

In scenarios where there is much variability and insta-
bility in the environment, such as with regional disasters,
the performance of SAR operations must be known a pri-
ori. SAR operations tested only under a single environment
configuration might not perform as needed if at all when
introduced to a new environment. The operations could un-
expectedly shut down at a time when they are needed most
due to changes in the environment. Section 4.2 describes
how we determine application performance behavior for dy-
namic environments.

2.2.4 Challenge 4: Adapting to Dynamic Environ-
ments

SAR operations not only must understand their behav-
ior in various environment configurations, they must also
adjust as the environment changes. If SAR operations can-
not adjust then they will fail to perform adequately given
a shift in resources. If resources are lost or withdrawn, the
SAR operations must be configured to accommodate fewer
resources while maintaining a minimum level of service. If
resources are added, the operations should take advantage of
these to provide higher fidelity or more expansive coverage.
Section 3.2.2 describes how we are incorporating adaptable
transport protocols that can be adjusted for reliability, la-
tency, and/or network bandwidth usage.

3. THE STRUCTURE AND FUNCTIONAL-
ITY OF ADAMANT AND RELATE

This section presents an overview of ADAMANT, includ-
ing the OpenDDS and ANT transport protocols used. We
then describe the ReLate metrics created to evaluate the
performance of ADAMANT in various environment config-
urations to support RT-ESP application requirements for
data reliability and timeliness.

3.1 Overview of ADAMANT

3

Ad-hoc
datacenter

SAR operations

Looting
detection

Structural
assessment

Infrastructure
camera

providing
video stream

Figure 3: Uses of Video Stream during Disaster Re-
covery

We have developed ADAMANT to integrate and enhance
QoS-enabled pub/sub middleware with adaptive transport
protocols to support RT-ESP applications. ADAMANT
helps resolve Challenge 2 in Section 2.2.2 by providing anony-
mous publication and subscription via the OMG Data Dis-
tribution Service. (Eee Sidebar 1 for a brief summary of
DDS.) ADAMANT is based on the OpenDDS implementa-
tion of DDS and incorporates several standard and custom
transport protocols.

We chose OpenDDS as ADAMANT’s DDS implementa-
tion due to its (1) source code being freely available, which
facilities modification and experimentation, and (2) support
for a pluggable transport framework that allows RT-ESP ap-
plication developers to create custom transport protocols
for sending/receiving data. OpenDDS’s pluggable transport
framework uses patterns, e.g., Strategy [6] and Component
Configurator [17], to provide flexibility and delegate respon-
sibility to the protocol only when applicable.

For example, to plug in a custom protocol developers sub-
class from the TransportSendStrategy class to determine how
the protocol should send data when a data writer writes out
topic data. Likewise, developers subclass from the Trans-
portReceiveStrategy class to determine how data should be
handled once it is received. The Component Configurator
pattern allows application developers to specify which trans-
port protocols should be included into the application at
runtime. These protocols can be included either statically
when the application is built or dynamically when the ap-
plication is loaded or while it is running.

Transport protocols are associated with publishers and
subscribers since these are the DDS entities that handle
sending and receiving data. The OpenDDS pluggable trans-
port framework requires application developers to manage
the coordination of a data reader or data writer with the
publisher or subscriber, respectively, that provides the de-
sired transport properties. For example, if the application
requires that a data writer use reliable communication, ap-

plication developers must manually associate the data writer
with the publisher using a reliable transport. Thus, the
transport protocol used determines the reliability of the data
transmission.

Sidebar 1: Overview of DDS

The OMG Data Distribution Service (DDS) is standards-
based anonymous QoS-enabled pub/sub middleware for ex-
changing data in event-based distributed systems. It pro-
vides a global data store in which publishers and sub-
scribers write and read data, respectively. DDS pro-
vides flexibility and modular structure by decoupling:
(1) location, via anonymous publish/subscribe, (2) redun-
dancy, by allowing any numbers of readers and writers,
(3) time, by providing asynchronous, time-independent
data distribution, and (4) platform, by supporting a
platform-independent model that can be mapped to dif-
ferent platform-specific models.

The DDS architecture consists of two layers: (1) the
data-centric pub/sub (DCPS) layer that provides APIs to
exchange topic data based on specified QoS policies and
(2) the data local reconstruction layer (DLRL) that makes
topic data appear local. The focus of this paper is on DCPS
since it is more broadly supported than the DLRL.

The DCPS entities in DDS include Topics, which de-
scribe the type of data to be written or read; Data Readers,
which subscribe to the values or instances of particular top-
ics; and Data Writers, which publish values or instances for
particular topics. Various properties of these entities can
be configured using combinations of the 22 QoS policies.
Moreover, Publishers manage groups of data writers and
Subscribers manage groups of data readers.

3.2 Overview of Transport Protocols Used in
ADAMANT

OpenDDS currently provides several transport protocols.
Other protocols for the ADAMANT prototype are custom
protocols that we integrated with OpenDDS using the Plug-
gable Transport Framework. We describe these transport
protocols below.

3.2.1 OpenDDS Transport Protocols
OpenDDS provides four transport protocols that can be

used with its transport protocol framework, including the
Transmission Control Protocol (TCP), the User Datagram
Protocol (UDP), and the Internet Procotol (IP) multicast
(IP Mcast), and a NAK-based reliable multicast (RMcast)
protocol, as shown in Figure 4. OpenDDS TCP is a unicast
protocol that provides several properties for data transmis-
sion including (1) flow control, where TCP will reduce the
number of data packets sent if positive acknowledgments are
not received in a timely manner, and (2) reliability, where
TCP will resend data until a packet is acknowledged by the
receiver. Conversely, UDP is a unicast protocol that makes
no attempt to provide flow control or reliability, i.e., after a
data packet is sent out on the network UDP’s responsibilities
end regarding QoS. IP Mcast provides the same properties
as UDP except that IP Mcast is used to send data to mul-
tiple receivers.

While TCP, UDP, and IP Mcast are standard protocols,
RMcast warrants more description. RMcast is essentially
a negative acknowledgment (NAK) based protocol. Figure
5 shows how a NAK-based protocol provides reliability. In
this example, the sender sends four data packets, but the

4

Pluggable Transport
Frameworkwork

UDP

IP Mcast
TCPTCP

Figure 4: OpenDDS and its Transport Protocol
Framework

0
1

3

2

Sender Receiver

NAK 2

Figure 5: A NAK Based Protocol Discovering Loss

third data packet (i.e., packet #2) is not received by the
receiver. The receiver realizes that the third data packet has
not been received when the fourth data packet is received.
At this point the receiver sends a NAK to the sender and
the sender retransmits the missing data packet. The receiver
sends a unicast message to the sender for loss notification
and the sender retransmits the missing data packet to the
receiver.

In addition to providing reliability, the RMcast protocol
orders data packets. When the protocol for a receiver detects
a packet out of order it waits for the missing packet before
passing the data up to the middleware. The receiver must
buffer any packets that have been received but have not yet
been sent to the middleware. RMcast helps resolve Chal-
lenge 1 in Section 2.2.1 by providing reliability and timeli-
ness for certain environment configurations.

3.2.2 Adaptive Network Transport Protocols
The ANT framework originally was developed from the

Ricochet [20] transport protocol. Ricochet uses a bi-modal
multicast protocol and a novel type of forward error correc-
tion (FEC) called lateral error correction (LEC) to provide
QoS and scalability guarantees. Ricochet supports (1) time-
critical multicast for high data rates with strong probabilis-

tic delivery guarantees and (2) low-latency error detection
along with low-latency error recovery.

ANT is a transport protocol framework developed to sup-
port various transport protocol properties. These properties
include NAK-based reliability, ACK-based reliability, sev-
eral FEC codes (e.g., XOR, Reed-Solomon, Tornado), and
specification of FEC at the sender, the receiver, or within a
multicast group. These properties can be composed dynam-
ically at run-time to achieve greater flexibility and support
autonomic adaptation.

We included ANT’s Ricochet transport protocol (ANT R)
and the Baseline transport protocol (ANT B) in ADAMANT.
The ANT Baseline protocol mirrors the functionality of IP
Mcast as described in Section 3.2.1. Using ANT’s Baseline
protocol helps quantify the overhead imposed by the ANT
framework since similar functionality can be achieved using
the OpenDDS IP Mcast pluggable transport protocol.

Forward Error Correction (FEC). Ricochet is based
on the concepts of FEC protocols. FEC protocols are de-
signed with reliability in mind. They anticipate data loss
and proactively send redundant information to recover from
this loss. There are two subcategories of FEC protocols: (1)
sender-based and (2) receiver-based.

Sender-based FEC protocols such as Packet Level FEC
[22] and Parity-based Loss Recovery [18], have the sender
send redundant corrective data along with the normal data,
as shown in Figure 6. For every r data packets sent c re-

r = 5, c = 1

Key: = error correction info= data message

sender

receiver

receiver

receiver

x

Figure 6: FEC Reliable Multicast Protocol - Sender-
based

pair packets are also sent. The r and c parameters together
constitute the rate of fire. The rate of fire is tunable, giv-
ing systems flexibility in the amount of reliability delivered
versus the amount of network bandwidth used.

FEC reliable multicast protocols also can be receiver-based.
This type of protocol is also known as Lateral Error Correc-
tion (LEC). For these protocols, such as the Ricochet proto-
col we employ in ADAMANT, the data receivers send each
other redundant error correction information, as shown in
Figure 7.

Lateral Error Correction (LEC). LEC protocols have
the same tunable r and c rate of fire parameters as sender-
based FEC protocols. Unlike sender-based FEC protocols,
however, the recovery latency depends on the transmission
rate of receivers. As with gossip-based protocols, LEC pro-
tocols have receivers send out to a subset of total number
of receivers to manage scalability and network bandwidth.
Moreover, the r and c parameters have slightly different se-
mantics for LEC protocols than for sender-based FEC pro-
tocols.

The r parameter determines the number of packets a re-

5

r = 5, c = 1

Key: = error correction info= data message

sender

receiver

receiver

receiver

x

Figure 7: FEC Reliable Multicast Protocol -
Receiver-based (LEC)

ceiver, rather than the sender, should receive before it sends
out a repair packet to other receivers. The c parameter de-
termines the number of receivers that will be sent a repair
packet from any single receiver. As described in Section 4.2,
we hold the value of c constant (i.e., the default value of 3)
while modifying the r parameter.

The Ricochet protocol helps resolve Challenge 1 in Sec-
tion 2.2.1 by providing high probabilistic reliability and low
latency error detection and recovery. Ricochet also helps
resolve Challenge 4 in Section 2.2.4 by supporting tunable
parameters that effect reliability, latency, and bandwidth
usage. The ANT framework is architected so that different
transport protocols can be switched dynamically as needed.
Table 1 presents a summary of all the protocols we included
in our experiments.

Protocol Integra-
tor

Functionality

TCP OpenDDS unicast, reliable, packet ordering,
flow control

UDP OpenDDS unicast, unreliable
IP Mcast OpenDDS multicast, unreliable
RMcast OpenDDS multicast, reliable, packet ordering
ANT
Baseline

ANT multicast, unreliable

ANT
Ricochet

ANT multicast, probabilistically reliable

Table 1: Transport Protocols Evaluated

3.2.3 Evaluation Metrics for Reliability and Latency
(ReLate)

We now describe considerations for evaluating latency and
reliability for ADAMANT. We present guidelines for unac-
ceptable percentages of packet loss for multimedia applica-
tions. We also introduce the ReLate metrics used to evaluate
ADAMANT empirically in Section 4.

A naive attempt to evaluate the effect of transport pro-
tocols with respect to both overall latency and reliability
would be simply to compare the latency times of protocols
that provide reliability. Since some reliability would be pro-
vided these protocols would presumably be preferred over
protocols that provide no reliability. The reliability pro-
vided by the reliable protocols in our experiments, however,
deliver different percentages of reliability. The level of reli-
ability must be quantified to be useful in comparing results.

We initially designed the ReLate metric to account for
both latency and reliability in a fairly straightforward man-
ner. ReLate divided the average latency of data updates

for an experiment using a particular protocol by the per-
centage of updates received. This metric then accounted for
reliability and latency. In particular, if latencies were equal
between two protocols then the protocol that delivered the
most updates would have the lowest value. The formula for
ReLate is defined as:

ReLatep =

∑r
i=1 li

r
÷ r

t

where p is the protocol being evaluated,
r = number of updates received,
li = latency of update i,
and t = total number of updates sent.
The initial ReLate metric is helpful only for evaluating

protocols that balance reliability and latency. This metric
does not help us evaluate all the protocols that we have
currently used, in particular the protocols that provide no
reliability. Using this initial metric produces values that
are lower than those for the reliable multicast and Ricochet
protocols even with a significant percentage of network loss,
e.g., 3%.

For example, using the values from one of our experiments
outlined in Section 4.2.1, the ReLate metric produces the
lowest values for OpenDDS UDP, OpenDDS IP Mcast, and
ANT Baseline even with 3% packet loss. None of these trans-
port protocols with the lowest ReLate value provide reliabil-
ity. Figure 14 in Section 4.2.1 presents these results in the
context of ADAMANT.

For RT-ESP applications involving multimedia, such as
our motivating example of SAR operations in Section 2,
over 10% loss is generally considered unacceptable. Bai and
Ito [1] limit acceptable MPEG video loss at 6% while stating
that a packet loss rate of more than 5% is unacceptable for
Voice over IP (VoIP) users [2]. Ngatman et al. [11] define
consistent packet loss above 2% as unacceptable for video-
conferencing. We use these values as guidelines to modify
the ReLate metric.

The 10% loss unacceptability for multimedia is due to the
interdependence of packets. As shown in Figure 8, MPEG
frames are interdependent such that P frames are dependent
on previous I or P frames while B frames are dependent on
both preceding and succeeding I or P frames. The loss of

time

Figure 8: MPEG Frame Dependencies

an I or P frame therefore results in unusable dependent P
and B frames, even if these frames are delivered reliably and
in a timely manner.

We conservatively state that a 10% packet loss should re-
sult in an order of magnitude increase in the metric value
generated. We therefore modified our ReLate metric to mul-
tiple the average latency by the percent packet loss as fol-
lows:

6

ReLate2p =

∑r
i=1 li

r
× (

t − r

t
× 100 + 1)

where p is the protocol being evaluated,
r = number of updates received,
li = latency of update i,
and t = total number of updates sent.
We add 1 to the percent packet loss to normalize for 0%

loss and any loss less than 1% where the metric would yield
the value 0 or a value lower than the average latency respec-
tively. Section 4.2.1 uses the ReLate2 metric to determine
the transport protocols that best balance reliability and la-
tency.

4. EXPERIMENTAL SETUP, RESULTS, AND
ANALYSIS

The section presents the results of experiments we con-
ducted to determine the performance of ADAMANT in a
representative RT-ESP environment. The experiments in-
clude ADAMANT using multiple transport protocols with
varying numbers of receivers, percentage data loss, and send-
ing rates as would be expected with SAR operations in a
dynamic environment as described in Section 2.1.

4.1 Experimental Setup
We conducted our experiments using two network testbeds:

(1) the Emulab network emulation testbed and (2) the ISIS-
lab network emulation testbed. Emulab provides comput-
ing platforms and network resources that can be easily con-
figured with the desired computing platform, OS, network
topology, and network traffic shaping. ISISlab uses Emulab
software and provides much of the same functionality, but
does not (yet) support traffic shaping. We used Emulab due
to its ability to shape network traffic. We used ISISlab due
to the availability of needed computing platforms.

As outlined in Section 2, we are concerned with the dis-
tribution of data for SAR datacenters. As presented in [19],
network packets are expected to be dropped at the end hosts.
The Emulab network links for the receiving data readers
were configured appropriately for the specified percentage
loss. The experiments in ISISlab were conducted with mod-
ified source code to drop packets when received by data
readers since ISISlab does not yet support network traffic
shaping.

The Emulab network traffic shaping was mainly needed
when using TCP. Unlike some middleware experimentation
platforms, OpenDDS does not support programmatically
dropping a percentage of packets in end hosts for TCP. We
therefore used network traffic shaping for TCP which only
Emulab provides.

Using the Emulab environment and the ReLate2 metric
defined in Section 3.2.3, we next determined the protocols
that balanced latency and reliability well, namely RMcast
and ANT Ricochet. Since we could programmatically con-
trol the loss of network packets at the receiving end hosts
with these protocols, we then used ISISlab due to its avail-
ability of nodes to conduct more detailed experiments in-
volving these two protocols. We were able to obtain upto
27 nodes fairly easily using ISISlab, whereas this number of
nodes was hard to get with Emulab since it is often oversub-
scribed.

Our experiments using Emulab and ISISlab used the fol-

lowing traffic generation configuration using OpenDDS ver-
sion 1.2.1.

• One DDS data writer wrote data and a variable num-
ber of DDS data readers read the data.

• The data writer and each data reader ran on its own
computing platform.

• The data writer updated 12 bytes of data 20,000 times
at the specified sending rate.

We ran 5 experiments for each configuration, e.g., 5 receiving
data writers, 50 Hz sending rate, 2% end host packet loss.
We used Ricochet’s default c value of 3 for both Emulab and
ISISlab experiments.

4.1.1 Emulab Configuration
For Emulab, the data update rates were 25 Hz and 50Hz

for general comparison of all the protocols. We varied the
number of receivers from 3 up to 10. We used Ricochet’s
default r value of 8. As defined in Section 3.2.2, the r value
is the number of packets received before sending out recovery
data.

We used the Emulab pc850 hardware platform, which in-
cludes an 850 MHz processor and 256 MB of RAM. We ran
the Fedora Core 6 operating system with real-time exten-
sions on this hardware platform, using experiments consist-
ing of between 5 and 12 pc850 nodes. The nodes were all
configured in a LAN configuration. We utilized the traffic
shaping feature of Emulab to run experiments with network
loss percentages between 0 and 3 percent. Table 2 outlines
the points of variability for the Emulab experiments.

Point of Variability Values
Number of receiving data writers 3 - 10
Frequency of sending data 25 Hz, 50 Hz
Percent end-host network loss 0 to 3 %

Table 2: Emulab Experiment Variables

4.1.2 ISISlab Configuration
We used ISISlab for experiments involving transport pro-

tocols where we could programmatically affect the loss of
packets in the end hosts. By modifying the source code,
we could discard packets based on the desired percentage.
In particular, we focused the ISISlab experiments on the
OpenDDS RMcast and the ANT Ricochet protocols since
from the initial experiments these protocols showed the abil-
ity to balance latency and reliability. We also used ISISlab
since it was easier to obtain a larger number of nodes needed
for experiments than with Emulab. Table 3 outlines the
points of variability for the ISISlab experiments.

ISISlab provides a single type of hardware platform: the
pc8832 hardware platform with a dual 2.8 GHz processor
and 2 GB of RAM. We used the same Fedora Core 6 OS
with real-time extensions as for Emulab. We ran experi-
ments using between 5 and 27 computing nodes which map
to between 3 and 25 data writers respectively. All nodes were
configured in a LAN as was done for Emulab. We modified
Ricochet’s r value so it was either 8 or 4, as explained in
Section 4.2.2.

7

Point of Variability Values
Number of receiving data writers 3 - 25
Frequency of sending data 10 Hz, 25 Hz, 50 Hz, 100 Hz
Percent network loss 0 to 3 %
Ricochet r value 4, 8

Table 3: ISISlab Experiment Variables

4.2 Results and Analysis of Experiments
This section presents and analyzes the results from our

experiments, which resolves Challenge 3 in Section 2.2.3 by
characterizing the performance of the transport protocols
for various environment configurations.

4.2.1 The Baseline Emulab Experiments
Experiment design. The initial set of experiments for

the ADAMANT prototype included all the OpenDDS proto-
cols as enumerated in Section 3.2. These experiments used
Emulab as described in Section 4.1. Our baseline experi-
ments used 3 data readers, 0% loss, and 25 and 50 Hz up-
date rates. As expected, all protocols delivered all data to
all data readers, i.e., 3 receivers * 20,000 updates = 60,000
updates.

Experiment results. As shown in Figures 9 and 10, the
latency was lowest with protocols that do not provide reli-
ability support, i.e., OpenDDS UDP, OpenDDS IP Mcast,
and ANT Baseline (i.e., IP Multicast). The OpenDDS RM-
cast and ANT Ricochet protocols were the only ones that
never produced the lowest overall average latency. As ex-
pected, average latency times decreased as the sending rate
increased from 25 Hz to 50 Hz.

Figure 9: Baseline Emulab Experiment: 3 data read-
ers, 0% loss, 25 Hz update rate

Figure 10: Baseline Emulab Experiment: 3 data
readers, 0% loss, 50 Hz update rate

The next set of experiments added 3% network packet
loss for the receiving end hosts. As shown in Figures 11
and 12, TCP has the highest average latency times while
OpenDDS UDP, OpenDDS IP Mcast, and ANT Baseline
have the lowest average latencies.

Figure 11: Baseline Emulab Experiment: 3 data
readers, 3% loss, 25 Hz update rate

Figure 12: Baseline Emulab Experiment: 3 data
readers, 3% loss, 50 Hz update rate

Figure 13 shows the number of packets received when the
update rate is 50 Hz. As expected, the data readers did not
receive all updates. We do not include packet loss figures for
the 25 Hz update rate as it is comparable to the loss seen
with a sending rate of 50 Hz.

For 3% network loss, TCP delivers all the packets for ev-
ery experiment. OpenDDS Reliable IP Mcast delivers all
the packets for some experiments but not all. ANT Ric-
ochet always delivers the second most highest number of
updates with the percentage delivered being between 99.5%
and 99.6%.

Figure 13: Baseline Emulab Experiment: Updates
Received (3 data readers, 3% loss, 50 Hz update
rate)

We were unable to configure OpenDDS IP Mcast to use
Emulab’s network traffic shaping. Instead we calculated the
amount of packet loss that is comparable to the other un-
reliable transports. This calculation does not invalidate the
values seen and used for OpenDDS IP Mcast.

Analysis of results. We now analyze the results of the
Emulab experiments, which involved all transport protocols
outlined in Section 3.2. We utilize the ReLate and ReLate2
metrics defined in Section 3.2.3 to evaluate the results from
the initial Emulab experiments.

We compare the values from the ReLate2 metric as shown
in Figure 15 with the values in Figure 14 which were only
based on the original Relate metric. The results show that

8

Figure 14: ReLate Metrics for Emulab Experiment:
3 data readers, 3% loss, 50 Hz update rate

Figure 15: ReLate2 Metrics for Emulab Experiment:
3 data readers, 3% loss, 50 Hz update rate

OpenDDS RMcast and ANT Ricochet always produce the
lowest ReLate2 value. Moreover, when there is no loss, the
ReLate2 value is equal to the average latency as is the case
for TCP. This comparison shows that the ReLate2 metric is
useful for evaluating protocols that balance reliability and
latency.

4.2.2 The RMcast and Ricochet Experiments
Experiment design. Our next experiment focused on

the protocols that are best suited for balancing reliability
and latency based on the ReLate2 metric (i.e., OpenDDS
RMcast and ANT Ricochet). We focus on these protocols
for comparison to gain a better understanding of trade-offs
between them. We provide experimental results and analyze
the results.

As noted in Section 4.1, we used the ISISlab testbed for ex-
periments involving only OpenDDS RMcast and ANT Ric-
ochet due to the availability of a larger number of hardware
nodes. We were able programmatically to induce packet
loss at the end hosts for these two protocols since the source
code is available for both and thus did not require Emulab’s
network traffic shaping capability.

As with the Emulab experiments in Section 4.2.1, we be-
gan with experiments where the number of receivers and
packet loss were low. We also expanded the sending rates
to include 10Hz and 100Hz along with the original rates of
25Hz and 50Hz. Adding sending rates made sense as the
packet loss recovery times for both of these protocols are
sensitive to the update rate.

The packet loss recovery time for the RMcast is sensitive
to the update rate since loss is only discovered when packets
are received. If packets are received faster then packet loss
is discovered sooner and recovery packets can be requested,
received, and processed sooner. Likewise, the packet loss
recovery time for Ricochet is sensitive to the update rate
since recovery data is only sent out after r packets have

been received. When packets are received sooner, recovery
data is sent, received, and processed sooner.

Experiment results. Figures 16, 17, and 18, show
that for a low number of receivers, i.e., 3, and a low loss
percentage, i.e., 1%, RMcast, in general, has lower overall
latency and lower ReLate2 values.

Figure 16: Latency (µs) for ISISlab Experiment: 3
data readers, 1% loss

Figure 17: Packets Received for ISISlab Experi-
ment: 3 data readers, 1% loss

Figure 18: ReLate2 Values for ISISlab Experiment:
3 data readers, 1% loss

Analysis of results. The data in Figures 16, 17, and 18,
highlight patterns we observed in our experiments. RMcast
can at times fail to receive a disproportionate percentage
of messages. For example, experiment 2 in Figure 17 shows
that RMcast delivered only 79% of the potential packets and
experiment 3 only 49%. These percentages are clearly above
the 1% loss specified.

On further inspection, RMcast appears to stop delivering
packets after a certain point. If there is a NAK storm (i.e.,
where a sender is inundated with retransmission requests)
we would expect latency times to increase, but still have all
packets received. This loss of data by RMcast also typically
happens with lower update rates. This result is counter-
intuitive since we would expect a lower sending rate to pro-

9

vide the protocol more time to process any retransmission
requests.

We found this anomaly of RMcast is common throughout
our experiments with the likelihood of it increasing as the
percent loss increases and to a much lesser degree as the
number of receivers increases. The ReLate2 metric tends
to favor the Ricochet protocol as percent loss or number of
receivers increases. This result stems mainly from RMcast
failing to deliver messages above and beyond the specified
packet loss rather than increased average latency times.

As indicated in Figures 16, 17, and 18, we observed the
pattern of Ricochet consistently delivering a high percent-
ages of updates. The ReLate and ReLate2 values for Ric-
ochet have been consistent, as well. We next focus our at-
tention on the configurability of the Ricochet protocol to
determine if the average latency for Ricochet can begin to
match the average latency for RMcast.

As with the Emulab experiments we started the ISISlab
experiments using Ricochet’s default r value of 8. This value
denotes the number of packets received before a recovery
packet is sent out. For all experiments conducted using the
default r value of 8, Ricochet’s average update latency was
never less than that of the RMcast protocol.

Leveraging the fact that the r value had a significant im-
pact on average latency, we conducted experiments with
Ricochet’s r value set to 4. These experiments showed the
average latency of RMcast exceed the average latency of
Ricochet, as shown in Figures 19, 20, and 21,

Figure 19: Latency (µs) for ISISlab Experiment: 3
data readers, 1% loss

Figure 20: Packets Received for ISISlab Experi-
ment: 3 data readers, 1% loss

Each figure represents data for latency, packets received,
and ReLate2 value, respectively. In these experiments Ric-
ochet had the lowest average latency 9 out of 20 times and
the lowest ReLate2 value 11 out of 20 times.

As the number of receivers increases the average update
latency of Ricochet configured with r = 4 decreases such that
eventually it becomes consistently less than for RMcast as

Figure 21: ReLate2 Values for ISISlab Experiment:
3 data readers, 1% loss

shown in Figure 22. The only time in this experiment config-
uration when RMcast’s latency is less than ANT R’s is when
RMcast delivers significantly fewer packets. When ANT R’s
latency is calculated with the same number of packets as
RMcast delivered ANT R’s latency is less, i.e., there is time
that accumulates in the middleware as more messages are
received.

The ReLate2 metric does not consistently become less
than RMcast, however. This difference is due to the decrease
in reliability that occurs with Ricochet as the number of re-
ceivers increases. The decrease is small with the reliability
for Ricochet ranging from 99.96% to 99.99% for 3 receivers
with 1% loss for all 4 update rates and ranging from 99.94%
to 99.95% when the number of receivers is increased to 25.

Figure 22: Latency (µs) for ISISlab Experiment: 25
data readers, 1% loss

The ReLate2 metric accounts for the changes in reliabil-
ity. When RMcast is able to deliver all messages (which
becomes less unlikely as the loss percentage or number of
receivers increases) its ReLate2 value can be lower than that
for Ricochet even when the average latency is consistently
higher. Ricochet provides the c parameter which can be ad-
justed to increase the number of receivers to which a single
receiver sends out recovery data. The flexibility of the r
and c parameters highlight the suitability of Ricochet with
QoS-enabled pub/sub middleware for RT-ESP applications
in turbulent environments. One challenge is to manage this
flexibility in a timely manner as the environment changes.
We are planning further research in this area.

5. RELATED WORK
This section compares our work on performance evalua-

tion of ADAMANT with related R&D efforts.
Performance evaluation of network transport pro-

tocols. Much work has been done evaluating various net-
work transport protocols. For example, Balakrishnan et
al. [20] evaluate the performance of the Ricochet transport

10

protocol with the Scalable Reliable Multicast (SRM) pro-
tocol [21]. Bateman et al. [10] compare the performance
of TCP variations both using simulations and in a testbed.
Cheng et al. [15] provide performance comparisons of UDP
and TCP for video streaming in multihop wireless mesh net-
works. Kirschberg et al. [8] propose the Reliable Congestion
Controlled Multicast Protocol (RCCMP) and provide simu-
lation results for its performance. In contrast to our work on
ADAMANT, these evaluations specifically target the pro-
tocol level independent of any integration of QoS-enabled
pub/sub middleware.

Performance evaluation of enterprise middleware.
Xiong et al. [12] conducted performance evaluations for three
DDS implementations, including OpenDDS. That work high-
lighted the different architectural approaches taken and trade-
offs of these approaches. In contrast, to our work on ADAMANT,
however, that prior work did not include performance eval-
uations of DDS with various transport protocols.

Sachs et al. [9] present a performance evaluation of message-
oriented middleware (MOM) in the context of the SPECjms2007
(www.spec.org/jms2007) standard benchmark for MOM servers.
The benchmark is based on the Java Message Service (JMS)
(java.sun.com/products/jms). In particular, the work de-
tails performance evaluations of the BEA WebLogic server
under various loads and configurations. In contrast to our
work on ADAMANT, however, that work did not integrate
various transport protocols with the middleware to evaluate
its performance.

Tanaka et al. [16] developed middleware for grid comput-
ing called Ninf-G2. In addition, they evaluate Ninf-G2’s
performance using a weather forecasting system. The evalu-
ation of the middleware does not integrate various protocols
and evaluate performance in this context, as our work on
ADAMANT does.

Tselikis et al. [5] conduct performance analysis of a client-
server e-banking application. They include three different
enterprise middleware platforms each based on Java, HTTP,
and Web Services technologies. The analysis of performance
data led to the benefits and disadvantages of each mid-
dleware technology. In contrast, our work on ADAMANT
measures the impact of various network protocols integrated
with QoS-enabled pub/sub middleware.

Performance evaluation of embedded middleware.
Bellavista et al. [13] describe their work called Mobile agent-
based Ubiquitous multimedia Middleware (MUM). MUM
has been developed to handle the complexities of wireless
hand-off management for wireless devices moving among dif-
ferent points of attachment to the Internet. In contrast, our
work on ADAMANT focuses on the performance and flexi-
bility of QoS-enabled anonymous pub/sub middleware.

TinyDDS [3] is an implementation of DDS specialized for
the demands of wireless sensor networks (WSNs). Tiny-
DDS defines a subset of DDS interfaces for simplicity and
efficiency within the domain of WSNs. TinyDDS includes
a pluggable framework for non-functional properties, e.g.,
event correlation and filtering mechanisms, data aggregation
functionality, power-efficient routing capability. In contrast,
our work on ADAMANT focuses on how properties of var-
ious transport protocols can be used to maintain specified
QoS.

6. CONCLUDING REMARKS
Developers of Real-time Event Stream Processing (RT-

ESP) systems face a number of challenges when developing
their applications for dynamic environments. To address
these challenges, we have developed ADAMANT to inte-
grate and enhance QoS-enabled pub/sub middleware with
adaptive transport protocols to support RT-ESP applica-
tions. This paper defines metrics that empirically measure
the reliability and latency of ADAMANT as a first step
to having QoS-enabled pub/sub middleware autonomically
adapt transport protocols as the changing environment dic-
tates.

The following is a summary of lessons learned from our ex-
perience evaluating ADAMANT’s performance with various
transport protocols:

• Exploring a configuration space for trade-offs re-
quires a disciplined approach with analysis to guide
the exploration. Depending on the number of dimensions
involved in the search space there can be many configura-
tions to explore. In our case, we had multiple variables,
e.g., update rate, % loss, number of data readers, and Ric-
ochet’s r value. Since the number of potential experiments
was large, we found it helpful to make coarse-grained ad-
justments for initial experiments. We would then analyze
the results to guide areas of refinement to find trade-offs be-
tween transport protocols. For example, varying Ricochet’s
r value (see Section 4.2.2) occurred as a result of analyzing
early experimental results.

• Integrating pub/sub middleware with transport
protocols exacerbates the challenge of pinpointing
the source of problems and anomalies. Certain ex-
periments incurred unexpected behavior, such as RMcast at
times only providing a small percentage of updates. With
the integration of middleware and transport protocols, de-
termining where deficiencies lie can be hard since problems
could be in the middleware, the protocol, or the combi-
nation of both. In addition to individually testing proto-
cols and the middleware, therefore, it was helpful to com-
pare the anomalous behavior of a protocol with other pro-
tocols keeping the same configuration environment. For ex-
ample, Section 4.2.2 described how we used these compar-
isons to determine unexpected behavior coming from RM-
cast rather than the OpenDDS transport protocol frame-
work or pub/sub middleware.

• The manual integration of QoS with pub/sub
middleware and transport protocols is tedious and
error-prone. Currently, pub/sub middleware and trans-
port protocols integrators must manually manage QoS prop-
erties specified in the middleware with QoS properties pro-
vided by a transport protocol. For example, an integrator
could mistakenly select a transport protocol with no reliabil-
ity support even though application developers specified re-
liable communication. The middleware does not help in de-
termining the mismatch between QoS properties and trans-
port protocol properties. Our future work is investigating
ways to manage this complexity via domain-specific mod-
eling languages (DSMLs) that provide profiles for certain
types of applications, such as RT-ESP applications. Once a
profile is selected, the DSML could automatically generate
correct implementation artifacts for the application.

• Specifying unacceptable loss for RT-ESP is hard
to generalize. The amount of acceptable loss is specific
to a particular application or application type. However, a
general acceptability guideline of 10 % loss or less for mul-
timedia applications has been helpful in making initial eval-

11

uations of protocols that balance reliability and latency.
• Flexible transport protocols make manual man-

agement and tuning of the protocols hard. Our ex-
periments show the adaptability of the Ricochet transport
protocol. Modifying Ricochet’s r value affects the average
overall latency, as shown by our results in Section 4.2.2.
Likewise, the modification of Ricochet’s c value can affect
the percentage of recovered packets with a corresponding
impact on bandwidth.

Keeping protocol parameter settings optimized in a turbu-
lent environment can quickly become overwhelming if done
manually. Reaction time needed can swiftly surpass those of
humans. We are researching the use of machine learning to
automatically adjust parameter settings appropriately based
on the environment and the QoS specified by the applica-
tion. We anticipate our experimental data to be used for
(supervised or unsupervised) machine learning to dynami-
cally optimize parameter settings.

• Multicast with NAK-based reliability and LEC
protocols balance reliability and latency. After con-
ducting the experiments and using our ReLate metrics we
determined that when combining low latency and reliability,
multicast with NAK-based reliability and LEC protocols de-
liver the best performance. NAK-based protocols have fairly
low overhead and low bandwidth usage for low loss rates
since only the detected loss of a packet triggers recovery
actions. Moreover, we found that Ricochet is consistently
reliable with a high probability. Ricochet also provides con-
sistent bandwidth usage for r and c settings which can be
important for network constrained environments.

7. REFERENCES
[1] Y. Bai and M. Ito. A new technique for minimizing

network loss from users’ perspective. Journal of
Network Computing Appllications, 30(2):637–649,
2007.

[2] Yan Bai and M.R. Ito. A Study for Providing Better
Quality of Service to VoIP Users. In 20th
International Conference on Advanced Information
Networking and Applications (AINA 2006), Lecture
Notes in Computer Science, vol. 3410, pages 799–804,
April 2006.

[3] P. Boonma and J. Suzuki. Middleware support for
pluggable non-functional properties in wireless sensor
networks. Services - Part I, 2008. IEEE Congress on,
pages 360–367, July 2008.

[4] B. Plale et al. CASA and LEAD: Adaptive
Cyberinfrastructure for Real-Time Multiscale Weather
Forecasting. Computer, 39(11):56–64, 2006.

[5] C. Tselikis et al. An evaluation of the middleware’s
impact on the performance of object oriented
distributed systems. Journal of Systems and Software,
80(7):1169 – 1181, 2007. Dynamic Resource
Management in Distributed Real-Time Systems.

[6] E. Gamma et al. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley,
Reading, MA, 1995.

[7] G. Eisenhauer et al. Publish-subscribe for
high-performance computing. Internet Computing,
IEEE, 10(1):40–47, Jan.-Feb. 2006.

[8] J. Kirschberg et al. Rccmp: reliable congestion
controlled multicast protocol. In 1st EuroNGI

COnference on Next Generation Internet Networks
Traffic Engineering, april 2005.

[9] K. Sachs et al. Performance Evaluation of
Message-oriented Middleware using the SPECjms2007
Benchmark. Performance Evaluation, 2009. to appear.

[10] M. Bateman et al. A comparison of tcp behaviour at
high speeds using ns-2 and linux. In CNS ’08:
Proceedings of the 11th communications and
networking simulation symposium, pages 30–37, New
York, NY, USA, 2008. ACM.

[11] M. Ngatman et al. Comprehensive study of
transmission techniques for reducing packet loss and
delay in multimedia over ip. International Journal of
Computer Science and Network Security,
8(3):292–299, 2008.

[12] Ming Xiong et al. Evaluating Technologies for Tactical
Information Management in Net-Centric Systems. In
Proceedings of the Defense Transformation and
Net-Centric Systems conference, Orlando, Florida,
April 2007.

[13] P. Bellavista et al. Context-aware handoff middleware
for transparent service continuity in wireless networks.
Pervasive and Mobile Computing, 3(4):439 – 466,
2007. Middleware for Pervasive Computing.

[14] V. Kumar et al. Distributed stream management using
utility-driven self-adaptive middleware. Autonomic
Computing, 2005. ICAC 2005. Proceedings. Second
International Conference on, pages 3–14, June 2005.

[15] X. Cheng et al. Performance evaluation of video
streaming in multihop wireless mesh networks. In
NOSSDAV ’08: Proceedings of the 18th International
Workshop on Network and Operating Systems Support
for Digital Audio and Video, pages 57–62, New York,
NY, USA, 2008. ACM.

[16] Y. Tanaka et al. Design, Implementation and
Performance Evaluation of GridRPC Programming
Middleware for a Large-Scale Computational Grid. In
GRID ’04: Proceedings of the 5th IEEE/ACM
International Workshop on Grid Computing, pages
298–305, Washington, DC, USA, 2004. IEEE
Computer Society.

[17] D. Schmidt et al. Pattern-Oriented Software
Architecture: Patterns for Concurrent and Networked
Objects, Volume 2. Wiley & Sons, New York, 2000.

[18] J. Nonnenmacher et al. Parity-based loss recovery for
reliable multicast transmission. volume 6, pages
349–361, Piscataway, NJ, USA, 1998. IEEE Press.

[19] M. Balakrishnan et al. Slingshot: Time-critical
multicast for clustered applications. In Proceedings of
the IEEE Conference on Network Computing and
Applications, 2005.

[20] M. Balakrishnan et al. Ricochet: Lateral error
correction for time-critical multicast. In NSDI 2007:
Fourth Usenix Symposium on Networked Systems
Design and Implementation, Boston, MA, 2007.

[21] S. Floyd et al. A reliable multicast framework for
light-weight sessions and application level framing.
IEEE/ACM Trans. Netw., 5(6):784–803, 1997.

[22] Christian Huitema. The case for packet level fec. In
TC6 WG6.1/6.4 Fifth International Workshop on
Protocols for High-Speed Networks V, pages 109–120,
London, UK, 1997.

12

