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Managing Global Objects Effectively
Goals:
– Centralize access to 

objects that should be 
visible globally, e.g.:
– command-line options 

that parameterize the 
behavior of the program

– The object (Reactor) 
that drives the main 
event loop

Constraints/forces:
– Only need one instance 

of the command-line 
options & Reactor

– Global variables are 
problematic in C++

% tree-traversal -v
format [in-order]
expr [expression]
print [in-order|pre-order|post-order|level-order]
eval [post-order]
quit
> format in-order
> expr 1+4*3/2
> eval post-order
7
> quit

% tree-traversal
> 1+4*3/2
7

Verbose mode

Succinct mode
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Solution: Centralize Access to Global Instances
Rather than using global variables, create a central access point to global 
instances, e.g.:  

int main (int argc, char *argv[])
{
// Parse the command-line options.
if (!Options::instance ()->parse_args (argc, argv))
return 0;

// Dynamically allocate the appropriate event handler 
// based on the command-line options.
Expression_Tree_Event_Handler *tree_event_handler =
Expression_Tree_Event_Handler::make_handler
(Options::instance ()->verbose ());

// Register event handler with the reactor.  
Reactor::instance ()->register_input_handler
(tree_event_handler);

// ...  



Pattern & Framework Tutorial Douglas C. Schmidt

4

If (uniqueInstance == 0)
uniqueInstance = new Singleton;

return uniqueInstance;

Singleton                       object creational
Intent

ensure a class only ever has one instance & provide a global point of access 
Applicability

– when there must be exactly one instance of a class, & it must be 
accessible from a well-known access point

– when the sole instance should be extensible by subclassing, & clients 
should be able to use an extended instance without modifying their code

Structure
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Consequences
+ reduces namespace pollution
+ makes it easy to change your mind & 

allow more than one instance
+ allow extension by subclassing
– same drawbacks of a global if misused
– implementation may be less efficient 

than a global 
– concurrency pitfalls strategy creation & 

communication overhead
Implementation
– static instance operation
– registering the singleton instance
– deleting singletons 

Known Uses
– Unidraw's Unidraw object
– Smalltalk-80 ChangeSet, 

the set of changes to code
– InterViews Session object
See Also
– Double-Checked Locking 

Optimization pattern from 
POSA2

– “To Kill a Singleton” 
www.research.ibm.com/ 
designpatterns/pubs/    
ph-jun96.txt

Singleton                       object creational
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Consequences
+ greater flexibility, reuse
+ can change algorithms dynamically
– strategy creation & communication 

overhead
– inflexible Strategy interface
– semantic incompatibility of multiple 

strategies used together
Implementation
– exchanging information between a 

Strategy & its context
– static strategy selection via 

parameterized types

Strategy                       object behavioral
Known Uses
– InterViews text formatting
– RTL register allocation & 

scheduling strategies
– ET++SwapsManager

calculation engines
– The ACE ORB (TAO) Real-

time CORBA middleware
See Also
– Bridge pattern (object 

structural)
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Strategy                       object behavioral
Intent

define a family of algorithms, encapsulate each one, & make them 
interchangeable to let clients & algorithms vary independently

Applicability
– when an object should be configurable with one of many algorithms,
– and all algorithms can be encapsulated,
– and one interface covers all encapsulations 

Structure
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Factory Method             class creational
Intent

Provide an interface for creating an object, but leave choice of object’s 
concrete type to a subclass

Applicability
when a class cannot anticipate the objects it must create or a class 
wants its subclasses to specify the objects it creates

Structure
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Consequences
+By avoiding to specify the class name of the                               

concrete class &the details of its creation the                             
client code has become more flexible

+The client is only dependent on the interface
- Construction of objects requires one additional                              

class in some cases
Implementation
• There are two choices here

– The creator class is abstract & does not implement creation 
methods (then it must be subclassed)

– The creator class is concrete & provides a default 
implementation (then it can be subclassed)

• Should a factory method be able to create different variants? If so 
the method must be equipped with a parameter

Factory Method             class creational
Known Uses
– InterViews Kits
– ET++ 

WindowSystem
– AWT Toolkit
– The ACE ORB (TAO)
– BREW
– UNIX open() syscall
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Abstract Factory             object creational
Intent

create families of related objects without specifying subclass names
Applicability

when clients cannot anticipate groups of classes to instantiate
Structure
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Consequences
+ flexibility: removes type (i.e., subclass)       

dependencies from clients
+ abstraction & semantic checking:  hides                

product’s composition
– hard to extend factory interface to create new 

products

Implementation
– parameterization as a way of controlling interface size
– configuration with Prototypes, i.e., determines who 

creates the factories
– abstract factories are essentially groups of factory 

methods

Abstract Factory             object creational
Known Uses
– InterViews Kits
– ET++ 

WindowSystem
– AWT Toolkit
– The ACE ORB (TAO)
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Bridge                           object structural
Intent

Separate a (logical) abstraction interface from its (physical) 
implementation(s)

Applicability
– When interface & implementation should vary independently

– Require a uniform interface to interchangeable class hierarchies

Structure
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Consequences
+abstraction interface & implementation are independent
+ implementations can vary dynamically
+Can be used transparently with STL algorithms & containers
– one-size-fits-all Abstraction & Implementor interfaces
Implementation
– sharing Implementors & reference counting

– See reusable Refcounter template class (based on STL/boost 
shared_pointer)

– creating the right Implementor (often use factories)
Known Uses
– ET++ Window/WindowPort
– libg++ Set/{LinkedList, HashTable}
– AWT Component/ComponentPeer

Bridge                           object structural
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