
Object-Oriented Patterns & Frameworks
Assignment 4b Patterns

Dr. Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of EECS
Vanderbilt University
Nashville, Tennessee

mailto:d.schmidt@vanderbilt.edu�
http://www.cs.wustl.edu/~schmidt/bio.html�

Pattern & Framework Tutorial Douglas C. Schmidt

2

Managing Global Objects Effectively
Goals:
– Centralize access to

objects that should be
visible globally, e.g.:
– command-line options

that parameterize the
behavior of the program

– The object (Reactor)
that drives the main
event loop

Constraints/forces:
– Only need one instance

of the command-line
options & Reactor

– Global variables are
problematic in C++

% tree-traversal -v
format [in-order]
expr [expression]
print [in-order|pre-order|post-order|level-order]
eval [post-order]
quit
> format in-order
> expr 1+4*3/2
> eval post-order
7
> quit

% tree-traversal
> 1+4*3/2
7

Verbose mode

Succinct mode

Pattern & Framework Tutorial Douglas C. Schmidt

3

Solution: Centralize Access to Global Instances
Rather than using global variables, create a central access point to global
instances, e.g.:

int main (int argc, char *argv[])
{
// Parse the command-line options.
if (!Options::instance ()->parse_args (argc, argv))
return 0;

// Dynamically allocate the appropriate event handler
// based on the command-line options.
Expression_Tree_Event_Handler *tree_event_handler =
Expression_Tree_Event_Handler::make_handler
(Options::instance ()->verbose ());

// Register event handler with the reactor.
Reactor::instance ()->register_input_handler
(tree_event_handler);

// ...

Pattern & Framework Tutorial Douglas C. Schmidt

4

If (uniqueInstance == 0)
uniqueInstance = new Singleton;

return uniqueInstance;

Singleton object creational
Intent

ensure a class only ever has one instance & provide a global point of access
Applicability

– when there must be exactly one instance of a class, & it must be
accessible from a well-known access point

– when the sole instance should be extensible by subclassing, & clients
should be able to use an extended instance without modifying their code

Structure

Pattern & Framework Tutorial Douglas C. Schmidt

5

Consequences
+ reduces namespace pollution
+ makes it easy to change your mind &

allow more than one instance
+ allow extension by subclassing
– same drawbacks of a global if misused
– implementation may be less efficient

than a global
– concurrency pitfalls strategy creation &

communication overhead
Implementation
– static instance operation
– registering the singleton instance
– deleting singletons

Known Uses
– Unidraw's Unidraw object
– Smalltalk-80 ChangeSet,

the set of changes to code
– InterViews Session object
See Also
– Double-Checked Locking

Optimization pattern from
POSA2

– “To Kill a Singleton”
www.research.ibm.com/
designpatterns/pubs/
ph-jun96.txt

Singleton object creational

Pattern & Framework Tutorial Douglas C. Schmidt

6

Consequences
+ greater flexibility, reuse
+ can change algorithms dynamically
– strategy creation & communication

overhead
– inflexible Strategy interface
– semantic incompatibility of multiple

strategies used together
Implementation
– exchanging information between a

Strategy & its context
– static strategy selection via

parameterized types

Strategy object behavioral
Known Uses
– InterViews text formatting
– RTL register allocation &

scheduling strategies
– ET++SwapsManager

calculation engines
– The ACE ORB (TAO) Real-

time CORBA middleware
See Also
– Bridge pattern (object

structural)

Pattern & Framework Tutorial Douglas C. Schmidt

7

Strategy object behavioral
Intent

define a family of algorithms, encapsulate each one, & make them
interchangeable to let clients & algorithms vary independently

Applicability
– when an object should be configurable with one of many algorithms,
– and all algorithms can be encapsulated,
– and one interface covers all encapsulations

Structure

Pattern & Framework Tutorial Douglas C. Schmidt

8

Factory Method class creational
Intent

Provide an interface for creating an object, but leave choice of object’s
concrete type to a subclass

Applicability
when a class cannot anticipate the objects it must create or a class
wants its subclasses to specify the objects it creates

Structure

Pattern & Framework Tutorial Douglas C. Schmidt

9

Consequences
+By avoiding to specify the class name of the

concrete class &the details of its creation the
client code has become more flexible

+The client is only dependent on the interface
- Construction of objects requires one additional

class in some cases
Implementation
• There are two choices here

– The creator class is abstract & does not implement creation
methods (then it must be subclassed)

– The creator class is concrete & provides a default
implementation (then it can be subclassed)

• Should a factory method be able to create different variants? If so
the method must be equipped with a parameter

Factory Method class creational
Known Uses
– InterViews Kits
– ET++

WindowSystem
– AWT Toolkit
– The ACE ORB (TAO)
– BREW
– UNIX open() syscall

Pattern & Framework Tutorial Douglas C. Schmidt

10

Abstract Factory object creational
Intent

create families of related objects without specifying subclass names
Applicability

when clients cannot anticipate groups of classes to instantiate
Structure

Pattern & Framework Tutorial Douglas C. Schmidt

11

Consequences
+ flexibility: removes type (i.e., subclass)

dependencies from clients
+ abstraction & semantic checking: hides

product’s composition
– hard to extend factory interface to create new

products

Implementation
– parameterization as a way of controlling interface size
– configuration with Prototypes, i.e., determines who

creates the factories
– abstract factories are essentially groups of factory

methods

Abstract Factory object creational
Known Uses
– InterViews Kits
– ET++

WindowSystem
– AWT Toolkit
– The ACE ORB (TAO)

Pattern & Framework Tutorial Douglas C. Schmidt

12

Bridge object structural
Intent

Separate a (logical) abstraction interface from its (physical)
implementation(s)

Applicability
– When interface & implementation should vary independently

– Require a uniform interface to interchangeable class hierarchies

Structure

Pattern & Framework Tutorial Douglas C. Schmidt

13

Consequences
+abstraction interface & implementation are independent
+ implementations can vary dynamically
+Can be used transparently with STL algorithms & containers
– one-size-fits-all Abstraction & Implementor interfaces
Implementation
– sharing Implementors & reference counting

– See reusable Refcounter template class (based on STL/boost
shared_pointer)

– creating the right Implementor (often use factories)
Known Uses
– ET++ Window/WindowPort
– libg++ Set/{LinkedList, HashTable}
– AWT Component/ComponentPeer

Bridge object structural

	Slide Number 1
	Managing Global Objects Effectively
	Solution: Centralize Access to Global Instances
	Singleton object creational
	Singleton object creational
	Strategy object behavioral
	Strategy object behavioral
	Factory Method class creational
	Factory Method class creational
	Abstract Factory object creational
	Abstract Factory object creational
	Bridge object structural
	Bridge object structural

