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Abstract

Context: Component-based middleware, such as the Lightweight COR-

BA Component Model, is increasingly used to implement enterprise dis-
tributed real-time and embedded (DRE) systems. In addition to supporting
the quality-of-service (QoS) requirements of individual DRE systems, com-
ponent technologies must also support bounded latencies when effecting de-
ployment changes to DRE systems in response to changing environmental
conditions and operational requirements.

Objective: The goals of this paper are to (1) study sources of inefficien-
cies and non-deterministic performance in deployment capabilities for DRE
systems and (2) devise solutions to overcome these performance problems.

Method: The paper makes two contributions to the study of the deploy-
ment and configuration of distributed component based applications. First,
we analyze how conventional implementations of the OMG’s Deployment
and Configuration (D&C) specification for component-based systems can sig-
nificantly degrade deployment latencies. Second, we describe architectural
changes and performance optimizations implemented within the Locality-

Enhanced Deployment and Configuration Engine (LE-DAnCE) implementa-
tion of the D&C specification to obtain efficient and deterministic deployment
latencies.

Results: We analyze the performance of LE-DAnCE in the context of
component deployments on 10 nodes for a representative DRE system con-
sisting of 1,000 components and in a cluster environment with up to 100
nodes. Our results show LE-DAnCE’s optimizations provide a bounded de-
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ployment latency of less than 2 seconds for the 1,000 component scenario
with just a 4 percent jitter.

Conclusion: The improvements contained in the LE-DAnCE infrastruc-
ture provide an efficient and scaleable standards-based deployment system
for component-based enterprise DRE systems. In particular, deployment
time parallelism can improve deployment latency significantly, both during
pre-deployment analysis of the deployment plan and during the process of
installing and activating components.

1. Introduction

Emerging trends and challenges. Component-based software engineering
techniques are increasingly applied to develop enterprise distributed real-time

and embedded (DRE) systems, such as air-traffic management [1], shipboard
computing environments [2], and distributed sensor webs [3]. These systems
are often characterized as “open” since applications running in them must
contend not only with changing environmental conditions (such as chang-
ing power levels, operational nodes, or network status), but also evolving
operational requirements and mission objectives [4].

To adapt to changing environments and operational requirements, it may
be necessary to change the deployment and configuration characteristics of
these DRE systems dynamically. Examples of potential adaptations include
deployment or tear down of individual component instances, changing con-
nection configuration, or altering QoS properties in the target component
runtime. As a result of stringent quality-of-service (QoS) requirements in
DRE systems, it is important that any deployment and configuration changes
occur as quickly and predictably as possible, i.e., with short and bounded
deployment latencies.

Not only are timely and dependable runtime deployment and configura-
tion changes essential in DRE systems, even initial application startup times
can be an important metric. For example, in highly energy-constrained sys-
tems (such as distributed sensor networks), a common power saving strategy
may involve completely deactivating field hardware and periodically restart-
ing it to take new measurements or activate actuators [5]. In such environ-
ments, deployments must be fast and time-bounded.

To support these requirements, the efficiency and QoS (e.g., latency of
deployment) provided by the deployment infrastructure should be consid-
ered alongside the component middleware used to develop DRE systems.
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Standards, such as the OMG Deployment and Configuration (D&C) speci-
fication [6] for component-based applications, have emerged in recent years.
The OMG D&C specification provides comprehensive development, packag-
ing, and deployment frameworks for a range of component middleware.1

In prior work, we developed the Deployment and Configuration Engine

(DAnCE) [8], which focused solely on separating concerns defined by the
OMG D&C specification and demonstrating its feasibility without concern
for timeliness and deterministic behavior. After applying DAnCE to a range
of representative DRE systems [2, 5], however, we found the lack of appro-
priate optimizations and architectural limitations of the OMG D&C specifi-
cation yielded performance bottlenecks that adversely impacted deployment
latencies and hindered reproducibility. Moreover, these performance bot-
tlenecks stemmed from more than just limitations with the original DAnCE
implementation, but involve inherent architectural limitations with the OMG
D&C specification itself.

Solution approach → Architectural optimizations to D&C to leverage par-

allelism and reduce serialized phasing. To overcome the limitations described
above, this paper motivates and describes architectural enhancements we
made to the OMG D&C specification to achieve deterministic deployment
latencies for enterprise DRE systems. Our solution is called the Locality-

Enhanced Deployment and Configuration Engine (LE-DAnCE), which signif-
icantly extends our earlier work on DAnCE by the following enhancements:

• Enhancement 1. Reducing latency due to loading of XML-based
deployment plans by serializing them into an appropriate in-memory
format.

• Enhancement 2. Adopting a new algorithmic approach to runtime
plan analysis to better take advantage of opportunities for paralleliza-
tion.

• Enhancement 3. Providing a novel architectural approach to deploy-
ment called the Locality Manager that allows LE-DAnCE to reduce
serialized phasing of deployment activities.

1Although originally developed for the CORBA Component Model (CCM) [7], the
OMG D&C specification is defined via a UML metamodel that is generic with respect to
the actual target component platform and therefore applicable to other component models,
such as Enterprise JavaBeans or the Fractal component model.
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This paper extends our previous work [9], which focused on minimizing
a key source of significant deployment latency: the runtime plan analysis

needed to determine how large deployments should be split amongst several

nodes and to determine installation ordering. This paper augments this prior
work by investigating the impact of runtime analysis on deployment latency
for enterprise DRE systems. We also report the results of experiments con-
ducted in a cluster environment to evaluate how leveraging the embarrass-
ingly parallel nature of such runtime analysis can significantly reduce deploy-
ment latency incurred by this phase of the deployment process.

Paper organization. The remainder of this paper is organized as follows:
Section 2 summarizes the OMG D&C specification and analyzes key sources
of overhead stemming from architectural limitations with the OMG D&C
specification and naïve implementation techniques adopted in our original
DAnCE implementation of the specification; Section 3 describes how we ad-
dressed these sources of overhead in LE-DAnCE, focusing on deployment
latency; Section 4 analyzes the results of experiments we conducted to com-
pare LE-DAnCE with DAnCE; Section 5 compares our research with related
work on deploying and configuring large-scale distributed applications; and
Section 6 presents concluding remarks and lessons learned.

2. Impediments to Predictable Deployment Latency

This section presents an overview of the OMG Deployment and Configu-

ration (D&C) specification for component-based applications and describes
how an implementation of this specification called the Deployment and Con-

figuration Engine (DAnCE) [8] supports the separation of concerns espoused
in the D&C specification. We pinpoint key sources of overhead that impact
deployment latencies in DRE systems and expose the architectural limita-
tions in the D&C specification that exacerbate these overheads.

2.1. Overview of the OMG D&C Standard

The OMG D&C specification provides standard interchange formats for
metadata used throughout the component-based application development
lifecycle, as well as runtime interfaces used for packaging and planning. These
runtime interfaces deliver deployment instructions to the middleware deploy-
ment infrastructure via a component deployment plan, which contains the
complete set of deployment and configuration information for component in-
stances and their associated connection information. During DRE system
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initialization, such information must be parsed, components deployed on the
nodes, and the system activated in a timely and deterministic manner.

Below we focus on the standard interfaces, metadata, and architecture
used for runtime deployment and configuration in implementations compli-
ant with the D&C specification. Throughout this section we refer to the
timeliness of the deployment infrastructure to execute the deployment plan
as the “deployment latency,” which includes the time starting when a de-
ployment plan is provided to the deployment infrastructure to the time at
which all deployment instructions have been executed and the system acti-
vated. We refer to the reproducibility of the timeliness in deployment as the
deterministic nature of deployment.

2.1.1. Runtime D&C Architecture

The runtime interfaces defined by the OMG D&C specification for de-
ployment and configuration consists of the two-tier architecture shown in
Figure 1. This architecture consists of (1) a set of global (system-wide) enti-

Execution Manager

Domain Application Manager

Domain Application

Node Manager

Node Application Manager

Node Application

Figure 1: OMG D&C Architectural Overview and Separation of Concerns

ties used to coordinate deployment and (2) a set of local (node-level) entities
used to instantiate component instances and configure their connections and

5



QoS properties. Each entity in these global and local tiers correspond to one
of the following three major roles:

• Manager. This role (known as the ExecutionManager at the global-
level and as the NodeManager at the node-level) is a singleton daemon
that coordinates all deployment entities in a single context. The Man-
ager serves as the entry point for all deployment activity and as a
factory for implementations of the ApplicationManager role.

• ApplicationManager. This role (known as the DomainApplication-

Manager at the global-level and as the NodeApplicationManager at
the node-level entity) coordinates the lifecycle for running instances of
a component-based application. Each ApplicationManager represents
exactly one component-based application and is used to initiate de-
ployment and teardown of that application. This role also serves as a
factory for implementations of the Application role.

• Application. This role (known as the DomainApplication at the
global-level and the NodeApplication at the node-level entity) repre-
sents a deployed instance of a component-based application. It is used
to finalize the configuration of the associated component instances that
comprise an application and begin execution of the deployed component-
based application.

2.1.2. D&C Deployment Data Model

In addition to the runtime entities described above, the D&C specification
also contains an extensive data model that is used to describe component
applications throughout their deployment lifecycle. The metadata defined
by the specification is intended for use as

• An interchange format between various tools (e.g., development tools,
application modeling and packaging applications, and deployment plan-
ning tools) applied to create the applications and

• Directives that describe the configuration and deployment used by the
runtime infrastructure.

Most entities in the D&C metadata contain a section where configuration
information may be included in the form of a sequence of name/value pairs,
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where the value may be an arbitrary data type. This configuration informa-
tion can be used to describe everything from basic configuration information
(such as shared library entry points and component/container associations)
to more complex configuration information (such as QoS properties or ini-
tialization of component attributes with user-defined data types).

This metadata can broadly be grouped into three categories: packaging,
domain, and deployment. Packaging descriptors are used from the beginning
of application development to specify component interfaces, capabilities, and
requirements. After implementations have been created, this metadata is
further used to group individual components into assemblies, describe pair-
ings with implementation artifacts, such as shared libraries (also known as
dynamically linked libraries), and create packages containing both metadata
and implementations that may be installed into the target environment. Do-
main descriptors are used by hardware administrators to describe capabilities
(e.g., CPU, memory, disk space, and special hardware such as GPS receivers)
present in the domain.

Both the domain and packaging metadata are then used by a planning
agent (either a human or automated software tool) to map the described
component instances onto the underlying runtime environment through the
creation of the third type of metadata supported by the OMG D&C standard:
the component deployment plan, which contains the information shown in
Figure 2 and described below:

UUID
DeploymentPlan

InstanceDeploymentDescription

PlanConnectionDescription

MonolithicDeploymentDescription

ArtifactDeploymentDescription

1

*

*

*

*

1-2*

Figure 2: Component Deployment Plan

• Implementation Artifact Descriptions (IAD). The IAD section of
the deployment plan describes the various artifacts that must be present
on a node for successful component deployment. Artifacts include—but
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are not limited to—executable files and shared libraries that provide
binary implementations of components.

• Monolithic Deployment Descriptions (MDD). The MDD section
references all IAD entries necessary for one particular component type.
It also contains additional configuration information that is necessary
for all instances of that type, e.g. entry points and factory functions
used to load the implementation from shared libraries.

• Instance Deployment Descriptions (IDD). IDD entries represent
concrete instances deployed into the domain. This section of the meta-
data describes the node in which a particular component should be in-
stantiated and contains additional configuration properties that should
be applied to that instance, e.g., QoS configuration information.

• Plan Connection Descriptions (PCD). The PCD section describes
all connections that must be established as part of the deployment.
These entries reference application IDD entries that are part of a par-
ticular connection and contains additional information (such as port
names and QoS configuration) that may be necessary for the connec-
tion to be successfully established.

• Plan Locality Constraints (PLC). The PLC section describes con-
straints on how individual component instances may be collocated in-
side processes and/or containers. Constraints are established between
groups of instances and may be one of three values: (1) no constraint,
(2) same process, or (3) different process. These constraints are evalu-
ated at deployment time and used by the node-level infrastructure to
determine the number of application processes to spawn in which to
run all the components defined in the deployment plan.

The OMG D&C standard suggests that all metadata be serialized to an
XML format for on-disk storage and for use as an interchange format between
the various tools used for application development and planning. This XML
format must be converted into the native binary format used in the interfaces
of the runtime infrastructure, however, so the deployment infrastructure can
use it.
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2.1.3. OMG D&C Deployment Process

Component application deployments are performed in a four phase pro-
cess codified by the OMG D&C standard. The Manager and Application-

Manager are responsible for the first two phases and the Application is re-
sponsible for the final two phases, as described below:

1. Plan preparation. In this phase, a deployment plan is provided to
the ExecutionManager, which (1) analyzes the plan to determine which
nodes are involved in the deployment and (2) splits the plans into
“locality-constrained” plans, one for each node containing information
only for the corresponding node. These locality-constrained plans have
only instance and connection information for a single node. Each Node-

Manager is then contacted and provided with its locality-constrained
plan, which causes the creation of NodeApplicationManagers whose ref-
erence is returned. Finally, the ExecutionManager creates a Domain-

ApplicationManager with these references.

2. Start launch. When the DomainApplicationManager receives the
start launch instruction, it delegates work to the NodeApplication-

Managers on each node. Each NodeApplicationManager creates a Node-

Application that loads all component instances into memory, performs
preliminary configuration, and collects references for all endpoints de-
scribed in the deployment plan. These references are then cached
by a DomainApplication instance created by the DomainApplication-

Manager.

3. Finish launch. This phase is started by an operation on the Domain-

Application instance, which apportions its collected object references
from the previous phase to each NodeApplication and causes them to
initiate this phase. All component instances receive final configurations
and all connections are then created.

4. Start. This phase is again initiated on the DomainApplication, which
delegates to the NodeApplication instances and causes them to instruct
all installed component instances to begin execution.

2.2. Sources of Deployment Latency Overheads

The remainder of this section pinpoints the sources of overhead that im-
pact deployment latencies in the context of the OMG D&C specification
described above. We use our open-source DAnCE [8] OMG D&C implemen-
tation as a vehicle to demonstrate these sources of overhead. The major
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sources of latency stem from multiple complexities in the OMG D&C stan-
dard, including the processing of deployment metadata from disk in XML
format and an architectural ambiguity in the runtime infrastructure that
encourages suboptimal implementations.

2.2.1. Challenge 1: Minimizing the Latency of Parsing Deployment Plans

Component application deployments for OMG D&C are described by a
data structure that contains all the relevant configuration metadata for the
component instances, their mappings to individual nodes, and any connec-
tion information required. This deployment plan is serialized on disk in a
XML file whose structure is described by an XML Schema defined by the
D&C specification. This XML document format presents significant advan-
tages by providing a simple interchange format for exchanging deployment
plan files between modeling tools [10]. This format is also easy to generate
and manipulate using widely available XML modules for popular program-
ming languages and it enables simple modification and data mining by text
processing tools such as Perl, grep, sed, and awk.

Processing these deployment plan files during deployment and even run-
time, however, can lead to substantial deployment latency costs, as shown in
Section 4.1.2. This increased latency stems from the following sources:

• XML deployment plan file sizes grow substantially as the number of
component instances and connections in the deployment increases, which
causes significant I/O overhead to load the plan into memory and to val-
idate the structure against the schema to ensure that it is well-formed.

• The XML document format cannot be directly used by the deploy-
ment infrastructure because the infrastructure is a CORBA application
that implements OMG Interface Definition Language (IDL) interfaces.
Hence, the XML document must first be converted into the IDL format
used by the runtime interfaces of the deployment framework.

In enterprise DRE systems, component deployments that number in the
thousands are not uncommon. Moreover, component instances in these do-
mains will exhibit a high degree of connectivity. Given the structure of
deployment plans outlined in Section 2.1.2, both these factors contribute to
large plans.

While the latency source described above is most immediately applica-
ble to initial application deployment, it can also present a problem during
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potential re-deployment activities at application runtime that involve signif-
icant changes to the application configuration. While deployment plan files
that represent re-deployment or re-configuration instructions may not be as
large as for the initial deployment, the responsiveness of the deployment in-
frastructure during these activities is even more important to ensure that
an application continues to meet its stringent QoS and end-to-end deadlines
during online modifications. Section 3.1 describes how LE-DAnCE resolves
the challenge of minimizing the latency associated with parsing deployment
plans by pre-processing large plans offline into a portable binary representa-
tion.

2.2.2. Challenge 2: Optimizing Runtime Plan Analysis

After a component deployment plan has been loaded into an in-memory
representation, it must then be analyzed by the middleware deployment in-
frastructure before any subsequent deployment activity is performed. This
analysis occurs during the plan preparation phase described in Section 2.1.3
to determine (1) the number of deployment sub-problems that are part of
the deployment plan and (2) which component instances belong to each sub-
problem. As mentioned earlier, the output of this analysis process is a set of
“locality-constrained” sub-plans. A locality-constrained sub-plan contains all
the necessary meta-data to execute a deployment successfully, and as such
contains copies of the information contained in the original plan (described
in Section 2.1.2).

The runtime plan analysis is actually conducted twice during the plan
preparation phase of deployment: once at the global level and again on each
node. Global deployment plans are split according to the node that the
individual instances are assigned to. This two-part analysis results in a new
sub-plan for each node that only contains the instances, connections, and
other component meta-data necessary for that node.

Each sub-plan is then transmitted to the appropriate node, which begins
its own analysis process. At the node level, the plan is split according to an
evaluation of the PLC elements. This split yields a number of new sub-plans
created for each process that will be created on that node. Again, each sub-
plan contains only the components and connection meta-data necessary for
that process.

The algorithm for splitting plans used by our DAnCE implementation
of the D&C specification is straightforward. For each instance (IDD) in
the plan, the algorithm determines which sub-plan should contain it and
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retrieve the appropriate (or create a new) sub-plan data structure. The IDD
is then copied to the sub-plan, along with the appropriate MDD and IAD
(discovered via references described earlier). Finally, the algorithm searches
through the PCD and PLC entries in the global plan that reference the IDD
under consideration and similarly copies them.

While this approach is conceptually simple, it is fraught with accidental
complexities that yield the following inefficiencies in practice:

1. Reference representation in IDL. Deployment plans are typically
transmitted over networks, so they must obey the rules of the CORBA
IDL language mapping. Since IDL does not have any concept of ref-
erences or pointers, some alternative mechanism must be used to de-
scribe the relationships shown in Figure 2. The deployment plan stores
all the major elements in sequences, so references to other entities can
be represented with simple indices into these sequences. While this
implementation can follow references in constant time, it also means
these references become invalidated when plan entities are copied to
sub-plans, as their position in deployment plan sequences will most
likely be different. It is also impossible to determine if the target of
a reference has already been copied without searching the sub-plan,
which is time-consuming.

2. Memory allocation in deployment plan sequences. The CORBA
IDL mapping requires that sequences be stored in consecutive memory
addresses. If a sequence is resized, therefore, its contents will most
likely be copied to another location in memory to accommodate the
increased sequence size. With the approach summarized above, sub-
stantial copying overhead will occur as plan sizes grow.

3. Inefficient parallelization of plan analysis. The algorithm de-
scribed above would appear to benefit greatly from parallelization, as
the process of analyzing a single component and determining which
elements must be copied to a sub-plan is independent of all other com-
ponents. Multi-threading this algorithm, however, would likely not
be effective because access to sub-plans to copy instance meta-data
must be serialized to avoid data corruption. In practice, component
instances in the deployment plan are usually grouped according to the
node and/or process since deployment plans are often generated from
modeling tools. As a result, multiple threads would likely compete
for a lock on the same sub-plan, which would cause the “parallelized”
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algorithm to run largely sequentially.

Section 4.1.3 quantifies these inefficiencies in DAnCE for a representative
DRE environment and Section 3.2 describes how the plan analysis process
has been improved in LE-DAnCE to provide more efficient and deterministic
performance.

2.2.3. Challenge 3: Overly Serialized Execution of Deployment Actions

The complexities presented in this section involve the serial (non-parallel)
execution of deployment tasks. The related sources of latency in DAnCE exist
at both the global and node level. At the global level, this lack of parallelism
results from the underlying CORBA transport used by DAnCE. The lack of
parallelism at the local level, however, results from the lack of specificity in
terms of the interface of the D&C implementation with the target component
model that is contained in the D&C specification.

The D&C deployment process presented in Section 2.1.3 enables global
entities to divide the deployment process into a number of node-specific sub-
tasks. Each subtask is dispatched to individual nodes using a single remote
invocation, with any data produced by the nodes passed back to the global
entities via “out” parameters that are part of the operation signature de-
scribed in IDL. Due to the synchronous (request/response) nature of the
CORBA messaging protocol used to implement DAnCE, the conventional
approach is to dispatch these subtasks serially to each node. This approach
is simple to implement in contrast to the complexity of using the CORBA
asynchronous method invocation (AMI) mechanism [11].

To minimize initial implementation complexity, we used synchronous in-
vocation in an (admittedly shortsighted) design choice in the initial DAnCE
implementation. This global synchronicity worked fine for relatively small
deployments with less than ∼100 components. As the number of nodes and
instances assigned to those nodes scaled up, however, this global/local seri-
alization imposed a substantial cost in deployment latency.

This serialization problem, however, is not limited only to the global/local
task dispatching; it exists in the node-specific portion of the infrastructure, as
well. The D&C specification provides no guidance in terms of how the Node-
Application should interface with the target component model, such as the
CORBA Component Model (CCM), instead leaving such an interface as an
implementation detail. In DAnCE, the D&C architecture was implemented
using three processes, as shown in Figure 3. The ExecutionManager and
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Figure 3: Simplified Serialized DAnCE Architecture

NodeManager processes instantiate their associated ApplicationManager and
Application instances in their address spaces. When the NodeApplication
installs concrete component instances it spawns one (or more) separate ap-
plication processes as needed. These application processes use an interface
derived from an older version of the CCM specification that allows the Node-
Application to instantiate containers and component instances individually.
This approach is similar to that taken by CARDAMOM [12] (which is an-
other open-source CCM implementation) that is tailored for enterprise DRE
systems, such as air-traffic management systems.

The DAnCE architecture shown in Figure 3 was problematic with respect
to parallelization since its NodeApplication implementation integrated all
logic necessary for installing, configuring, and connecting instances directly
(as shown in Figure 4), rather than performing only some processing and
delegating the remainder of the concrete deployment logic to the application
process. This tight integration made it hard to parallelize the node-level
installation procedures for the following reasons:

• The amount of data shared by the generic deployment logic (the portion
of the NodeApplication implementation that interprets the plan) and
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Component Server Launching Logic

CCM Home Installation Logic

CCM Component Installation Logic

CCM Component Connection Logic

CIAO Local Facet Connection Logic

CIAO Teardown Logic

NodeApplication Implementation

Figure 4: Previous DAnCE NodeApplication Implementation

the specific deployment logic (the portion which has specific knowledge
of how to manipulate components) made it hard to parallelize their
installation in the context of a single component server since that data
must be modified during installation.

• Groups of components installed to separate application processes were
considered as separate deployment sub-tasks, so these groupings were
handled sequentially one after the other.

Section 3.3 describes how LE-DAnCE resolves the challenge of overly
serialized execution of deployment actions by leveraging asynchronous fea-
tures of the underlying CORBA middleware to parallelize at the global level.
This section also describes how LE-DAnCE’s LocalityManager it is used to
improve parallelism at the node level.

3. Overcoming Deployment Latency Bottlenecks in LE-DAnCE

This section describes the enhancements we developed for the Locality-

Enhanced Deployment and Configuration Engine (LE-DAnCE). LE-DAnCE
is our reimplementation of the OMG D&C standard that addresses the chal-
lenges with DAnCE outlined in Section 2.2. An overview of the architectural
differences between DAnCE and LE-DAnCE is shown in Figure 5.
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Figure 5: Solution Overview

Section 3.1 describes how we reduced deployment latency arising from
the challenge of processing the XML-based deployment descriptors outlined
in Section 2.2.1, represented by item 1 in Figure 5. Section 3.2 describes
a more efficient plan analysis process to resolve the challenge described in
Section 2.2.2, represented by item 2 in the figure. Section 3.3 then describes
techniques used by LE-DAnCE to increase deployment and configuration
parallelism to overcome the challenge of deployment latency bottlenecks in
DAnCE outlined in Section 2.2.3, represented by item 3 in the figure.

3.1. Improving Runtime Plan Loading

There are two general approaches to resolving the challenge of XML pars-
ing outlined in Section 2.2.1.

1. Optimize the XML-to-IDL processing capability. DAnCE uses
a vocabulary-specific XML data binding [13] tool called the XML Schema

Compiler (XSC). XSC reads D&C XML schemas and generates a C++-
based interface to XML documents built atop the Document Object Model

(DOM) XML programming API. DOM is a time/space-intensive approach
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since the entire document must first be processed to construct a tree-based
representation of the document prior to initiating the XML-to-IDL transla-
tion process.

An alternative is to use the Simple API for XML (SAX), which uses an
event-based processing model to process XML files as they are read from
disk. While a SAX-based parser would reduce the time/space spent building
the in-memory representation of the XML document, the performance gains
are typically too small to invest the substantial development time required
to refactor the DAnCE configuration handlers, which serve as a bridge be-
tween the XSC generated code and IDL. In particular, a SAX-based approach
would still require a substantial amount of text-based processing at runtime.
Moreover, deployment plan files have substantial amounts of internal cross-
referencing, which would require the processing of entire documents before
any actual XML-to-IDL conversion could occur.

2. Preprocess the XML files for latency-critical deployments.
This optimization approach converts the deployment plan into its runtime
IDL representation and serializes the result to disk using the Common Data

Representation (CDR) [14] binary format defined by the CORBA specifi-
cation. The platform-independent CDR binary format used to store the
deployment plan on disk is the same format used to transmit the plan over
the network at runtime. The advantage of this approach is that it leverages
the heavily optimized de-serialization handlers provided by the underlying
CORBA implementation to create an in-memory representation of the de-
ployment plan data structure from the on-disk binary stream.

Due to the shortcomings of the first approach outlined above, LE-DAnCE
implements the second approach via a tool we developed that leverages the
existing DOM-based XML-to-IDL conversion handlers in DAnCE. Deploy-
ment plans that have been serialized to XML can be converted automatically
offline to an on-disk binary CDR format. Our experimental results, presented
in Section 4.1.2, show that LE-DAnCE substantially improves the runtime
processing of XML plans compared with DAnCE.

3.2. Improving Runtime Plan Analysis

Section 2.2.2 outlined a significant source of deployment latency: the plan

analysis step that produces node- and process-specific sub plans. While this
analysis step seems “embarrassingly parallel” (i.e., easily separated into par-
allel sub-problems with little or no effort), accidental complexities of the
original DAnCE design made this decomposition impractical due to lock
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contention when accessing generated sub-plans. This contention was partic-
ularly problematic for large deployment plans, where threads manipulating
the sub-plan spent a substantial portion of time in critical sections resizing se-
quences that store plan meta-data. To address this challenge, we considered
two potential approaches. First, we considered a more efficient in-memory
representation of plan meta-data. Second, we considered a new algorithmic
approach to analyzing the plan to ease parallelization. The pros and cons of
these approaches are summarized below.
In-memory representation efficiency. Some difficulties outlined above
could be alleviated by using different techniques to represent plan meta-
data in memory. For example, pointers/references could be used instead of
sequence indices to refer to related data structures, potentially removing the
need to carefully rewrite references when plan entities are copied between
plans. Likewise, an associative container (such as an STL map) instead
of a sequence could store plan objects, thereby increasing the efficiency of
inserting plan entities into sub-plans.

While these and other similar options are tempting, they are not desirable
for LE-DAnCE since we would be forced to either (1) insert yet another
conversion step into the deployment process to translate between this new
representation and something that could be marshaled for transmission to
other deployment entities or (2) deviate from the D&C standard and make
our implementation non-conferment.
New algorithmic approach to runtime analysis. To provide some opti-
mization to the plan analysis process without either of the above undesirable
outcomes, we elected to re-evaluate LE-DAnCE’s algorithmic approach to
(1) minimize the need to resize sequences in the sub-plans during analysis
and (2) minimize the need to serialize access to common data structures for
multi-threaded implementations.

LE-DAnCE’s revised approach to runtime analysis is described in the
following phases (which is contrasted with our previous work [9]):

1. Phase 1: Determine the number of sub-plans to produce. In
this phase, a single thread iterates over all component instances con-
tained in the deployment plan to determine the number of necessary
sub-plans. When this operation is performed at the global level, it sim-
ply requires a constant time operation per instance. When performed
at the local level, it requires that locality constraints (described in Sec-
tion 2.1.2) be evaluated. Since this phase is potentially time consuming
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the results are cached for later use.

2. Phase 2: Preallocate data structures for sub-plans. Using infor-
mation gleaned in phase 1 above, preallocate data structures necessary
to assemble sub-plans. As part of this preallocation it is possible to
reserve memory for each sequence in the sub-plan data structure to
avoid repeated resizing and copying. Statistics are collected in phase 1
to estimate these lengths efficiently.

3. Phase 3: Assemble node-specific sub-plans. This phase of the
new analysis process is similar to the algorithm described in Section 2.2.2.
The main difference is that the cached results of the pre-analysis phase
are used to guide the creation of sub-plans. Instead of considering
each instance in order (as the original DAnCE implementation did),
LE-DAnCE fully constructs one sub-plan at a time, by processing in-
stances on a per-node basis. This approach simplifies parallelizing this
phase by dedicating a single thread per sub-plan and eliminates any
shared state between threads, except for read-only access to the origi-
nal plan. It is therefore unnecessary to use any locking mechanism to
protect access to the sub-plans.

The approach described above simplified the parallelization of LE-DAnCE
by leveraging the OpenMP parallel programming API [15]. OpenMP consists
largely of a set of preprocessor directives that are used to decorate loop
constructs in the implementation, and describe the type of parallelization, as
well as any shared or private state that should exist between threads. These
directives are then interpreted by the compiler, which transparently creates
the necessary logic to dispatch and support multiple threads.

3.3. Parallelizing Deployment Activities

To support parallelization of deployment activities at the node level, we
enhanced the OMG D&C standard by adding a LocalityManager to LE-
DAnCE. This LocalityManager unifies all three deployment roles outlined
in Section 2.1.1 and functions as a replacement for the component server in
Figure 3. More coverage of LE-DAnCE’s LocalityManager appears in [16].

Overview of the LE-DAnCE locality manager. The LE-DAnCE
node-level architecture (e.g., NodeManager, NodeApplicationManager, and
NodeApplication) now functions as a node-constrained version of the global
portion of the OMG D&C architecture. Rather than having the Node-
Application directly triggering installation of concrete component instances,
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this responsibility is now delegated to LocalityManager instances. The node-
level infrastructure performs a second “split” of the plan it receives from
the global level by grouping component instances into one or more appli-
cation processes. The NodeApplication then spawns a number of Locality-
Manager processes and delegates these “process-constrained” (i.e., containing
only components and connections apropos to a single process) plans to each
application process in parallel.

Unlike the previous DAnCE NodeApplication implementation, the LE-
DAnCE LocalityManager functions as a generic application process that
strictly separates concerns between the general deployment logic needed to
analyze the plan and the specific deployment logic needed to install and
manage the lifecycle of concrete component middleware instances. This
separation is achieved using entities called Instance Installation Handlers,
which provide a well-defined interface for managing the lifecycle of a com-
ponent instance, including installation, removal, connection, disconnection,
and activation. Installation Handlers are also used in the context of the
NodeApplication to manage the life-cycle of LocalityManager processes.

Figure 6 shows the startup process for a LocalityManager instance. During
the start launch phase of deployment, an Installation Handler hosted in the
NodeApplication spawns a LocalityManager process and handles the initial
handshake to provide configuration information. The NodeApplication then
instructs the LocalityManager to begin deployment by invoking preparePlan()
and startLaunch() hook methods. During this phase, the LocalityManager
will examine the plan to determine what instance types must be installed
(e.g., container, component, or home). After loading the appropriate Installa-
tion Handlers, the LocalityManager will delegate the actual installation pro-
cess for these instances via the Installation Handler’s install_instance()

method.
Using the Locality Manager to reduce serialized phasing. LE-

DAnCE’s new LocalityManager and Installation Handlers make it substan-
tially easier to parallelize than DAnCE. Parallelism in both the Locality-
Manager and NodeApplication is achieved using an entity called the Deploy-

ment Scheduler, which is shown in Figure 7. The Deployment Scheduler
combines the Command pattern [17] and the Active Object pattern [18]. In-
dividual deployment actions (e.g., instance installation, instance connection,
etc.) are encased inside an Action object, along with any required metadata.
Each individual deployment action is an invocation of a method on an In-
stallation Handler, so these actions need not be rewritten for each potential
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Figure 7: DAnCE Deployment Scheduler

deployment target. Error handling and logging logic is also fully contained
within individual actions, further simplifying the LocalityManager.

Individual actions (e.g., install a component or create a connection) are
scheduled for execution by a configurable thread pool. This pool can provide
user-selected, single-threaded, or multi-threaded behavior, depending on ap-
plication requirements. This thread pool can also be used to implement more
sophisticated scheduling behavior, e.g., a priority-based scheduling algorithm
that dynamically reorders the installation of component instances based on
metadata present in the plan.

The LocalityManager determines which actions to perform during each
particular phase of deployment and creates one Action object for each in-
struction. These actions are then passed to the deployment scheduler for
execution while the main thread of control waits on a completion signal from
the Deployment Scheduler. Upon completion, the LocalityManager reaps ei-
ther return values or error codes from the completed actions and completes
the deployment phase.

To provide parallelism between LocalityManager instances on the same
node, the LE-DAnCE Deployment Scheduler is also used in the implementa-
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tion of the NodeApplication, along with an Installation Handler for Locality-
Manager processes. Using the Deployment Scheduler at this level helps over-
come a significant source of latency whilst conducting node-level deploy-
ments. Spawning LocalityManager instances can take a significant amount
of time compared to the deployment time required for component instances,
so parallelizing this process can achieve significant latency savings when ap-
plication deployments have many LocalityManager processes per node.

3.4. Planned Enhancements to LE-DAnCE

Section 1 discussed how the ability to redeploy and reconfigure applica-
tions in DRE environments at runtime is critical to effective management of
QoS properties of applications, including maintaining end-to-end deadlines
of applications. This section described how LE-DAnCE contributes to this
goal by providing bounded and short redeployment latencies incurred by the
D&C toolchain. In particular, after a redeployment decision has been made,
LE-DAnCE can quickly and effectively apply it.

There are at least two other key capabilities needed to redeploy and re-
configure enterprise DRE systems effectively that are not yet supported by
LE-DAnCE:

• The capacity to accurately identify the actual or potential sources of
QoS degradation in the system and make valid decisions about how to
reconfigure the system to overcome said degradation.

• The availability of efficient and effective mechanisms provided by the
component middleware, operating systems, and hardware to tune QoS
parameters.

Each capability is orthogonal to the core functionality of a deployment and
configuration engine like LE-DAnCE, which focuses on measuring application
performance, identifying the presence of QoS degredations, and determining
the cause of such degredations. Moreover, effecting changes in the domain or
middleware configuration is application-, middleware, and domain-specific.

Fortunately, however, the architecture of LE-DAnCE—as embodied by its
Locality Manager—is amenable to adapting to these application-, middleware-
, and domain-specific properties. Our future work on LE-DAnCE will there-
fore investigate the applicability of customized Instance Installation Han-

dlers, as well as another facility present in the Locality Manager called
Deployment Portable Interceptors, that allow the injection of user-supplied
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modifications into the deployment process at runtime. These mechanisms
support the redeployment and reconfiguration capabilities mentioned above,
as follows:

• Allow online planners (both human and software tools) to inject application-
and domain-specific monitors into the deployment process and collect
information from which to make intelligent planning decisions.

• Tweak the logic used to implement redeployment plans provided by the
online planners. For example, additional QoS configuration steps can
be injected into the deployment process and applied to configurations
that are outside the scope of a particular component model.

Examples of other middleware that support some aspects of these capabilities
include the Resource Allocation and Control Engine (RACE) [19] and Swap-
CIAO [20] for DRE systems, as well as WS-DIAMOND [21] for self-healing
web services.

4. Evaluation of LE-DAnCE Performance Optimizations

This section analyzes the results of experiments we conducted to em-
pirically evaluate LE-DAnCE’s ability to overcome the deployment latency
bottlenecks we encountered in DAnCE, as described in Section 3. These
experiments were conducted in two environments. The first is a highly con-
trolled environment intended to emulate representative DRE systems, as de-
scribed in Section 4.1.1. The second set of experiments were conducted in
a high-performance computing cluster intended to evaluate the performance
of LE-DAnCE with a large numbers of processors available and/or a large
numbers of computing nodes, as described in Section 4.2.1.

The component applications deployed as part of these experiments include
a single component type with one provided port (“facet”) and one required
port (“receptacle”). The component application itself is intentionally sim-
ple, i.e., the component implementations contain minimal application logic
to emphasize sources of latency in the deployment framework, rather than
latencies arising from implementation details of the application components.

4.1. Experiments in a Controlled DRE System Environment

4.1.1. Overview of the Hardware and Software Testbed

These experiments were conducted in ISISLab (www.isislab.vanderbilt.
edu), which consists of 4 IBM Blade centers consisting of 14 blades each. In-
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dividual blades are equipped with dual 2.8 GHz Intel Xeon CPUs, 1GB of
RAM, and 4 Gigabit network interface cards. Connectivity is provided by 6
Cisco 3750G-24TS switches and a single 3750G-48TS switch. ISISLab lever-
ages the Emulab [22] configuration software to provide customized system
configurations and virtual network topologies.

For this set of experiments, a deployment of 11 nodes was created with
Fedora Core 8 with G++ 4.1.2 used to compile the 1.0 release of the LE-
DAnCE and CIAO middleware. The default Linux kernel included with
Fedora Core 8 was replaced with a vanilla Linux kernel version 2.6.23 patched
with the latest Real-time Preemption patchset [23]. All results reported
below are the average of 15 repetitions of the experiment.

4.1.2. Experiment 1: Measuring XML Processing Overhead

Experiment design. A python script was used to generate XML de-
ployment descriptors for applications containing 500, 1,000, 5,000, 10,000,
50,000, and 100,000 component instances equally distributed over 10 nodes.
Each component has a single connection to one other component. Each of
these XML-based deployment plans was then converted to an in-memory IDL
representation using the same methods used during a normal LE-DAnCE de-
ployment.

Experiment results. Table 1 contains the results for the plans described
at the beginning of this section and the timing results for the preprocessing
described in Section 3.1. This table shows that the time taken to parse an

Table 1: CDP Sizes and Conversion Times
Components XML Size CDR Size Conversion CDR Read

500 112 KB 48 KB 0.196 Sec .001982 Sec

1000 304 KB 120 KB 0.323 Sec .003602 Sec

5000 1.4 MB 608 KB 3.974 Sec .015747 Sec

10000 2.7 MB 1.2 MB 9.543 Sec .030199 Sec

50000 13.1 MB 5.8 MB 540.003 Sec .147542 Sec

100000 27 MB 12 MB 1038.288 Sec .285286 Sec

XML deployment plan and convert it to IDL can be significant. The plans
generated as part of this experiment contain the absolute minimum metadata
necessary to successfully deploy the components. If additional configuration
information is included—such as attribute initialization (especially involving
user-defined complex data types), QoS configurations, or densely connected
plans—the amount of XML that must be converted for a given component
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count can increase quickly. Experiment 1 showcases the lower bound on the
bottleneck—any additional meta-data included in a plan will always be larger
than the test case exercised here.

While the on-disk sizes of the various deployment plan files are somewhat
interesting, of particular interest are the conversion times from the on-disk
format to the in-memory IDL format used by the deployment tools. The
results in Table 1 demonstrate that the CDR encoding is an improvement
of several orders of magnitude over runtime XML processing. Moreover,
the approach described in Section 3.1 exhibits a linear increase in the plan
processing time as a function of the number of instances, rather than the
exponential behavior shown by runtime XML conversion.

The results outlined in the “Conversion” column are representative of the
minimum latencies incurred in the original DAnCE implementation by this
stage of the deployment process, as in both the conversion experiment and
original DAnCE we are using the same XSC-based transformation logic. LE-
DAnCE avoids this latency by enabling the use of binary encoded plans.

4.1.3. Experiment 2: Measuring Application Deployment Latency

Experiment design. To gauge the deployment latency incurred by
LE-DAnCE across a wide range of deployment plan sizes, the component
application deployments generated for the experiment in Section 4.1.2 were
executed. Each plan was executed a total of 25 times, and the reported
measurements are represented as the arithmetic mean of all executions.

Experiment results. Table 2 shows the results from experiment 2.
These results demonstrate the substantial deployment latency savings ob-

Table 2: Deployment Times (Seconds) for Plans with No Delay
Components Total Time Prepare Plan Start Launch Finish Launch Start

1000 1.925 1.761 0.1426 0.0135 0.0061

5000 41.163 40.130 0.2870 0.0255 0.0179

10000 165.623 165.092 0.4576 0.0409 0.0316

tained by the parallel deployment compared to serialized deployments. The
plan analysis phase (which occurs during the “Prepare Plan” phase of deploy-
ment) in this experimental run still uses the single-threaded analysis process.

The nonlinear growth of time required for this phase makes extremely
large deployments infeasible, which is why results for 50,000 and 100,000
components are not shown in Table 2). While deployments of this size were
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infeasible, the improvements we later implemented in the runtime plan anal-
ysis portion of the deployment process (see Section 3.2) substantially reduce
the deployment latency overhead and makes deployments of this size feasible.
Results for this improved analysis process are shown in Section 4.2.2.

By combining the results in Section 4.2.2 with those in Table 3 that
characterize the latency incurred as a result of this analysis process, we can
estimate an upper bound on the total time needed for a completely serial
DAnCE deployment. These results can then be compared against the results

Table 3: Split Times (Seconds) for Plans in a DRE Environment
Components Total Time

1000 1.58

5000 37.195

10000 156.142

contained in Table 2 for parallel LE-DAnCE deployments.
The “Prepare Plan” column from Table 2 contains the time required to

first analyze the plan, then dispatch an asynchronous request to each node
to perform its local analysis. The difference between this and the times in
Table 3 gives the amount of time required to fully analyze and prepare an
individual node. It thus provides a reasonable estimate of latency for serial
DAnCE execution (before optimizations described in this paper). These
estimates appear in Table 4.

Table 4: Estimated Serial DAnCE Deployment for DRE Environments
Components Single Node Preparation Est. Total Time

1000 0.181 5.012

5000 2.968 70.179

10000 9.481 256.647

The timing results for the plan preparation phase reveal yet another
source of deployment latency. The plan preparation phase includes two im-
portant steps, as discussed in Section 2.1.3. The first is a split plan operation
to divide the global plan into locality-constrained plans for each node. Next,
each node in the deployment performs its own local split to determine how
many LocalityManager instances to start, as discussed in Section 3.3. Mit-
igating this overhead was discussed in Section 3.2 and experimental results
appear in Section 4.2.2.
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4.1.4. Experiment 3: Measuring the Determinism of Deployment Latency

Experiment design. This experiment characterizes the determinism
of the deployment latency performance of LE-DAnCE. To measure this la-
tency we repeatedly deployed the test application with 1,000 components
and analyzed the performance metrics over 500 iterations. After each de-
ployment, the testbed was reset and the LE-DAnCE daemons restarted on
each node. For this experiment, all DAnCE executable were executed as root
and placed in the round robin SCHEDRR scheduling class with the highest
possible priority.

Experiment results. The results for experiment 3 are shown in Fig-
ure 8. This figure represents the deployment latencies over the course of 500
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Figure 8: Latency Jitter for 1,000 Component Deployment

iterations for the total deployment latency and the two most time consum-
ing phases: plan preparation and start launch. The top line of the figure
represents the total latency, the middle line represents plan preparation, and
the bottom represents the start launch phase (the remaining two phases of
deployment took too little time to graph). This figure shows that the LE-
DAnCE latency results are relatively stable, indicating the reproducibility of
the timeliness in deployment latencies.

Figure 8 also pinpoints the source of most jitter in these results. Most
spikes in the total deployment latency are accompanied by spikes in the plan
preparation deployment phase. This behavior is likely due to jitter caused by
network access, as control messages to individual nodes in this phase contain
portions of a large deployment plan and are substantially larger than the
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messages for other phases.

Table 5: Deployment Latency Results for 600 iterations of a 1000 component deployment.
Total Time Prepare Plan Start Launch Finish Launch Start

Mean 1.9551 1.7569 0.18175 0.01145 0.00451

Maximum 2.0891 1.8871 0.25953 0.01791 0.00575

Minimum 1.8861 1.7261 0.13897 0.01058 0.00417

Std. Deviation 0.0248 0.0216 0.01061 0.00121 0.00017

4.2. Experiments in a Cluster Environment

4.2.1. Overview of the ACCRE Compute Cluster

The Vanderbilt University Advanced Computing Center for Research and
Education (ACCRE) is a high performance computing collaboratory built by
and for Vanderbilt faculty and research staff. The ACCRE High Performance
Computing cluster has about 3,800 processor cores and is growing. Processor
cores each have 3 to 6 GB or memory except the 48 GPU nodes which has 12
GB per core (or 96 GB per node). Compute nodes all run 64-bit Linux OS
and have 250 GB to 1 TB hard drive and dual copper gigabit Ethernet ports.
Resource management, scheduling of jobs, and usage tracking are handled
by an integrated scheduling system by Moab/Torque.

4.2.2. Experiment 4: Measuring Plan Analysis Overhead

Experiment Design. This experiment is intended to evaluate the ef-
fectiveness of the node-first multi-threading strategy. We used the same
technique from Experiment 1 (see Section 4.1.2) to generate plans contain-
ing 1,000, 5,000, 10,000, 50,000, and 100,000 component deployment. For
the purposes of this experiment, two sets of plans were generated: one set
with components distributed equally over 10 nodes, and other set with 100
nodes.

A standalone executable implementing the revised plan analysis module
from Section 3.2 was created to time the analysis process. This binary was
compiled using the Intel C++ Compiler 2011 with OpenMP enabled. Each
plan was converted first to CDR format so that XML plan conversion times
would not factor in to the results. For this experiment, one node with 8
processors was allocated for the task in the ACCRE cluster, ensuring that
no jobs from other cluster users would interfere in the results. Both single-
and multi-threaded results were obtained from the same binary, with the
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maximum number of threads available to the OpenMP middleware set at 1
or 8, respectively.

Experiment results. Table 6 summarizes the timing results for exper-
iment 4, showing the total time required, in seconds, to complete the plan
analysis process. These values are the arithmetic mean of 25 experimental

Table 6: Plan Analysis Results.
Components Single 10 Node Multi 10 Node Single 100 Node Multi 100 Node

1000 0.522 0.324 0.322 0.325

5000 5.589 0.946 2.153 0.539

10000 21.366 2.578 8.304 0.968

50000 512.155 54.668 208.02 16.272

100000 2083.505 214.558 858.494 65.132

runs. These results show the substantial performance gains from a parallel
implementation of the plan analysis functionality, with improvements of an
order of magnitude for all but the smallest of cases. This result is unsur-
prising given the previously mentioned embarrassingly parallel nature of the
analysis problem.

A more interesting aspect of the results shown in Table 6 are the perfor-
mance differences between the case where we have 10 nodes vs. 100 nodes.
If only the results for the single- and multi-threaded 100 node case are com-
bined, it shows a slightly improved performance increase (1̃0x vs. 1̃3x). This
result is explained by better thread utilization due to the increased number
of nodes.

Comparing the single-threaded 10 node case with the single-threaded 100
node case shows that the latter has substantially improved performance for
the same number of components. We would expect, however, that these num-
bers would be similar in the single-threaded case. Since the only difference
between these plans is the number of components allocated to each node,
this discrepancy shows that some overhead remains from resizing of sub-
plan sequences for storing instances and connections, despite the attempt to
estimate final sub-plan size in LE-DAnCE.

4.2.3. Experiment 5: Measuring Application Deployment Latency

Experiment Design. The purpose of this experiment is to replicate
Experiment 3 in the ACCRE environment. For this experiment, we used
the same 1,000 component application used in Experiment 3, using the same
methodology of deploying the application, tearing it down, then resetting

30



the deployment infrastructure on each node. Unlike the previous experiment,
however, we were forced to run this experiment as a normal user and without
a real-time scheduler in the kernel.

For this experiment, an allocation in ACCRE was made consisting of 11
nodes with two processors per node. Unlike the ISIS environment, this does
not guarantee that we get 11 separate, physical hardware nodes—only that
we have 22 processors available, allocated in multiples of 2 across several
hardware nodes. This allocation model has two important implications: (1)
we may be sharing a hardware node with another user and (2) we may have
several virtual ’nodes’ in the plan allocated to a single physical hardware
node. Moreover, we do not know a priori what the names or locations of
these nodes are.

To accommodate this property of ACCRE, we developed a Python script
that interprets the allocation result provided by the ACCRE scheduler and
generates a set of initialization scripts and a domain file used by the global
deployment infrastructure to map ’virtual’ node names in the plan to con-
crete addresses. The initialization scripts, one for each physical node, start
one or more deployment daemons on each node (listening on distinct ports)
depending on the number of processors allocated on that node.

Experiment results. The results for experiment 5 are shown in Fig-
ure 9. This figure shows the actual deployment latencies for this experiment
over the course of 250 iterations. Like Figure 8, we only show the total time
(the top line), and the two most time-consuming deployment phases: prepare

plan (second line) and start launch (third line). A summary of our analysis
of the results is shown in Table 7.

Table 7: Deployment Latency Results for 250 iterations of a 1000 component deployment.
Total PreparePlan Start Launch Finish Launch Start

Mean 0.44856 0.29320 0.14796 0.00477 0.00234

Minimum 0.37429 0.22500 0.13358 0.00390 0.00176

Maximum 0.58585 0.43945 0.20036 0.00872 0.00325

Std. Deviation 0.03247 0.03016 0.00991 0.00061 0.00025

The results in Table 7 show substantially decreased deployment latency
over those from Experiment 3 due to the faster hardware available in AC-
CRE compared to ISISLab. Moreover, comparing the ratio of time spent in
the preparation phases vs. the total deployment time shows that the plan
preparation phase takes less time than the of the deployment when the par-

31



!"

#!!!!!"

$!!!!!"

%!!!!!"

&!!!!!"

'!!!!!"

(!!!!!"

#
"

)
"

#
%
"

#
*
"

$
'
"

%
#
"

%
)
"

&
%
"

&
*
"

'
'
"

(
#
"

(
)
"

)
%
"

)
*
"

+
'
"

*
#
"

*
)
"

#
!
%
"

#
!
*
"

#
#
'
"

#
$
#
"

#
$
)
"

#
%
%
"

#
%
*
"

#
&
'
"

#
'
#
"

#
'
)
"

#
(
%
"

#
(
*
"

#
)
'
"

#
+
#
"

#
+
)
"

#
*
%
"

#
*
*
"

$
!
'
"

$
#
#
"

$
#
)
"

$
$
%
"

$
$
*
"

$
%
'
"

$
&
#
"

$
&
)
"

!
"
#
$%
&
'
"
(
)*
+,
)"
(
-&
*.
/
"
-%
(
0
12
*

3"1)*4)"5,6%(*

,-./0-.,102"

340-4506278"

49401"

Figure 9: Application Deployment Latency Jitter

allel plan analysis module is used. In Experiment 3, plan preparation was
roughly 90 percent of the total deployment time, whereas in Experiment 5
plan preparation only occupies about 65 percent of the total time.

The results also show substantially more jitter as a percentage of the total
deployment time. As discussed in Section 4.2.1, this jitter likely stems from
characteristics of ACCRE that are beyond our control. In particular, we are
not guaranteed exclusive use of the physical nodes on which we are located,
so we may compete for limited (1) memory bandwidth from other users on
that node and (2) network bandwidth from other users on the cluster.

5. Related Work

This section compares our research on LE-DAnCE with related work in
the area of deploying and configuring large-scale distributed applications.

GoDIET [24] is a deployment framework targeted at grid-based dis-
tributed applications. GoDIET uses XML metadata defined by a UML model
to (1) describe applications and their requirements and (2) wrap applications
they wish to deploy inside components based on the Fractal [25] component
model. They propose a hierarchical approach to deployment that addresses
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deployment latency challenges in grid-based distributed systems. Their ap-
proach first partitions nodes present in the domain into two or more segments
and then spawns separate deployment processes for those domains. GoDIET
is optimized for deployment of applications to grid domains with hundreds
of nodes but an extremely limited number of components per node, and per-
forms best when nodes have a mapped NFS mount point in the local file
system.

In contrast, LE-DAnCE focuses on applications with high component
density, e.g., such deployments often have hundreds or thousands of com-
ponents per node, which are deployed across tens or hundreds of processes
within that node. In addition, applications in DRE system domains often
cannot use a shared file system to distribute component implementations
due to inherent complexities in the network topology, security concerns, or
heterogeneity of the target domain. Moreover, LE-DAnCE automatically
coordinates connections between components, whereas the connections must
be performed programmatically via GoDIET.

DeployWare [26] is another framework for managing deployments in
grid environments based on the Fractal [25] component model. It supports
heterogeneous deployments and currently supports middleware intended for
the grid environment, such as MPI [27] and GridCCM [28]. Like LE-DAnCE,
DeployWare captures deployment metadata in a manner that is relatively
agnostic to the eventual deployment target. Unlike LE-DAnCE, however,
DeployWare does not capture more complex deployment metadata (such as
connection information and QoS metadata) required for DRE systems. Like
GoDIET, DeployWare is optimized for delivering relatively few instances/-
components to a large number of nodes, and thus uses a similar approach to
optimizing deployment latency by partitioning the node into subgroups. In
contrast, LE-DAnCE provides a more generic D&C solution by supporting
low deployment latencies across a large number of possible hardware and
component application sizes and configurations.

The work that is closest to the goals of LE-DAnCE is described in [29],
which uses hierarchical separation of concerns to provide concurrent—and
hence faster—deployments. This work differs from LE-DAnCE since it does
not focus on a standard (e.g., the OMG D&C specification), but rather some
general concepts of deployment and configuration. In contrast, LE-DAnCE
is aimed at providing a standards-based solution to enhance broader applica-
bility, while also optimizing performance and minimizing/bounding latency.

The work presented in [30] seeks to find deployment solutions in dynamic
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environments. The focus is on deploying a hierarchical component (which
is an assembly of components treated as a single unit), while ensuring the
deployment of individual monolithic units do not violate architectural con-
straints of the platform and the network before deploying that component.
While the goal of their deployment solution is similar to that of LE-DAnCE,
their approach differs in its focus on the deployment of hierarchical compo-
nents (i.e., amalgamations of primitive components with other hierarchical
components), which they represent at runtime via “membrane” components
that act as proxies for internal primitive components. In contrast, the meta-
data present in the D&C specification supports such hierarchies at design
time, but is flattened by LE-DAnCE for runtime deployment to avoid the
overhead of additional component instances implemented as membranes at
a per-process level.

CaDAnCE [31] was an earlier effort we conducted to reduce latency
and increase deterministic behavior of DRE system D&C operations. It
focused on simultaneous deployment of multiple applications from a single
deployment plan in which certain components are shared among multiple sub-
applications. CaDAnCE demonstrated that dependencies among these sub-
applications can yield deployment-order priority inversions where low-priority
applications may complete their deployments ahead of a mission-critical sub-
application. CaDAnCE solved this problem using priority-inheritance to
ensure predictable deployment for high-priority sub-applications that are
deployed simultaneously with other low-priority sub-applications and with
which they share components. The goals and approach of CaDAnCE are or-
thogonal to the goals of LE-DAnCE since CaDAnCE focuses on re-ordering
component deployment and installation of particular components within the
context of a single application, whereas LE-DAnCE focuses on reducing over-
all deployment latency for an entire application.

6. Concluding Remarks and Lessons Learned

This paper described enhancements to the OMG Deployment and Con-

figuration (D&C) specification that support QoS needs of component-based
enterprise DRE systems. We first described sources of deployment latency
overhead that degraded the responsiveness of the Deployment And Configura-

tion Engine (DAnCE), which was our original open-source implementation
of the D&C specification. We then explained how our Locality-Enhanced

Deployment and Configuration Engine (LE-DAnCE) improved DAnCE to
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alleviate key sources of deployment latency overhead associated with XML
pre-processing and LocalityManager architecture.

The effectiveness of LE-DAnCE’s LocalityManager architecture was then
evaluated empirically in two contexts: a highly controlled DRE environ-
ment and a high-performance computing cluster. The results showed that
LE-DAnCE can manage large-scale deployments of component applications,
scaling to both large numbers of components and nodes, as follows:

1. Off-line processing of XML-based deployment plans. LE-DAnCE
minimizes deployment latency by pre-processing XML-based deploy-
ment plans and pre-serializing them into the in-memory format required
by the deployment infrastructure and storing that to disk, which is both
more compact and requires no runtime processing to initiate deploy-
ment.

2. Parallel processing of deployment plans. LE-DAnCE can take
full advantage of multi-core platforms to significantly reduce latency
stemming from deployment time processing and analysis of deployment
plans.

3. Asynchronous transport-level processing. LE-DAnCE leverages
transport-level asychrony and deployment scheduling to substantially
reduce serialized phasing of deployment activities between application,
node, and global-level deployment entities during distributed compo-
nent application deployments.

We learned the following lessons from developing and evaluating LE-
DAnCE:

• Serialized phasing is a major source of deployment latency. Se-
rialized phasing, which occurs when the deployment infrastructure waits for
an application or node to complete deployment before proceeding to the next,
significantly increases the time required to completely deploy distributed
component applications. The LE-DAnCE improvements as described in this
paper substantially reduce the impact of serialized phasing and its contribu-
tions to deployment latency.

• Split plan processing incurs significant deployment latency.
The results presented in Section 4 showed that the plan preparation phase
of deployment is a large source of deployment latency, due in large part to
inefficiency in the LE-DAnCE “split plan” algorithm. As part of the work
conducted for this article, we alleviated this inefficiency by optimizing this al-
gorithm and leveraging multi-core/processor architectures to reduce latency
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stemming from this deployment phase. This process can be further opti-
mized, as demonstrated by the results in Section 4.2.2. Our future work is
investigating how to apply a similar pre-deployment analysis approach used
to address latency due to XML processing and split the plan before deploy-
ment to reduce runtime deployment latency.

• The startLaunch operation is a significant source of jitter. The
start launch phase of deployment produces the largest amount of jitter in
the LE-DAnCE deployment process. Prior experiments [32] conducted on
DAnCE showed this jitter stemmed from the dynamic loading of component
implementations at runtime, which can be alleviated by directly compiling
component implementations and plan metadata into the deployment infras-
tructure. While this approach reduces jitter and latency, it is also invasive to
the D&C implementation, hard to maintain, and removes too much flexibility
from the D&C toolchain. Our future work will reduce this jitter by applying
static configuration optimizations [33] to both the component middleware
(CIAO) and the plug-in architecture of LE-DAnCE.

CIAO and LE-DAnCE are available in open-source form from download.

dre.vanderbilt.edu.
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