
Deployment Optimization for Embedded Flight Avionics Systems

1Brian Dougherty,2Jules White,1Douglas C. Schmidt,3Russell Kegley and3Jonathan Preston
1Vanderbilt University,{briand,schmidt}@dre.vanderbilt.edu

2Virginia Tech, julesw@vt.edu
3Lockheed Martin Aeronautics,{russell.b.kegley,jonathan.d.preston}@lmco.com

1 Abstract

Loosely-coupled publish/subscribe messaging systems
facilitate optimized deployment of software applicationsto
hardware processors. Intelligent algorithms can be used to
refine system deployments to reduce system cost and re-
source requirements, such as memory and processor utiliza-
tion. This paper presents the optimization of a legacy flight
avionics system deployment with the Scatter Deployment
Algorithm(ScatterD), resulting in a reduction of required
processors and network bandwidth consumption.

2 Introduction

Current trends and challenges. Several trends are
shaping the development of embedded flight avionics sys-
tems. First, there is a migration away from olderfederated
computing architectureswhere each subsystem occupied a
physically separate hardware component tointegrated com-
puting architectureswhere multiple software applications
implementing different capabilities share a common set of
computing platforms. Second, publish/subscribe (pub/sub)-
based messaging systems are increasingly replacing the use
of hard-coded cyclic executives.

These trends are yielding a number of benefits. For ex-
ample, integrated computing architectures create an oppor-
tunity for system-wide optimization ofdeployment topolo-
gies, which map software components and their associated
tasks to hardware processors as shown in Figure 1. Opti-
mized deployment topologies can pack more software com-
ponents onto the hardware, thereby optimizing system pro-
cessor, memory, and I/O utilization. Increasing hardware
utilization can decrease the total hardware processors that
are needed, lowering both implementation costs and main-
tenance complexity. Moreover, reducing the required hard-
ware infrastructure has other positive side effects, such as
weight and power consumption savings. Decoupling soft-
ware from specific hardware processors also increases flex-
ibility by not coupling embedded software application com-
ponents with specific hardware processing platforms.

Open problems. The explosion in the size of the
search space for large-scale embedded deployment topolo-
gies makes it hard to optimize them without computer-

Figure 1. Flight Avionics Deployment Topol-
ogy

assisted methods to evaluate the schedulability, network
bandwidth consumption, and other characteristics of a given
configuration. Developing computer-assisted methods to
deploy software to hardware in embedded systems is a chal-
lenging problem [1, 4] due to the large number of complex
constraints that must be addressed.

For example, developers must ensure that each software
component is provided with sufficient processing time to
meet any real-time scheduling constraints [7]. Likewise, re-
source constraints (such as total available memory on each
processor) must also be respected when mapping software
components to hardware components [7, 5]. Moreover,
assigning real-time tasks in multiprocessor and/or single-
processor machines is NP-Hard [3], which means that such
a large number of potential deployments exist that it would
take many years to investigate all possible solutions.

Current algorithmic deployment techniques are largely
based on bin-packing [3, 6, 2], which represents the soft-
ware tasks as items that take up a set amount of space
and hardware processors as bins that provide limited space.
All of the items are then packed into as few bins as possi-
ble while maintaining that the sum of the space consumed
by the items in a bin does not exceed the space provided

by the bin in which they are placed. Bin-packing deploy-
ment techniques take a one-dimensional view of deploy-
ment problems by focusing on a single deployment con-
cern at a time, such as resource constraints, scheduling con-
straints, or fault-tolerance constraints. In production flight
avionics systems, however, deployments must meet a com-
bination of these concerns.

Solution approach⇒ Deployment Optimization with
ScatterD. This paper describes and validates the Scatter
Deployment Algorithm (ScatterD), a tool we developed
to perform computer-assisted deployment optimization for
flight avionics systems. This tool combines heuristic bin-
packing with optimization algorithms, such as genetic algo-
rithms (GAs) [?]. We show how developers of flight avion-
ics systems can use optimization tools like ScatterD to re-
duce the processor and network bandwidth requirements of
deployments.

The remainder of this paper is organized as follows: Sec-
tion 3 outlines a flight avionics deployment case study we
use to motivate the challenges and solutions throughout the
paper; Section 4 describes the challenges faced by devel-
opers when attempting to optimize a flight avionics deploy-
ment topology; Section 5 discusses the ScatterD tool for
deployment optimization; Section 6 provides empirical re-
sults demonstrating the reductions in hardware footprint and
network bandwidth consumption that our ScatterD can pro-
duce; and Section 7 presents concluding remarks.

3 Modern Embedded Flight Avionics Sys-
tems: A Case Study

Over the past 20 years, flight avionics systems have be-
come increasingly sophisticated, to the point where many
modern aircraft depend heavily on software executing atop
a complex embedded network for higher-level capabilities,
such as more sophisticated flight control and more advanced
weapon systems. The increased weight of the embed-
ded computing platforms required by a modern fighter air-
craft incurs a multiplier effect,e.g., roughly four pounds of
cooling, power supply, and other supporting hardware are
needed for each pound of processing hardware, reducing
mission range, increasing fuel consumption, and impact-
ing aircraft responsiveness. To accommodate the increased
amount of software required, avionics systems have moved
from older federated computing architectures to integrated
computing architectures that combine multiple software ap-
plications together on a single computing platform contain-
ing many software components.

The class of flight avionics system targeted by our work
is a networked parallel message-passing architecture con-
taining many computing nodes, as shown in Figure 2.

Each node is built from commercially available compo-
nents packaged in hardened chassis to withstand extremes

of temperature, vibration, and acceleration. At the individ-
ual node level, ARINC 653-compliant time and space par-
titioning separates the software applications into sets with
compatible safety and security requirements. Inside a given
time partition, the applications run within a hard real-time
deadline scheduler that executes the applications at a variety
of harmonic periods.

The integrated computing architecture shown in Figure 2
has benefits and challenges. Key benefits include better op-
timization of hardware resources and increased flexibility,
which result in a smaller hardware footprint, lower energy
use, decreased weight, and enhanced ability to add new soft-
ware to the aircraft without updating the hardware. The key
challenge, however, is increased system integration com-
plexity. In particular, while the homogeneity of processors
gives system designers a great deal of freedom allocating
software applications to computing nodes, optimizing this
allocation involves simultaneously balancing multiple com-
peting resource demands.

For example, even if the processor demands of a pair of
applications would allow them to share a platform, their re-
spective I/O loads may be such that worst-case arrival rates
would saturate the network bandwidth flowing into a sin-
gle node. This problem is complicated for single-core pro-
cessors used in current integrated computing architectures.
Moreover, this problem is becoming more complicated with
the adoption and fielding of multi-core processors, where
competition for shared resources expands to include internal
buses, cache memory contents, and memory access band-
width.

4 Deployment Optimization Challenges

While Section 3 describes many of the benefits that can
be acquired through deployment optimization, developers
of embedded flight avionics systems face a daunting series
of conflicting constraints and optimization goals when de-
termining how to deploy software to hardware that make de-
ployment optimization difficult. It is hard to find a valid so-
lution for a single deployment constraint, such as ensuring
that all of software tasks can be scheduled to meet real-time
deadlines, in isolation using conventional techniques, such
as bin-packing. It is much harder, however, to find a valid
solution when considering many deployment constraints,
such as satisfying resource requirements of software tasks
in addition to ensure schedulability. Moreover, optimiz-
ing the deployment topology of a system to minimize con-
sumed network bandwidth or other dynamic properties is
more difficult since communication between software tasks
must also be taken into account instead of simply consider-
ing each software task as an independent entity. This section
describes the challenges that developers face when attempt-
ing to derive a deployment topology for a flight avionics

Figure 2. An Integrated Computing Architecture for Embedded Flight Avionics

system with a networked parallel message-passing architec-
ture as described in Section 3 that minimizes the number of
required processors and the total network bandwidth result-
ing from communication between software tasks.

4.1 Challenge 1: Rate-monotonic Scheduling
Constraints

In real-time systems, such as the embedded flight avion-
ics case study from Section 3, either fixed priority schedul-
ing algorithms, such as rate-monotonic (RM) scheduling,
or dynamic priority scheduling algorithms, such as earliest-
deadline-first (EDF), control the execution ordering of in-
dividual tasks on the processors. The deployment topology
must ensure that the set of software components allocated to
each processor are schedulable and will not miss real-time
deadlines. Finding a deployment topology for a series of
software components that ensures schedulability of all tasks
is called “multiprocessor scheduling” and is NP-Hard [3].

A variety of algorithms, such as bin-packing algorithm
variations, have been created to solve the multiprocessor
scheduling problem. A key limitation of applying these al-
gorithms to deployment optimization problems is that bin-
packing does not allow developer to specify the character-
istic of the deployment to be optimized. For example, bin-
packing does not allow developers to specify an objective
function based on the overall network bandwidth consumed

by a deployment topology to determine a deployment topol-
ogy that minimized bandwidth. We describe how ScatterD
guarantees schedulability in Section 5.1.

4.2 Challenge 2: Memory, Cost, and Other Re-
source Constraints

Scheduling a processor is not the only type of resource
that must be managed while searching for a deployment
topology. Hardware nodes often have other limited but crit-
ical resources, such as main memory or core cache, nec-
essary for the set of software components it supports to
function. Developers must ensure that the components de-
ployed to a processor do not consume more resources than
are present. If each processor does not provide a sufficient
amount of these resources to support all tasks on the proces-
sor, a task will not execute properly, resulting in a failure.
Moreover, since each processor used by a deployment has
a cost associated with it, developers may need to adhere to
a global budget, as well as scheduling constraints. We de-
scribe how ScatterD ensures that resources constraints are
satisfied in Section 5.1.

4.3 Challenge 3: Network Resource and Topology
Constraints

Embedded flight avionics systems often must ensure
that not only processor resource limitations are adhered to

but network resources, such as bandwidth are not over-
consumed. For example, if two critical real-time com-
ponents communicating across a high-speed bus, such as
a controller area network (CAN) bus, fail to send a re-
quired message due to network saturation, catastrophic fail-
ure could occur. The consumption of network resources is
determined by the number of interconnected components
that are not colocated on the same processor. For exam-
ple, if two components are colocated on the same processor,
they do not consume any bandwidth.

Adding the consideration of network resources to de-
ployment substantially increases the complexity of find-
ing a software-to-hardware deployment topology mapping
that meets requirements. With real-time scheduling and re-
source constraints, the deployment of a component to a pro-
cessor has a fixed resource consumption price that can be
calculated in isolation of the other components. The im-
pact of the component’s deployment on the network, how-
ever, cannot be calculated in isolation of the other compo-
nents. The impact is determined by finding all other com-
ponents that it communicates with, determining if they are
colocated, and then calculating the bandwidth consumed by
the interactions with those that are not colocated. We de-
scibe how ScatterD can be used to minimize the bandwidth
required by a system deployment in Section 5.2.

5 Deployment Optimization for Bandwidth
and Processor Minimization

Heuristic bin-packing algorithms work well for multi-
processor scheduling and resource allocation. As discussed
in Section 4, however, heuristic bin-packing is not effec-
tive for optimizing designs for certain system-wide prop-
erties, such as network bandwidth consumption, and hard-
ware/software cost. Metaheuristic algorithms, such as ge-
netic algorithms or particle swarm optimization techniques,
allow designers to optimize these system-wide properties
that are not easy to optimize with bin-packing algorithms [?,
?].

To overcome the limitations of applying either a heuris-
tic algorithm, such as bin-packing, or a metaheuristic algo-
rithm, such as a genetic algorithm, individually to deploy-
ment optimization, this section presents ScatterD, a tool
that utilizes a “hybrid” method that combines the two ap-
proaches so the benefits of each can be obtained with a sin-
gle algorithm. We explain how we developed the ScatterD
tool that integrates the heuristic bin-packing algorithm’s
ability to generate correct solutions to scheduling and re-
source constraints with the metaheuristic algorithm’s flexi-
ble optimization capabilities for minimizing network band-
width and processor reduction.

5.1 Satisfying Deployment Constraints with Scat-
terD

To optimize the deployment of the flight avionics sys-
tem described in Section 3 we developed ScatterD. ScatterD
ensures that the numerous deployment constraints, such as
schedulability and resource constraints described in Sec-
tion ?? are satisfied by using heuristic bin-packing to allo-
cate software tasks to processors. Existing bin-packing al-
gorithms for multiprocessor scheduling are designed to take
as input a series of items (e.g., tasks or software compo-
nents), the set resources consumed by each item (e.g., pro-
cessor and memory), and the set of bins (e.g., processors)
and their capacities. The algorithm outputs an assignment
of items to bins (e.g., a mapping of software components to
processors).

With ScatterD, we ensure that schedulability is guaran-
teed by using response-time analysis to ensure a software
component can be scheduled on a given processor before al-
locating its associated item to a bin. Before placing an item
in a bin, ScatterD analyzes the response time that would
result from allocating the software task to the given proes-
sor. If the response time is fast enough to meet the real-time
deadlines of the software task then the software task can
be allocated to the processor. If not, then the item must be
placed in another bin.

To ensure that the resource constraints, such as memory
requirements, of each software task is met, we specify a ca-
pacity for each bin that is defined by the amount of each
computational resource provided by the processor. Simi-
larly, the resource demands of each software task define the
resource consumption of each item. Before an item can be
placed in a bin, ScatterD verifies that the total consump-
tion of each resource utilized by the item to be placed and
any items already placed in the bin does not exceed the re-
sources provided.

5.2 Network Bandwidth and Processor Minimiza-
tion with ScatterD

As discussed in Section 5.1, ScatterD uses heuristic bin-
packing to ensure that schedulability and resource con-
straints are met. Bin-packing, however, will always yield
the same solution for a given set of software tasks and pro-
cessors if the heuristics is not altered. Therefore, the num-
ber of processors utilized and the network bandwidth re-
quirements will not change from one execution of the bin-
packing algorithm to another. In the vast deployment solu-
tion space, however, there may be many other deployments
that still satisfy all design constraints while substantially re-
ducing the number of processors and network bandwidth
required.

Metaheuristic algorithms, such as genetic algorithms and

particle swarm optimization techniques, can be used to ex-
plore other areas of the deployment solution space and dis-
cover solutions that require less processors and network
bandwidth to function. The problem, however, is that that
deployment space is incredibly vast containing only a small
percentage of potential deployments that would satisfy all
design constraints. Since metaheuristic algorithms strive
to reduce bandwidth and the number of required proces-
sors without accounting for design constraints, using meta-
heuristic algorithms alone would result in many invalid de-
ployments.

To allow metaheuristic algorithms to search the deploy-
ment space for deployments with minimal processor and
bandwidth requirements while still ensuring that design
constraints are met, ScatterD uses metaheuristic algorithms
to seedthe bin-packing algorithm. Metaheuristic algo-
rithms are used to search the deployment space and select
several software tasks that must be packed prior to the rest
of the software tasks. By forcing an altered bin-packing or-
der, new deployments with different bandwidth and proces-
sor requirements are generated. Since bin-packing is still
the driving force behind allocating software tasks, design
constraints have a higher probability of being satisfied.

As new valid deployments are discovered, they are
scored based on network bandwidth consumption and the
number of required processors. Metaheuristic algorithms
use the scores of these deployments to determine which
new packing order would likely lead to more a optimized
deployment. By using metaheuristic algorithms to search
the design space and then using bin-packing to allocate
software tasks to processors, ScatterD can generate deploy-
ments that meet all design constraints while also minimiz-
ing network bandwidth consumption and reducing the num-
ber of required processors.

6 Empirical Results

This section presents the results of combining two meta-
heuristics algorithms (particle swarm optimization and a ge-
netic algorithm) with bin-packing to create two different
versions of the ScatterD tool to optimize the deployment of
the embedded flight avionics system described in Section 3.
We applied these techniques to determine if (1) a deploy-
ment exists that increases processor utilization to the extent
that legacy processors could be removed and (2) the overall
network bandwidth requirements of the deployment were
reduced due to colocating communicating software tasks on
a common processor.

The first experiment examined applying ScatterD to min-
imize the number of processors in the fligt avionics system
deployment. The legacy flight avionics deployment con-
sisted of software tasks deployed to 14 processors. Apply-
ing ScatterD with particle swarm optimization techniques

and genetic algorithms resulted in increased utilization of
the processors, allowing the software to be deployed to only
eight processors in both cases. The remaining six proces-
sors could then be removed from the deployment without
effecting system performance, resulting in a 42.8% reduc-
tion as shown in Figure 3.

Figure 3. Network Bandwidth and Processor
Reduction in Optimized Deployment

The ScatterD tool was also applied to minimize the band-
width consumed due to communication by software tasks
allocated to different processors in the production avionics
system described in Section 3. Reducing the bandwidth re-
quirements of the system leads to more efficient, faster com-
munication while also reducing power consumption. The
legacy deployment consumed1.83 · 10

08 bytes of band-
width. Both versions of the ScatterD tool yielded a deploy-
ment that reduced bandwidth by4.39·10

07 or 24% as shown
in Figure 3.

7 Concluding Remarks

Optimizing th deployment topologies on legacy embed-
ded flight avionics system can yield substantial benefits,
such as reducing hardware costs and emmission. By com-
bining the efficiency of metaheuristic optimization tech-
niques, such as particle swarm optimization, with other
heuristic algorithms, such as bin-packing, legacy deploy-
ments can be evolved and optimized in a matter of seconds.
The following are a summary of the lessons we learned ap-
plying our hybrid-heuristic bin-packing tool to optimize a
legacy flight avionics system:

• Multiple constraints make deployment planning
hard. Avionics deployments must adhere to a wide
range of strict constraints, such as resource, co-
llocation, scheduling, and network constraints. De-

ployment optimization technique must account for
these constraints when determining a new deployment.

• A Huge deployment space requires intelligent
search techniques.The vast majority of potential de-
ployments that could be created violate one or more
design constraints. Intelligent and automated tech-
niques, such as hybrid-heuristic bin-packing, must
therefore be applied to discover valid “near-optimal”
deployments.

• Substantial processor and network bandwidth re-
ductions are possible. Applying hybrid-heuristic
bin-packing to the flight avionics system resulted in
42.8% processor reduction and 24% bandwidth reduc-
tion. Our future work is applying hybrid-heuristic
bin-packing to other legacy embedded system deploy-
ments.

The ScatterD tool is available in open source
form int the Ascent Design Studio(http://
ascent-design-studio.googlecode.com.)
This problem was found on the SPRUCE web
portal(www.sprucecommunity.org), a portal
dedicated to pairing cutting edge industry challenge
problems with appropriate expert researchers. A
document describing the flight avionics system case
study as well as additional details of our solutions are
available at SPRUCE.

References

[1] H. Beitollahi and G. Deconinck. Fault-Tolerant Partitioning
Scheduling Algorithms in Real-Time Multiprocessor
Systems.Pacific Rim International Symposium on
Dependable Computing, IEEE, 0:296–304, 2006.

[2] A. Bertossi, L. Mancini, and F. Rossini. Fault-Tolerant
Rate-Monotonic First-Fit Scheduling in Hard-Real-Time
Systems.IEEE Transactions On Parallel and Distributed
Systems, pages 934–945, 1999.

[3] A. Burchard, J. Liebeherr, Y. Oh, and S. Son. New Strategies
for Assigning Real-time Tasks to Multiprocessor Systems.
IEEE Transactions on Computers, 44(12):1429–1442, 1995.

[4] A. Carzaniga, A. Fuggetta, S. Richard, D. Heimbigner,
A. van der Hoek, A. Wolf, and COLORADO STATE UNIV
FORT COLLINS DEPT OF COMPUTER SCIENCE.A
Characterization Framework for Software Deployment
Technologies. Defense Technical Information Center, 1998.

[5] W. Damm, A. Votintseva, A. Metzner, B. Josko,
T. Peikenkamp, and E. Böde. Boosting Re-use of Embedded
Automotive Applications Through Rich Components.
Proceedings of Foundations of Interface Technologies, 2005,
2005.

[6] S. Lauzac, R. Melhem, and D. Mosse. Comparison of Global
and Partitioning Schemes for Scheduling Rate Monotonic
Tasks on a Multiprocessor. In10th Euromicro Workshop on
Real Time Systems, pages 188–195, 1998.

[7] J. Stankovic. Strategic Directions in Real-time and
Embedded Systems.ACM Computing Surveys (CSUR),
28(4):751–763, 1996.

