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Abstract. Aspect-Oriented Modeling (AOM) is a promising technique for un-
tangling the concerns of complex enterprise software systems. AOM decomposes
the cross-cutting concerns of a model into separate models that can be woven to-
gether to form a composite solution model. In many domains, such as multi-tiered
e-commerce web applications, separating concerns is much easier than deducing
the proper way to weave the concerns back together into a solution model. For
example, modeling the types and sizes of caches that can be leveraged by a web
application is much easier than deducing the optimal way to weave the caches
back into the solution architecture to achieve high system throughput.

This paper presents a technique called constraint-based weaving that maps
model weaving to a constraint satisfaction problem (CSP) and uses a constraint-
solver to deduce the appropriate weaving strategy. By mapping model weaving
to a CSP and leveraging a constraint solver, our technique (1) generates solu-
tions that are correct with respect to the weaving constraints, (2) can incorporate
complex global weaving constraints, (3) can provide weaving solutions that are
optimal with respect to a weaving cost function, and (4) can eliminate manual
effort that would normally be required to specify pointcutsand maintain them as
target models change. The paper also presents the results ofa case study that ap-
plies our CSP weaving technique to a representative enterprise Java application.
Our evaluation of this case study showed a reduction in manual effort that our
technique provides.
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1 Introduction

Developers of complex enterprise applications are faced with the daunting task of man-
aging not only numerous functional concerns, such as ensuring that the application
properly executes key business logic, but also meeting challenging non-functional re-
quirements, such as end-to-end response time and security.Enterprise domain solutions
have traditionally been developed using large monolithic models that either provide a
single view of the system or a limited set of views [20]. The result of using a limited



set of views to build the system is that certain concerns are not cleanly separated by the
dominant lines of decomposition and are scattered throughout the system’s models.

Aspect-Oriented Modeling (AOM) [7, 17, 38] has emerged as a powerful method of
untangling and managing scattered concerns in large enterprise application models [19,
21]. With AOM, any scattered concern can be extracted into its own view. For example,
caching considerations of an application can be extracted into an aspect. Once caching is
separated into its own aspect, the cache sizes and types can be adjusted independently
of the application components where the caches are applied.When a final composite
solution model for the application is produced, the variousaspects are woven back into
the solution model and the numerous affected modeling elements are updated to reflect
the independently modeled concerns.

Although concerns can often be separated easily into their own aspects or views, it is
hard to correctly or optimally merge these concerns back into the solution model. Merg-
ing the models is hard because there are typically numerous competing non-functional
and functional constraints, such as balancing encryption levels for security against end-
to-end performance, that must be balanced against each other without violating domain
constraints (such as maximum available bandwidth). Manualapproaches for deriving
solutions to these types of constraints do not scale well.

Most current model weavers [9, 16, 21, 38, 45] rely on techniques, such as specify-
ing queries or patterns to match against model elements, that are ideal for matching ad-
vice against methods and constructors in application code,but are not necessarily ideal
for static weaving problems. Many enterprise applicationsrequire developers to incor-
porate global constraints into the weaving process that canonly be solved in a static
weaving problem. As discussed in Section 3.2, the techniques used to match against
dynamic joinpoints, such as pattern matching, cannot capture global constraints, such
as resource constraints (e.g., total RAM consumed < available RAM), that are common
in enterprise applications. Because global constraints are not honored by the model
weaver, developers are forced to expend significant effort manually deriving weaving
solutions that honor them.

When weavers cannot handle global constraints, optimization, or dependency-based
constraints, traditional model weaving becomes a manual four-stage process, as shown
in Figure 1. The left column shows the steps involved in modelweaving problems with
global constraints in general. The right column shows how these steps manifest them-
selves in the cache weaving example. First, the advice and joinpoint elements (e.g.,
caches and components) available in the solution model are identified in step 1. Second,
as shown in steps 2 and 3, because a weaver cannot handle global constraints or opti-
mization, developers manually determine which advice elements should be matched to
which model elements (e.g., the cache types, cache sizes, and the components to apply
the caches to). This second step requires substantial effort because it involves deriving
a solution to a complex set of global constraints.

In terms of deriving cache placements in an enterprise application, the second step
involves determining cache architectures that fit within the required memory budget
and respect the numerous dependency and exclusion constraints between caches. After
viable cache architectures are identified, a developer mustuse the expected request
distribution patterns and queueing theory to predict the optimal cache architecture. As



Fig. 1: The Model Weaving Process Applied to Cache Allocation

the examples in Section 3 show, even for a small set of caches and potential cache
locations, the cache placement process requires significant work.

In the third step, developers take this manually-derived solution and translate it
into pointcut definitions that match against model elementsusing regular expressions
or queries (e.g., a specification of how to insert the caching model elements into the
models to implement the caching architecture). In some cases, the manually derived
solution needs to be translated into the pointcut specification languages of multiple
model weavers so that the architecture can be implemented ina set of heterogeneous
models spanning multiple modeling tools. The model weaversthen take these final
specifications and merge the models. Each time the underlying solution models change
(e.g., the available memory for caching changes), the global constraints can cause the
entire solution to change (e.g., the previously used caches no longer fit in the budgeted
memory) and the entire three steps must be repeated from scratch.

This paper shows that the manual steps of deriving a weaving solution that meets
the global application requirements (steps 2 and 3) can be automated in many cases
by creating a weaver capable of handling global constraintsand optimization. Creating
a weaver that can honor these constraints and optimize weaving allows developers to
translate the high-level application requirements into pointcut specifications and opti-
mization goals that can be used by the weaver when producing aweaving solution. Fi-
nally, because the weaver is responsible for deducing a weaving solution that meets the
overall application requirements, as the individual solution models change, the weaver
can automatically update the global weaving solution and re-implement it on behalf of
the developer for multiple model weaving platforms.



This paper shows how model weaving can be mapped to a constraint satisfaction
problem (CSP) [13, 34, 44]. With a CSP formulation of a model weaving problem, a
constraint solver can be used to derive a correct—and in somecases optimal—weaving
solution. Using a constraint solver to derive a correct weaving solution provides the
following key benefits to model weaving:

– It ensures that the solution is correct with respect to the various modeled functional
and non-functional weaving constraints.

– A constraint solver can honor global constraints when producing a solution and not
just local regular expression or query-based constraints.

– A constraint solver automates the deduction of the correct weaving and saves con-
siderable manual solution derivation effort.

– The weaving solution can automatically be updated by the solver when the core
solution models (and hence joinpoints) change.

– The solver can produce a platform-independentweaving solution (a symbolic weav-
ing solution that is not coupled to any specific pointcut language) where model
transformations [8, 15] are applied to create a weaving solution for each required
weaving platform and

– The solver can derive an optimal weaving solution (with respect to a cost function)
in many cases.

The remainder of this paper is organized as follows: Section2 presents the multi-
tiered web application used as a case study throughout the paper; Section 3 shows
current challenges in applying existing model weaving techniques to our case study;
Section 5 describes how constraint solving can be used to derive a correct weaving
solution and how it addresses the gaps in existing solutions; Section 4 presents a map-
ping from model weaving to a constraint satisfaction problem; Section 7 summarizes
empirical results obtained from applying constraint-based weaving to our case study;
Section 8 compares constraint-based weaving with related work; and Section 9 presents
concluding remarks and lessons learned.

2 Case Study: The Java Pet Store

This paper uses a case study based on Sun’s Java Pet Store [5] multi-tiered e-commerce
application. The Pet Store is a canonical e-commerce application for selling pets. Cus-
tomers can create accounts, browse the Pet Store’s product categories, products, and
individual product items (e.g., male adult Bulldog vs. female adult Bulldog).

The Pet Store application was implemented by Sun to showcasethe capabilities of
the various Java 2 Enterprise Edition frameworks [43]. The Pet Store has since been
re-implemented or modified by multiple parties, including Microsoft (the .NET Pet
Store) [4] and the Java Spring Framework [6]. The Spring Framework’s version of the
Pet Store includes support for aspects via AspectJ [2] and Spring Interceptors and is
hence the implementation that we base our study on.



2.1 Middle-tier Caching in the Pet Store

Our case study focuses on implementing caching in the middle-tier (i.e., the persistent
data access layer) of the Pet Store through caching aspects.The business logic and
views in the Pet Store are relatively simple and thus the retrieval and storage of per-
sistent data is the major performance bottleneck. In performance tests that we ran on
the Pet Store using Apache JMeter [1], the average response time across 3,000 requests
for viewing the product categories was 3 times greater for a remotely hosted database
versus a remotely hosted database with a local data cache (25% hit rate). The same tests
also showed that caching reduced the worst case response time for viewing product
categories by a factor of two.

Our experiments tested only a single middle-tier and back-end configuration of the
Pet Store. Many different configurations are possible. The Spring Pet Store can use a
single database for product and order data or separate databases. Data access objects
(DAOs) are provided for four different database vendors. Choosing the correct way of
weaving caches into the middle-tier of the Pet Store requires considering the following
factors:

– The workload characteristics or distributions of request types, which determine
what data is most beneficial to cache [32]. For example, keeping the product in-
formation in the cache that is most frequently requested will be most beneficial.

– The architecture of the back-end database servers providing product, account, and
order data to the application determines the cost of a query [31]. For example, in
a simple Pet Store deployment where the back-end database isco-located with the
Pet Store’s application server, queries will be less expensive than in an arrangement
where queries must be sent across a network to the database server.

– The hardware hosting the cache and the applications co-located with it will deter-
mine the amount of memory available for caching product data. If the Pet Store is
deployed on small commodity servers with limited memory, large caches may be
undesirable.

– The number of possible cache keys and sizes of the data associated with each cache
item will influence the expected cache hit rate and the penalty for having to transfer
a data set across the network from the database to the application server [35]. For
example, product categories with large numbers of productswill be more expensive
to serialize and transfer from the database than the information on a single product
item.

– The frequency that the data associated with the various middle-tier DAOs is up-
dated and the importance of up-to-date information will affect which items can be
cached and any required cache coherence schemes [35]. For example, product item
availability is likely to change frequently, making product items less suitable to
cache than product categories that are unlikely to change.

2.2 Modeling and Integrating Caches into the Pet Store

Aspect modeling can be used effectively to weave caches intothe Pet Store to adapt
it for changing request distribution patterns and back-enddatabase configurations. We



used this scenario for our case study to show that although caches can be woven into
code and models to adapt the Pet Store for a new environment, creating and maintaining
a cache weaving solution that satisfies the Pet Store’s global application requirements
takes significant manual effort due to the inability of modelweavers to encode and
automate weaving with the global application constraints.Each time the global appli-
cation requirements change, the manually deduced global cache weaving solution must
be updated. Updating the global cache weaving solution involves a number of mod-
els and tools. Figure 2 shows the various models, code artifacts, and tools involved in
implementing caching in the Pet Store.

Fig. 2: Models and Tools Involved in the Pet Store

1. Modeling platforms.We have implemented models of different parts of the Pet Store
in two different modeling tools: the Generic Eclipse Modeling System (GEMS) [48]
and the Generic Modeling Environment (GME) [30]. GME was chosen due to its ex-
tensive support for different views, while GEMS was selected for its strengths inmodel
intelligence, which was used for automating parts of the deployment modeling process.
Using different tools simplifies the derivation of the deployment plan and the under-
standing of the system architecture, but also requires somelevel of integration between
the tools.

GEMS is a graphical modeling tool built on top of Eclipse [41]and the Eclipse
Modeling Framework (EMF) [12]. GEMS allows developers to use a Visio-like graph-
ical interface to specify metamodels and generate domain-specific modeling language
(DSML) tools for Eclipse. In GEMS, a deployment modeling tool has been imple-
mented to capture the various deployment artifacts, such asrequired Java Archive Re-
sources (JAR) files, and their placement on application servers. Another Neat Tool



(ANT) [24] build, configuration, and deployment scripts canbe generated from the
GEMS deployment model.

GME [30] is another graphical modeling tool similar to GEMS that allows devel-
opers to graphically specify a metamodel and generate a DSMLeditor. A modeling
tool for specifying the overall component architecture of the Pet Store has been imple-
mented in GME. The GME architecture model is used to capture the component types,
the various client types, back-end database architecture,and expected distribution of
client requests to the Pet Store. The GME architecture modelis shown in Figure 3.

2. Model weaving tools.The caching aspect of the Pet Store is modeled separately from
the GEMS deployment model and GME architecture model. Each time the caching
model is updated, model weaving tools must be used to apply the new caching archi-
tecture to the GEMS and GME models. For the GME models, the C-SAW [42] model
weaver is used to merge the caching architecture into the architecture model. C-SAW re-
lies on a series of weaving definition files to perform the merger. Each manually derived
global cache weaving solution is implemented in C-SAW’s weaving definition files to
apply to the GME architecture models. Again, because we needtwo separate modeling
tools to produce the best possible deployment and architecture models, we must also
utilize and integrate two separate model weavers into the development process.

Fig. 3: GME Pet Store Architecture Model

The deployment models in GEMS need to be updated via a model weaver, such
as the Atlas Model Weaver (AMW) [16], which can interoperatewith models based on
EMF. With AMW, developers specify two EMF models and a seriesof merger directives
(i.e., a weaving specification). AMW produces a third merged EMF model from the
two source models. Each global cache weaving solution must also be implemented as
a weaving specification for AMW. Once the AMW specification isimplemented, the



cache weaving solution can be merged into the GEMS EMF-baseddeployment model
to include any required JAR files and cache configuration steps.

3. Code weaving tools.Finally, to apply the cache weaving solution to the legacy Pet
Store code, the Java cache advice implementations must be woven into the Pet Store’s
middle-tier objects using AspectJ [2], which is a frameworkfor weaving advice into
Java applications. Although the Spring framework allows the application of AspectJ
advice definitions to the Pet Store, it requires that the Spring bean definition files for
the Pet Store be updated to include the new AspectJ pointcutsand advice specifications.
A final third implementation of the global cache weaving solution must be created and
specified in terms of Spring bean definitions and AspectJ pointcuts.

Overall, there are three separate tool chains that the Pet Store cache weaving solu-
tion must be implemented in. First, C-SAW weaving specifications must be created to
update the GME architectural models. Second, AMW weaving specifications must be
produced to update the GEMS deployment models. Finally, theweaving solution must
be turned into AspectJ advice/pointcut definitions for weaving the caches into the Pet
Store at runtime.

3 Model Weaving Challenges

One of the primary limitations of applying existing model weavers to the Pet Store case
study described in Section 2 is that existing model weaver pointcut specifications cannot
encode global application constraints, such as memory consumption constraints, and
also cannot leverage global constraints or dependency-based weaving rules to produce
an overall global weaving solution. Developers must instead document and derive a
solution for the overall global application constraints and implement the solution for
each of the numerous modeling and weaving platforms for the Pet Store. Moreover, each
time the underlying global application constraints change(e.g., the memory available
for caches is adjusted) the overall global weaving solutionmust be recalculated and
implemented in the numerous modeling tools and platforms.

3.1 Differences Between Aspect Weavers and Model Weavers

To understand why model weavers do not currently support global constraints and how
this can be rectified, we first must evaluate aspect weavers atthe coding level, which
have influenced model weavers. Aspect weavers, such as AspectJ and HyperJ [3], face
an indeterminate number of potential joinpoints (also referred to asjoinpoint shad-
ows[23]) that will be passed through during application execution. For example, late-
binding can be used in a Java application to dynamically loadand link in multiple
libraries for different parts of the application.

Each library may have hundreds or thousands of classes and numerous methods
per class (each a potential joinpoint). An aspect weaver cannot know which classes
and methods the execution path of the application will pass through before the process
exits. The weaver can therefore never ascertain the exact set of potential joinpoints
that will be used ahead of time. Although the weaver may have knowledge of every



joinpoint shadow, it will not have knowledge of which are actually used at runtime.
Model weaving, however, faces a different situation than a runtime aspect weaver. The
key differences are:

– Model weaving merges two models of finite and known size.
– Because models have no thread of execution, the weaver can ascertain exactly what

joinpoints are used by each model.
– Model weaving speed is less critical than aspect weaving speed at runtime and

adding additional seconds to the total weaving time is not unreasonable.

Because a model weaver has knowledge of the entire set of joinpoints used by the
models at its disposal it can perform a number of activities that are not possible with
runtime weaving where the entire used set of target joinpoints is not known. For ex-
ample, a model weaver can incorporate global constraints into the weaving process. A
runtime weaver cannot honor global constraints because it cannot see the entire used
joinpoint set at once. To honor a global constraint, the weaver must be able to see the
entire target joinpoint set to avoid violating a global constraint.

Runtime aspect weaving involves a large number of potentialjoinpoints or joinpoint
shadows and is not well-suited for capturing and solving global application constraints
as part of the weaving process. When weaving must be performed on an extremely large
set of target joinpoints, the weaver must use a high-efficiency technique for matching
advice to joinpoints (every millisecond counts). The most common technique is to use
a query or regular expression that can be used to determine ifa pointcut matches a
joinpoint. The queries and regular expressions are independent of each other, which
allows the weaver to quickly compare each pointcut to the potential joinpoints and
determine matches.

If dependencies were introduced between the queries or expressions (e.g., only
match pointcut A if pointcut B or C do not match), the weaver would be forced to per-
form far less efficient matching algorithms. Moreover, since the weaver could not know
the entire joinpoint set passed through by the application’s execution thread ahead of
time, it could not honor a dependency, such as match pointcutA only if pointcuts B
and C arenevermatched, because it cannot predict whether or not B and C willmatch
in the future. Finally, when dependencies are introduced, there is no longer necessarily
a single correct solution. Situations can arise where the weaver must either choose to
apply A or to apply B and C.

3.2 Challenge 1: Existing Model Weaving Poinctut Specifications Cannot
Encode Global Application Constraints

Most model weavers, such as C-SAW, AMW, and the Motorola WEAVR [14], have
adopted the approach of runtime weavers and do not allow dependencies between point-
cuts or global constraints. Because the model weaver does not incorporate these types of
constraints, developers cannot encode the global application constraints into the weav-
ing specification. Figure 4 presents the manual refactoringsteps (the first six steps)
that must be performed when the modeled distribution of request types to the Pet Store
changes.



Fig. 4: Solution Model Changes Cause Weaving Solution Updates

In the Pet Store case study, there are a number of dependencies and global con-
straints that must be honored to find a correct weaving. We created caching advice
implementations that capture all product queries and implementations that are biased
towards specific data items, such as theFishCache. The biased cache is used when the
majority of requests are for a particular product type. TheFishCache and the generic
product cache should be mutually exclusive. The use of theFishCache is excluded if
the percentage of requests for fish drops below 50%. Moreover, the generic product
cache will then become applicable and must be applied.

A small change in the solution model can cause numerous significant ripple ef-
fects in the global application constraints and hence weaving solution. This problem of
changes to the solution models of an applicaiton causing substantial refactoring of the
weaving solution is well-known [22]. The problem becomes even more complex, how-
ever, with the global weaving solution where significant refactoring causes multiple
implementations of the weaving specification to change.

The problem with managing this ripple effect with existing model weavers is that
both theFishCache and the generic product cache have a pointcut that matches the
same model element, theProductDAO. With existing pointcut languages based on reg-
ular expressions or queries, there is no way to specify that only one of the two pointcut
definitions should be matched to theProductDAO. The pointcut definitions only allow
the developer to specify matching conditions based on joinpoint properties and not on
the matching success of other pointcuts.

Developers often need to restrict the overall cache selection to use less than a
specified amount of memory. For example, rather than having the FishCache and
GenericCache be mutually exclusive, the two caches could be allowed to be applied if
there is sufficient memory available to support both. Requiring that the woven caches fit
within a memory budget is a resource constraint on the total memory consumed by the
weaving solution and relies on specifying a property over the entire weaving solution.
Existing regular expression and query-based pointcut languages usually do not capture
these types of rules.

Another challenge of producing this weaving constraint on the memory consumed
by the caches is that it relies on properties of both the advice objects (e.g., the mem-
ory consumed by the cache) and the joinpoint objects (e.g., the memory available to
the hosting object’s application server). Most model weaving pointcut languages allow



specifying conditions only against the properties of the target joinpoints and not over
the advice elements associated with the pointcut. To circumvent this limitation, devel-
opers must manually add up the memory consumed by the advice associated with the
pointcut and encode it into the pointcut specification’s query (e.g., find all elements
hosted by an application server with at least 30 MB of memory).

3.3 Challenge 2: Changes to the Solution Model Can Require Significant
Refactoring of the Weaving Solution

As the solution models of the application that determine theset of joinpoints change,
each manual step in Figure 4 may need to be repeated. The caching solution relies on
multiple solution models, such as the server request distribution model, the cache hit
ratio and service times model, and the PetStore software architecture model. A change
in any of these models can trigger a recalculation of the global weaving solution. Each
recalculation of the global weaving solution involves multiple complex caculations to
determine the new targets for caches. After the new cache targets are identified, the
implementation of the solution for each weaving platform, such as the C-SAW weaving
definition files, must be updated to reflect the new caching architecture.

For example, the correct weaving of caches into the Pet Storerequires considering
the back-end organization of the product database. If the database is hosted on a sep-
arate server from the Pet Store’s application server, caching product information can
significantly improve performance, as described in Section2. The cache weaving solu-
tion is no longer correct, however, if biased caches are applied to various product types
that are being retrieved from a remote database and the database is co-hosted with the
Pet Store’s application server. A Developer must then update the weaving solution to
produce a new and correct solution for the updated solution model.

As seen in Figure 5, not only are numerous manual steps required to update the
weaving solution when solution model changes occur, but each manual step can be
complex. For example, re-caculating the optimal placementof caches using a queueing
model is non-trivial. Moreover, each manual step in the process is a potential source of
errors that can produce incorrect solutions and require repeating the process. The large
numbers of solution model changes that occur in enterprise development and the com-
plexity of updating the weaving solution to respect global constraints, make manually
updating a global weaving solution hard.

3.4 Challenge 3: Existing Model Weavers Cannot Leverage a Weaving Goal to
Find an Optimal Concern Merging Solution

Another challenge of encoding global application constraints into a weaving specifica-
tion is that global constraints create situations where there are multiple correct solu-
tions. Existing model weavers do not allow situations wherethere are multiple possible
weaving solutions. Because the weaver cannot choose between weaving solutions, de-
velopers must manually deduce the correct and optimal solution to use.

Optimizing a solution bound by a set of global constraints isa computationally
intensive search process. Searching for an optimal solution involves exploring the so-
lution space (the set of solutions that adhere to the global constraints) to determine the



Fig. 5: Challenges of Updating a Weaving Solution

optimal solution. This type of optimization search can sometimes be performed man-
ually with numerical methods, such as the Simplex [37] method, but is typically hard.
In particular, each time the solution models change, developers must manually derive a
new optimal solution from scratch.

For example, to optimize the allocation of caches to DAOs in the Pet Store, devel-
opers must:

– Evaluate the back-end database configuration to determine if product, account, or
other data must be cached to reduce query latency.

– Derive from the cache deployment constraints what caches can be applied to the
system and in what combinations.

– Determine how much memory is available to the caches and how memory con-
straints restrict potential cache configurations.

– Exhaustively compare feasible caching architectures using queuing analysis to de-
rive the optimal allocation of caches to DAOs based on DAO service rates with and
without caching and with various cache hit rates.

It is hard to manually perform these complex calculations each time the solution
models change or caching constraints are modified.

4 CSP-based Model Weaving

To address the challenges described in Section 3, we have developedAspectScatter,
which is a static model weaver that can:

1. Transform a model weaving problem into a CSP and incorporate global constraints
and dependencies between pointcuts to address Challenge 1 from Section 3.2.

2. Using a constraint solver, automatically derive a weaving solution that is correct
with respect to a set of global constraints, eliminating theneed to manually update
the weaving solution when solution models change, as described in Challenge 2
from Section 3.3



3. Select an optimal weaving solution (when multiple solutions exist) with regard to a
function over the properties of the advice and joinpoints, allowing the weaver rather
than the developer to perform optimization, thereby addressing Challenge 3 from
Section 3.4.

4. Produce a platform-independentweaving model and transform it into multiple platform-
specific weaving solutions for AspectJ, C-SAW, and AMW through model trans-
formations, thus addressing the problems associated with maintaining the weaving
specification in multiple weaving platforms.

Figure 6 shows an overview of AspectScatter’s weaving approach. First, develop-

Fig. 6: Constraint-based Weaving Overview

ers describe the advice, joinpoints, and weaving constraints to AspectScatter using its
domain-specific language (DSL) for specifying aspect weaving problems with global
constraints. In Step 1, AspectScatter transforms the DSL instance into a CSP. In Step 2,
AspectScatter uses a constraint solver to derive a guaranteed correct and, if needed, opti-
mal weaving solution. In Step 3, AspectScatter transforms the solution into a platform-
independent weaving model. In Step 4, model transformations are used to transform
the platform-independent weaving model into specific implementations, such as C-
SAW weaving definition files, for each target weaving platform. Finally, in Step 5, the
platform-specific weaving models are applied to their target models or code.

The remainder of this section presents a mapping from model weaving to a CSP. By
producing a CSP for model weaving, a constraint solver can beused to deduce a correct
and in many cases optimal solution to a weaving problem.

4.1 CSP Background

A CSP is a set of variables and a set of constraints over those variables. For example,
A < B < 100 is a CSP over the integer variablesA andB. A solution to a CSP is a set
of values for the variables (called a labeling) that adheresto the set of constraints. For
example,A = 10,B= 50 is a valid labeling (solution) of the example CSP.



Solutions to CSPs are obtained by usingconstraint solvers, which are automated
tools for finding CSP solutions. Constraint solvers build a graph of the variables and
constraints and apply techniques, such as arc-consistency, to find the ranges that vari-
able values can be set to. Search algorithms then traverse the constraint network to hone
in on a valid or optimal solution.

A constraint solver can also be used to derive a labeling of a CSP that maximizes
or minimizes a specific goal function (i.e., a function over the variables). For example,
the solver could be asked to maximize the goal functionA+ B in our example CSP.
A maximal labeling of the variables with respect to this goalfunction would beA =
98,B= 99.

4.2 Mapping Cache Weaving to a CSP

Cache weaving can be used as a simple example of how a CSP can beused to solve
a weaving problem. In the following example, we make severalassumptions, such as
the hit ratio for the caches being the same for both joinpoints, to simplify the problem
for clarity. Real weaving examples involving optimal caching or other types of global
constraints are substantially more difficult to solve manually and hence motivate our
constraint solver weaving solution.

Assume that there are two caches that can be woven into an application, denoted
C1 andC2. Furthermore, assume that there are two joinpoints that the caches can be
applied to, denotedJ1 andJ2. Let there be a total of 200K of memory available to the
caches. Furthermore, the two caches are mutually exclusiveand cannot be applied to
the same joinpoint. Let the time required to service a request atJ1 be 10ms and the time
at J2 be 12ms.

Each cache hit onC1 requires 2ms to service and each cache hit onC2 requires 3ms.
All requests pass through bothJ1 andJ2 and the goal is to optimally match the caches
to joinpoints and set their sizes to minimize the total service time per request. The size
of each cache,C1sizeandC2size, determines the cache’s hit ratio. ForC1 the hit ratio is
C1size/500 and forC2 the hit ratio isC2size/700. Let’s assume that cacheC1 is woven
into joinpointJ1 andC2 is woven into joinpointJ2, the service time per request can be
calculated as

SvcTime= 2(C1size/500)+10(1−C1size/500)+3(C1size/700)+12(1−C1size/700)

With this formulation, we can derive the optimal sizes for the caches subject to the
global weaving constraint:

C1size+C2size< 200

The problem, however, is that we want to know not only the optimal cache size
but also where to weave the caches. The above formulation assumes that cacheC1 is
assigned toJ1 andC2 to J2. Thus, instead we need to introduce variables into the
service time calculation to represent the joinpoint that each cache is actually applied to
so that we do not assume an architecture of how caches are applied to joinpoints. That
is, we want to deduce not only the cache sizes but also the bestallocation of caches to



joinpoints (the caching architecture). Let the variableM jk have value 1 if thejth cache
Cj is matched to joinpointJk and 0 otherwise. We can update our service time formula
so that it does not include a fixed assignment of caches to joinpoints:

SvcTime= 2(M11∗C1size/500)+3(M21∗C2size/700)+

10(1− ((M11∗C1size/500)+ (M21∗C2size/700)))+

2(M12∗C1size/500)+3(M22∗C2size/700)+

12(1− ((M12∗C1size/500)+ (M22∗C2size/700)))

The new formulation of the response time takes into account the different caches
that could be deployed at each joinpoint. For example, the service time at joinpointJ1
is defined as:

J1SvcTime= 2(M11∗C1size/500)

+3(M21∗C2size/700)+

+10(1− ((M11∗C1size/500)+ (M21∗C2size/500)))

In this formulation the variablesM11 andM21 are influencing the service time cal-
cuation by determining if a specific cache’s servicing information is included in the
calculation. If the cacheC1 is applied toJ1, thenM11 = 1 and the cache’s service time
is included in the calculation. If the cache is not woven intoJ1, thenM11 = 0, which
zeros out the effect of the cache atJ1 since:

J1SvcTime= 2(0) . . .10(1− (0+(M21∗C2size/500)))

Thus, by calculating the optimal values of theMi j variables, we are also calculating the
optimal way of assigning the caches (advice) to the joinpoints.

To optimally weave the caches into the application, we need to derive a set of values
for the variables in the service time equation that minimizes its value. Furthermore, we
must derive a solution that not only minimizes the above equation’s value, but respects
the constraints:

C1size+C2size< 200

(M11 = 1) ⇒ (M21 = 0)

(M12 = 1) ⇒ (M22 = 0)

because the cache sizes must add up to less than the alloted memory (200K) and both
caches cannot be applied to the same joinpoint.

When the constraint solver is invoked on the CSP, the output will be the values for
theMi j variables. That is, for each Advice, i, and Joinpoint, j, thesolver will output the
value of the variableMi j , which specifies if Advice,Ai , should be mapped to Joinpoint,
B j . The Mi j variables can be viewed as a table where the rows represent the advice
elements, the columns represent the joinpoints, and the values (0 or 1) at each cell are
the solver’s solution as to whether or not a particular advice should be applied to a
specific joinpoint. Furthermore, any variables that do not have values set, such as the
cache sizes (C1sizeandC2size), will have optimal values set by the constraint solver.



Even for this seemingly simple weaving problem, deriving what joinpoints the
caches should be applied to and how big each cache should be isnot easy to deter-
mine manually. However, by creating this formulation of theweaving problems as a
CSP, we can use a constraint solver to automatically derive the optimal solution on our
behalf. The solution that the solver creates will include not only the optimal cache sizes,
but also which joinpoints each cache should be applied to.

A General Mapping of Weaving to a CSP: The previous subsection showed how
a CSP could be used to solve a weaving problem involving optimization and global
constraints. This section presents a generalized mapping from a weaving problem to
a CSP so that the technique can be applied to arbitrary model weaving problems with
global constraints.

We define a solution to a model weaving problem as a mapping of elements from
an advice setα to a joinpoint setβ that adheres to a set of constraintsγ. To represent
this mapping as a CSP, we create a table—called theweaving table—where for each
adviceAi in α and joinpointB j in β, we define a cell (i.e., a variable in the CSP)Mi j .
If the adviceAi should be applied to the joinpointB j , thenMi j = 1 (meaning the table
cell <i,j> has value 1). IfAi should not be applied toB j , thenMi j = 0. The rules for
building a weaving solution are described to the constraintsolver as constraints over
theMi j variables. An example weaving table where theProductsCache is applied to
theProductDAO is shown in Table 1.

ProductDAO ItemDAO
ProductsCache M00 = 1 M01 = 0
FishCache M10 = 0 M11 = 0

Table 1: An Example Weaving Table

Some weaving constraints are described purely in terms of the weaving table. For
example, Challenge 1 from Section 3.2 introduced the constraint that theFishCache
should only be used if theProductsCache is not applied to any component. This con-
straint can be defined in terms of a constraint over the weaving table. If theFishCache
is A0 and theProductsCache is A1, then we can encode this constraint as for all join-
points, j:

(
n

∑
j=0

M0 j > 0) → (
n

∑
j=0

M1 j = 0)

Some examples of dependency constraints between advice elements that can be imple-
mented as CSP constraints on the weaving table are:

Advice0 requiresAdvice1 to always be applied to the same joinpoint:

∀B j ⊂ β,(M0 j = 1) → (M1 j = 1)

Advice0 excludesAdvice1 from being applied to the same joinpoint:

∀B j ⊂ β,(M0 j = 1) → (M1 j = 0)



Advice0 requires betweenMIN . . .MAX of Advice1 . . .Advicek at the same join-
point:

∀B j ⊂ β,(M0 j = 1) → (
k

∑
i=1

Mi j ≥ MIN)∧ (
k

∑
i=1

Mi j ≤ MAX)

Advice and Joinpoint Properties Tables: Other weaving constraints must take into
account the properties of the advice and joinpoint elementsand cannot be defined purely
in terms of the weaving table. To incorporate constraints involving the properties of
the advice and joinpoints, we create two additional tables:theadvice properties table
and joinpoint properties table. Each rowPi in the advice properties table represents
the properties of the advice elementAi . The columns of the advice table represent the
different property types. Thus, the cell <i,j>, represented by the variablePAi j , contains
Ai ’s value for the property associated with thejth column. The joinpoint properties table
is constructed in the same fashion with the rows being the joinpoints (i.e., each cell is
denoted by the variablePTi j ). An example joinpoint properties table is shown in Table
2.

%Fish Requests %Bird Requests
ProductDAO 65% (PT00 = 0.65) 20% (PT01 = 0.2)
ItemDAO 17% (PT10 = 0.17) 47% (PT11 = 0.47)

Table 2: An Example Joinpoint Properties Table

Challenge 1 from Section 3.2 introduced the constraint thattheFishCache should
only be applied to theProductDAO if more than 50% (the majority) of the requests to
theProductDAO are for fish. We can use the advice and joinpoint properties tables to
encode this request distribution constraint. Let the joinpoint properties table column at
index 0 be associated with the property for the percentage ofrequests that are for Fish,
as shown in the the joinpoint properties table shown in Table2. Moreover, letA1 be the
FishCache andB0 be theProductDAO. The example request distribution constraint can
be encoded asM10 → (PT00 > 50).

4.3 Global Constraints

In enterprise systems, global constraints are often neededto limit the amount of mem-
ory, bandwidth, or CPU consumed by a weaving solution. Global constraints can nat-
urally be incorporated into the CSP model as constraints involving the entire set of
variables in the weaving table. For example, the memory constraint on the total amount
of RAM consumed by the caches, described in Challenge 1 from Section 3.2, can be
specified as a constraint on the weaving and properties tables.

Let the joinpoint property table column at index 5, as shown in Table 3, represent
the amount of free memory available on the hosting application server of each joinpoint.
Moreover, let the advice property table column at index 4, asshown in Table 4, contain



. . . RAM on Application Server
ProductDAO . . . 1024K (PT05 = 1024)
. . . . . . . . .

Table 3: An Example Joinpoint Properties Table with Available Memory

. . . RAM Consumed
ProductCache . . . 400K (PA04 = 400)
FishCache . . . 700K (PA14 = 700)

Table 4: An Example Advice Properties Table with RAM Consumption

the amount of memory consumed by each cache. The memory consumption constraint
can be specified as:

∀B j ⊂ β,(
n

∑
i=0

PAi4∗Mi j ) < PTj5

If an advice element is matched against a joinpoint, the correspondingMi j variable is
set to 1 and the advice element’s memory consumption value,PAi4, is added to the total
consumed memory on the target application server. The constraint that the consumed
memory be less than the available memory is captured by the stipulation that this sum
be< PTj5, which is the total amount of free memory available on the joinpoint’s appli-
cation server.

4.4 Joinpoint Feasibility Filtering with Regular Expressions and Queries

Some types of constraints, such as constraints that requirematching strings against
regular expressions, are more naturally represented usingexisting query and regular
expression techniques. The CSP approach to model weaving can also incorporate these
types of constraint expressions. Regular expressions, queries, and other pointcut expres-
sions that do not have dependenices can be used as an initial filtering step to explicitly
set zero values for someMi j variables. The filtering step reduces the set of feasible
joinpoints that the solver must consider when producing a weaving solution.

For example, theFishCache should only be applied to DAOs with the naming con-
vention "Product*". This rule can be captured with an existing pointcut language and
then checked against all possible joinpoints, as shown in Figure 7. For each joinpoint,
j, that the pointcut does not match, the CSP variable,Mi j , for each advice element, i,
associated with the pointcut is set to 0. Layering existing dependency-free pointcut lan-
guages as filters on top of the CSP based weaver can help to increase the number of
labeled variables provided to the solver and thus reduce solving time.

4.5 CSP-Weaving Benefits

Challenge 3 from Section 3.4 showed the need for the ability to incorporate a weaving
goal to produce an optimal weaving. Using a CSP model of a weaving problem, a
weaving goal can be specified as a function over theMi j , PAi j , andPTi j variables. Once



Fig. 7: Joinpoint Feasibility Filtering

the goal is defined in terms of these variables, the solver canbe used to derive a weaving
solution that maximizes the weaving goal. Moreover, the solver can set optimal values
for attributes of the advice elements, such as cache size.

Allowing developers to specify optimization goals for the weaver enables different
weaving solutions to be obtained that prioritize application concerns differently. For ex-
ample, the same Pet Store solution models can be used to derive caching solutions that
minimize response time at the expense of memory, balance response time and memory
consumption, or minimize the response time of particular user actions, such as adding
items to the shopping cart. To explore these various solution possibilities, developers
update the optimization function provided to AspectScatter and not the entire weaving
solution calculation process. With the manual optimization approaches required by ex-
isting model weavers, it is typically too time-consuming toevaluate multiple solution
alternatives.

Mapping aspect weaving to a CSP and using a constraint solverto derive a weaving
solution addresses Challenge 1 from Section 3.2. CSPs can naturally accomodate both
dependency constraints and complex global constraints, such as resource or schedul-
ing constraints. With existing model weaving approaches developers manually identify
and document solutions to the global weaving constraints. With a CSP formulation of
weaving, conversely, a constraint solver can perform this task automatically as part of
the weaving process.

Manual approaches to create a weaving solution for a set of constraints have nu-
merous points where errors can be introduced. When AspectScatter is used to derive a
weaving solution, the correctness of the resulting solution is assured with respect to the
weaving constraints. Moreover, in cases where there is no viable solution, AspectScatter
will indicate that weaving is not possible.

A further benefit of mapping an aspect weaving problem to a CSPis that extensive
prior research on CSPs can be applied to deriving aspect weaving solutions. Existing
research includes different approaches to finding solutions [27], incorporating soft con-
straints [40], selecting optimal solutions or approximations in polynomial time [11, 18,
39], and handling conflicting constraints. Conflict resolution has been singled out in



model weaving research as a major challenge [49]. Numerous existing techniques for
over-constrainted systems [10, 25, 46] (i.e., CSPs with conflicting constraints), such as
using higher-order constraints, can be applied by mapping model weaving to a CSP.

5 The AspectScatter DSL

Manually translating an aspect weaving problem into a CSP using the mapping pre-
sented in Section 4 is not ideal. A CSP model can accomodate global constraints and
dependencies but requires a complex mapping that must be performed correctly to pro-
duce a valid solution. Working directly with the CSP variables to specify a weaving
problem is akin to writing assembly code as opposed to Java orC++ code.

AspectScatter provides a textual DSL for specifying weaving problems and can
automatically transform instances of the DSL into the equivalent CSP model for a con-
straint solver. AspectScatter’s DSL allows developers to work at the advice/joinpoint
level of abstraction and use leverage a CSP solver for deriving a weaving solution.

The CSP formulation of an aspect weaving problem is not specific to any one par-
ticular type of joinpoint or advice. The construction and solving of the CSP is a math-
ematical manipulation of symbols representing a set of joinpoints and advice. As such,
the joinpoints could potentially be Java method invocations or model elements. In Sec-
tion 6, we discuss how these symbols are translated into platform-specific joinpoints and
advice. For this section, however, it is important to remember that we are only declar-
ing and stating the symbols and constraints that are used to build the mathematical CSP
weaving problem.

For example, in the context of the cache weaving example, there are two different
types of platform-specific joinpoints. First, there are thejoinpoints used by C-SAW,
which are types of model elements in a GME model. Second, there are AspectJ type
joinpoints, which are the invocation of various methods on the Java implementations of
theProductDAO, OrderDAO, etc. In the platform-independent model used by the CSP,
the joinpoint definitionOrderDAO is merely a symbolic definition of a joinpoint. When
the platform-specific solution is translated into a platform-specific weaving solution,
OrderDAO is mapped to a model element in the GME model used by C-SAW and an
invocation of a query method on the Java implementation of theOrderDAO.

The basic format for an AspectScatter DSL instance is shown below:

ADVICE_1_ID
{
(DIRECTIVE;)*

}
...
ADVICE_N_ID
{
(DIRECTIVE;)*

}
JOINPOINT_1_ID
{
(VARIABLENAME=EXPRESSION;)*

}
...
JOINPOINT_N_ID
{
(VARIABLENAME=EXPRESSION;)*

}



TheJOINPOINT declaration specifies a joinpoint, an elementB j ⊂ β, thatADVICE
elements can be matched against. TheJOINPOINT_ID is the identifier, such as "Or-
derDAO," that is given as a symbolic name for the joinpoint. EachJOINPOINT element
contains one or more property declarations in the form ofVARIABLENAME=EXPRESSION.
The columns for the joinpoint properties table are created by traversing all of the
JOINPOINT declarations and creating columns for the set ofVARIABLENAMEs. The
EXPRESSION that aJOINPOINT specifies for aVARIABLENAME becomes the entry for
thatJOINPOINT’s row in the specifiedVARIABLENAME column,PTi j .

EachADVICE declaration specifies an advice element that can be matched against
the set ofJOINPOINT elements, an elementAi ⊂ α. TheDIRECTIVES within the advice
element specify the constraints that must be upheld by the weaving solution produced
by AspectScatter and the properties of theADVICE element (values for thePAi j vari-
ables). The directives available in AspectScatter are shown in Table 5.

As an example, the AspectScatter ADVICE definitions:

GenericCache
{
Excludes:FishCache;
DefineVar:CacheSize;

}
FishCache
{
}

defines two advice elements calledGenericCache andFishCAche. TheDIRECTIVEs
within theGenericCache declaration (between "{..}") specify the constraints thatmust
be upheld by the joinpoint it is associated with and the properties the advice element
defines. TheGenericCache excludes the advice elementFishCache from being ap-
plied to the same joinpoint as theGenericCache. TheGenericCache declaration also
specifies a property variable, calledCacheSize, that the weaver must determine a value
for.

Assume that theGenericCache is A2 and theFishCache is A1. The AspectScatter
specification would be transformed into: the mapping variablesM20. . .M2n, the advice
property variablesPA20. . .PA2k, an advice property table column forCacheSize, and
the CSP constraint∀B j ⊂ β,(M2 j = 1) → (M1 j = 0).

The final part of an AspectScatter DSL instance is an optionalset of global variable
definitions and an optimization goal. The global variable definitions are defined in an
element namedGlobals. Within theGlobals element, properties can be defined that
are not specific to a singleADVICE or JOINPOINT. Furthermore, theGoal directive key
word can be used within theGlobals element to define the function that the constraint
solver should attempt to maximize or minimize.



DIRECTIVE Applied To Description
Requires: ADVICE+ one or more other ADVICE elementsEnsures that all of the

specified ADVICE elements are
applied to a JOINPOINT
if the enclosing ADVICE element is

Required: (true| f alse) an ADVICE element The enclosing ADVICE element
must be applied to at least
one JOINPOINT (if true).

Excludes: ADVICE+ one or more other ADVICE elementsEnsures that none of the
specified ADVICE are
applied to the same JOINPOINT
as the enclosing ADVICE

Select: [MIN..MAX],ADVICE+ a cardinality expression and
one or more other ADVICE Ensures that at least MIN

and at most MAX of the
specified ADVICE are
mapped to the same
JOINPOINT as the enclosing ADVICE

Target: CONSTRAINT an ADVICE element Requires that CONSTRAINT
hold true for the
ADVICE and JOINPOINT’s
properties if the
ADVICE is mapped
to the JOINPOINT

Evaluate:
(ocl|groovy),
FILT ER_EXPRESSION an ADVICE element Requires that FILTER_EXPRESSION

defined in OCL or Groovy
hold true for the
ADVICE and JOINPOINT’s
properties if the
ADVICE is mapped
to the JOINPOINT

De f ineVar: VARIABLENAME
(= EXPRESSION)? a weaving problem Defines a variable.

The final value for
the variable is bound
by the weaver and
must cause the optional
EXPRESSION to evaluate
to true

De f ine: VARIABLENAME
= EXPRESSION a weaving problem Defines a variable

and sets a constant
value for it

Goal : (maximize|minimize),
VARIABLE_EXPRESSION a weaving problem Defines an expression over the

properties of ADVICE and
JOINPOINTS that should be
maximized or minimized by
the weaving

Table 5: AspectScatter DSL Directives



EXPRESSION (CONSTANT|VARIABLE_EXPRESSION) An expression
(+|− |×)
(CONSTANT|VARIABLE_EXPRESSION)

CONSTRAINT (VARIABLE_EXPRESSION|CONSTANT) Defines a constraint that must hold
(< | > | = |! = | =< | >=) true in the final weaving solution.
(VARIABLE_EXPRESSION|CONSTANT)

VARIABLE_EXPRESSION (VARIABLE_V_EXPRESSION|CONSTANT) An expression over a set of variables
(+|− |×)
(VARIABLE_V_EXPRESSION|CONSTANT)

VARIABLE_V_EXPRESSION(Target|Source).VARIABLENAME The value of the specified defined
variable (VARIABLENAME)
on a ADVICE or JOINPOINT element.
Targetspecifies that the variable should
be resolved against the JOINPOINT
matched by the enclosing ADVICE.
Sourcespecifies that the variable
should be resolved
against the enclosing
ADVICE element.

Table 6: AspectScatter DSL Expressions

The values for variables provided by the weaver are determined by labeling the CSP
for the weaving problem. For example, the global constraints for the Pet Store weaving
problem define the goal as the minimization of the response time of theItemDAO and
ProductDAO, as can be seen below:

Globals {
Define:TotalFish = 100;
Define:TotalBirds = 75;
Define:TotalOtherAnimals = 19;
Constraint:Sources.CacheSize.Sum < 1024;
Goal:minimize, ProductDAO.RequestPercentage * ProductDAO.ResponseTime +

ItemDAO.RequestPercentage * ItemDAO.ResponseTime;
}

EachDefine creates a variable in the CSP and sets its value. The variablecreated
by theDefine can then have a constraint bound to it. For example, a constraint could be
created that leveraged theTotalBirds variable declared above. An example constraint
might be(∑n

j=0M0 j > 0) → (TotalBirds< 80). This simple constraint states that the
0th advice element can only be applied to a joinpoint if thereare less than 80 birds.

TheConstraint directive adds a constraint to the CSP. In the example above,the
specification adds a constraint that the sum of the cache sizes must be less than 1024.
The statement "Sources.CacheSize.Sum" is a special AspectScatter language expres-
sion for obtaining a value from a properties table (the advice properties table), a column
(CacheSize), and an operation (summation). AssumingCacheSize is the 0th column
in the advice properties table, the statement adds the following constraint to the CSP:

∀B j ⊂ β,(
n

∑
i=0

(Mi j ∗PAi0) < 1024)

Since no explicit values for each advice element’sCacheSize is set, these will be
variables that the solver will need to find values for as part of the CSP solving process.



Because the response times of the DAOs are dependent on the size of each cache, the
CacheSize variables will be set by the weaver to minimize response time. Developers
can use the AspectScatter DSL to produce complex aspect weaving problems with both
global constraints and goals.

AspectScatter’s DSL also includes support for the filteringoperations described
in Section 4.4. Filters to restrict the potential joinpoints that an advice element can
be mapped to can be defined using an Object Constraint Language (OCL) [47] or
Groovy [26] language expression that must hold true for the advice/joinpoint mapping
(i.e., the choice of expression language is up to the user). Filters are defined via the
Evaluate directive. For example, a Groovy constraint can be used to restrict the Fish-
Cache from being applied to any order related DAOs via a regular expression constraint:

FishCache {
...
Evaluate:groovy,{!target.name.contains("Order")};

}

An OCL constraint could be used to further restrict the FishCache to only be applied
to DAOs that receive requests from a category listing page:

FishCache {
...
Evaluate:ocl,{target.requestsFrom->collect(x | x.name = ’ViewCategories.jsp’)->size() > 0};

}

As described in Section 4.4, the filter expressions defined viaEvaluate are used to
preprocess the weaving CSP and eliminate unwanted advice/joinpoint combinations.

6 AspectScatter Model Transformation Language

The result of solving the CSP is a platform-independent weaving solution that sym-
bolically defines which advice elements should be mapped to which joinpoints. This
symbolic weaving solution still needs to be translated intoa platform-specific weav-
ing model, such as an AspectJ weaving specification. The platform-specific weaving
specification can then be executed to perform the actual codeor model weaving.

Each platform-independent weaving representation of the weaving solution can
be transformed into multiple platform-specific weaving solutions, such as AspectJ,
C-SAW, or AMW specific weaving specifications. Producing a platform-independent
weaving model of the solution and transforming it into implementations for specific
tools allows AspectScatter to eliminate much of the significant manual effort required
to synchronize multiple weaving specifications across a diverse set of models, model-
ing languages, and modeling tools. For example, when the modeled request distribution
changes for the Pet Store, the C-SAW, AspectJ, and GEMS weaving specifications can
automatically be re-generated by AspectScatter, as shown in Step 4 of Figure 6.

AspectScatter’s platform-independent weaving model can be transformed into a
platform-specific model with a number of model transformation tools, such as ATL [28].
AspectScatter also includes a simple model transformationtool based on pointcut gen-
eration templates that can be used to create the platform-specific weaving model. In this



section, we show the use of the built-in transformation language in the context of the
C-SAW weaving definition files needed for the GME model.

C-SAW weaves the caching specification into the GME architecture according to
a set of weaving directives specified in a weaving definition file. The implementation
of the C-SAW weaving definition file that is used to merge caches into the architecture
model is produced from the platform-independent weaving solution model. To trans-
form the platform-independent solution into a C-SAW weaving definition file, an As-
pectScatter model transformation is applied to the solution to create C-SAWstrategies
to update model elements with caches and C-SAWaspectsto deduce the elements to
which the strategies should be applied. For each cache inserted into the GME architec-
ture model, two components must be added to the C-SAW weavingdefinition file. First,
the Strategyfor updating the GME model to include the cache and connect itto the
correct component must be created, as shown below:

strategy ProductDAOAddGenericCache( ) {
declare parentModel : model;
declare component, cache : atom;
parentModel := parent();
component := self;
cache := parentModel.addAtom("Cache", "GenericCacheForProductDAO");
parentModel.addConnection("CacheInstallation",cache,component);

}

A root Aspect andStrategy must also be created that matches the root element
of the GME model and invokes the weaving of the individual DAOcaches. The root
definitions are shown below:

aspect RootAspect()
{
rootFolder().models()->AddCaches();

}
strategy AddCaches()
{

declare parentModel : model;
parentModel := self;
parentModel.atoms("Component")->select(m|m.name() == "ProductDAO")->ProductDAOAddGenericCache ( );
....

}

For each advice/joinpoint combination, theStrategy to weave in the cache must be
created. Moreover, for each advice/joinpoint combination, a weaving instruction must
be added to the rootAddCaches strategy to invoke the advice/joinpoint specific weaving
strategy.

To create the advice/joinpoint specific cache weaving strategy, an AspectScatter
template can be created, as follows:

#advice[*](for-each[list=targets]){#
strategy ${value}Add${advice}Cache( ) {

declare parentModel : model;
declare component, cache : atom;
parentModel := parent();
component := self;
cache := parentModel.addAtom("Cache", "${advice}CacheFor${value}");
parentModel.addConnection("CacheInstallation",cache,component);

}
#}#



The template defines that for all advice elements matched against joinpoints
"advice[∗]", iterate over the joinpoints that each advice element is applied to
"for-each[list=targets]", and create a copy of the template code between "{#"
and "#}" for each target joinpoint. Moreover, each copy of the template has the name
of the advice element and target element inserted into the placeholders "${advice}" and
"${value}", respectively. The "${advice}" placeholder isfilled with the symbolic name
of the advice element from itsADVICE declaration in the AspectScatter DSL instance.

The "${value}" placeholder is the symbolic name of the joinpoint, also obtained
from its definition in the AspectScatter DSL instance, that the advice element has been
mapped to. The properties of an advice element can also be referred to using the place-
holder "${PROPERTYNAME}." For example, the propertyCacheSize of the advice el-
ement could be referred to and inserted into the template by using the placeholder
"${CacheSize}".

After deriving a weaving solution, AspectScatter uses the templates defined for C-
SAW to produce the final weaving solution for the GME model. Invoking the generated
C-SAW file inserts the caches into the appropriate points in the architecture diagram. A
final woven Pet Store architecture diagram in GME can be seen in Figure 8.

Fig. 8: The GME Architecture Model with Caches Woven in by C-SAW

With existing weaving approaches, each time the global properties, such as request
distributions change, developers must manually derive a new weaving solution. When
the properties of the solution models change, however, AspectScatter can automatically



solve for new weaving solutions, and then use model transformation to generate the
platform-specific weaving implementations, thereby addressing Challenge 2 from Sec-
tion 3.3. The CSP formulation of a weaving problem is based onthe weaving constraints
and not specific solution model properties. As long as the constraint relationships do
not change, AspectScatter can automatically re-calculatethe weaving solution and re-
generate the weaving implementations. For example, if new request distributions are
obtained, AspectScatter can re-calculate the weaving solution to accomodate the new
information. Automatically updating the weaving solutionas the solution model prop-
erties change can save substantial development effort across multiple solution model
refactorings.

7 Applying Constraint-based Weaving to the Java Pet Store

This section demonstrates the reduction in manual effort and complexity achieved by
applying AspectScatter to the Spring Java Pet Store to handle global constraints and
generate platform-specific weaving implementations. For comparison, we also applied
the existing weaving platforms C-SAW and AspectJ to the samecode base using a
manual weaving solution derivation process. The results document the manual effort
required to derive and implement a caching solution for the Pet Store’sItemDAO and
ProductDAO.

7.1 Manual Complexity Overview

It is difficult to directly compare the manual effort required to execute two different
aspect weaving processes. The problem is that there is no wayof correlating the relative
difficulty of the individual tasks of each process. Furthermore, the relative difficulty of
tasks may change depending on the developer.

Although it is difficult to quantify the relative difficulty of the individual steps, we
can define functionsM(WP) andM′(WP) to calculate the total number of manual steps
required for each process as a function of the size of the weaving problem (WP) input.
That is, as more advice elements, joinpoints, and constraints are added to the weaving
problem, how is the number of manual steps of each process impacted? What we can
show is that one process exhibits a better algorithmic O bound for the number of manual
steps as a function of the input size.

Let’s assume that each step in one process isE times harder than the steps in the
second process. This gives the formula:

E ∗Mstep= M′
step

Even if there is some unknown coefficientE, representing the extra effort of each step
in the process yieldingM′(WP), if M′(WP) posseses a better O bound, then there must
exist an input,wpi ⊂WP(WP is sorted in ascending order based on size), for which:

E ∗M′(wpi) ≤ M(wpi)



and for allwpx ⊂ (wpi+1 . . .wpn):

E ∗M′(wpx) < M(wpx)

Once the size of the weaving problem reaches sizewpi+1, even though the steps inM′

areE times more complicated than the steps inM(WP), the faster rate of growth of the
functionM(WP) makes it less efficient. If we can calculate O bounds for the number of
manual steps required by each process as a function of the size of the weaving problem,
then we can definitively show that for large enough problems,the process with the better
O bound will be better.

In order to compare the AspectScatter based approach to our original C-SAW and
AspectJ approach, we provide an example weaving problem involving global con-
straints and optimization. We apply each process to the problem to show the manual
steps involved in the two processes. Next, we calculate functionsM(WP) andM′(WP),
for the traditional and AspectScatter processes respectively, and show thatM′(WP) ex-
hibits a superior O bound.

7.2 Experimental Setup

We evaluated both the manual effort required to use the existing weaving solutions to
implement a potentially non-optimal caching solution and the effort required to derive
and implement a guaranteed optimal caching solution. By comparing the two different
processes using existing weavers, we determined how much ofthe manual effort results
from supporting multiple weaving platforms and how much results from the solution
derivation process. Both processes with existing tools were then compared to a process
using AspectScatter to evaluate the reduction in solution derivation complexity and
solution implementation effort provided by AspectScatter.

7.3 Deriving and Implementing a Non-Optimal Caching Solution with Existing
Weaving Techniques

The results for applying existing weavers to derive and implement a non-optimal caching
solution are shown in Figure 9. Each individual manual set ofsteps is associated with
an activity that corresponds to the process diagram shown inFigure 4. The results tables
contain minimum and maximum values for the number of steps and lines of code. The
implementation of each step is dependent on the solution chosen. The minimum value
assumes that only a single cache is woven into the Pet Store, whereas the maximum
value assumes every possible cache is used.

The top table in Figure 9 shows the effort required to producethe initial caching
solution and implementation for the Pet Store. In the first two steps, developers identify
and catalog the advice and joinpoint elements. Developers then pick a caching architec-
ture (which may or may not be good or optimal) that will be usedto produce a weaving
solution. In the next three steps, developers must implement the weaving solution as a
C-SAW weaving definition file. Finally, developers must update the Spring bean defini-
tion file with various directives to use AspectJ to weave the caches into the legacy Pet
Store code base.



Fig. 9: Manual Effort Required for Using Existing Model Weaving Techniques Without Caching
Optimization

The bottom table in Figure 9 documents the steps required to update the caching
architecture and weaving implementation to incorporate a change in the distribution of
request types to the Pet Store. In the first step, the developer derives a new caching
architecture. In the next 12 steps, developers remove any caches from the original C-
SAW and AspectJ implementations that are no longer used by the new solution and
implement the new caching solution using C-SAW and AspectJ.

7.4 Deriving and Implementing an Optimal Caching Solution with Existing
Weaving Techniques

Figure 10 presents the manual effort to derive and implementan optimal caching so-
lution for the Pet Store using existing weavers. The change in this experiment is that
it measures the manual effort required to derive an optimal solution for the Pet Store
by calculating the Pet Store’s response time using each potential caching architecture
and choosing the optimal one. The steps for implementing theweaving solution are
identical to those from the results presented in Figure 9.

The steps labeledDerive Optimal Caching Strategyin Figure 10 presents the man-
ual optimal solution derivation effort incorporated into this result set. First, develop-
ers must enumerate and check the correctness according to the domain constraints, or
each potential caching architecture for both theProductDAO andItemDAO. Develop-
ers must then enumerate and check the correctness of the overall caching architectures
produced from each unique combination ofProductDAO andItemDAO caching archi-
tectures. After determining the set of valid caching architectures, developers must use



Fig. 10: Manual Effort Required for Using Existing Model Weaving Techniques With Caching
Optimization

the Pet Store’s modeled request distribution, memory constraints, and response time
goals to derive the optimal cache sizes and best possible response time of each caching
architecture. Finally, developers select the optimal overall architecture and implement
it using C-SAW and AspectJ.

As shown in Figure 11, refactoring the weaving solution to accomodate the solution
model change in request type distributions forces developers to repeat the entire process.
First, they must go back and perform the optimal solution derivation process again.
After a new result is obtained, the existing solution implementations in C-SAW and
AspectJ must be refactored to mirror the new caching structure.

Fig. 11: Manual Effort Required for Using Existing Model Weaving Techniques to Refactor Op-
timal Caching Architecture

7.5 Deriving and Implementing an Optimal Caching Solution using
AspectScatter

Figure 12 contains the steps required to accomplish both theinitial implementation of
the Pet Store caching solution and the refactoring cost whenthe request distribution



Fig. 12: Manual Effort Required for Using AspectScatter With Caching Optimization

changes. In steps 1 and 2, developers use AspectScatter’s DSL to specify the caches,
joinpoints, and constraints for the weaving problem. Developers then define the weav-
ing goal, the response time of the application in terms of theproperties of the joinpoints
and advice elements woven into a solution. The goal is later used by AspectScatter to
ensure that the derived weaving solution is optimal.

The next two steps (3 and 4) require the developer to create a model transforma-
tion, using AspectScatter’s transformation templates, asdescribed in Section 6, to spec-
ify how to transform the platform-independent weaving solution into a C-SAW imple-
mentation. The approach thus represents a higher-order transformation where C-SAW
transformations are generated from more abstract transformation rules. The subsequent
three steps define a model transformation to produce the AspectJ implementation. Fi-
nally, AspectScatter is invoked to deduce the optimal solution and generate the C-SAW
and AspectJ implementations.

The bottom of Figure 12 presents the steps required to refactor the solution to acco-
modate the change in request distributions. Once the aspectweaving problem is defined
using AspectScatter’s DSL, the change in request distributions requires updating one or
both of the request distribution properties of the two joinpoints (i.e., theProductDAO
andItemDAO) in the AspectScatter DSL instance. After the properties are updated, As-
pectScatter is invoked to recalculate the optimal caching architecture and regenerate the
C-SAW and AspectJ implementations using the previously defined model transforma-
tions.

7.6 Results Analysis and Comparison of Techniques

By comparing the initial number of lines of code (shown in Figures 9-12) required to
implement the caching solution using each of the three techniques, the initial cost of



defining an AspectScatter problem and solution model transformations can be derived.
AspectScatter initially requires 81 lines of code versus between 24 and 100 for the
approach based on existing techniques. The number of lines of code required to imple-
ment the initial weaving specification grows at a rate ofO(n), wheren is the number
of advice and joinpoint specifications, for both AspectScatter and existing approaches.
The more advice and joinpoint specifications, the larger each weaving specification.

The benefit of AspectScatter’s use of model transformationsbecomes most appar-
ent by comparing the refactoring results. AspectScatter only requires the developer to
change between 1-2 lines of code before invoking AspectScatter to regenerate the C-
SAW and AspectJ implementations. Using the existing weaving approaches, the devel-
oper must change between 24-200 lines of code. Moreover, this manual effort required
by the existing approaches is incurredper solution model change. Thus, AspectScat-
ter requires a constant orO(1) number of changes per refactoring while existing ap-
proaches requireO(n) changes per refactoring.

For a single aspect weaving problem without optimization that is implemented
and solved exactly once, both AspectScatter and the manual weaving approach exhibit
roughlyO(n) growth in lines of code with respect to the size of the weavingproblem.
The more caches that need to be woven, the larger the weaving specifications have to
be for both processes. For asingle weavingin this scenario, we cannot directly show
that AspectScatter provides an improvement since it has an equivalent big O bound.

If we calculate the weaving cost overK refactorings, however, we see that As-
pectScatter exhibits a bound ofO(2K + n) = O(K + n) lines of code. ApsectScatter
requires an initial setup cost ofO(n) lines of code and then each of theK refactor-
ings requires manually changing 1-2 lines of code. The manual approach requiresO(n)
lines of code changes for each of theK refactorings because the developer may have
to completely rewrite all of the joinpoint specifications. Over K refactorings, the man-
ual process requiresO(Kn+ n) = O(Kn) lines of code changes. Thus, AspectScatter
provides a better bound,O(K + n) < O(Kn) on the rate of growth of the lines of code
changed over multiple refactorings.

When optimization is added to the scenarios, AspectScatter’s reduction in manual
complexity becomes much more pronounced. With existing approaches, each time the
weaving solution is implemented, the developer must calculate the optimal cache weav-
ing architecture. Letγ be the number of manual steps required to calculate the optimal
cache weaving architecture, then the cost of implementing the initial weaving solution
with an existing approach isO(n+ γ). The developer must implement theO(n) lines of
code for the weaving specification and derive the optimal architecture.

Since we are doing a big O analysis, we will ignore any coefficients or differences
in difficulty between a step to implement a line of code and a step in the derivation of
the optimal caching architecture. We will say thatn lines of code requiren manual steps
to implement. The next question is how the number of stepsγ grow as a function of the
size of the weaving problem. The caching optimization problem with constraints is an
instance of a mixed integer optimization problem, which is in NP, and thus has roughly
exponential complexity. Thus,γ = θn, whereθ is a constant

The overall complexity of the existing approach for the optimization scenario is
O(n+ θn). Note, this complexity bound is for solving a single instance of the weaving



problem. OverK refactorings, the complexity bound is even worse atO(n+ K(n+
θn)). With AspectScatter, the solver performs the optimizationstep on the developer’s
behalf and theθn manual steps are eliminated. When optimization is includedandK
refactorings are performed, AspectScatter shows a significantly better bound on manual
complexity than existing approaches:

O(n+K) < O(n+K(n+ θn))

One might argue that a developer would not manually derive the optimal caching
architecture by hand but would instead use some automated tool. We note, however, that
this is essentially arguing for our approach, since we are using an external tool to derive
the caching architecture and then using code generation to automatically implement the
solution. Thus, even using an external tool would still require a developer to rewrite the
weaving specification after each refactoring and would alsoadd setup cost for speci-
fying the weaving problem for the external tool and translating the results back into a
weaving solution. Our approach automates all of these stepson behalf of the developer.

A final analysis to consider is the effect of the number of weaving platforms on the
complexity of the weaving process. For both processes, the overhead of the initial setup
of the weaving solution is linearly dependent on the number of weaving platforms used.
In the experiments, AspectJ and C-SAW are used as the weavingplatforms. GivenP
weaving platforms, both processes exhibit an initial setupcomplexity ofO(Pn).

With existing processes, whenK refactorings are performed, the number of weav-
ing platforms impacts the complexity of each refactoring. Rather than simply incurring
O(n) complexity for each refactoring, developers incurO(Pn) per refactoring. This
leads to an overall complexity bound ofO(Pn+ KPn) for existing processes versus a
bound ofO(Pn+K) for AspectScatter. As we showed in the previous analyses, even for
a single weaving platform, such as AspectJ, AspectScatter reduces complexity. How-
ever, when numerous weaving platforms are used AspectScatter shows an even further
reduction in complexity.

7.7 Weaving Performance

There is no definitive rule to predict the time required to solve an arbitrary CSP. The
solution time is dependent on the types of constraints, the number of variables, the
degree of optimality required, and the initial variable values provided to the solver.
Furthermore, internally, the algorithms used by the solverand solver’s implementation
language can also significantly affect performance.

Our experience with AspectScatter indicated that the weaving process usually takes
10ms to a few seconds. For example, to solve a weaving probleminvolving the optimal
weaving of 6 caches that can be woven into any of 10 different components with fairly
tight memory constraints requires approximately 120ms on an Intel Core 2 Duo pro-
cessor with 2 gigabytes of memory. If a correct—but not necessarily optimal solution
is needed—the solving time is roughly 22ms. Doubling the available cache memory
budget essentially halves the optimal solution derivationtime to 64ms. The same prob-
lem expanded to 12 caches and 10 components requires a range from 94ms to 2,302ms
depending on the tightness (ı.e., amount of slack memory) ofthe resource constraints.



In practice, we found that AspectScatter quickly solves most weaving problems.
It is easy to produce synthetic modeling problems with poor performance, but realis-
tic model weaving examples usually have relatively limitedvariability in the weaving
process. For example, although a caching aspect could theoretically be applied to any
component in an application, this behavior is rarely desired. Instead, developers nor-
mally have numerous functional and other constraints that bound the solution space
significantly. In the Pet Store, for example, we restrict caching to the four key DAOs
that form the core of the middle-tier.

In cases where developers do encounter a poorly performing problem instance, there
are a number of potential courses of action to remedy the situation. One approach is to
relax the constraints,e.g., allow the caches to use more memory. Developers can also
improve solving speed by accepting less optimal solutions,e.g., solving for a cache
architecture that produces an average response time below acertain threshold rather
than an optimal response time. Finally, developers can try algorithmic changes, such as
using different solution space search algorithms,e.g., simulated annealing [39], greedy
randomized adaptive search [39], and genetic algorithms [39].

8 Related Work

This section compares our research on AspectScatter to related work. Section 8.1 com-
pares and constrasts AspectScatter to other model weavers.Section 8.2 compares the
CSP-based model weaving approach to other aspect-orientedmodeling techniques. Fi-
nally, Section 8.3 compares AspectScatter to other approaches for incorporating appli-
cation requirements into aspect-oriented modeling.

8.1 Model Weaving

Reddy et al. [38] propose a technique that uses model elementsignatures and com-
position directives to perform model weaving. Reddy’s approach focuses on different
challenges of model weaving and is complementary to the constraint-based weaving ap-
proach used by AspectScatter. AspectScatter focuses on incorporating and automating
the solution and optimization of global weaving constraints. Reddy’s approach, how-
ever, is targeted towards the difficulties of identifying joinpoints and correctly modify-
ing the structure of a model to perform a merger. First, modelelement signatures can
be incorporated as a CSP filtering step, as described in Section 4.4. Second, the com-
position directives developed by Reddy can be used to implement the platform-specific
weaving model produced by AspectScatter. In contrast, AspectScatter can derive and
optimize the global weaving solution, which Reddy’s techniques are not designed to
do.

Cottenier et al. [14] have developed a model weaver called the Motorola WEAVR.
The WEAVR provides complex weaving and aspect visualization capabilities for mod-
els. Although WEAVR has numerous capabilities, it is designed for a different part
of the model weaving process than AspectScatter. AspectScatter sits above multiple
weaving platforms to manage the overall global weaving solution. Motorola WEAVR,
in contrast, is a specific weaving platform used to merge models and visualize model



weaving results. The two tools are synergistic. Motoroal WEAVR is a weaving platform
that provides numerous analytic and modeling capabilities. AspectScatter is a high-level
weaver that can be used to produce weaving specifications forWEAVR. Furthermore,
WEAVR is not designed to model and solve the complex global constraints that repre-
sent the strength of AspectScatter.

8.2 Aspect-Oriented Modeling

Lahire et al. [29] motivate the need for and describe a potential solution for incorpo-
rating variability into AOM. Their work motivates some of the challenges addressed in
this paper, namely the challenge of managing variability inhow advice can be applied
to joinpoints. AspectScatter offers an implementation of asolver designed to: (1) han-
dle the solution variability presented by Lahire et al., (2)incorporate global constraints
to ensure that individual variable solution weaving decisions produce an overall correct
solution, and (3) optimally choose values for points of variability when multiple solu-
tions are possible. Lahire et al. initially explore and describe a potential solution for
capturing and handling AOM variability. AspectScatter provides a concrete approach
to handling numerous facets described by Lahire et al.

Morin et al. [36] have also developed a generic model of aspect-oriented model-
ing. Their technique generalizes joinpoints to model snippets and pointcuts to model
templates. AspectScatter also adopts a generalized view ofpointcuts and joinpoints.
AspectScatter provides global weaving constraints and optimization, whereas the tech-
niques developed by Morin et al. are for situations where there is no ambiguity in which
potential joinpoints a template should be matched against.AspectScatter automates part
of the weaving design process, the derivation of the global weaving solution, whereas
Morin et al. propose techniques to generically model how a weaving solution is applied.
Each technique is geared towards a different phase of the weaving process. AspectScat-
ter solves the weaving solution derivation challenges and Morin et al.’s techniques ad-
dress the platform-specific weaving solution implementation.

8.3 Models and Constraints

Lengyel et al. [33] present a technique for validating the correctness of model trans-
formations by tying constraints to transformation rules. Lengyel’s technique provides
a method for identifying cross-cutting constraints and refactoring them into aspects.
These techniques for capturing transformation constraints as aspects is complemen-
tary to AspectScatter. Whereas Lengyel’s techniques are designed to help maintain the
correctness of model transformations, AspectScatter is designed to automatically main-
tain the correctness of model weaving. Moreover, AspectScatter is designed to derive
solutions to constraints but Lengyel’s techniques are for checking constraints and iden-
tifying aspects. Lengyel’s techniques could be used to helpguarantee the correctness of
the transformations that AspectScatter uses to produce theplatform-specific weaving
implementations.

Baniassad et al. [7] have developed an approach to help identify aspects in designs
and trace the relationship between aspects and requirements. Their approach is related



to AspectScatter’s incorporation of global system requirements and goals into the as-
pect weaving specification. Baniassad et al.’s techniques help to identify and trace the
aspects and their relationship with requirements whereas AspectScatter is designed to
capture andsolverequirements guiding the placement of aspects into a system. Thus,
although the approaches are both related to understanding and managing how require-
ments affect aspects, the challenges that Baniassad et al. address (i.e., identification
and tracing of aspects) are different than AspectScatter’s(i.e., capture and solving of
weaving requirements and goals).

9 Concluding Remarks

A significant amount of manual effort is incurred by the inability to encode the global
application requirements into the model weaving specification and honor them dur-
ing the weaving process. This gap in existing model weavers encourages developers to
manually derive and maintain solutions to the global weaving constraints as the under-
lying solution models evolve. Moreover, developers may need to implement the global
weaving solution in the pointcut languages of multiple model weavers.

This paper describes how providing a model weaver with knowledge of the entire
set of joinpoints used during the weaving process ahead of time makes it possible to
map model weaving to a CSP and use a constraint solver to derive a weaving that can
incorporate global, dependency, and expression-based constraints. From our experience
using AspectScatter’s approach of mapping model weaving toa CSP, we have learned
that CSP-based model weaving reduces manual effort by:

1. Capturing and allowing the weaver to solve the global application constraints re-
quired to produce a weaving solution

2. Informing the weaver of the overall solution goals so thatthe weaver can derive the
best overall weaving solution with respect to a cost function and

3. Encoding using model transformations to automatically generate implementations
of the global weaving solution for each required weaving platform.

By capturing and leveraging this critical set of domain knowledge, AspectScatter
can automate the complex process of deriving weaving solutions and maintaining them
as solution models change. By applying Aspect Scatter to theJava Pet Store case study,
we showed that the CSP-based weaving approach scaled significantly better than exist-
ing approaches in terms of the number of manual weaving steps. Although this paper
has focused on cache weaving, the same techniques could be applied to other domains,
such as optimally configuring applications for mobile devices.

AspectScatter is an open-source tool available from http://www.eclipse.org/gmt/gems.
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