
Concern Separation for Adaptive QoS Modeling in
Distributed Real-Time Embedded Systems

Jeff Gray1, Sandeep Neema2, Jing Zhang3, Yuehua Lin4,

Ted Bapty2, Aniruddha Gokhale2, Douglas C. Schmidt2

1 Dept. of Computer and Information Sciences, University of Alabama at Birmingham
Birmingham AL 35294-1170

gray @ cis.uab.edu

2 Institute for Software Integrated Systems, Vanderbilt University
Nashville TN 37211

{sandeep, bapty, gokhale, schmidt} @ isis.vuse.vanderbilt.edu

3 Motorola Research
Schaumburg, IL 60196

j.zhang @ motorola.com

4Honda Manufacturing of Alabama
Lincoln, AL 35096

jane_lin @ hma.honda.com

Abstract
The development of distributed real-time and embedded (DRE) systems is often challenging
due to conflicting quality-of-service (QoS) constraints that must be explored as trade-offs
among a series of alternative design decisions. The ability to model a set of possible design
alternatives—and to analyze and simulate the execution of the representative model—helps
derive the correct set of QoS parameters needed to satisfy DRE system requirements. QoS
adaptation is accomplished via rules that specify how to modify application or middleware
behavior in response to changes in resource availability. This chapter presents a model-driven
approach for generating QoS adaptation rules in DRE systems. This approach creates high-
level graphical models representing QoS adaptation policies. The models are constructed us-
ing a domain-specific modeling language—the Adaptive Quality Modeling Language
(AQML)—which assists in separating common concerns of a DRE system via different mod-
eling views. The chapter motivates the need for model transformations to address crosscut-
ting and scalability concerns within models. In addition, a case study is presented based on
bandwidth adaptation in video streaming of unmanned aerial vehicles.

INTRODUCTION

The ability to adapt is an essential trait of distributed real-time and embedded (DRE) systems, where
quality-of-service (QoS) requirements demand a system adjust to external evironment changes in a
timely manner. A DRE system typically consists of a stack of software layers that are coupled to a
physical system (e.g., a control system within an automotive factory or avionics subsystem). Several
capabilities are needed to provide adaptability within DRE systems, including (1) the ability to ex-
press QoS requirements in some manipulatable form, (2) a mechanism to monitor important condi-
tions associated with the environment and physical system, and (3) a causal relation between the mon-

2

itoring of the environment and the specification of the QoS requirements (Karr et al., 2001). Address-
ing QoS concerns via software adaptation has a concomitant effect on the physical system, such that a
feedback loop is established between the physical parts of the system and the corresponding software.

Recent advances in middleware technologies have enabled a new generation of object-
oriented DRE systems based on platforms such as Real-time CORBA and the Real-time Specification
for Java (Dibble, 2008). Although middleware solutions promote software reuse resulting in higher
development productivity (Schantz & Schmidt, 2001), provisioning and satisfying QoS requirements,
such as predictable end-to-end latencies, remains a fundamental challenge for DRE systems, due to
their distributed nature, unpredictable resource loads, and resource sharing. Moreover, specifying and
satisfying QoS requirements in DRE systems often uses ad hoc problem-specific code optimizations,
which impede the principles of reuse and portability.

To satisfy QoS requirements in the presence of variable resource availability, programmable
QoS adaptation layers atop the middleware infrastructure have been proposed (Schantz et al., 2002).
These QoS adaptation layers implement QoS adaptation policies, which include rules for modifying
application or middleware behavior in response to a change in resource availability. The key idea be-
hind such adaptation layers is to separate concerns with respect to QoS requirements. This separation
provides improved modularization for separating QoS requirements from the functional parts of the
software.

For example, the Quality Objects (QuO) project, developed by BBN, is an adaptation layer
(Sharma et al., 2004) that extends the Object Management Group’s (OMG) Interface Definition Lan-
guage (IDL). This extension, known as the Contract Definition Language (CDL), is a textual language
that supports the specification of QoS requirements and adaptation policies in the style of a state-
machine. QuO contracts written in CDL are compiled to create stubs that are integrated into the QuO
kernel and are used to monitor and adapt the QoS parameters when the system is operational.

Common QoS Implementation Problems

Although QuO’s use of CDL works well from a software engineering perspective, there are draw-
backs to using these approaches as the sole source for systems adaptation, including:

1. The control-centric nature of the programmatic QoS adaptation extends beyond software concepts,

e.g., issues such as stability and convergence become paramount. In a DRE system, QoS is speci-
fied in software parameters, which have a significant impact on the dynamics of the overall physi-
cal system. Due to complex and non-linear dynamics, it is hard to tune the QoS parameters in an
ad hoc manner without compromising the stability of the underlying physical system. The QoS
adaptation software is, in effect, equivalent to a controller for a discrete, non-linear system. Sophis-
ticated tools are therefore needed to design, simulate, and analyze the QoS adaptation software
from a control system perspective.

2. Programmatic QoS adaptation approaches offer a lower level of abstraction, i.e., textual code-
based. For example, implementing a small change to CDL-based adaptation policies requires ma-
nual changes that are scattered across large portions of the DRE system, which complicates ensur-
ing that all changes are applied consistently. Moreover, even small changes can have far-reaching
effects on the dynamic behavior due to the nature of emergent crosscutting properties, such as
modifying the policy for adjusting communication bandwidth across a distributed surveillance sys-
tem, as shown in the case study of this chapter.

3. QoS provisioning also depends on the performance and characteristics of specific algorithms that
are fixed and cannot be modified, such as a particular scheduling algorithm or a specific communi-
cation protocol. These implementations offer fixed QoS and offer little flexibility in terms of tun-
ing the QoS. Consequently, any QoS adaptation along this dimension involves structural adapta-
tion in terms of switching implementations at run-time, which is highly complex, and in some
cases infeasible without shutting down and restarting applications and nodes. Moreover, issues of
state management and propagation, and transient mitigation, gain prominence amid such structural
adaptations. Programmatic QoS adaptation approaches often offer little or no support for specify-
ing such complex adaptations.

3

A Solution: Aspects for Supporting Model-Driven
Engineering

Addressing the challenges previously outlined requires raising the
level of abstraction for reasoning about the systemic properties of
DRE systems, including how the crosscutting QoS adaptations are
effected and how they impact different parts of the DRE system.
Model-Driven Engineering (MDE) (Bézivin et al., 2006; Schmidt,
2006) offers a promising approach to address these problems. From
a modeling perspective, expressive power in software specification
is gained from using notations and abstractions that are aligned to a
specific problem domain (Mernik et al., 2005). This domain-specific
approach can be further enhanced when graphical representations
are provided to model the domain abstractions.
 In domain-specific modeling, a design engineer describes a
system by constructing a visual model using the terminology and
concepts from a specific domain (Gray et al., 2007). Analysis can
then be performed on the model and/or the model can be synthe-
sized into an implementation. A key application area for MDE is in
DRE systems that are tightly integrated between the computational
structure of a system and its physical configuration (Sztipanovits
and Karsai, 1997), such as the so-called cyber-physical systems ty-
pified by embedded computing. In such DRE systems, MDE has
been shown to be a powerful paradigm for providing adaptability in
evolving environments.
 In this chapter, the challenges of QoS implementation are ad-
dressed by applying Aspect-Oriented Software Development
(AOSD) (Kiczales et al., 1997; Tarr et al., 1999) techniques to MDE
tools. Aspects have been effective at the programming language lev-
el to assist in modularizing concerns that were tangled within a sin-
gle module, as well as other concerns scattered throughout multiple
modules. Aspects provide a new construct to modularize such con-
cerns in a manner not possible with the primary constructs in the pa-
radigm of the development language, e.g., object-oriented languages
such as Java cannot modularize many concerns that exhibit a cross-
cutting representation. Examples of crosscutting concerns at the im-
plementation (i.e., source code) level include the canonical logging
example, systems issues such as caching and prefetching, and web
concerns like session expiration. The case study of this chapter de-
monstrates the application of aspects to MDE.
 Figure 1 shows how MDE and aspects can be used to develop a
DRE system. It involves the following three activities:
• Design. A domain-specific modeling tool is used to specify the

structural composition and behavioral semantics of the DRE
system. For example, as shown in Figure 1, the approach de-
scribed in this chapter uses the Generic Modeling Environment
(GME) to assist designers in modeling the DRE system and the
QoS adaptation policy using standardized notations, such as Sta-
techarts (Harel, 1987) and Dataflow (this is the Design phase of
Figure 1). The modeling language is partitioned among various
perspectives that allow model engineers to focus on specific re-
lated views of the design. Aspect-oriented weavers at the model-
ing level assist model engineers in rapidly changing crosscutting
properties of a model that are traditionally hard to change due to
the scattering of their specification. For example, a policy for

Sidebar 1. The Generic Mod­
eling Environment

The Generic Modeling Envi-
ronment (GME) (Lédeczi et al.,
2001) is a domain-specific model-
ing tool that provides metamode-
ling capabilities that can be confi-
gured and adapted from meta-level
specifications (representing the
modeling paradigm) that describe
the domain. GME provides a uni-
fied software architecture and
framework for creating a custo-
mized domain-specific modeling
environment (Balasubramanian et
al., 2006; Lédeczi et al., 2001). The
core components of the GME in-
frastructure are: a customizable
Generic Model Editor for creation
of multiple-view, domain-specific
models; Model Databases for sto-
rage of the created models; and, a
Model Interpretation technology
that assists in the creation of do-
main-specific, application-specific
model interpreters for transforma-
tion of models into executa-
ble/analyzable artifacts.

GME includes tools and func-
tionality to support the creation and
storage of system models, in addi-
tion to generation of executa-
ble/analyzable artifacts from these
models. In many customizable
modeling tools, including GME,
the modeling concepts to be instan-
tiated are specified in a metamode-
ling language (Karsai et al., 2004).
A metamodel of the modeling pa-
radigm is constructed that specifies
the syntax, static semantics, and
the presentation semantics of the
domain-specific modeling para-
digm. The metamodel uses a Uni-
fied Modeling Language (UML)
class diagram to capture informa-
tion about the objects that are
needed to represent the system in-
formation and the relationships be-
tween different objects. The meta-
modeling language also supports
the specification of visual presenta-
tion of the objects in the graphical
model editor (Lédeczi et al., 2001).

4

adapting bandwidth usage could span multiple models in a language whose semantics is based on
a finite state machine (FSM), as demonstrated in the case study section of this chapter.

• Synthesis. The next stage is model transformation. MDE tools provide model interpreters asso-
ciated with the domain-specific languages that can be used to traverse model instances to trans-
form them into different kinds of artifacts, such as source code, input to analysis tools or metadata
for configuration. In our example, as represented by the “Synthesis” part of Figure 1, a generator
tool synthesizes artifacts for Matlab Simulink/Stateflow® (a popular commercial simulation tool),
providing the ability to simulate and analyze the QoS adaptation policy. This tool enhances assur-
ance that the system will perform as desired without having to deploy the actual system in the
field. This generator tool has been implemented as a model interpreter for GME (Neema et al.
2002). The generator computes a mapping of the QoS adaptation policy represented in the model-
ing language into a semantically equivalent FSM representation in the Stateflow tool. In addition,
the generator constructs a closed-loop control model in Simulink, in which the generated Statef-
low model acts as the “controller,” while the underlying computational system is abstracted as the
“plant.”

Figure 1. Model-Driven Design of Adaptive QoS for DRE Systems

• Execution. The final step is run-time QoS adaptation, which is performed via feedback. In our
example, a second generator tool creates CDL specifications from the QoS adaptation models.
The generated CDL is then compiled into executable artifacts (the “Execution” phase of Figure
1). The right-side of Figure 1 shows the screen-shots taken from the execution of a military target
recognition system that was generated by a model representation using our approach. By model-
ing DRE systems at a higher level of abstraction, model engineers can evolve their designs with-
out incurring the accidental complexities of specific implementation techniques. A previous study
showed that small changes to an abstraction represented at the modeling level resulted in large
changes across the corresponding CDL representation (Neema et al., 2002).

A growing body of literature is forming around the topic of aspect modeling and is perhaps best chro-
nicled by the annual workshops on Aspect-Oriented Modeling (AOM) (www.aspect-modeling.org). A
representative selection of publications in the AOM area can be found in (Reddy et al., 2006; Stein et
al., 2006; Clarke & Baniassad, 2005), which focus on developing notational conventions that assist in
documenting concerns that crosscut a design. These notational conventions advance the efficiency of
expressing these concerns in the model. Moreover, they also have the important trait of improving tra-
ceability from design to implementation. The Motorola WEAVR (Cottenier et al., 2007) is similar to
our approach, i.e., it is a real tool for aspect modeling, rather than simply a new notation. The Motoro-

Synthesis

Execution

Design

5

la WEAVR only works with UML static diagrams, however, whereas our model weaver used in this
chapter is applicable to any modeling language.

Although current efforts do well to improve the cognizance of AOSD at the design level, they
generally tend to treat the concept of aspect-oriented modeling primarily as a specification conven-
tion. The focus has therefore been on the graphical representation, semantic underpinnings, and de-
corative attributes concerned with aspects and their representation within UML. A contribution of this
chapter is to consider AOM more as an operational task by constructing executable model weavers,
i.e., AOSD is used as a mechanism to improve the modeling task itself by providing the ability to
quantify properties across a model throughout the system modeling process (Filman & Friedman,
2000). This action is performed by utilizing a model weaver that has been constructed with the con-
cepts of domain-specific system modeling in mind. This chapter focuses attention on the Design phase
of DRE systems, as shown in Figure 1. The approach described in this chapter has benefits that are
similar to those of model-driven middleware (MDM) (Gokhale et al., 2008) and adaptive and reflec-
tive middleware (ARM) (Schantz and Schmidt, 2001). The primary contribution of the chapter is the
utilization of an aspect-oriented weaver that performs model transformations across higher level ab-
stractions to separate policy decisions that were previously scattered and tangled across the model.

VIEWPOINT MODELING FOR QoS ADAPTATION IN DRE SYSTEMS

The Adaptive Quality Modeling Language (AQML) is a GME-based modeling language that assists
in modeling key aspects of a DRE system. Each area of concern in the model is partitioned into a spe-
cific view that slices through a particular perspective of the overall model. The separation of concerns
provided by a GME view is similar in intent to previous research on viewpoints (Nuseibeh et al.,
1994) in requirements engineering. AQML defines the following three views defined in the metamo-
del (Neema et al, 2002) as follows:

1. QoS adaptation modeling, which models the adaptation of QoS properties of the DRE system.
Designers can specify the different state configurations of the QoS properties, the legal transitions
between the different state configurations, the conditions that enable these transitions (and the ac-
tions that must be performed to enact the change in state configuration), the data variables that re-
ceive and update QoS information, and the events that trigger the transitions. These properties are
modeled using an extended finite-state machine (FSM), which is useful for specifying actions in a
control-centric environment. Other Models of Computation (MoC) may be useful in different con-
texts (e.g., queuing models are useful for performance estimation).

2. Computation modeling, which models the computational aspect of a DRE system. A Dataflow
MoC is employed to specify the various computational components and their interaction. The Da-
taflow MoC is chosen because it is well-suited to a particular class of DRE systems, namely
streaming distributed multimedia application, which is the focus of this chapter. It should be
noted, however, that the approach of QoS adaptation presented in this chapter is general, and can
be composed with other MoCs for computational modeling.

3. Middleware modeling, which models the middleware services, the system monitors, and the tun-
able “knobs” (i.e., the parameters being provided by the middleware) in such a way that the para-
meters are specified for possible analysis. This category of modeling ensures the many configura-
tion parameters offered by middleware are used correctly, so the deployment of an application is
optimal rather than suboptimal due to the selection of a collection of parameters that have oppos-
ing effects or should not be used together.

The next four sub-sections describe the metamodel of each of these modeling categories and their in-
teraction in AQML. Each metamodel represents a view of the overall system and each metamodel is
linked together through interactions.

6

QoS Adaptation Modeling

Stateflow models capture the adaptive QoS behavior of DRE systems. A discrete FSM representation,
extended with hierarchy and concurrency, is provided for modeling the QoS adaptive behavior of the
system. This representation has been selected due to its scalability, universal acceptability, and ease-
of-use in modeling. Figure 2 shows the QoS adaptation view of AQML.

Figure 2. Metamodel of QoS Adaptation Modeling

The main concept in an FSM representation is a State, which defines a discretized configuration of
QoS properties. Hierarchy is enabled in the representation by allowing States to contain other States.
Attributes define the decomposition of the State. The State may be an AND state (when the state ma-
chine contained within the State is a concurrent state machine), or, the State can be an OR state (when
the state machine contained within the State is a sequential state machine). If the State does not con-
tain child States, then it is specified as a LEAF state. States are stereotyped as models in GME.

Transition objects are used to model a transition from one state to another. The attributes of
the transition object define the trigger, the guard condition, and the actions. The trigger and guard are
Boolean expressions. When these Boolean expressions are satisfied, the transition is enabled and a
state change (accompanied with the execution of the actions) takes place. Transitions are stereotyped
as a Connection in the GME tool. To denote a transition between two States, a connection has to be
made from the source state to the destination state.

In addition to states and transitions, the FSM representation includes data and events. These
can be directly sampled external signals, complex computational results, or outputs from the state ma-
chine. In the AQML, Event objects capture the Boolean event variables, and the Data objects capture
arbitrary data variables. Both the Events and Data have a Scope attribute that indicates whether an
event (or data) is either local to the state machine or is an input/output of the state machine.

Computation Modeling

This view is used to describe the computational architecture. A dataflow representation, with exten-
sions for hierarchy, has been selected for modeling computations. This representation describes com-
putations in terms of computational components and their data interactions. To manage system com-
plexity, the concept of hierarchy is used to structure the computation definition. Figure 3 shows the
computation view of the AQML.

7

Figure 3. Metamodel of Computation Architecture Modeling

The computational structure is modeled with the following classes of objects: Compounds, Alterna-
tives, and Primitives. These objects represent a computational component in a dataflow representation.
Ports are used to define the interface of these components through which the components exchange
information. Ports are specialized into InputPorts and OutputPorts.

A Primitive is a basic modeling element that represents an elementary component. A Primi-
tive maps directly to a processing component that will be implemented as a software object or a func-
tion. A Compound is a composite object that may contain Primitives or other Compounds. These ob-
jects can be connected within the compound to define the dataflow structure. Compounds provide the
hierarchy in the structural description that is necessary for managing the complexity of large designs.
An Alternative captures “design choices” – functionally equivalent designs for a rigorously defined
interface, providing the ability to model design spaces instead of a single design. The use of Alterna-
tives allows capturing discrete combinatorial design spaces in a highly compact and scalable represen-
tation. The large design space thus modeled, however, must be explored to determine the subset of de-
signs that satisfy requirements. An automated Design Space Exploration Tool (DESERT), assists the
user in performing this exploration. A detailed description of DESERT is beyond the scope of this
chapter; the interested reader is referred to (Neema et al., 2003).

An important concept relevant to QoS adaptive DRE systems is the notion of parameters,
which are the tunable “knobs” used by the adaptation mechanism to tailor the behavior of the compo-
nents so the desired QoS properties are maintained. Parameters can be contained in Compounds, Pri-
mitives, and Alternatives. The Type attribute defines whether a Parameter is read-only, write-only, or
read-write. The DataType attribute defines the data type of the parameter.

Middleware Modeling

In this view, the concerns of the middleware are modeled, which include the services and the system
conditions provided by the middleware. Example services include an Audio-Video Streaming service,
Bandwidth reservation service, Timing service, and Event service. System conditions are components
that provide quantitative diagnostic information about the middleware. Examples of these include ob-
served throughput, bandwidth, latencies, and frame-rates. Figure 4 shows the middleware modeling
view of the AQML.

8

Figure 4. Metamodel of Middleware Modeling

The Service object represents the services provided by the middleware. Services can contain parame-
ters that are the configuration points provided by the service. In addition to being tunable “knobs,” pa-
rameters play a second role as instrumentation, or probes, by providing some quantitative information
about the service. The SysCond object represents the system condition objects present in the middle-
ware layer. SysConds can also contain parameters.

We do not facilitate a detailed modeling of the middleware components or the dataflow com-
ponents because the focus of AQML is on the QoS adaptation. We model only those elements of the
dataflow and middleware that facilitate the QoS adaptation (namely, the tunable and observable Pa-
rameters).

Interaction of QoS Adaptation with Middleware and Computation Modeling

This category specifies the interaction of the previous three modeling categories, as shown in Figure
5. As described earlier, the Data/Event objects within the Stateflow model form the interface of the
state machine. Within the Computation and the Middleware views, Parameters form the control inter-
faces. The interaction of the QoS adaptation (captured in Stateflow models), and the middleware and
application (modeled in the Middleware/Computation models), is through these interfaces. The inte-
raction is modeled with the Control connection class, which connects the Data object of a State model
to a Parameter object of a Middleware/Computation model.

Figure 5. Interaction Metamodel of QoS Adaptation with Middleware/Computation Modeling

In GME, connections between objects that are not contained within the same model are specified as
references, which are equivalent to a “reference” or a “pointer” in a programming language (Karsai et
al, 2004). These are contained in the same context (model) such that a connection can be drawn be-
tween them. The StateRef, ServiceRef, and the SysCondRef objects are the reference objects that are
contained in a Compound (Computation) Model. All the views mentioned in this section partition the
concerns of a larger model space into cohesive units that make the modeling activity more managea-
ble.

9

 In addition to the physical interactions specified in the metamodel of Figure 5, there are dee-
per and indirect interactions across the different views that are not expressed in the models, yet must
be accounted for by the designer of the QoS adaptations. The aggregate QoS space of the system is in
essence a subset of the cross product of the (potentially continuous and infinite) state-space of the
Computation, the Middleware, and the Resource. The states in the QoS Adaptation aspect represent an
abstraction and partitioning of the QoS space into discrete states. Similarly, there are linkages be-
tween Computation, and Middleware, through direct utilization of APIs, scheduling of resources, and
communication. In the approach presented, some of these interactions must be accounted for in the
plant model (e.g., when simulating the QoS adaptation policies). In general, however, QoS adaptation
designers must consider these latent interactions when designing the QoS adaptation policies.

The three metamodels defined in this section correspond to specific views of a DRE system.
At the instance model level, this multidimensional view perspective provides model engineers with
multiple perspectives for separating different concerns of the model such that details not pertinent to
the modeling task at hand are abstracted into other views. Although this approach offers a valuable
modeling construct, viewpoints alone are not sufficient for capturing certain types of crosscutting
concerns, as shown later in this chapter. Before describing that issue, however, the next section intro-
duces the problem domain used in the case study of the chapter, which is built as an instance of the
AQML metamodel.

SPECIFYING QoS POLICIES FOR ADAPTATION OF VIDEO BANDWIDTH

The case study used in this chapter demonstrates an application of QoS modeling as applied to a con-
ceptual scenario involving a number of Unmanned Aerial Vehicles (UAVs) conducting surveillance,
e.g., in support of disaster relief efforts. Each UAV streams video back to a central distributor that
forwards the video on to several different displays (Loyall et al., 2001). The feedback cycle for utiliz-
ing UAVs as surveillance devices includes (1) video from each UAV is sent to the distributor that is
located in a command center located on a ground station, (2) the distributor broadcasts the video to
numerous video display hosts at the command center, (3) the video is received by each host and dis-
played to various operators, and (4) each operator at a display observes the video and sends com-
mands, when deemed necessary, to control the UAVs (Karr et al., 2001). The UAV prototype used for
our case study was developed by researchers from BBN as an integration testbed and experimental
platform for the DARPA Program Composition for Embedded Systems (PCES) project.

The concept of operation for the scenario can be summarized briefly as follows. Initially, sev-
eral UAVs are conducting surveillance in a region of interest. UAV imagery must be transmitted in
real-time to ground stations, ensuring an acceptable image quality. The latency of the transmission of
an image and its reception at the ground station must be low enough to provide a continuous update of
the region of interest as the UAVs loiter above. The available bandwidth must be shared uniformly
over all of the collaborating UAVs and each UAV must adapt its transmission rate to the available
bandwidth such that the timeliness requirement of the delivered imagery is met.

The scenario advances to the next stage when one or more of the UAVs observe a target in
their field-of-view. In this next stage of the scenario, QoS requirements evolve as the UAVs observing
the target acquire primary importance with respect to the collective goals of the system. It is required
that the UAVs observing a potential target receive preferential treatment in bandwidth distribution
such that the transmission of the critical information they observe is not delayed. All other UAVs that
are not observing a target must reduce their bandwidth usage. In this case study, attention is restricted
to just these two stages of the scenario in order to keep the description comprehensible (although there
are additional stages that exercise a broader spectrum of QoS adaptation).

In the presence of changing conditions in the environment, the fidelity of the video stream
must be maintained according to specified QoS parameters. The video must not be stale, or be af-
fected by jitter to the point that operators cannot make informed decisions. Within the BBN imple-
mentation of the QuO project, a contract assists the system developer in specifying QoS requirements
that are expected by a client and provided by a supplier. Each contract describes operating regions and
actions that must be taken when QoS measurements change.

10

A textual domain-specific language (DSL) was developed by BBN to assist in the specifica-
tion of contracts; the name of this DSL is the Contract Description Language (CDL) (Karr et al.,
2001; Schantz et al., 2002). A code generator translates the CDL into code that is integrated within the
run-time kernel of the application. The textual intention of a CDL specification is similar to the se-
mantics of a hierarchical state machine. The overall approach adopted by BBN for implementation of
QoS adaptation is aspect-oriented (Duzan et al., 2004).

Several things make the UAV case study a complex and challenging problem, including its
real-time requirements, resource constraints, and distributed nature. In addition, there are other inter-
esting observations to consider, including (1) the link between the UAVs to the host command center
is a wireless link imposing some strict bandwidth restrictions, (2) there is a need for prioritization be-
tween different video streams coming from different UAVs owing to the region of interest, (3) latency
is a higher concern than throughput because it is important to get the latest changes in the threat sce-
nario at the earliest possible time, (4) there may be a wide-variety of computational resources (e.g.,
processors, networks, switches) involved in the entire application, and (5) the scenario is highly dy-
namic, because UAVs frequently enter and leave regions of interest.

To address these complex requirements, a QoS-enabled middleware solution has been de-
signed for this application (Sharma et al., 2004). AQML was developed in response to the need for a
modeling language to represent QoS specification for the UAV application (Neema et al., 2002). The
next sub-section introduces some instances of the AQML metamodel applied to the UAV case study.

AQML Modeling of UAV Interactions

Figure 6. Top-Level Computational Components for One UAV

Figure 6 shows the top-level computational components for one UAV and its interactions. The view
shown is a dataflow diagram with interactions between the UAV adaptation controller, the middle-
ware system condition variables, and the computational components responsible for transmission of
video content. This view represents the integration of the different concerns (i.e., Qos Adaptation,
Application Computation, and Middleware), which are captured in separate diagrams and merged to-
gether in the integrated view. The box labeled SDRPipe1 represents the top-level of the hierarchical
composition of the Sender-Distributor-Receiver components that are responsible for production, dis-
tribution, and display of the video stream. The UAV_LC1 component represents the top-level of the
UAV QoS adaptation controller (detailed further in the following). The C2_GC component represents
the top-level of the Ground Station’s QoS adaptation controller, which is responsible for coordinating
between UAVs for distribution of bandwidth according to the tactical importance of each UAV.

11

This particular view reveals only a single UAV. The OTNR1, ITNR1, GTC, and TC1 are sys-
tem condition variables, which are middleware objects responsible for communicating QoS informa-
tion across different objects in a distributed system. The OTNR/ITNR represents time in region,
which keeps track of the time the UAV has been in a particular mode of operation. The TC1 and GTC
keep track of the observation of a target by the UAVs. The TC1 is a variable set by UAV1 when it
sees a target. The GTC is a logical-OR of all the TC variables, indicating if one or more of the UAVs
have observed a target. All the lines shown in the view represent flow of information among these
components. The UAV_LC1 controls the video stream parameters such as frame rate, frame size, and
image quality, which is indicated by the connections between the UAV_LC1’s and the SDRPipe1’s
appropriately named ports.

Figure 7. Concurrent States within one UAV

Figure 7 and Figure 8 show a model of the QoS-adaptive behavior of the UAVs as modeled in
AQML. Figure 7 shows the top-level behavior consisting of two concurrent states: Imagery and Op-
Mode. The OpMode state represents the operational modes of the UAV related to the observation of a
target. The Imagery state manages the adaptation of imagery transmission based on the available
bandwidth and the operational mode. Figure 8 shows the sub-states of the Imagery state.

12

Figure 8. Model of QoS Adaptation within Imagery State

In this application, the goal of QoS adaptation is to minimize the latency on the video transmission.
When the communication resources are nominally loaded, it may be possible to transmit the video
stream at the full frame rate with a minimal basic network delay. When the communication and com-
putational resources are loaded, however, the delays in transmission expand for the same frame rate
resulting in increased latencies. The adaptation scheme attempts to compensate for the increased load
by reducing the rate of transmission, thus improving the latency again.

There are several ways to reduce the transmission rate, including (1) reducing the frame rate
by dropping frames, (2) reducing the image quality per frame, or (3) reducing the frame size. Depend-
ing on the actual scenario, one or more of these situations may apply. In the example of this chapter,
dropping the frame rate is the only option considered, but other alternatives are possible, e.g., chang-
ing the video from color to black and white.

Figure 8 shows a QoS adaptation model of the UAV scenario in the AQML. The three states
NormalLoad, ExcessLoad, and HighLoad capture three different QoS configurations of the system. A
few data variables (actualFrameRate, frameRate, timeInRegion) can also be seen in this figure. These
data variables provide the state machine with sensory information about the network. At the same
time, other data variables may enact the adaptation actions that are being performed in the transitions.

The attribute window at the bottom-right corner of Figure 8 shows the trigger, guard, and ac-
tion attributes of a transition. An example guard expression is visible in the attribute window of the
figure (i.e., “actualFrameRate < 27 and actualFrameRate >= 8”). When this expression evaluates to
true, the transition is enabled and the modeled system enters the HighLoad state. An example action
expression can be seen in this figure (i.e., “frameRate = 10”). This sets the frameRate data variable to
a value of 10.

The next section provides a UAV case study modeled in AQML that uses model transforma-
tions to address challenges of modeling that frequently occur in the modeling process. The case study
highlights the benefits that model transformations provide to adapt a DRE system in the presence of
crosscutting concerns and scalability requirements.

TRANSFORMATIONS FOR RAPID EVOLUTION OF MODELS

Although viewpoints provide a valuable mechanism for managing disparate concepts within a design,
these views are not without interactions. Designers are typically responsible for maintaining consis-

13

tency among views. Moreover, maintaining this consistency is a non-trivial task as the system
evolves. Aspect modeling offers a mechanism to automate these interactions.

The Constraint-Specification Aspect Weaver (C-SAW) is a model transformation engine that
unites the ideas of aspect-oriented software development (AOSD) (Kiczales et al., 1997; Tarr et al.,
1999) with MDE to provide better modularization of model properties that are crosscutting throughout
multiple layers of a model (Gray et al., 2001; Gray et al., 2004). In the same manner that code can be
scattered across the boundaries of source modules, the same emergent behavior occurs at the model-
ing level. For example, the addition of a black box data recorder into the model of a mission compu-
ting avionics system requires modeling changes across the whole collection of model entities (Gray et
al., 2006). C-SAW is available as a GME plug-in and provides the ability to explore numerous model-
ing scenarios by considering crosscutting modeling concerns as aspects that can be inserted and re-
moved rapidly from a model. The next two sections provide examples of transformations that address
the separation of crosscutting modeling aspects and scalability issues within large models for DRE
systems.

Within the C-SAW infrastructure, the language used to specify model transformation rules
and strategies is the Embedded Constraint Language (ECL), which is an extension of the Object Con-
straint Language (OCL). ECL provides many of the common features of OCL, such as arithmetic op-
erators, logical operators, and numerous operators on collections (e.g., size, forAll, exists, select). It
also provides special operators to support model aggregates (e.g., models, atoms, attributes), connec-
tions (e.g., source, destination) and transformations (e.g., addModel, setAttribute, removeModel) that
provide access to modeling concepts that are within GME.

There are two kinds of ECL specifications: (1) a modeling specification that describes the
binding and parameterization of strategies to specific entities in a model and (2) a strategy that speci-
fies elements of computation and the application of specific properties to the model entities.1 C-SAW
interprets these specifications and transforms the input source model into the output target model. The
C-SAW web site (www.cis.uab.edu/gray/Research/C-SAW) is a repository for downloading papers,
software, and several video demonstrations that illustrate model transformation with C-SAW in GME.
The following sections provide representative examples of ECL and the concept of aspect model
weaving and model transformation applied to behavioral modeling of embedded systems.

Weaving Across Finite State Machines

When writing a specification for QoS adaptation, there typically arises one dimension of the adapta-
tion that is treated as a dependent variable. There are numerous other independent variables that are
adjusted to adapt the dependent variable according to some QoS requirement. For example, the end-
to-end latency of video stream distribution may be a dependent variable that drives the adaptation of
other independent variables (e.g., the size of a video frame, or even the video frame rate). In such cas-
es, a policy is defined that represents the process for performing QoS adaptation.

The actions prescribed by a policy often crosscut the structure of a hierarchical state machine.
Changing the policy requires modifying each location of the state machine that is affected by the poli-
cy. Elrad et al. have also reported on scenarios where state machine models are crosscutting (Elrad et
al., 2002), but their approach is notational in nature and does not utilize a weaver at the modeling lev-
el. The Motorola WEAVR (Cottenier et al., 2007) represents one of the most mature aspect modeling
implementations. The WEAVR is also focused on state machines, but is limited in application to
UML. The weaving described in this chapter can be integrated with other modeling languages.

The C-SAW weaver has been applied to the AQML language to assist in weaving properties
according to the semantics of an adaptation policy. Several strategies have been created to support the
modeling of state machines that represent the behavior of a contract. The first strategy focuses on is-
sues related to the creation of state machines and their internal transitions. The view of the model
shown in Figure 9 pertains to the dataflow of the UAV case study.

1 More details about ECL are available in (Lin, 2007).

14

Figure 9. Dataflow for UAV Prototype

The model in Figure 9 is an instance of the AQML metamodel. In this case, the latency concern is the
dependent variable that represents a system condition object whose value is monitored from the envi-
ronment. The latency is an input into a hierarchical state machine called Outer. Within Outer, there
are internal state machines that describe the adaptation of identified independent control variables
(e.g., FrameRate and Size, as shown with the dependent Latency variable in Figure 10).

Figure 10. Top-Most View of Parallel State Machine

As shown in Figure 11, there are two ways that a state machine model can be extended to address
QoS adaptation. Along one axis of extension, the addition of new dependent control variables often
can offer more flexibility in adaptation toward the satisfaction of QoS parameters. It could be the case
that other variables in addition to FrameRate and Size would help in reducing the latency, e.g., color,
video format, and compression. Figure 11a captures the intent of this extension by introducing new
control variables. It may also be the case that finer granularity of the intermediate transitions within a

15

particular state would permit better adaptation to QoS requirements. Figure 11b captures the intent of
this extension.

(a) Adding New Control Variables (b) Adding More Intermediate Transitions in States

Figure 11. Axes of Variation within a State Machine

In addition to the strategy for creating control variables and their intermediate states, an additional
strategy was written to provide assistance in changing the adaptive policy that spans across each state
machine. There could be numerous valid policies for adapting a system to meet QoS requirements.
Two possibilities are shown in Figure 12. The realization that each of these policies is scattered across
the boundaries of each participating state machine suggests that these protocols represent a type of
crosscutting concern that should be separated to provide an ability to change the policy rapidly.

(a) Priority Exhaustive (b) Zig-zag

Figure 12. Policies for Adapting to Environment

The left side of Figure 12 specifies a protocol that exhausts the effect of one independent variable
(frm_rate) before attempting to adjust another independent variable (size). The semantics of this pro-
tocol pertain to the exhaustive reduction of one variable before attempting to reduce another one. The
size variable is therefore of a higher priority in this case because it is not reduced until there is no fur-
ther reduction possible to the frame rate. The dotted-arrow in this figure indicates the order in which
the transitions fire based upon the predicate guards.
 The right side of Figure 12 represents a more equitable strategy for maintaining the latency
QoS requirement. In this protocol, a zig-zag pattern suggests that the reduction of a variable is stag-
gered with the reduction of a peer variable. Observe that Figure 12 involves only two control va-
riables. The ability to change the protocol (by hand) becomes complicated when many variables are

16

involved, or when there are numerous intermediate states. This crosscutting nature suggests that a C-
SAW strategy would be beneficial to assist in the exploration of alternative policies. Figure 13 con-
tains a strategy that supports the protocol highlighted in Figure 12a.

1 defines AddTransition, FindConnectingState, ApplyTransitions;
2
3 strategy AddTransition(stateName, guard : string;
4 prev: object; prevPri : integer)
5 {
6
7 declare pri, minVal, maxVal, avgVal : integer;
8 declare end : object;
9 declare aConnection : object;
10 declare action : string;
11
12 pri:= findAtom("Priority").getIntAttribute("InitialValue");
13
14 if(pri == prevPri + 1) then
15
16 end := self;
17 minVal := findAtom("Min").getIntAttribute("InitialValue");
18 maxVal := findAtom("Max").getIntAttribute("InitialValue");
19 avgVal := (minVal + maxVal) / 2;
20
21 action := stateName;
22 action := action + "=" + intToString(avgVal);
23
24 aConnection := parent().addConnection("Transition", end, prev);
25 aConnection.addAttribute("Guard", guard);
26 aConnection.addAttribute("Action", action);
27
28 endif;
29
30 }
31
32 strategy FindConnectingState(stateName, guard : string)
33 {
34
35 declare pri : integer;
36 declare start : object;
37
38 pri:= findAtom("Priority").getIntAttribute("InitialValue");
39 start := self;
40
41 if(pri < 4) then
42
43 parent().models("State")->
44 AddTransition(stateName, guard, start, pri);
45
46 endif;
47
48 }
49
50 strategy ApplyTransitions(stateName, guard : string)
51 {
52
53 declare theModel : object;
54
55 theModel := findModel(stateName);
56 theModel.models("State")->FindConnectingState(stateName, guard);
57
58 }

Figure 13. Latency Adaptation Transition Strategy

17

There may be several different variables that can be the focus of QoS adaptation, depending
on the contract and goals of an application. In the scenario specified in the strategy of Figure 13, a
smaller frame rate is tolerated to maintain a desired latency. The transitions between two sub-states
with different priorities will be inserted by the strategies specified in Figure 13. The strategy Apply-
Transitions in line 50 retrieves the stateName, finds out the corresponding sub-state model, and calls
another strategy “FindConnectingState” (line 32) that will then retrieve the priority of this sub-state. If
the current priority is less than 4, another strategy AddTransition will be invoked in order to insert the
transition from the current sub-state to the next sub-state with a higher priority. Line 12 through Line
14 determine the next sub-state whose priority is just 1 higher than the current state. Line 16 through
Line 26 represent the implementation for the insertion of the transition, along with associated
attributes.

As a result, the weaving of the strategy from Figure 13 into the model of Figure 10 produces
the internal view of the size state, shown in Figure 14. Each state progressively reduces the size of the
video frame. The guard condition for the selected transition appears in the lower-right side of the fig-
ure. The guard condition states that the transition fires when the latency is not at the desired level, and
also when the frame rate has been reduced to its smallest possible size.

Figure 14. Internal Transitions within the Size State

Related work on modeling aspects for DRE systems propose notations for modeling time using UML
(Zhang & Liu, 2005). Likewise, the GenERTiCA tool assists in separating various concerns of a DRE
system into aspects within UML and generating code that weaves in the non-functional concerns iden-
tified in the models (Wehrmeister et al., 2008). This related work differs from the approach described
in this chapter because they are tied to a single modeling language (i.e., UML), as opposed to a more
general approach that can be used for multiple domain-specific modeling languages. Moreover, the
tool support for weaving at the modeling level itself is not supported in these other works as available
in C-SAW.

The Virginia Embedded Systems Toolkit (VEST) (Stankovic et al., 2004)—which is also
built as a GME metamodel—is a research effort that has similar goals to the ideas presented in this
chapter. VEST supports modeling and analysis of real-time systems and introduces the notion of pre-
scriptive aspects within a design that are programming language independent. A distinction between
VEST and the aspect modeling approach presented in this section concerns the generalizabilty of the
weaving process. All the modeling aspects possible within VEST can also be specified in C-SAW, but
the type of aspect shown in Figure 13 is not possible in VEST. The structure of a prescriptive aspect is
limited to the form, “for <some conditional statement on a model property> change <other proper-
ty>,” which is comparatively less powerful than the type of model weaving shown in this chapter.

18

Scaling a Base Model to Include Multiple UAVs
In addition to the ability to capture crosscutting concerns in models as aspects, C-SAW can assist in
transformations that address scalability concerns. In this case study, all the UAVs must share band-
width and communicate with a ground station that is responsible for allocating bandwidth share to the
UAVs according to their operational modes. The behavior of the ground station, as well as its interac-
tion with each UAV, is also modeled in AQML.
 It is a relatively modest effort for a user to develop a scenario involving two UAVs that are
interacting with one ground station. A challenge arises, however, when the scenario must scale up to
production systems containing thousands of UAVs and hundreds of Ground Stations. The models and
the synthesis tools available in AQML may assist in mitigating the complexity to some extent by syn-
thesizing a large fraction of the software. A significant share of complexity would be transferred over
to model engineers who would need to build models of the larger production scenario.

1 defines Start, addUAV_r, addUAV, updateDF;
2
3 aspect Start()
4 {
5 addUAV_r(3,2);
6 }
7
8 strategy addUAV_r(max,idx: integer)
9 {
10 if (idx <= max) then
11 addUAV(idx);
12 addUAV_r(max,idx+1);
13 endif;
14 }
15
16 strategy addUAV(idx: integer)
17 {
18 rootFolder().findFolder("Dataflow").findModel("UAVDemoSystem").updateDF(idx);
19 }
20
21 strategy updateDF(idx:integer)
22 {
23 //The declaration of the local variables are omitted here
24
25 id_str := intToString(idx);
26 uav_csm := rootFolder().findFolder("Stateflow").findModel("UAV_CSM");
27 uav_ins := addInstance("State", "UAV_LC" + id_str, uav_csm);
28
29 tnr := rootFolder().findFolder("Middleware").findModel("TNR");
30 itnr_ins := addInstance("SysCond", "ITNR" + id_str, tnr);
31 otnr_ins := addInstance("SysCond", "OTNR" + id_str, tnr);
32
33 tc := rootFolder().findFolder("Middleware").findModel("TC");
34 tc_ins := addInstance("SysCond", "TC" + id_str, tc);
35
36 sdr := findModel("SDRPipe");
37 sdr_ins := addInstance("Compound", "SDRPipe" + id_str, sdr);
38
39 uins_itnr := uav_ins.findAtom("imag_tnr");
40 itins_tnr := itnr_ins.findAtom("TNR");
41 addConnection("Control", uins_itnr, itins_tnr);
42 addConnection("Control", itins_tnr, uins_itnr);
43
44 // The creations of other connections between the components are omitted
45 }

Figure 15. ECL Strategies for Replication of UAVs

19

Consider the single-UAV model of Figure 6. The difficulty of scaling a model to include ad-
ditional UAVs is rooted in the implicit relationships between a UAV and the modeled control adapta-
tion. The control logic to perform the requisite adaptation is scattered across numerous entities such
that the addition of a new UAV necessitates changes to many other locations to attach the UAV into
the model. A model transformation engine like C-SAW applies exceedingly well to this situation. The
general solution separates all the complexities of interaction into a strategy that can be reused in many
design choices to scale to larger numbers of UAVs.

Figure 15 shows the ECL strategies for inserting two additional UAVs into the modeled sys-
tem that was originally described in Figure 6. The aspect Start (Line 3) is the initiation point of the
model weaving process. The strategy addUAV_r (Line 8) recursively invokes the strategy addUAV
(Line 16) that will then call the strategy updateDF (Line 21) in order to replicate the UAV and its in-
teractions with the other components in the system. The UAV reference is created from Line 25 to
Line 27, which is followed by the creation of the related components such as “TNR” (Lines 29 to Line
31), TC (Lines 33 and 34), SDRPipe (Lines 36 and 37), as well as the connections between the UAV
and TNR (Line 39 to Line 42). Many other connections are performed in the actual strategy, but they
have been omitted here for the sake of brevity (the addition of other interactions follow similarly to
those specified here).

Figure 16. System with 3 UAVs after Weaving

As a result, Figure 16 shows the evolved system with three interacting UAVs. This model can be
compared to the original single-UAV model of Figure 6. Without the capability to separate the intent
of UAV replication, the ability to scale a model to multiple UAVs presents a manual modeling task
that is too burdensome in practice. The use of C-SAW to automate the process permits rapid explora-
tion of a base-line model in order to investigate alternative scenarios involving multiple UAVs. The
concept of adding multiple ground stations is not shown here, but would be a similar burden if left
solely to manual adaptation of a model. Other examples of scalability of these types of models for
several different domains and modeling languages are presented in (Lin et al., 2008).

Synthesis of AQML Models for Simulation and Execution

Using a model-based representation and employing generators to successfully synthesize low-level ar-
tifacts from models raises the level of abstraction and provides better tool support for analyzing the
adaptation software. Our research has yielded an approach that synthesizes adaptive contract descrip-
tions from models, which permits the creation of larger and more complex contracts than could have

20

been specified manually. The AQML modeling language has been created in GME to synthesize state
machine models into CDL contracts, and also Matlab simulation scripts. Initial results suggest an in-
crease in productivity due to (1) shortening of the design, implement, test, and iterate cycle by provid-
ing early simulation, and analysis capabilities and (2) facilitating change maintenance: minimal
changes in the weaving of properties into models can make large and consistent changes in the lower
level specifications that would not scale well using manual reconfiguration of the models. Details
about the generation process from AQML is described in (Neema et al., 2002). The following two
sub-sections provide a summary of the artifacts that are generated from AQML.

Matlab Simulation Generator
A primary goal of the modeling approach described in this chapter is to provide integration with tools
that can analyze the QoS adaptation from a control-centric viewpoint. A model interpreter for AQML
has been created that can translate the QoS adaptation specifications defined in AQML into a Simu-
link/Stateflow model. Matlab provides an API that is available in the Matlab scripting language (M-
file) for procedurally creating and manipulating Simulink/Stateflow models. The simulation generator
produces an M-file that uses the API to create Simulink/Stateflow models. Analyses are possible in
terms of the time spent in different states, the latency from the time of a change in excitation, to the
time of change in outputs in the state machine, and stability of the system. Many details of synthesis
to Matlab are documented in (Neema et al., 2002).

Generation of QoS Adaptation Code from AQML
BBN has produced a CDL compiler and a QoS adaptation kernel that can process specifications (i.e.,
contracts) expressed in CDL. Additional aspect languages have also been created by BBN to support
the adaptation effort (Duzan et al., 2004). The CDL compiler translates QoS contracts into artifacts
that can execute the adaptation specifications at run-time. The modeling efforts described in this chap-
ter build upon the BBN infrastructure to affect the adaptation specifications captured in the AQML
models, i.e., CDL specifications are generated from the AQML models and the BBN tools are used to
instantiate these adaptation instructions at run-time in a real system. Neema et al. present results that
show the situation where a simple state change within an AQML model translates into dozens of
changes that would be needed at the CDL level (Neema et al., 2002), which suggests that QoS adapta-
tion can be modeled with improved scalability when compared to an equivalent process using a tex-
tual language.

CONCLUDING REMARKS

Composition of artifacts across the software lifecycle has been the focus of several recent research ef-
forts (Batory, 2006; Gray et al., 2004; Rashid et al., 2003). The synergistic power resulting from a
combination of modeling and aspects enables rapid changes to a high-level system specification,
which can be synthesized into a simulation or implementation. This chapter described an approach
based on MDE for simulating and generating QoS adaptation software for DRE systems using model-
ing aspects. Our approach focuses on raising the level of abstraction in representing QoS adaptation
policies, and providing a control-centric design for the representation and analysis of the adaptation
software.

Our approach has been tested and demonstrated on a UAV Video Streaming application de-
scribed as a case study in this chapter. Although the case study presented a relatively simple scenario,
C-SAW enables the modeling of much larger scenarios with a high degree of variability and adapta-
bility. In our experience, the simulation capabilities have been particularly helpful in fine-tuning the
adaptation mechanism. In addition to the UAV case study presented in this chapter, the GME and C-
SAW have been applied also to Bold Stroke (Roll, 2003), which is a mission avionics computing plat-
form described further in (Gray et al., 2006) in the context of using C-SAW on GME models
representing Bold Stroke event channels.

21

Our investigation into model-driven QoS adaptation of DRE systems has led us to the follow-
ing observations, which serve as the lessons learned from this contribution:

• Separation of QoS logic from application source code: Our experience with QuO and

the UAV case study from BBN suggests that separation of QoS adaptation rules into
a textual language like CDL offers improvements over QoS adaptation that is other-
wise hard-coded directly into the application source code. By separating the QoS
adaptation from the source code, it is possible to evolve the QoS adaptation layers
more flexibly because the logic relating to each QoS concern can be found in one lo-
cation, rather than spread across multiple source files.

• Higher level modeling of QoS concerns: Although textual languages like CDL can
provide improved modularization over source code in a general-purpose program-
ming language (GPL), higher level abstractions associated with domain-specific
modeling languages offer even further improvements by assisting developers in spe-
cifying QoS concerns and their associated interactions across the components of the
underlying application. In several cases, a single modification within the AQML
modeling language was found to be equivalent to multiple changes in the correspond-
ing CDL.

• Adaptation of DRE models through model transformation and aspect weaving: There
are some modeling tasks that are traditionally associated with manual changes to the
modeling structure (e.g., concerns like the bandwidth adaptation policy and scalabili-
ty example from the case study). Such manual changes often require much clicking
and typing by the model engineer, such that the modeling task does not scale well
(e.g., modifying a single UAV to 10 UAVs would require thousands of mouse
clicks); furthermore, issues of correctness emerge when a large number of structural
changes are made to a model manually. This chapter presented a contribution toward
automated evolution of QoS modeling concerns through model transformation and
aspect weaving.

• Generation of analysis and corresponding artifacts from models: After the QoS poli-
cy has been modeled, it is desirable to simulate the QoS adaptation policy and to ana-
lyze various characteristics of the model. Model interpreters, such as those possible
within the GME, can generate the necessary files needed to transform the model re-
presentation into the format expected by other tools. Furthermore, model interpreters
can also translate the model representation into other artifacts, such as CDL and
source code in a GPL, for integration within the execution platform of a DRE system.
The contribution of this chapter is a justification for treating models as an important
artifact for describing QoS adaptation in DRE systems.

We have identified several enhancements as future areas for investigation. We plan to integrate a
symbolic model-checking tool, such as SMV (Burch et al., 1992), to enable formal reasoning about
the adaptation mechanism. With the aid of this tool, various properties can be established (e.g., live-
ness, safety, and reachability) about the state machine implementing the adaptation policy. We also
plan to strengthen the computation and middleware modeling to facilitate analysis of the application
and middleware components. The topic of testing a model transformation rule is another area that will
be explored in the future. As model transformations become a large part of the MDE process, it is de-
sirable to have a testing framework that can be used to verify the correctness of each transformation
rule. We are currently developing a GME-based testing framework to execute and compare model
transformations with C-SAW (Lin et al., 2007; Lin et al., 2005).

A summary of the benefits of concern-driven modeling are shown in Figure 17. A viewpoint
is an important concern separation technique that allows different perspectives to be modeled through
partitioning mechanisms provided by the GME tool. With viewpoints, attention can be focused on re-
lated segments of a model without being overwhelmed by details unrelated to the concern of interest.
From the base model, an aspect model weaver can be used to perform global transformations that span
the hierarchy of the base model. Aspects at the modeling level enable various design alternatives (e.g.,

22

properties related to QoS specification) to be explored rapidly. From a transformed model, techniques
from generative programming (Czarnecki & Eisenecker, 2000) can be applied to synthesize the model
into a form suitable for simulation or model checking. After verification of the models, code can be
generated that captures the execution semantics of the modeled system (along with the specified
QoS). The iterative nature of the process enables the evaluation of numerous system configurations
before actual deployment.

Figure 17. Summary of Concern-Driven QoS Modeling

ACKNOWLEDGMENTS

This work was previously supported by DARPA under the Program Composition of Embedded Sys-
tem (PCES) program and is partially supported by NSF CAREER (CCF-0643725). The authors thank
Joseph Loyall and Richard Schantz of BBN Technologies for valuable discussions and comments.

REFERENCES

Balasubramanian, K., Gokhale, A., Karsai, G., Sztipanovits, J., & Neema, S. (2006). Developing Ap-
plications Using Model-Driven Design Environments. IEEE Computer, 39(2), 33-40.

Batory, D., Sarvela, J.N., & Rauschmayer, A. (2004). Scaling Stepwise Refinement. IEEE Transac-
tions on Software Engineering, 30(6), 355-371.

Batory, D. (2006). Multilevel Models in Model-Driven Engineering, Product Lines, and Metapro-
gramming. IBM Systems Journal, 45(3), 527-540.

23

Bézivin, J., Kurtev, I., Jouault, F., & Valduriez, P. (2006). Model-based DSL Frameworks. Compa-
nion to the 21st Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA), (pp. 602-616). Portland, Oregon.

Dibble, P. (2008). Real-Time Specification for Java, Addison-Wesley.

Burch, J., Clarke, E., McMillan, K., Dill, D., & Hwang, L. (1992). Symbolic model checking: 10^20
states and beyond. Information and Computation, 98(2), 142-170.

Clarke, S. & Baniassad, E. (2005). Aspect-Oriented Analysis and Design: The Theme Approach, Ad-
dison-Wesley.

Cottenier, T., van den Berg, A., & Elrad, T. (2007) Motorola WEAVR: Aspect and Model-Driven
Engineering. Journal of Object Technology, 6(7), 51-88.

Czarnecki, K. & Eisenecker, U. (2000). Generative Programming: Methods, Tools, and Applications,
Addison-Wesley.

Duzan, G., Loyall, J., Schantz, R., Shapiro, R., & Zinky, J. (2004). Building Adaptive Distributed
Applications with Middleware and Aspects. International Conference on Aspect-Oriented Software
Development (AOSD), (pp. 66-73), Lancaster, UK.

Elrad, T., Aldawud, A., & Bader, A., (2002). Aspect-Oriented Modeling: Bridging the Gap between
Modeling and Design. Generative Programming and Component Engineering (GPCE), (pp. 189-
201), Pittsburgh, Pennsylvania.

Filman, R., & Friedman, D., (2000). Aspect-Oriented Programming is Quantification and Oblivious-
ness. OOPSLA Workshop on Advanced Separation of Concerns, Minneapolis, Minnesota.

Gokhale, A., Balasubramanian, K., Krishna, A., Balasubramanian, J., Edwards, G., Deng, G., Turkay,
E., Parsons, J., & Schmidt, D. (2008). Model-driven Middleware: A New Paradigm for Developing
Distributed Real-time and Embedded Systems. Science of Computer Programming, 73(1), 39-58.

Gray, J., Bapty, T., Neema, S., & Tuck, J. (2001). Handling Crosscutting Constraints in Domain-
Specific Modeling. Communications of the ACM, 44(10), 87-93.

Gray, J., Sztipanovits, J., Schmidt, D., Bapty, T., Neema, S., & Gokhale, A. (2004). Two-level Aspect
Weaving to Support Evolution of Model-Driven Synthesis. In Aspect-Oriented Software Develop-
ment, (pp. 681-710), Addison-Wesley.

Gray, J., Lin, Y., & Zhang, J. (2006). Automating Change Evolution in Model-Driven Engineering.
IEEE Computer, 39(2), 41-48.

Gray, J., Tolvanen, J-P., Kelly, S., Gokhale, A., Neema, S., & Sprinkle, J. (2007). Domain-Specific
Modeling. In Handbook on Dynamic System Modeling, (pp. 7-1 – 7-20), CRC Press.

Harel, D. (1987). Statecharts: A Visual Formalism for Complex Systems. Science of Computer Pro-
gramming, 8(3), 231-274.

Karr, D., Rodrigues, C., Loyall, J., Schantz, R., Krishnamurthy, Y., Pyarali, I., & Schmidt, D. (2001).
Application of the QuO Quality-of-Service Framework to a Distributed Video Application. Interna-
tional Symposium on Distributed Objects and Applications, (pp. 299-309), Rome, Italy.

24

Karsai, G., Maroti, M., Lédeczi, A., Gray, J., & Sztipanovits, J. (2004). Composition and Cloning in
Modeling and Metamodeling Languages. IEEE Transactions. on Control System Technology, 12(2),
263-278.

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J-M., & Irwin, J. (1997).
Aspect-Oriented Programming. European Conference on Object-Oriented Programming (ECOOP),
(pp. 220-242), Jyväskylä, Finland.

Lédeczi, A., Bakay, A., Maroti, M., Volgyesi, P., Nordstrom, G., Sprinkle, J., & Karsai, G. (2001).
Composing Domain-Specific Design Environments. IEEE Computer, 34(11), 44-51.

Lin, Y., Zhang, J., & Gray, J. (2005). A Framework for Testing Model Transformations. In Model-
Driven Software Development, (pp. 219-236), Springer.

Lin, Y. (2007). A Model Transformation Approach to Automated Model Evolution, Doctoral Disserta-
tion, University of Alabama at Birmingham, Department of Computer and Information Sciences,
available at http://www.cis.uab.edu/softcom/dissertations/LinYuehua.pdf

Lin, Y., Gray, J., & Jouault, F. (2007). DSMDiff: A Differentiation Tool for Domain-Specific Mod-
els. European Journal of Information Systems, 16(4), 349-361.

Lin, Y., Gray, J., Zhang, J., Nordstrom, S., Gokhale, A., Neema, S., & Gokhale, S. (2008). Model
Replication: Transformations to Address Model Scalability. Software: Practice and Experience,
38(14), 1475-1497.

Loyall, J., Schantz, R., Zinky, J., Pal, P., Shapiro, R., Rodrigues, C., Atighetchi, M., Karr, D., Gossett,
J., & Gill, C. (2001). Comparing and Contrasting Adaptive Middleware Support in Wide-Area and
Embedded Distributed Object Applications. IEEE International Conference on Distributed Compu-
ting Systems (ICDCS), (pp. 625-634), Phoenix, Arizona.

Mernik, M., Heering, J., & Sloane, A. (2005). When and How to Develop Domain-Specific Languag-
es. ACM Computing Surveys, 37(4), 316-344.

Neema, S., Bapty, T., Gray, G., & Gokhale, A. (2002). Generators for Synthesis of QoS Adaptation in
Distributed Real-Time Embedded Systems. Generative Programming and Component Engineering
(GPCE), (pp. 236-251), Pittsburgh, Pennsylvania.

Neema, S., Sztipanovits, J., Karsai, G., & Butts, K. (2003). Constraint-Based Design-Space Explora-
tion and Model Synthesis. International Conference on Embedded Software (EMSOFT), (pp. 290-
305), Philadelphia, Pennsylvania.

Nuseibeh, B., Kramer, J., & Finkelstein, A. (1994). A Framework for Expressing the Relationship Be-
tween Multiple Views in Requirements Specification. IEEE Transactions on Software Engineering,
20(10), 760-773.

Rashid, A., Moreira, A., & Araújo, J. (2003). Modularization and Composition of Aspectual
Requirements. International Conference on Aspect-Oriented Software Development (AOSD), (pp. 11-
20), Boston, Massachusetts.

Reddy, Y., Ghosh, S., France, R., Straw, G., Bieman, J., McEachen, N., Song, E., & Georg, G. (2006).
Directives for Composing Aspect-Oriented Design Class Models. Transactions on Aspect-Oriented
Software Development, 1(1), 75-105.

25

Roll, W. (2003). Towards Model-Based and CCM-Based Applications for Real-Time Systems,” In-
ternational Symposium on Object-Oriented Real-Time Distributed Computing (ISORC), (pp. 75-82),
Hokkaido, Japan.

Schantz, R., & Schmidt, D. (2001). Middleware for Distributed Systems: Evolving the Common
Structure for Network-centric Applications. In Encyclopedia of Software Engineering, John Wiley
and Sons.

Schantz, R., Loyall, J., Atighetchi, M., & Pal, P. (2002). Packaging Quality of Service Control Beha-
viors for Reuse. International Symposium on Object-oriented Real-time Distributed Computing
(ISORC), (pp. 375-385), Washington, DC.

Schmidt, D. (2006). Model-Driven Engineering. IEEE Computer, 39(2), 25-32.

Sharma, P., Loyall, J., Heineman, G., Schantz, R., Shapiro, R., & Duzan, G. (2004). Component-
Based Dynamic QoS Adaptations in Distributed Real-Time and Embedded Systems. International
Symposium on Distributed Objects and Applications (DOA), (pp. 1208-1224), Agia Napa, Cyprus.

Stankovic, J., Nagaraddi, P., Yu, Z., He, Z. & Ellis, B. (2004) Exploiting Prescriptive Aspects: A De-
sign Time Capability, International Conference on Embedded Software (EMSOFT), (pp. 165-174),
Pisa, Italy.

Stein, D., Hanenberg, S., & Unland, R. (2006). Expressing Different Conceptual Models of Join Point
Selections in Aspect-Oriented Design. International Conference on Aspect-Oriented Software Devel-
opment (AOSD), (pp. 15-26), Bonn, Germany.

Sztipanovits, J., Karsai, G. (1997). Model-Integrated Computing. IEEE Computer, 30(4), 10-12.

Tarr, P. (2003). Toward a More Piece-ful World. Generative Programming and Component Engineer-
ing (GPCE), (pp. 265-266), Erfurt, Germany.

Tarr, P., Ossher, H., Harrison, W., & Sutton, S. (1999). N Degrees of Separation: Multi-Dimensional
Separation of Concerns. International Conference on Software Engineering (ICSE), (pp. 107-119),
Los Angeles, California.

Wehrmeister, M., Freitas, E., Pereira, C., & Rammig, F. (2008). GenERTiCA: A Tool for Code Gen-
eration and Aspects Weaving. International Symposium on Object Oriented Real-Time Distributed
Computing (ISORC), (pp. 234 – 238), Orlando, Florida.

Zhang, L., & Liu, R. (2005). Aspect-oriented Real-time System Modeling Method based on UML. In-
ternational Conference on Embedded and Real-Time Computing Systems and Applications (RTAS),
(pp. 373-376), San Francisco, California.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

