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Abstract—Internet of Things (IoT) technologies are revolu-
tionizing healthcare, providing many so-called “smart health”
opportunities, ranging from remote monitoring of health statistics
to self-management of chronic conditions. This paper describes
an IoT-based approach to the management intervention of type 1
diabetes (T1D), which is a major chronic disease with significant
economic and social impact worldwide. Specifically, we focus
on the structure, functionality, and development process of
MyDay, which is an IoT-based, multi-faceted self-management
problem solving tool for pediatric T1D patients. By leveraging
IoT technologies, MyDay can connect with various devices
to integrate traditionally paper-documented physiological data
(e.g., blood glucose values) in real-time with psychosocial and
contextual data, such as mood, stress, and social activities. By
integrating relevant—but heterogeneous—data sources, MyDay
can create personalized feedback for self-awareness of factors
associated with diabetes self-management patterns and promote
data sharing and problem solving.

Iterative user-centered design cycles were used throughout the
development of MyDay to document and/or troubleshoot feasibil-
ity and technical stability, optimize feedback for effective health
communication through data visualization, identify barriers to
app use, optimize assessment, and evaluate capability of the app
as a problem solving tool. Each iterative design round identified
technical and design issues that were addressed in subsequent
rounds by incorporating user input and expertise. An in-vivo
case study and one-month pilot study of the system indicated
high feasibility and use of our IoT-based MyDay tool.

Index Terms—Type 1 diabetes; ecological momentary assess-
ment; user-centered; iterative design; feedback; data visualiza-
tion; mHealth; IoT in healthcare

I. INTRODUCTION

Emerging trends in IoT-based healthcare. Internet of
Things (IoT) technologies are enabling interworking between
computing devices embedded in everyday objects (such as
smartphones, wearables, and sensors) with themselves and
humans over the Internet to achieve useful objectives, such
as improving traffic control, monitoring food safety, and
evaluating allergic reactions to new medications [1], [2]. IoT
technologies are increasingly applied in domains like smart
cities, supply chains, and healthcare [2] to enable better
decision making and to enhance safety and productivity. For
example, IoT is driving the evolution of healthcare, providing
many smart health opportunities from remote health statistics
monitoring to chronic condition self-management [1], [3].

As personal mobile and wearable devices, as well as smart
sensors (such as motion sensors for activity tracking and

implantable biosensors for chronic disease monitoring [4])
become ubiquitous and adopted in healthcare, data related to
an individual’s health status (such as heart rate, step counts,
eating patterns, and psychosocial behavior) is more accessible
than ever in the form of IoT-based apps [3]. When these apps
are integrated with cloud computing services, they can amass
heterogeneous data for analyses and communicate insights
gleaned from the analytic results back to end users, such as
patients and healthcare professionals. As a result, loT-based
healthcare apps provide insight into treatment options specific
to an individual or a cohort with similar traits, leading to lower
cost of care and improved chronic disease self-management.

Our focus — IoT-based type 1 diabetes self-management.
Type 1 diabetes (T1D) is a chronic disease with worldwide
impact, e.g., annual costs associated with T1D are over $14
billion [5]. In the US, T1D affects over 1.25 million people,
including ~200,000 children and adolescents younger than age
20 [6]. By 2050, T1D diagnoses are projected to triple, with
~600,000 youth cases [7].

Patients with T1D must perform many self-management
tasks several times a day to avoid or delay complications.
Despite extensive (and costly) healthcare efforts, less than one-
third of T1D patients achieve target blood glucose control
levels, which are essential in reducing the risk of diabetes
complications, such as hyperglycemia and kidney disease [8].
As a consequence, T1D patients incur an estimated loss of
life-expectancy of up to 13 years [9].

Driven by the advent of IoT in healthcare, researchers
have explored various applications of smart devices in T1D
management intervention, such as subcutaneous sensors for
continuous glucose monitoring [10], [11], mobile devices for
self-management gamification and education [12], [13], wear-
ables for physical activity tracking [14], [15], and Bluetooth
devices for cheaper data transmission [16], [17]. Existing
research, however, mainly focuses on monitoring physiological
characteristics (such as blood glucose and HbAlc values) that
are directly associated with T1D. In contrast, little research
focuses on non-physiological traits, such as psychosocial be-
havior and contextual factors, that may also be relevant in
identifying T1D self-management phenotypes.

Our prior work on T1D [18]-[20] suggests the importance
of studying non-physiological traits, especially in a young
population with T1D, which is at high risk of inadequate



adherence to their diabetes regime and is also susceptible
to negative emotions, e.g., from difficulties in coping with
society and interacting with peers, which could result in blood
glucose excursions [21]. Due to the relatively broad adoption
of ToT-based devices by this population, however, a promising
approach is to leverage IoT technologies to create a system
that targets the needs of this particular patient group.

Our contribution — the MyDay IoT-based self-
management problem solving app. IoT-based devices (such
as Bluetooth-enabled glucose meters) have become common in
T1D management protocols. Key challenges remain, however,
with respect to (1) integrating real-time physiological data
(e.g., blood glucose) with behavior data and (2) communi-
cating behavioral patterns to young diabetic patients in a
manner that integrates sensibly and seamlessly with their
usage of IoT-based devices. To address these challenges, we
developed MyDay [22], [23], an IoT-based self-management
problem solving mobile tool designed to provide personalized
behavioral treatments (e.g., a just-in-time adaptive reminder
for insulin administration) for adolescents with T1D.

As shown in Figure 1, MyDay connects human expertise
with smart devices, creating a user-centered system for ado-
lescents with T1D. In particular, by combining IoT commu-
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Fig. 1. Integrating IoT Concepts, Technologies, and Human Expertise to
Create a User-Centered Self-Management App for Adolescents with T1D

nication protocols, Bluetooth BG meters, and mobile device
software/hardware components, MyDay integrates real-time
BG values, psychosocial (e.g. mood and stress) and contextual
(e.g. location) data that may be relevant in identifying self-care
phenotypes. MyDay also creates personalized feedback for
self-awareness data sharing and problem solving regarding (1)
patterns of T1D self-management and (2) how those patterns
relate to different aspects of adolescents’ daily experiences.
The MyDay app was written in Java for Android and
Objective-C for i0S. The MyDay server was written in Ruby
On Rails (v4.1) with a firewall-protected PostgreSQL database
backend, a web interface for managing users and content, and
an API for serving requests to users’ mobile devices. To collect
blood glucose data, each mobile device was paired with an
iHealth’s BG5S Bluetooth Low-Energy glucometer [16] via a

short-range Bluetooth connection and the meter’s accompa-
nying app. The MyDay server used iHealth’s open API to
communicate with iHealth’s secure cloud data storage, thereby
automating the data collection process as new BG measure-
ments were collected in real-time. All communications were
handled through secure SSL communications with mobile
connections managed with temporary authorization tokens.
Paper organization. The remainder of this paper is orga-
nized as follows: Section II provides background information
on T1D and IoT-based related research; Section III describes
the user-centered development process of MyDay that incor-
porates human expertise into technical decisions; Section IV
discusses key design considerations and technical challenges
faced, focusing on data collection and integration with IoT-
based devices and personalized feedback; Section V examines
the design and results from a case study that systematically
documented user experience with MyDay; Section VI sum-
marizes the results and feedback from a pilot study that
applied MyDay to 31 participants over a one-month period;
and Section VII presents lessons learned, clinical implications,
and future work from our research and application of MyDay.

II. BACKGROUND AND RELATED RESEARCH

This section provides an overview of TI1D and discusses
three important aspect to T1D: barriers to maintaining treat-
ment adherence, the importance of problem solving skills for
adolescents with T1D, and the ecological momentary assess-
ment data collection method. Related work on applying IoT
technologies in T1D research is also discussed and compared
with our work on MyDay.

A. Overview of Type 1 Diabetes

TID is an autoimmune disease where the body produces
little or no insulin, necessitating multiple daily injections of
insulin or insulin pump therapy for survival. A key issue for
individuals with T1D is glycemic control, where T1D patients
monitor their blood glucose (BG) levels multiple times per
day using BG meters and (less frequently) with the addition of
continuous glucose monitoring devices. A 2-3-month average
of glycosylated hemoglobin is assessed in clinics via the
HbAlc test, which is indicative of overall BG control. In-
target glycemic control is critical in delaying or avoiding
complications, both short-term (e.g., hypo- or hyperglycemia,
diabetic ketoacidosis) and long-term (e.g., retinopathy, kidney
disease, neuropathy, cardiovascular disease) [8].

In addition to monitoring BG, other related tasks performed
daily by individuals with T1D include counting carbohydrates
and insulin self-dosing and administration. Support of self-
management behaviors that increase in-target BG values is
especially important in adolescents with T1D. These behav-
iors are important not only because of the long-term health
impacts of inadequate glycemic control, but also because this
population is at high risk of struggling with adherence to their
diabetes treatment regimen [24].

Barriers to adherence. Diabetes adherence is hard due
to the frequency and complexity of self-management, e.g.,



tasks must be performed around meals, snacks, and exer-
cise. Psychosocial and environmental factors, such as loca-
tion, emotional state, social context, and other activities, can
thwart diabetes treatment adherence. Moreover, disrupted self-
management may be associated with daily living patterns, such
as time pressures during certain times of day, social context,
or specific activities like sports practice [19]. Adolescents with
T1D are also susceptible to negative emotions and difficulties
in dealing with society and interacting with others, which
could also result in poorly controlled symptoms [21].

Importance of problem solving skills. Problem solving
interventions have shown success in helping adolescents with
T1D improve their self-management practices and health
outcomes through reducing barriers to adherence [18], [19].
Successful problem solving is predicated upon accurately
identifying those barriers and patterns of behavior. Based on
previous research [18], [25]-[27], improved recognition of
how self-management is related to situational, contextual, and
psychosocial factors should provide a data-based means to
address the first step in problem solving, known as problem
orientation, problem identification, and/or problem awareness.

By guiding pattern recognition and problem awareness, My-
Day was designed to improve diabetes self-management skills.
In particular, it provides IoT-enabled personalized real-time
feedback and behavioral problem solving support. Behavioral
pattern recognition and problem awareness are cognitively
hard for adolescents due to their normative developmental
stage of higher-order executive functions, the multifactorial
nature of causation, and the repetitiveness of self-management.

Ecological Momentary Assessment (EMA). EMA is a
method for providing more accurate problem solving data
by systematically studying an individual in (or near) real-
time to assess and relate the individual’s experiences and
environment to health behaviors and outcomes [28]. EMA
helps identify novel behavior patterns through data collection
at either random or specified critical points over time [20],
[28]-[30]. By collecting assessments close in time or at the
time of events of interest, EMA helps minimize response bias
that may otherwise occur using retrospective methods [28].

Given the pervasiveness of smartphone adoption in ado-
lescents and emerging adults, momentary assessment can be
feasibly implemented via mobile and wireless technologies
and then streamed to researchers. Adolescents with T1D
perform virtually all their self-management practices outside
of a medical setting (e.g., they are expected to check their BG,
count carbohydrates, and dose insulin while at home, school,
or out with friends). To discern and address factors interfering
with appropriate diabetes self-management, potential barriers
must be identified where and when they occur. EMA is an ideal
tool for studying the interaction between person variables and
the natural environment of health behaviors [31] and has been
successfully used to study diseases like asthma, cancer, eating
disorders, and diabetes [32]-[35].

B. Related Work

A number of other studies that have applied 10T technolo-
gies in T1D intervention research are described below and
compared with our work on MyDay.

IoT-based clinical interventions. Many efforts have been
associated with clinical interventions that study the effect of
therapy and overall patient lifestyle on glucose metabolism.
Philip et al. [11] surveyed various types of sensors used in
real-time continuous glucose monitoring (RT-CGM) in youth
with T1D across different clinical studies. They observed that
RT-CGM can potentially help patients improve in metabolic
control of T1D, provided that adequate education and support
is provided on sensor therapy and the devices used.

Biester et al. [36] proposed the use of SmartGuard technol-
ogy in a sensor-augmented insulin pump to trigger an auto-
matic stop of insulin delivery based on predicted low glucose
levels. Their study documented reduced risk for hypoglycemia
in pediatric patients without increasing HbAlc. Patients must
be educated, however, against extra carbohydrate intake in
response to an alarm associated with low BG prediction to
avoid rebound hyperglycemia.

Prototype portable artificial pancreas (AP) [37], [38] have
been developed using glucose sensors, insulin pumps, and
radio-Bluetooth connections. Advanced AP systems, such as
presented by Kovatchev et al. [39], integrated smartphones
with a wireless network for data transmission and remote mon-
itoring. Short-term clinical studies of these systems suggest
safety of use in adolescents with T1D, but longer-term studies
are needed to monitor their functionality comprehensively.

IoT-based self-management improvement. Another cate-
gory of related research focuses on health monitoring systems
to provide patients with effective means for tracking and
displaying important T1D self-management variables, such as
BG, food intake, and physical activity, as seen in [40]-[42].
Recent work has involved more personalized approaches, such
as individually-tailored notifications and educational support.
For example, Li et. al. [43] proposed a predictive model by
capturing patient similarities of pooled population data to
personalize blood glucose prediction for an individual. Using
a mobile-based approach, they collected pertinent daily events,
including insulin, meals, exercise, and sleep, and implemented
the proposed prediction model as a prototype mobile applica-
tion to create personalized notifications.

Boulos et al. [12] presented a class of digital intervention in
diabetes that gamifies disease management using the Internet
together with mobile and tablet devices. Digital games utilize
social cognitive theory to increase healthy behaviors and
psychological outcomes, promoting better self-care.

The following three aspects distinguish our research on
MyDay from prior work described above:

e MyDay does not rely on continuous glucose sensors,
which are not widely used by adolescents with T1D.

e MyDay is the first to collect and integrate Bluetooth-
transmitted BG data with other relevant health and behav-
ioral data from young people with T1D all in real-time



and provide personalized feedback based on individual
BG patterns, psychosocial, and contextual settings.

e« MyDay engages health communications via insightful
and graphical feedback to help adolescents with problem
solving and improve T1D self-management.

III. ITERATIVE DESIGN PROCESS FOR THE MYDAY
I0T-BASED APP

This section describes MyDay’s user-centric design cycles
to provide a detailed workflow of how to connect IoT tech-
nologies with humans in an actual clinical study setting. This
workflow actively engages human intelligence by incorporat-
ing feedback, suggestions, and observations (e.g., what worked
or did not work in each cycle) from our multi-disciplinary
research team, adolescent participants, and parents into the
subsequent cycle. Our research team consisted of experts in
pediatric psychology, pediatric endocrinology, health commu-
nication, biomedical informatics, childrens media, and com-
puter science, collaborating to create the initial specifications
for the tool, select feasible IoT-based devices to use, prioritize
and incorporate adolescent feedback.

Table I outlines the five design cycles, each providing
technical and behavioral support and feedback subsequently
incorporated into the MyDay design iteration.

TABLE I
OVERVIEW OF FIVE MYDAY DESIGN CYCLES.

Design

Goal Feedback Obtained from

Cycle
1 Conduct rapid design feedback it- Research team
erations on paper before develop-

ment on mobile devices

2 Obtain feedback on the assessment
items, response options, and feed-
back graphics before database and
API development

Adolescent participants

3 Obtain feedback on usability, com-
prehension of the intent of the
questions, engagement, and sug-
gestions for how to improve

Adolescent participants

4 Obtain feedback on experiences us-
ing the app and an infographic-
style feedback summary of data

Adolescent participants

5 Test on-demand real-time visual Research team
feedback that integrated BG and
psychosocial-behavioral-contextual

data

A. Design Iteration 1: Concept Study

During the initial concept study of MyDay for use on mobile
devices, the team conducted several design iterations that were
reviewed by the research team, who suggested changes to
the app. Mock-ups of the main data entry home page and
examples of assessment questions are shown in Figure 2.
Several feedback graphics were explored to integrate many
influences or factors simultaneously. Complex graphics were
deemed as too complicated and replaced with simpler and
more intuitive feedback graphics to enable rapid understanding
of the depicted relationships.

Fig. 2. Initial Data Entry Screen Design of the MyDay App

Few assessments of psychosocial constructs have been vali-
dated for EMA. Self-reported psychosocial assessment instru-
ments are often multifactorial and include a number of items
that would be burdensome within a momentary assessment.
Assessment items, however, were crafted based on previous
validated approaches to the extent possible. For example,
mood was assessed using the validated two-dimensional va-
lence (negative/positive) and arousal (high/low) [44].

B. Design Iteration 2: A Working Prototype

Before committing time and resources on the software and
database, the general format for the assessment, response
options, and feedback graphics were tested with adolescents
using wireframes, which are visual guides that depict the
skeletal framework of an app and/or website. A group of six
adolescents (67% male; Age (years): M = 15.0, SD = 1.1;
HbAlc not obtained for this sample) were recruited within a
pediatric diabetes clinic. Depending on which mobile platform
teens typically used, they were shown an iOS- or Android-
version of the assessments, as shown in Figure 3.

Each teen was then led through a semi-structured interview
about the overall interface design, item language, types of
feedback and data visualizations they would like, app data
sharing (how and with whom), and their perceptions of how
they could use the data to solve diabetes-related problems.
Their feedback was incorporated into the design and used to
create functional prototypes of the MyDay app.

C. Design Iteration 3: In Vivo Testing Round 1

The first functional version of MyDay was tested by four
adolescents (50% male; Age (years): M = 15.5, SD = 1.7;
HbAlc: M = 8.0%, SD = 2.9%) recruited from the pediatric
diabetes clinic described above via clinician referral and
interest cards. Each adolescent was given a Fitbit wearable
activity tracker [45] to place around their wrist to measure
daily physical activity. The goal was to link their activity
patterns to BG changes and self-management behaviors via
Bluetooth, but these activity tracker data were not integrated
into the MyDay system due to concerns regarding feasibility
of wearable tracker use, as described in Section IV-A.



Research staff met with each adolescent to help them install
MyDay. They initially used the adolescent’s Unique Device
Identifier (a device-specific 40-character value) to create an
installation link. During subsequent rounds of testing, iPhone
and Android users could install MyDay via their respective
app stores. Participants were then shown how to use the app
and after a usage period of 8-9 days participants discussed
their experiences using the app with research staff.

Data from this round of in vivo testing were primarily qual-
itative; while the responses entered for each of the four daily
EMA entries were recorded, the main interests in this round
of feedback were (1) MyDay’s usability, (2) comprehension
of the content, (3) understanding feedback, (4) engagement
with the app, and (5) suggestions for improvement of the app.
Modifications from the first round of prototype testing were
implemented rapidly so a new round of field testing could
begin as soon as possible.

D. Design Iteration 4: In Vivo Testing Round 2

For this next iteration, eight adolescents (50% male; Age
(years): M = 15.3, SD = 1.7; HbAlc: M = 9.6%, SD = 3.2%)
were recruited using the same method. Each participant used
MyDay between 7-14 days, and Fitbit activity trackers were
given to the first five enrolled participants to wear during
participation. As in the previous round of testing, research
staff met with participants at the start of their time using the
MyDay app to introduce the study. The participants were again
interviewed by the staff at the end of their period of use to
record their experiences.

To test a range of feedback graphics simultaneously, each
participant was shown an infographic-style feedback summary
of their data from the app during their interview. This draft
summary, called ”All About Me,” was a visual representation
of aspects surrounding their diabetes self-management, such
as where they were when their BG was high, the number of
discussions they had about diabetes that week, or what barriers
were in place when they missed a BG check. A sample of an
All About Me infographic is shown in Figure 4. This and other
early feedback interfaces were ultimately transformed into the
interactive feedback screens shown in Figures 7 and 8 based
on user and parent input.

E. Design Iteration 5: Intensive Internal Testing

The remaining development of MyDay consisted of (1)
implementing the complete suite of on-demand real-time vi-
sual feedback that integrated BG and psychosocial-behavioral-
contextual data, (2) integrating the iHealth [16] API to incor-
porate Bluetooth BG meter data with meal and bedtime data
collected from MyDay, (3) creating a system for matching
BG meter data to the correct MyDay assessment, and (4)
implementing a method for users to share their data and
graphical feedback. To provide rapid feedback on the validity
of the BG data going into the system, an internal testing cycle
was conducted with staff testing their BG levels and utilizing
test solutions to indicate high and low glucose. Moreover, we
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tested the broadest range of mobile phone types and operating
system versions within a controlled testing environment.

Seven research team members (each using a different com-
bination of mobile device type, mobile platform, and operating
system version) were given the Bluetooth BG meters and
asked to submit data on a regular basis using MyDay and the
meter. Submitted values were varied to test different patterns of
emotional states and environmental factors, with standardized
glucose solutions used to simulate out-of-range BG.

Submitted data entries were retrieved from the heteroge-
neous [oT devices via Bluetooth and Wi-Fi. These data were
securely transmitted to our research staff for analysis. These
entries were also recorded manually in a paper form so the data
being displayed in the feedback could easily be compared to
what should have been there.

During this evaluation process, the team continuously tested
the accuracy of the data being returned from MyDay, the
clarity and ease of understanding of its provided graphical
feedback, and the stability of the system performance under
different potential use situations. Complex scenarios were
tested to ensure the feedback graphs were updated as intended.

For example, some research system testers did not upload
meter data for several days to see how graphs updated after the
time delay. Others neglected to submit a meal time or skipped
items within an assessment to test out various displays. This
round of internal testing resulted in a final prototype of the
MyDay system that was deemed ready for a larger-scale pilot
test, as discussed in Section VI.

IV. TECHNICAL CONSIDERATIONS AND KEY CHALLENGES

This section presents detailed design modifications based
on results from the iterations and lessons learned from the
iterative design process described in Section III. We identify
key challenges faced and mitigation solutions attempted as we
applied IoT concepts in adolescent T1D intervention via My-
Day and experimented with different visualizations to promote
adolescents’ interactions with the tool. The discussions focus
on three aspects of the system: (1) data collection of EMA
assessment, (2) real-time BG integration, and (3) providing
personalized real-time feedback. The technical specifications
of the system are descried at the end of this section.

A. Data Collection of EMA Assessment

MyDay’s administration interface provides flexible creation
of data collection content, format, frequency, and timing. Data
collection based on photos, rewards for data entry in the
form of points, and data entry notifications were administrative
features modified based on research and implementation needs.

All daily assessments were available for data entry before
or after a notification time for a full calendar day, from
midnight to midnight; early rounds of testing showed that
adolescents have highly variable daily schedules, even during
the school year. Users received four reminder notifications on
their devices per day to submit the assessments. The timing
of each notification was tailored to each individual’s indicated
approximate mealtimes and bedtime. This daily assessment

entry deadline was problematic for some users, especially over
winter and summer school breaks when they were awake past
midnight more often. During the initial 2-3 days of the proto-
col these data were monitored, and the case study participant
described in Section V was contacted for troubleshooting if
there were apparent missing data.

Each mealtime assessment asked the same set of questions.
The assessment was kept as brief as possible with the goal
of completing an assessment in less than one minute to
help maintain engagement and minimize response burden.
The fourth assessment, at the end of day, contained more
retrospective items that considered the day as a whole and
attempted to promote positive psychology.

A question was added to each mealtime assessment about
the time of the meal, to allow the system to link the correct BG
meter reading to each meal. For the bedtime assessment, the
system used the last glucose value of the day after 8:00 p.m. If
a bedtime value also matched a mealtime value (e.g., a check at
dinner after 8:00 p.m. with no later checks), the BG value was
recorded as a mealtime BG value and the bedtime assessment
for that day recorded as a missed BG check. The MyDay
system scanned for matches any time new data, EMA or BG,
were added to the server or when a new MyDay assessment
was added. The system looked for unmatched glucose values
that would fit the data entry criteria, and when new BG data
were added, it searched for MyDay assessments that did not
currently have an associated glucose reading. This process is

shown in Figure 5.
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An on-demand “Snack” assessment, which is an abbreviated
version of a mealtime assessment, could be completed an
unlimited number of times per day to gain information on
non-mealtime BG and ecological factors. An “I did not eat”
option was added to encourage participants to complete a
mealtime assessment even when a meal was not actually eaten.
In general, habitually skipped meals are a risk factor for worse
glycemic control.

Young participants were frequently unable to use the Fitbit
at the very times when they were most active. For example, a
dance instructor would not allow one adolescent to wear the
tracker during class, and a football player’s Fitbit frequently
fell off during practice. Though physical activity plays an



important role in BG patterns, the research team decided to
stop asking participants to use a Fitbit activity tracker, focus
on other potential issues that influence self-management and
glycemic control, and revisit how to better integrate exercise
issues in subsequent versions.

B. Real-time Blood Glucose Integration

A key challenge faced by technology designers, researchers,
people living with diabetes, and their families is the lack of
simple and direct access to BG data from devices [46]. Self-
reported BG logs have been shown to be inaccurate, with
individuals often misreporting values, forgetting to enter data,
omitting undesirable readings, or making up values [47]. Real-
time BG data integration into MyDay was made possible by
the iHealth BG5 Bluetooth glucometer [16], a commercially-
available Bluetooth Low-Energy meter. This glucometer elim-
inates the need for self-reported BG data by automating the
BG logging process, and is therefore a feasible smart sensor
for us to integrate into our IoT-based system.

Using the most recent version of the system, iHealth’s
relatively new meter with an open API was incorporated to
our secure server that integrated real-time BG data to provide
feedback in the MyDay app. The glucose meter connected
to an Android phone or iPhone via a short-range Bluetooth
connection. By pairing the meter to our test users’ mobile
device via Bluetooth, the accompanying meter’s app service
automatically pushed de-identified data to the iHealth secure
cloud site via a cellular or Wi-Fi data connection. When
a BG test was performed while the meter was synced to
the smartphone, the meter’s accompanying app automatically
uploaded the value to the company’s secure cloud server.

The Bluetooth meter did allow for standalone BG monitor-
ing and caching when the meter was not paired to a mobile
device. Those cached values were pushed to the company
cloud site the next time the user paired the meter. Every time
new values were updated, our system requested the meter API
to securely send the value to our MyDay server that recorded
the data to the MyDay database.

All glucose values were collected, although the MyDay as-
sessment focused on mealtimes and bedtime. To be considered
a mealtime glucose value, the MyDay system looked for the
most recent glucose reading within one hour before the user-
reported time of the meal. This window was based on the
recommendation of diabetes clinicians on the research team.
The iHealth API was used to acquire glucose readings in real
time and subsequently integrate the data into the MyDay app’s
graphs and logbook.

C. Personalized Real-Time Feedback

Upon collecting and integrating the heterogeneous data
sources, personalized feedback was created to close the loop of
the IoT system by providing intelligence back to users. MyDay
created personalized feedback to communicate patterns of BG
and how they relate to adolescents’ behavior. The ultimate goal
is to help these diabetics become aware of how and where they
could improve problems in their self-management.

TABLE II
DESCRIPTIONS OF GRAPHICAL FEEDBACK DOMAINS.

Feedback Menu
Home

Description of Graphical Feedback
Overall summary and week by week compar-
isons of low, in range, and high BGs
Badges for meeting the criteria for BGs in range,
low stress, high app use, good BG average, and
high number of BG checks; best things from the
past 7 days
Overall high BGs and by day of the week and
time of day
Overall low BGs and by day of the week and
time of day
Top 3 most frequently reported people and
places displayed with BG highs, lows, missed
BG checks, or skipped meals
High stress, low energy, and bad mood displayed
with BG highs, lows, missed BG checks, or
skipped meals
Top 3 most frequently reported barrier icons dis-
played with BG highs, lows, missed BG checks,
or skipped meals
Meals eaten with no BG check, skipped meals,
and missing app entries

Good News

Highs

Lows

People + Places

Stress, Energy, Mood

Whats Going On

Missed BG + Meals

In earlier rounds of testing, adolescent participants were
shown a sample of a draft summary “All About Me” in-
fographic during enrollment and were told that they would
receive a custom version using their own data. In obtaining it-
erative feedback from adolescents, however, the asynchronous
graphical feedback was viewed as limited in promoting en-
gagement because it was too far removed from actual events.
Individuals who used MyDay for more than one week reported
losing interest in submitting EMA assessments because they
could not see how their data trends were changing over time.

The original intention was to provide an All About Me data
summary to each user on a weekly or biweekly basis. User
feedback prompted thinking about ways to provide more im-
mediate feedback within the app via graphical communication.
Moreover, participants repeatedly commented that they would
benefit from more types of immediate and real-time feedback
regarding their data from the MyDay app. Some examples are:

1) “It would be cool if you could (see different graphs by
day).”

2) “Show (graphs) by day and kind of just scroll down to
each meal?”

3) “It would be kind of interesting to see how many times
when I was rushing, how many times I was high versus
in range versus low. Compare those contexts.”

Due to all received feedback, substantial changes were made
to MyDay’s approach to graphical feedback by integrating a
greater variety of feedback that was viewable through the app
itself. A menu with the following eight tabs was introduced:
Home, Good News, Highs, Lows, People + Places, Stress +
Energy + Mood, Whats Going On, and Missed BG + Meals.
Integration of BG values with psychosocial and emotional data
was provided as feedback within feedback in the app, and all
BG values were recorded to the MyDay logbook. After the
data from different sources were matched, the app provided
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Fig. 6. Early Screenshots of Personalized Graphical Feedback Derived from IoT Device Collection and Analysis

immediate feedback on various combinations of BG data and
relevant factors such as time of day, day of the week, social
context, physical context, and mood and stress, as described
further in Table II and shown in Figure 6.

All available BG values, as opposed to only mealtime BGs,
were used in the data visualizations when possible. Some
graphs depended on self-reported mealtime data, however, so
they were limited to those time points with self-report. With a
few exceptions (e.g., missed app entries and skipped meals),
the feedback focused on integration with BG data because it
was the most salient data to help users identify patterns in
their diabetes self-management. In particular, BG data helped
users see where they were, who they were with, how they were
feeling, or what was going on around them when they missed
BG checks or when their BGs were out of target range.

MyDay graphical feedback was a major focus for the
architecture of the app’s assessment questions and design.
The graphical information within the feedback was organized
to facilitate best practices in personalized feedback: rapid
understanding, reveal novel patterns and associations, provide
meaningful information, and provide real-time updates [48].
Participants also received feedback on how many entries they
completed in the form of points and could look at a gallery of
photos they had taken at any time. Any of the eight feedback
pages and the points, logbook, and gallery pages could be
spontaneously shared via text, email, or social network.

V. CASE STUDY

This section describes the design and results of a case study
conducted to provide in-depth in vivo data and user feedback
on MyDay. The goals of the case study were to

« cxamine the feasibility of data collection and behavioral
sampling schedule (at each meal and bedtime) over the
course of four weeks and

« explore engagement with the app and its features such as
the graphical feedback and sharing.

A 14-year-old male with T1D agreed to use the app to help
identify technical, communication, behavioral, and implemen-
tation issues for one month. Multiple relevant patterns were
identified in his use of the app and in his graphical feedback
that indicated protective and risk-related patterns.

By the end of the one-month study period, the case study
user had completed 87% (95/109) of expected entries. Eleven
of the fourteen missed entries occurred at bedtime. This user
reported going to bed after midnight most nights and forgot
to enter bedtime information before the next calendar day.

He checked his BG 70 times over one month for an average
of 2.3 checks per day and missed 42% of his expected meal-
time BG checks. The case study took place during summer, so
not surprisingly his data patterns did not change from weekday
to weekend and indicated that he was at home for every entry.
Most (58%) of his high BG values were at nighttime. Eighty
percent of his morning BGs were low, which is over three
times more often than any other time of day. He also reported
skipping most meals at breakfast (8/27) compared to lunch
(5/27) or dinner (0/27).

Regarding feedback about the app itself, this participant
reported he liked seeing the overall BG feedback on the home
page with his low, in range, and high blood sugar percentages
combined. He thought the icons used throughout the app were
easy to understand. The feedback helped him identify self-
management patterns, such as he was “always low in the
morning” and “high at dinner.” Another data pattern relevant
for problem solving was that he missed mealtime BG check
9/28 times when he had low energy. He reported that the
Stress + Energy + Mood feedback page was most interesting
because he realized stress affected his numbers and thought
the feedback in general was “really cool.”



Research staff also interviewed the case study participant’s
parent to obtain general feedback and insights regarding her
son’s use of MyDay and to explore ways that a parent and teen
spontaneously interacted about the data and app. The mother
reported that MyDay was “awesome” because it was used
on the phone, something her son always has with him, and
is a discrete way to keep his information close by. She also
reported that the MyDay app could be helpful for her son’s
awareness of self-management and problem solving around
diabetes because it was personalized and worked with his data.

After analyzing the graphical feedback in the app, the
parent and teen reported discussing how his BG values were
higher than expected and how it helped him adjust his self-
care to address that issue. The parent reported that she was
“somewhat” involved in her son’s use of the MyDay app in the
past month, e.g., they looked at the graphical feedback twice
and she reminded him to complete entries some in the first
week. When asked what she would tell another parent whose
child is going to use the app, she replied they would like it
and that it is the “the way of the future.”

VI. PiLOT STUDY

After digesting the detailed feedback from the case study
reported in Section V, we then conducted a more comprehen-
sive pilot study, which is described in this section. This pilot
consisted of 31 adolescents users of MyDay who participated
in this study for one month. After the study period, adolescents
and their parents completed interviews about MyDay.
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Fig. 7. Example Assessment Screenshots of the MyDay App Updated Based
on the Pilot Study

Eighty percent of parents found the MyDay app helpful in
creating diabetes awareness for their child. Likewise, 93% of
parents found trackers in the app useful in encouraging parent-
child collaboration about diabetes. Only 20% of teens spon-
taneously shared their tracker information with their parents,
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Fig. 8. Example Feedback Screens in the MyDay App Updated Based on the
Pilot Study

but 90% of the parents expressed their desire to receive their
child’s tracker data automatically.

Most parents observed that their teens considered the BG
feedback and graphical visualizations of data trends to be the
most valuable components of the app. Parents also provided
suggestions for improving MyDay in terms of its data visual-
izations and data sharing capabilities. The research team then
evaluated the technical feasibility of gathered feedback and
made corresponding changes to enhance the MyDay app.

Figure 7 presents example screenshots of data collection
inputs based on user feedback now incorporated within the
latest version of MyDay. The example inputs in the figure
capture the psychosocial barriers that contributed to an ado-
lescent’s pre-meal missed BG measurement and their mood
at breakfast. Figure 8 shows example feedback screens in
MyDay developed based on feedback from the pilot study.
Using illustrative bar charts with corresponding statistics,
MyDay provides clear and collective feedback to indicate the
location and social contextual factors associated with missed
BG checks. By integrating Bluetooth BG meter data, MyDay
also provides overall BG monitoring and enables weekly
comparisons of BG values, motivating the development of
problem solving skills in adolescents with T1D.

VII. CONCLUDING REMARKS

Adolescent and parent feedback and data from the iterative
design cycles and a case study showed how MyDay integrated
bio-behavioral information for real-time personalized feedback
to help adolescents with TID. MyDay represents an example
of an IoT-based, hybrid human-reported and automated data
collection system. It enabled users to predictably and regularly
schedule multiple daily momentary assessments and provided
useful insights for teens about their self-management patterns.

The case study and initial pilot study described in Sec-
tions V and VI, respectively, confirmed initial acceptability,
feasibility, and utility of MyDay in identifying novel behav-
ioral targets for problem solving. The user-centric design pro-
cess described in Section III yielded a readily accessible and
comprehensive app to help teens with T1D identify personally
relevant data patterns and behaviors that can positively impact



their self-management practices and BG values. As next steps,
the app and interactive feedback will be further integrated into
a behavioral problem solving support system.

Based on our experience applying IoT technologies to
create the MyDay T1D self-management tool, we learned the
following lessons:

« Integrative physiological and behavioral feedback using
real-time IoT technology enhanced the potential impact
of MyDay’s feedback on health behaviors

o IoT allowed MyDay to support just-in-time communica-
tion, thereby enhancing awareness and behavior change.
Ultimately, these capabilities will help (re)invigorate the
science of human feedback in healthcare

o The evidence base for, and potential of, momentary
assessment is growing rapidly. With the adoption of
ubiquitous IoT computing devices (e.g., mobile, wearable
devices and smart sensors) and Internet connections (e.g.,
Wi-Fi and Bluetooth), these data are becoming much
more accessible and affordable.

Our work with MyDay is ongoing and we are in the process
of developing a means to offset the self-report burden by
using background data collection, proxy variables or physi-
ological assessment for some relevant factors like stress, GPS
for location, more unobtrusive sensors for physical activity
tracking (as we have demonstrated in another mHealth case
study [49], [50]), or inference of social context using multiple
time-location variables. The validity and reliability of many
proxy variables have not been well established. It is also likely
that a relevant core set of human experiences will never lend
themselves to accurate assessment using unobtrusive proxy
variables or triangulation using background data from IoT
devices.

Future development and evaluation work planned for My-
Day include (1) integration and experimental testing of the
app and data within a problem solving system to support data
interpretation and implementation of goals identified from the
EMA, (2) collaboration with clinicians to explore clinical util-
ity and associated modifications needed for clinical workflow
implementation [19], [51], and (3) advanced learning of the
data to produce an intelligent model that can autonomously
provide more adaptive communications, such as a just-in-time
reminder for insulin administration. Integration into clinical
practice will require additional clinic-based design cycles and
integration of data valued by clinicians.
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