
Unit Testing Non-functional Concerns of Component-based Distributed Systems

James H. Hill, Hamilton A. Turner, James R. Edmondson, and Douglas C. Schmidt
Vanderbilt University
Nashville, TN USA

{j.hill, hamilton.a.turner, james.r.edmondson, d.schmidt}@vanderbilt.edu

Abstract

Unit testing component-based distributed systems tra-
ditionally involved testing functional concerns of the ap-
plication logic throughout the development lifecycle. In
contrast, testing non-functional distributed system concerns
(e.g., end-to-end response time, security, and reliability)
typically has not occurred until system integration because
it requires both a complete system to perform such tests
and sophisticated techniques to identify and analyze per-
formance metrics that constitute non-functional concerns.
Moreover, in a agile development environment, unit testing
non-functional concerns is even harder due to the discon-
nect between high-level system specification and low-level
performance metrics.

This paper provides three contributions to research on
testing techniques for component-based distributed sys-
tems, which is manifested in a technique called Understand-
ing Non-functional Intentions via Testing and Experimenta-
tion (UNITE). First, we show how UNITE allows developers
to extract arbitrary metrics from log messages using high-
level constructs, such as a human readable expressions that
identify variable data. Second, we show how UNITE pre-
serves data integrity and system traces without requiring a
globally unique identifier for context identification. Third,
we show how developers can formulate equations that rep-
resent unit tests of non-functional concerns and then use
UNITE to evaluate the equation using metrics extracted
from the log messages. The results from applying UNITE
to a representative project show that we can unit test non-
functional properties of a component-based distributed sys-
tem during the early stages of system development.

1 Introduction

Challenges of distriuted system testing. Unit test-
ing [11, 15] is a software validation technique that typi-
cally involves testing functional properties of software, such
as setter/getter methods of a class. For component-based

distributed systems, unit testing traditionally involves test-
ing the “business-logic” of an application. Testing non-
functionally concerns (such as end-to-end response time) of
component-based distributed systems typically occurs dur-
ing the software integration phase since testing such con-
cerns requires a complete system [6]. The seperation of test-
ing functional and non-functional concerns in a distributed
system creates a disconnect between the two, which can
result in unforeseen consequences on project development,
such as missed project deadlines due to failure to meet non-
functional requirements, as shown in Figure 1.

Figure 1. Separation of Functional and Non-
functional Testing in Component-based Dis-
tributed Systems

System execution modeling (SEM) [4, 7, 10] tools help
bridge the gap between understanding how functional and
non-functional requirements affect each other. SEM tools
(1) model the behavior of a system under development and
characterize its workload and (2) provide developers with
artifacts to emulate the constructed models on the target
architecture and analyze different non-functional concerns,
such as end-to-end response time. These tools enable sys-
tem developers to evaluate non-functional concerns prior to
system integration (i.e., before the system is completely de-
veloped).

Conventional SEM tools, however, do not provide de-
velopers with techniques for unit testing non-functional re-
quirements of a component-based distributed system, which
includes (1) identifying arbitrary metrics for data collection,
(2) extracting such metrics for analysis, and (3) formulat-
ing equations based on extracted metrics that analyze an

1

individual non-functional concern or unit test. Moreover,
in a development environment where requirements change
constantly, system developers also need to measure, evalu-
ate, and reason about non-functional concerns at the same
level of abstraction as system requirements, and in a simi-
lar manner as functional concerns. Unfortunately, conven-
tional SEM tools do not provide developers with techniques
for abstracting and mapping low-level metrics to high-level
system requirements and specifications. New techniques
are therefore needed to enable unit testing of non-functional
concerns and reasoning about low-level system metrics at a
higher-level of abstraction.

Solution Approach → High-level specification and
analysis of non-functional concerns. Evaluating non-
functional concerns of a component-based distributed sys-
tem typically requires gathering metrics that are generated
at different times while the system executing in its target en-
vironment. For example, understanding a simple metric like
system throughout requires capturing data that represents
the number of events/users processed, the lifetime of the
system, aggregating individual results, and calculating sys-
tem throughput. For more complex metrics, the evaluation
process becomes harder, particularly for large-scale systems
or ultra-large-scale systems [12] composed of many compo-
nents and deployed across many hosts.

This paper describes a technique called Understand-
ing Non-functional Intentions via Testing and Experimen-
tation (UNITE) that is designed to alleviate the complex-
ity of specifying and analyzing non-functional concerns of
component-based distributed systems. UNITE is based on
relational database theory [3] where metrics used to evalu-
ate a non-functional unit test are associated with each other
via relations to construct a data table. The constructed met-
ric’s table is evaluated by applying an SQL expression based
on a user-defined function. Developers can use UNITE to
evaluate non-functional properties of their applications via
the following steps:

1. Use log messages to capture metrics of interests, such
as time an event was sent or values of elements in an
event;

2. Identity metrics of interest within the log messages us-
ing message constructs, such as: {STRING ident}
sent message {INT eventId} at {INT
time};

3. Define unit tests to analyze non-functional concerns
(such as overall latency, end-to-end response time, or
system reliability and security) by formulating equa-
tions using the identified metrics, which can span many
log messages.

Our experience applying UNITE to a representative
component-based distributed system shows it is an effec-
tive technique for unit testing non-functional concerns dur-

ing the early stages of system development. Moreover, as
new concerns arise developers need only add new log mes-
sage(s) to capture the metric(s) along with high-level con-
struct(s) to extract the metric(s). UNITE thus significantly
reduces the complexity of specifying non-functional unit
tests while producing a repository of historical data that can
analyzed and monitored throughout a distributed system’s
software development lifecycle.

Paper Orginazation. The remainder of this paper is or-
ganized as follows: Section 2 summarizes our representa-
tive distributed system case study; Section 3 describes the
structure and functionality of UNITE; Section 4 shows how
we applied UNITE to our case study; Section 5 compares
UNITE with related work; and Section 6 presents conclud-
ing remarks.

2 Case Study: the QED Project

The Global Information Grid (GIG) middleware [2] is an
ambitious component-based ultra-large-scale system [12]
designed to ensure that different applications can collabo-
rate effectively and deliver appropriate information to users
in a timely, dependable, and secure manner. Due to the scale
and complexity of the GIG, however, conventional imple-
mentations do not provide adequate end-to-end quality-of-
service (QoS) assurance to applications that must respond
rapidly to priority shifts and unfolding situations. In partic-
ular, the GIG infrastructure software used for our case study
is a component-based architecture based on Java Messaging
Service and JBoss.

The QoS-Enabled Dissemination (QED) [1] project is a
multi-organization collaboration designed to improve GIG
middleware so it can meet QoS requirements of users and
component-based distributed systems by providing reliable
and real-time communication that is resilient to the dynam-
ically changing conditions of GIG environments. Figure 2
shows QED in the context of the GIG. At the heart of the

Figure 2. Conceptual Model of QED in the
Context of the GIG

QED middleware is a Java-based information broker that

2

enables tailoring and prioritizing of information based on
mission needs and importance, and responds rapidly to pri-
ority shifts and unfolding situations.

The QED project is in its first year of development and
is slated to run for several more years. Since the QED mid-
dleware is infrastructure software, applications that use it
cannot be developed until the middleware is sufficiently ma-
ture. It is therefore hard for QED developers to ensure their
software architecture and implementations are actually im-
proving the QoS of applications that will ultimately run on
the GIG middleware. The QED project thus faces a typi-
cal problem in large-scale distributed system development:
the serialized phasing problem [10]. In serialized phasing,
the system is developed in layers where components in the
upper layer(s) are not developed until long after the com-
ponents in the lower layer(s) are developed. Design flaws
that affect non-functional concerns, however, are typically
not discovered until the final stages of development, e.g., at
system integration time.

To overcome the serialized-phasing problem, QED de-
velopers are using system execution modeling (SEM) tools
to automatically and continuously execute performance re-
gression tests against the QED and evaluate non-functional
properties throughout QED’s development. In particular,
QED is using CUTS [10], which is a platform-independent
SEM tool for component-based distributed systems. Sys-
tem developers use CUTS by modeling the behavior and
workload of their component-based distributed system and
generating a test system for their target architecture. System
developers then execute the test system on their target archi-
tecture, and CUTS collects performance metrics, which can
be used to unit test non-functional concerns. This process is
repeated continuously throughout the software development
lifecycle of the system under development.

In prior work [8], we showed how integrating CUTS-
based SEM tools with continuous integtration environ-
ments provided a flexible solution for executing and manag-
ing component-based distributed system tests continuously
throughout the development lifecycle. Our prior work also
showed how simple log messages can capture arbitrary met-
rics of interest to evaluate non-functional concerns contin-
uously throughout a system development. Applying the re-
sults of our prior work to the initial prototype of the QED
middleware, however, revealed the following limitations of
the initial version of CUTS:
• Limitation 1: Inability to extract arbitrary data.

Data extraction is the process of locating relevant informa-
tion in a data source that can be used for analysis. In the
initial version of CUTS, data extraction was limited to met-
rics that CUTS knew a priori, e.g., at compilation time. It
was therefore hard to identify, locate, and extract arbitrary
data, especially if a non-functional unit test needed data that
CUTS did not know a priori.

QED developers needed a technique to identify metrics
of interest that can be extracted from large amounts of sys-
tem data. Moreover, the extraction technique should allow
developers to identify key metrics at a high-level of abstrac-
tion and be flexible enough to handle data variation to apply
CUTS effectively to large-scale systems.
• Limitation 2: Inability to analyze and aggregate

abitrary data. Data analysis and aggregation is the pro-
cess of evaluating extracted data based on a user-defined
equation, and combining multiple results (if applicable) to
a single result. This process is necessary since unit testing
operates on a single result—either simple or complex—to
determine whether it passes or fails. In the initial version of
CUTS, data analysis and aggregation was limited to func-
tions that CUTS knew a priori, which made it hard to ana-
lyze arbitrary data via user-defined functions.

The QED developers need a flexible technique for col-
lecting metrics that can be used in user-defined functions
to evaluate various system-wide non-functional concerns,
such as relative server utilization or end-to-end response
time for events with different priorities. Moreover, the tech-
nique should preserve data integrity (i.e., ensuring data is
associated with the execution trace that generated it), espe-
cially in absence of a globally unique identifier to identify
the correct execution trace that generated it.

Due to these limitations, it was hard for system develop-
ers to use the initial version of CUTS to conduct unit tests
of non-functional concerns of QED. Moreover, this prob-
lem extends beyond the QED project and applies to other
distributed systems that want to perform unit testing of non-
functional concerns. The remainder of this paper discusses
how we addressed these limitations by improving CUTS
so it can be used to unit test non-functional concerns of
component-based distributed systems throughout the soft-
ware development lifecycle.

3 UNITE: High-level Specification and Auto-
analysis of Non-Functional Concerns

This section presents the underlying theory of UNITE
and describes how it can be used to unit test non-functional
concerns of component-based distributed systems.

3.1 Specification and Extraction of Metrics from
Text-based System Logs

System logs (or execution traces) are essential to under-
standing the behavior of a system, whether or not the system
is distributed [13]. Such logs typically contain key data that
can be used to analyze the system online and/or offline. For
example, Listing 1 shows a simple log produced a system.
1 a c t i v a t i n g LoginComponent
2 . . .

3

3 LoginComponent r e c v r e q u e s t 6 a t 1234945638
4 v a l i d a t i n g username and password f o r r e q u e s t 6
5 username and password i s v a l i d
6 g r a n t i n g a c c e s s a t 1234945652 t o r e q u e s t 6
7 . . .
8 d e a c t i v a t i n g t h e LoginComponent

Listing 1. Example log (or trace) produced by
a system

As shown in Listing 1, each line in the log represents
a system effect that generated the log entry. Moreover,
each line captures the state of the system when the en-
try was produced. For example, line 3 states when a lo-
gin request was received by the LoginComponent and
line 6 captures when access was granted to the client by the
LoginComponent.

Although a system log contains key data to analyzing the
system that produced it, the log is typically generated in a
verbose format that can be understood by humans. This for-
mat implies that most data is discardable. Moreover, each
entry is constructed from a well-defined format, which we
call a log format, that will not change throughout the life-
time of system execution. Instead, certain values (or vari-
ables) in each log format, such as time or event count, will
change over the lifetime of the system. We formally define
a log format LF = (V) as:
• A set V of variables (or tags) that capture data of inter-

est in a log message.
Moreover, Equation 1 determines the set of variables in a
given log format LFi.

V = vars(LFi) (1)

Implementing log formats in UNITE. To realize log
formats and Equation 1 in UNITE, we use high-level con-
structs to identify variables v ∈ V that contain data for
analyzing the system. Users specify their message of in-
terest and use placeholders—identified by brackets { }—to
tag variables (or data) that can be extracted from an entry.
Each placeholder represents variable portion of the message
that may change over the course of the systems lifetime,
thereby addressing Limitation 1 stated in Section 2. Table 1

Table 1. Log format variable types supported
by UNITE

Type Description
INT Integer data type
STRING String data type (with no spaces)
FLOAT Floating-point data type

lists the different placeholder types currently supported by
UNITE. Finally, UNITE caches the variables and converts

the high-level construct into a regular expression. The regu-
lar expression is used during the analysis process (see Sec-
tion 3.3) to identify messages that have candidate data for
variables V in log format LF .
LF1 : {STRING owner} r e c v r e q u e s t {INT r e q i d} a t {INT r e c v}
LF2 : g r a n t i n g a c c e s s a t {INT r e p l y} t o r e q u e s t {INT r e q i d}

Listing 2. Example log formats for tag metrics
of interest

Listing 2 exemplifies high-level constructs for two log
entries from Listing 1. The first log format (LF1) is used
to locate entries related to receiving a login request for a
client (line 3 in Listing 1). The second log format (LF2) is
used to locate entries related to granting access to a client’s
request (line 6 in Listing 1). Overall, there are 5 tags in List-
ing 2. Only two tags, however, capture metrics of interest:
recv in LF1 and reply in LF2. The remaining three tags
(i.e., owner, LF1.reqid, and LF2.reqid) are used to
preserve causality, which we explain in more detail in Sec-
tion 3.2.

3.2 Specification of Unit Test for Analyzing Non-
functional Concerns

Section 3.1 disussed how we use log formats to iden-
tify entries in a log that contain data of interest. Each log
format contains a set of tags, which are representative of
variables and used to extract data from each format. In the
trivial case, a single log format can be used to analyze a non-
functional concern. For example, if a developer wanted to
know how many events a component received per second,
then the component could cache the necessary information
internally and generate a single log message when the sys-
tem is shutdown.

Although this approach is feasible, i.e., caching data
and generating a single message, it is not practical in
a component-based distributed system because individual
data points used to analyze the system can be generated by
different components. Moreover, data points can be gener-
ated from components deployed on different hosts. Instead,
what is needed is the ability to generate independent log
messages and specify how to associate the messages with
each other to preserve data integrity.

In the context of unit testing non-functional concerns, we
formally define a unit test UT = (LF,CR, f) as:

• A set LF of log formats that have variables V identi-
fying which data to extract from log messages.
• A set CR of causal relations that specify the order of

occurrence for each log format such that CRi,j means
LFi → LFj , or LFi occurs before LFj .
• A user-defined evaluation function f based on the vari-

ables in LF.

4

Causal relations are traditionally based on time. UNITE,
however, uses log format variables to resolve causality be-
cause it alleviates the need for a globally unique identifier
to associate metrics (or data). Instead, you only need to en-
sure that two unique log formats can be associated with each
other, and each log format is in at least one causal relation
(or association). UNITE does not permit circular relations
because it requires human feedback to determine where the
relation chain between log formats begins and ends.

We formally define a causal relation CRi,j = (Ci, Ej)
as:
• A set Ci ⊆ vars(LFi) of variables that define the key

to represent the cause of the relation.
• A set Ej ⊆ vars(LFj) of variables that define the key

to represent the effect of the relation.
Moreover, |Ci| = |Ej | and the type of each variable (see
Table 1), i.e., type(v), in Ci, Ej is governed by Equation 2:

type(Cin
) = type(Ejn

) (2)

where Cin
∈ Ci and Ejn

∈ Ej .
Implementing unit tests in UNITE. In UNITE, users

define unit tests by selecting what log formats should be
used to extract data from message logs. If a unit test has
more than one log format, then users must create a causal
relation between each log format. When specifying casual
relations, users select variables from the corresponding log
format that represent the cause and effect. Last, users define
an evaluation function based on the variables in selected log
formats.

For example, if a QED developer wanted to create a unit
test to calculate duration of the login operation, then a unit
test is created using LF1 and LF2 from Listing 2. Next, a
causal relation is defined between LF1 and LF2 as:

LF1.reqid = LF2.reqid (3)

Finally, the evaluation function is defined as:

LF2.reply − LF1.recv (4)

The following section discusses how we evaluate the func-
tion of non-functional unit tests for component-based dis-
tributed systems.

3.3 Evaluation of Non-functional Unit Tests

Section 3.1 discussed how log formats can be used to
identify messages that contains data of interest. Section 3.2
discussed how to use log formats and casual relations to
specify unit test for non-functional concerns. The final
phase of the process is evaluating the unit test, i.e., the
evaluation function f . Before we explain the algorithm

used to evaluate a unit test’s function, we must first under-
stand different types of causal relations that can occur in a
component-based distributed system.

As shown in Figure 3, there are four types of causal re-
lations that can occur in a component-based distributed sys-
tem, which affect the algorithm used to evaluate a unit test.
The first type (a) is one-to-one relation, which is the most

Figure 3. Four Types of Causal Relations
That Can Occur in a Component-based Dis-
tributed System

trivial type to resolve between multiple log formats. The
second type (b) is one-to-many relation and is a result of a
multicast event. The third type (c) is many-to-one, which
occurs when many different components send a event type
to a single component. The final type (d) is a combination
of previous types (a) – (d), and is the most complex relation
to resolve between multiple log formats.

If we assume that each entry in a message log contains
its origin, e.g., hostname, then we can use dynamic pro-
gramming algorithm and relational database theory to re-
construct the data table of values for a unit test’s variables.
Algorithm 1 lists our algorithm for evaluating a unit test. As
shown in Algorithm 1, we evaluate a unit test UT given the
collected log messages LM of the system. The first step to
the evaluation process is to create a directed graph G where
log formats LF are nodes and the casual relations CRi,j are
edges. We then topologically sort the directed graph so we
know the order to process each log format. This step is nec-
essary because when causal relation types (b) – (d) are in the
unit test specification, processing the log formats in reverse
order of occurrence reduces algorithm complexity for con-
structing data set DS. Moreover, it ensures we have rows
in the data set to accommodate the data from log formats
that occur prior to the current log format. After topologi-
cally sorting the log formats, we construct a data set DS,
which is a table that has a column for each variable in the
log formats of the unit test.

Likewise, we sort the log messages by origin and time
to ensure we have the correct message sequence for each
origin. This step is necessary if you want to see data trend
over the lifetime of the system before aggregating the re-
sults, which we discuss later in the paper. Once we have

5

Algorithm 1 General algorithm evaluating a unit test via
log formats and causal relations
1: procedure EVALUATE(UT, LM)
2: UT : unit test to evaluate
3: LM : set of log messages with data
4: G← directed graph(UT)
5: LF ′ ← topological sort(G)
6: DS ← variable table(UT)
7: LM ′ ← sort LM ascending by (origin, time)
8:
9: for all LFi ∈ LF ′ do

10: K ← Ci from CRi,j

11:
12: for all LMi ∈ LM ′ do
13: if matches(LFi, LMi) then
14: V ′ ← values of variables in LMi

15:
16: if K 6= ∅ then
17: R← findrows(DS, K, V ′)
18: update(R, V ′)
19: else
20: append(DS, V ′)
21: end if
22: end if
23: end for
24: end for
25:
26: DS′ ← purge incomplete rows from DS
27: return f(DS′) where f is evaluation function for UT
28: end procedure

sorted the log messages, we match each log format in LF ′

against each log message in LM ′. If there is a match, then
we extract values of each variable from the log message,
and update the data set. If there is a cause variable set Ci

for the log format LFi, we locate all the rows in the data set
where the values of Ci equal the values of Ej , which are set
by processing the previous log format. If there is no cause
variable set, we append the values from the log message to
the end of the data set. Finally, we purge all the incomplete
rows from the data set and evaluate the data set using the
user-defined evaluation function for the unit test.

Handling duplicate data entries. For long running sys-
tems, it is not uncommon to see variations of the same log
message within the complete set of log messages. More-
over, we defined log formats on a unit test to identify vari-
able portions of a message (see Section 3.1). We therefore
expect to encounter the same log format multiple times.
When constructing the data set in Algorithm 1, different
variations of the same log format will create multiple rows
in final data set. A unit test, however, operates on a single
value, and not multiple values. To address this concern, we
use the following techniques:
• Aggregation. A function used to convert a data set to

a single value. Examples of an aggregation function
are, but not limited to: AVERAGE, MIN, MAX, and
SUM.
• Grouping. Given an aggregation function, grouping

is used to identify data sets that should be treated in-
dependent of each other. For example, in the case of
causal relation (d) in Figure 3, the values in the data set
for each sender (i.e., LF2) could be considered a group
and analyzed independently.

We require specifying of an aggregation function as part of
the evaluation equation f for a unit test because it is known
a priori if a unit test may produce a data set with multi-
ple values. We formally define a unit test with groupings
UT ′ = (UT, Γ) as:
• A unit test UT for evaluating a non-funtional concern.
• A set Γ ⊆ vars(UT) of variables from the log formats

in the unit test.
Evaluating unit tests in UNITE. In UNITE, we imple-

mented Algorithm 1 using the SQLite relational database
(sqlite.org). To construct the variable table, we first
insert the data values for the first log format directly into
the table since it has no causal relations. For the remain-
ing log formats, we transform its causal relation(s) into a
SQL UPDATE query. This allows us to update only rows in
the table where the relation equals values of interest in the
current log message. Table 2 shows the variable table con-
structed by UNITE for the example unit test in Section 3.2.
After the variable data table is constructed, we use the eval-

Table 2. Example Data Set Produced from Log
Messages

LF1 reqid LF1 recv LF2 reqid LF2 reply
6 1234945638 6 1234945652
7 1234945690 7 1234945705
8 1234945730 8 1234945750

uation function and groupings for the unit test to create the
final SQL query that evaluates the unit test.

SELECT AVERAGE (L F 2 r e p l y − LF1 recv) AS r e s u l t
FROM v t a b l e 1 2 3 ;

Listing 3. SQL query for calculation average
login duration

Listing 3 shows Equation 4 as an SQL query, which is used
to evaluate the data set in Table 2. The final result of this
example—and the unit test—would be 16.33 msec.

4 Applying UNITE to the QED Project

This section analyzes results of experiments that evaluate
how UNITE can address key testing challenges of the QED
project described in Section 2.

6

4.1 Experiment Setup

As mentioned in Section 2, the QED project is in its first
year of development and is expected to continue for sev-
eral years. QED developers do not want to wait until sys-
tem integration time to validate the performance of their
middleware infrastructure relative to stated QoS require-
ments. The team members on the QED project therefore
used CUTS [10] and UNITE to perform early intergration
testing. All tests were run in a representative testbed based
on ISISlab (www.dre.vanderbilt.edu/isislab),
which is powered by Emulab software [19]1. Each host in
our experiment was an IBM Blade Type L20, dual-CPU 2.8
GHz processor with 1 GB RAM configured with the Fedora
Core 6 operating system.

To test the QED middleware, we first constructed several
scenarios using CUTS’ modeling languages [9]. Each sce-
nario was designed such that all components communicate
with each other using a single server in the GIG (similar
to Figure 2 in Section 2). The first scenario was designed
to test different thresholds of the underlying GIG middle-
ware to pinpoint potential areas that could be improved by
the QED middleware. The second scenario was more com-
plex and emulated a multi-stage workflow. The multi-stage
workflow is designed to test the underlying middleware’s
ability to ensure application-level QoS properties, such as
reliability and end-to-end response time when handling ap-
plications with different priorities and priviledges.

Figure 4. CUTS model of the multi-stage
workflow test scenario

As shown in Figure 4, the multi-stage workflow has
six types of components. Each directed line that connects
a component represents a communication event (or stage)
that must pass through the GIG (and QED) middleware be-
fore being delivered to the component on the opposite end.

1Emulab allows developers to configure network topologies and oper-
ating systems on-the-fly to produce a realistic operating environment for
distributed unit and integration testing.

Moreover, each directed line conceptually represents where
QED will be applied to ensure QoS between communicat-
ing components.

The projection from the middle component represents
the behavior of that specific component. Each component
in the multi-stage workflow has a behavior model (based on
Timed I/O Automata [9]) that dictates its actions during a
test. Moreover, each behavior model contains actions for
logging key data needed to evaluate a unit test, similar to
Listing 1 in Section 3.1.

Listing 4 lists an example message from the multi-stage
workflow scenario.
. MainAssembly . S u r v e i l l a n c e C l i e n t : Event 0 : P u b l i s h e d a

S u r v e i l l a n c e M i o a t 1219789376684
. MainAssembly . S u r v e i l l a n c e C l i e n t : Event 1 : Time t o

p u b l i s h a S u r v e i l l a n c e M i o a t 1219789376685

Listing 4. Example log messages from the
multi-stage workflow scenario

This log message contains information about the event, such
as event id and timestamp. Each component also generates
log messages about the events it receives and its state (such
as event count). In addition, each component sends enough
information to create a causal relation between itself and the
receiver, so there is no need for a global unique identifier to
correlate data.

We next used UNITE to construct log formats (see Sec-
tion 3.1) for identifing log messages during a test run that
contain metrics of interest. These log formats were also
used to define unit tests that evaluate non-functional con-
cerns described in Section 3.2. Overall, we were interested
in evaluating the following concerns in our experiments:
• Multiple publishers. At any point in time, the GIG

will have many components publishing and receiving events
simultaneously. We therefore need to evaluate the response
time of events under such operating conditions. Moreover,
QED needs to ensure QoS when the infrastructure servers
must manage many events. Since the QED project is still
in the early stages of development, we must first under-
stand the current capabilities of the GIG middleware with-
out QED in place. These results provide a baseline for eval-
uating the extent to which the QED middleware capabilities
improve application-level QoS.
• Time spent in server. One way to ensure high QoS

for events is to reduce the time an event spends in a server.
Since the GIG middleware is provided by a third-party
vender, we cannot ensure it will generate log messages that
can be used to calculate how it takes the server to process
an event. Instead, we must rely on messages generated from
distributed application components whenever it publishes/-
sends an event.

For an event that propogates through the system, we use
Equation 5 to calculate how much time the event spends in

7

the server assuming event transmission is instantenous, i.e.,
neglictable.

(ende − starte)−
∑

c

Sce
(5)

As listed in Equation 5, we calculate the time spent in the
server by taking the response time of the event e, and sub-
tracting the sum of the service time of the event in each
component Sce

. Again, since QED is in its early stages
of development, this unit test will be provide a baseline of
the infrastructure and used continuously throughout devel-
opment.

4.2 Experiment Results

We now present results for experiments of the scenarios
discussed in Section 4.1. Since QED is still in the early
stages of development, we focus our experiments on evalu-
ating the current state of the GIG middleware infrastructure,
i.e., without measuring the impact of QED middleware on
QoS, and UNITE’s ability to unit test non-functional con-
cerns.

Analyzing multiple publisher results. Table 3 shows
the results for the unit test that evaluates average end-to-end
response time for an event when each publisher publishes
at 75 Hz. As expected, the response time for each impor-
tance value was similar. When we unit tested this scenario
using UNITE, the test results presented in Table 3 were cal-
culated from two different log formats—either log format
generated by a publisher and the subscriber. The total num-
ber of log messages generated during the course of the test
was 993,493.

Table 3. Average end-to-end (E2E) response
time (RT) for multiple publishers sending
events at 75 Hz

Publisher Name Importance Avg. E2E RT (msec)
ClientA 30 103931.14
ClientB 15 103885.47
ClientC 1 103938.33

UNITE also allows us to view the data trend for the unit
test of this scenario to get a more detailed understanding
of performance. Figure 5 shows how the response time of
the event increases over the lifetime of the experiment. We
knew beforehand that the this configuration for the unit test
produced too much workload. UNITE’s data trend and vi-
sualazation capabilities, however, helped make it clear the
extent to which the GIG middleware was being over uti-
lized.

Analyzing maximum sustainable publish rate results.
We used the multi-stage workflow to describe a complex

Figure 5. Data trend graph of average end-
to-end response time for multiple publishers
sending events at 75 Hz

Figure 6. Data trend of the system placed in
near optimal publish rate

scenario tests the limits of the GIG middleware without
forcing it into incremental queueing of events. Figure 6
graphs the data trend for the unit test, which is calculated
by specifying Equation 5 as the evaluation for the unit test.
Figure 6 was produced by UNITE after analyzing (i.e., iden-
tifying and extracting metrics from) 193,464 log messages.
The unit test also consisted of ten different log formats and
nine different causal relations, which were of types (a) and
(b), discussed in Section 3.3.

Figure 6 illustrates the sustainable publish rate of the
mutle-stage workflow in ISISlab. As illustrated, the just-
in-time compiler (JITC) and other Java features cause the
the middleware to temporarily increase the individual mes-
sage end-to-end response. By the end of the test (which is
not shown in the above graph), the time an event spends in
the server reduces to normal operating conditions.

The multi-stage workflow results provided two insights
to QED developers. First, their theory of maximum publish
rate in ISISlab was confirmed. Second, Figure 6 helped de-
velopers speculate on what features of the GIG middleware
might cause performance bottlenecks, how QED could ad-
dress such problems, and what new unit test are need to

8

illustrate QED’s improvements to the GIG middleware.
By providing developers comprehensive testing and

analysis features, UNITE helped guide the development
team to the next phase of testing and integration of feature
sets.

Evaluating the impact of UNITE on the experiment.
Because of UNITE, we could quickly construct unit tests to
evaluate the GIG middleware. In context of the multi-stage
workfow scenario, UNITE provided two insights to QED
developers. First, their theory of maximum publish rate in
ISISlab was confirmed. Second, the data trend and visual-
ization capabilities of UNITE helped developers speculate
on what features of the GIG middleware might cause per-
formance bottlenecks, how QED could address such prob-
lems, and what new unit test are need to illustrate QED’s
improvements to the GIG middleware.

In addition, UNITE’s analyical capabilities are not
bounded by a unit test’s configuration and data. As long
as the correct log formats and their causal relations is spec-
ified, UNITE can evaluate the unit test. Moreover, we did
not need to specify a global unique identify to associate data
with its correct exeuction trace. If we required a global
unique identifier to associate data metrics, then we would
have to ensure that all components propogated the identifer.
Moreover, if we added new compoents to the multi-stage
workflow, each component would have to be aware of the
global unique idenfier, which can inherently complicate the
logging specification.

By providing developers comprehensive testing and
analysis capabilities, UNITE helped guide the QED devel-
opers to the next phase of testing and integration of fea-
ture sets. We therefore conclude that UNITE helped reduce
the complexity of evaluating a non-functional concerns of a
component-based distributed system. Moreover, unit tests
can be automated and run continuously throughout the soft-
ware development lifecycle of QED using CiCUTS [8],
which integrates CUTS with continuous integration en-
vironments, such as CruiseControl (cruisecontrol.
sourceforge.net).

5 Related Work

This section compares our work on UNITE with related
work on unit testing and component-based distributed sys-
tem analysis.

Distributed system unit testing. Coelho et. al [5]
and Yamany et. al [22] describe techniques for unit
testing multi-agent systems using so-called mock objects.
Their goal for unit testing multi-agent systems is similar to
UNITE, though they focus on functional concerns, whereas
UNITE focuses on non-functional concerns of a distributed
system during the early stages of development. More-
over, Coelho et. al unit test a single multi-agent isolation,

whereas UNITE focuses on unit testing systemic properties
(i.e., many components working together). UNITE can also
be used to unit test a component in isolation, if necessary.

Qu et. al [18] present a tool named DisUnit that extends
JUnit [15] to enable unit testing of component-based dis-
tributed systems. Although DisUnit supports testing of dis-
tributed systems, it assumes that metrics used to evaluate
a non-functional concern are produced by a single com-
ponent. As a result, DisUnit cannot be used to test non-
funtional concerns of a distributed system where metrics
are dispersed throughout a system execution trace, which
can span many components and hosts in the system. In con-
trast, UNITE assumes that data need to evaluate a test can
occur in any location and at any time during the system’s
execution.

Component-based distributed systems analysis. Ma-
nia et. al [14] discuss a technique for developing perfor-
mance models and analyzing component-based distributed
system using execution traces. The contents of traces are
generated by system events, similar to the log message in
UNITE. When analyzing the systems performance, how-
ever, Mania et. al rely on synchronized clocks to recon-
struct system behavior. Although this technique suffices in
tightly coupled environments, if clocks on different hosts
drift (as may be the case in ultra-large-scale systems), then
the reconstructed behavior and analysis may be incorrect.
UNITE improves upon their technique by using data within
the event trace that is common in both cause and effect mes-
sages, thereby removing the need for synchronized clocks
and ensuring that log messages (or events in a trace) are
associated correctly.

Similarly, Mos et. al [16] present a technique for mon-
itoring Java-based components in a distributed system us-
ing proxies, which relies on timestamps in the events and
implies a global unique identifier to reconstruct method in-
vocation traces for system analysis. UNITE improves upon
their technique by using data that is the same between two
log messages (or events) to reconstruct system traces given
the causal relations between two log formats. Moreover,
UNITE relaxs the need for a global identifier.

Parsons et. al [17] present a technique for performing
end-to-end event tracing in component-based distributed
systems. Their technique injects a global unique identifier
at the beginning of the event’s trace (e.g., when a new user
enters the system). This unique identifier is then propagated
through the system and used to associate data for analyt-
ical purposes. UNITE improves upon their technique by
relaxing the need for a global unique identifier to associate
data for analysis. Moreover, in a large- or ultra-large-scale
component-based distributed system, it can be hard to en-
sure unique identifiers are propagated throughout compo-
nents created by third parties.

9

6 Concluding Remarks

Testing non-functional concerns of component-based
distributed systems is a process that typically occurs during
integration. The earlier in the development process non-
functional concerns are tested in the actual target environ-
ment, the greater chance of locating problematic areas in the
software system [20,21]. In this paper we describe and eval-
uate a technique called Understanding Non-functional In-
tentions via Testing and Experimentation (UNITE) for unit
testing non-functional concerns of component-based dis-
tributed systems. UNITE uses log messages generated from
a testing environment and message constructs that identify
messages of interest. Moreover, developers define functions
in terms of variable data in log messages, which is used to
evaluate non-functional concerns of the system under devel-
opment.

Our experience applying UNITE to a representative
component-based distributed system showed how it simpli-
fied the identification and extraction of arbitrary metrics for
analyzing non-functional concerns. Moreover, UNITE did
not require us to use a global unique identfier to reconstruct
system traces, which reduced the complexity of generated
log messages. In general, UNITE helps reduce the inherit
complexities of unit testing non-functional concerns of a
component-based distributed system during the early stages
of development. It is currently unable, however, to analyze
a subset of the extracted metrics based on parameterizing
the causal relations. We plan to add this support in future
work.

CUTS and UNITE are available in open-source format at
the following location: www.dre.vanderbilt.edu/
CUTS.

References

[1] BBN Technologies Awarded $2.8 Million in AFRL
Funding to Develop System to Link Every Warfighter
to Global Information Grid. BBN Technologies—
Press Releases, www.bbn.com/news and events/
press releases/2008 press releases/pr 21208 qed.

[2] Global Information Grid. The National Security Agency,
www.nsa.gov/ia/industry/ gig.cfm?MenuID=10.3.2.2.

[3] P. Atzeni and V. D. Antonellis. Relational Database The-
ory. Benjamin-Cummings Publishing Co., Inc., Redwood
City, CA, USA, 1993.

[4] D. Box and D. Shukla. WinFX Workflow: Simplify Devel-
opment with the Declarative Model of Windows Workflow
Foundation. MSDN Magazine, 21:54–62, 2006.

[5] R. Coelho, U. Kulesza, A. von Staa, and C. Lucena. Unit
Testing in Multi-agent Systems using Mock Agents and As-
pects. In International Workshop on Software Engineering
for Large-scale Multi-agent Systems, pages 83–90, 2006.

[6] G. Denaro, A. Polini, and W. Emmerich. Early Performance
Testing of Distributed Software Applications. ACM SIG-

SOFT Software Engineering Notes, 29(1):94–103, January
2004.

[7] M. Dutoo and F. Lautenbacher. Java
Workflow Tooling (JWT) Creation Review.
www.eclipse.org/proposals/jwt/JWT2007.

[8] J. Hill, D. C. Schmidt, J. Slaby, and A. Porter. CiCUTS: Com-
bining System Execution Modeling Tools with Continuous
Integration Environments. In Proceeedings of 15th Annual
IEEE International Conference and Workshops on the Engi-
neering of Computer Based Systems (ECBS), Belfast, North-
ern Ireland, March 2008.

[9] J. H. Hill and A. Gokhale. Model-driven Engineering for
Early QoS Validation of Component-based Software Sys-
tems. Journal of Software (JSW), 2(3):9–18, Sept. 2007.

[10] J. H. Hill, J. Slaby, S. Baker, and D. C. Schmidt. Apply-
ing System Execution Modeling Tools to Evaluate Enterprise
Distributed Real-time and Embedded System QoS. In Pro-
ceedings of the 12th International Conference on Embedded
and Real-Time Computing Systems and Applications, Syd-
ney, Australia, August 2006.

[11] A. Hunt and D. Thomas. Pragmatic Unit Testing in C# with
NUnit. The Pragmatic Programmers, Raleigh, NC, USA,
2004.

[12] S. E. Institute. Ultra-Large-Scale Systems: Software Chal-
lenge of the Future. Technical report, Carnegie Mellon Uni-
versity, Pittsburgh, PA, USA, Jun 2006.

[13] N. Joukov, T. Wong, and E. Zadok. Accurate and Efficient
Replaying of File System Traces. In FAST’05: Proceedings
of the 4th conference on USENIX Conference on File and
Storage Technologies, pages 25–25, 2005.

[14] D. Mania, J. Murphy, and J. McManis. Developing Perfor-
mance Models from Nonintrusive Monitoring Traces. IT&T,
2002.

[15] V. Massol and T. Husted. JUnit in Action. Manning Publica-
tions Co., Greenwich, CT, USA, 2003.

[16] A. Mos and J. Murphy. Performance Monitoring of Java
Component-Oriented Distributed Applications. In IEEE 9th
International Conference on Software, Telecommunications
and Computer Networks (SoftCOM), pages 9–12, 2001.

[17] T. Parsons, Adrian, and J. Murphy. Non-Intrusive End-to-
End Runtime Path Tracing for J2EE Systems. IEEE Pro-
ceedings Software, 153:149–161, August 2006.

[18] R. Qu, S. Hirano, T. Ohkawa, T. Kubota, and R. Nicolescu.
Distributed Unit Testing. Technical Report CITR-TR-191,
University of Auckland, 2006.

[19] R. Ricci, C. Alfred, and J. Lepreau. A Solver for the Network
Testbed Mapping Problem. SIGCOMM Computer Communi-
cations Review, 33(2):30–44, Apr. 2003.

[20] E. J. Weyuker. Testing Component-based Software: A Cau-
tionary Tale. Software, IEEE, 15(5):54–59, Sep/Oct 1998.

[21] Y. Wu, M.-H. Chen, and J. Offutt. UML-Based Integration
Testing for Component-Based Software. In Proceedings of
the Second International Conference on COTS-Based Soft-
ware Systems, pages 251–260. Springer-Verlag, 2003.

[22] H. F. E. Yamany, M. A. M. Capretz, and L. F. Capretz. A
Multi-Agent Framework for Testing Distributed Systems. In
30th Annual International Computer Software and Applica-
tions Conference, pages 151–156, 2006.

10

