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Abstract—Type 1 diabetes (T1D) is a prevalent pediatric
chronic disorder with significant economic and social impact
worldwide. Patients with T1DM must perform many daily
self-management tasks, including frequent monitoring of blood
glucose, administration of insulin, and estimating carbohydrate
intake. These tasks help manage glycemic control to avoid
or delay serious short- and long-term consequences, such as
retinopathy, neuropathy, and mortality. Adolescents and young
adults have the worst glycemic control of any age groups.
For young people with T1D, living successfully is particularly
challenging due to developmental, psychosocial, and contextual
barriers.

A common approach for improving self-management in T1D
involves promoting and supporting patient problem solving
skills. Patients need to identify potential barriers that interfere
with appropriate T1D self-management where and when they
occur. Ecological momentary assessment (EMA) methods use
technology-mediated approaches to monitor and assess the con-
texts, subjective experiences, and processes that surround health
decisions in daily life. However, rich data that has been generated
by patients via EMA has not been frequently utilized in T1D.

This paper makes two contributions to research on self-
management in T1D. First, it leverages advanced machine
learning methods to investigate whether novel data focused on
contextual, psychosocial and time-varying factors relate to patient
self-management. Second, it uses EMA factors to construct ma-
chine learning classifiers that predict two T1D self-management
behaviors: insulin administration and self-monitoring of blood
glucose (SMBG). Our results suggest significant impacts of
psychosocial factors on those behaviors and the utility of applying
machine learning methods on EMA data.

Index Terms—Precision Behavioral Medicine, Machine learn-
ing, Type 1 Diabetes, Ecological Momentary Assessment

I. INTRODUCTION

Type 1 diabetes (T1D) is a prevalent chronic illness with
increasing incidence rates reported worldwide [1], [2]. It is an
autoimmune disorder where the body produces little or no in-
sulin and requires patients to perform critical self-management
tasks multiple times per day [3]. Self-management in T1D
involves frequent monitoring of blood glucose, estimating
carbohydrate intake, and administering insulin amongst other
regular tasks related to maintenance of devices, supplies, and
attention to factors that influence blood glucose variability and
patterns.

Inadequate self-management and poor glycemic control is
related to serious short- and long-term consequences, including

retinopathy, neuropathy, and mortality [4], [5], [6]. Adoles-
cents and young adults have the worst glycemic control of
any age groups [4]. For young people with diabetes, living suc-
cessfully with T1D is particularly hard due to developmental,
psychosocial, and contextual barriers to self-management [7],
[8], [9].

A common approach used to improve self-management of
diabetes involves promoting and supporting problem solving
skills [10]. To identify problems related to self-management,
patients, caregivers, and clinicians must rely on the review
of blood glucose and insulin data from devices along with
a patient-generated recall of potentially relevant behavioral,
emotional, and/or situational events. This method of utilizing
retrospective memory or recall, however, has been identified
as generally unreliable and potentially biased in nature [11].

To address the limitations of recall in health behavior
research, ecological momentary assessment (EMA) methods
have been developed and successfully utilized in a range of
health conditions. EMA methods provide a more proximal
(and often more accurate) technology-mediated method to
monitor and assess the contexts, subjective experiences, and
processes that surround health decisions in daily life [12],
[13]. In particular, with more relevant, proximal, and frequent
observations per patient, EMA methods generate rich data
from which to more accurately relate previously identified
correlates of health behavior and identify novel correlates for
interventional targets [14].

The data generated from EMA systems is particularly suited
to analytic techniques that identify patterns. In particular,
machine learning methods have been employed to detect type
2 diabetes and identify targets for improvement in diabetes
management and outcomes [15], [16], [17]. These advanced
methods have been used less frequently, however, to ex-
amine patient-generated data, behavioral patterns, and self-
management in diabetes. We believe that machine learning
methods will ultimately become more effective at identifying
meaningful sub-groups of self-management styles and self-
management phenotypes upon which to base personalized
behavioral treatments [18].

The overall goal of our research is to leverage predictive
analytics to help investigate how novel data focused on con-
textual, psychosocial, and time-varying factors relate to patient
self-management. In particular, we devised a learned filtering
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architecture (LFA) using a Random Forest [19] classifier
in this study to extract groups of similar features that are
predictive of two self-management behaviors in adolescents
with T1D: insulin administration (IA) and self-monitoring of
blood glucose (SMBG).

The remainder of this paper is organized as follows: Sec-
tion II summarizes the background of our research, focusing
on the use of EMA methods, our rationale behind the con-
struction of the LFA, and a comparison with related work;
Section III describes the design and methods we employed in
this study; Section IV analyzes the results obtained from the
LFA we constructed; Section V discusses our main findings
and analyzes limitations regarding our work; and Section VI
presents concluding remarks and outlines future work.

II. BACKGROUND AND RELATED WORK

This section summarizes the background of our work and
related research, focusing on the use of ecological momentary
assessment (EMA) methods and machine learning applications
in other diabetes studies. We then present our rationale behind
the construction of the learned filtering architecture (LFA).

Prior research [9] has focused on identifying psychosocial
correlates and predictors of self-management in chronic illness
in general and specifically in diabetes. Our study focuses on
factors that were previously associated with self-management,
but were also amenable to EMA methods. Factors most
appropriately assessed through these methods are those that
are

• thought to vary more frequently and/or occur relatively
more frequently and

• hard to identify in daily experience to associate them
to medical events, health decision-making, and/or symp-
toms.

Our EMA pilot study [20] assessed a broad sampling
of factors that influence diabetes self-management. These
factors included stress [21], fatigue [22], mood [23], [24],
location [25], and social context [8]. We also collected other
factors, including contextual barriers, such as rushing, lack
of diabetes supplies (such as blood glucose test strips), and
stigma [9], [26].

Our goal in this study is to leverage the EMA data to
determine if psychosocial factors impact self-management
behavior. If so, we aim to identify the type(s) of features
which have relatively greater impact. Understanding the po-
tential connections between psychosocial phenotypes and self-
management behavior can help focus behavioral interventions
tailored to individual patients.

Machine learning (ML) methods have been applied in vari-
ous studies focusing on the improvement of diabetes manage-
ment and control. Studies in [27], [28], [29] constructed and
fine-tuned different ML models to predict future blood glucose
levels based on historical physiological data, such as readings
from continuous glucose monitoring (CGM) systems. Bondia
et al. [30] used Support Vector Machines to detect incorrect
blood glucose measurements in CGM systems. Sudharsan et
al. [31] trained and compared various prediction models to
identify hypoglycemia for patients with type 2 diabetes using
self-monitored blood glucose (SMBG) readings.

Artificial neural networks were applied in [32] to create a
controller for potentially managing insulin dosage. Biester et
al. [33] applied ML methods to predict low blood glucose
levels for triggering an automatic stop of insulin delivery
in a sensor-augmented insulin pump. Machine learning has
also been applied to provide lifestyle support, such as the
smartphone-based food recognition system described in [34]
and the prediction of energy expenditure and type of physical
activity using accelerometers [35].

Our application of predictive analytics via LFA differs
from other studies outlined above. These other studies fo-
cused primarily on predictability, i.e., how accurately a model
can predict a specific outcome such as glucose values and
hypothermia as we discussed above. In contrast, our study
focuses on understanding what phenotypes, conditions, or
group(s) of factors are the most impact on the outcome vectors
of interest (e.g., diabetes self-management behaviors).

Features in those other studies can still be automatically
selected and transformed to reach the best results, while pre-
venting over-fitting or under-fitting of their predictive models.
The selected most representative subsets, however, could have
features belonging to diverse classes of variables. In such
cases, it is hard to determine exactly which type(s) of features
would have more impact compared to other categories and vice
versa. Conversely, our study focuses on reducing the amount
of self-reported inputs by filtering one or more categories of
features with the LFA, yet still extracting the necessary clinical
insight(s) from the smaller data collection.

III. RESEARCH DESIGN AND METHODS

This section describes the design and methods we employed
in our study. We analyzed data from subjects enrolled in a
feasibility trial of the mobile EMA and feedback MyDay
app using a 30-day assessment period [36]. Subjects were
randomized on a 2:1 ratio to the Myday app group + Bluetooth
meter (n=31) and a control group (n=15) who provided blood
glucose (BG) data only using Bluetooth BG meters.

Figure 1 presents the workflow of our learned filtering
architecture (LFA) for processing, analyzing, and extracting
insights from the data collection.

As shown in the workflow diagram, we first integrate BG
meter data and the EMA data collected from the MyDay
app as a complete dataset fed into the LFA (steps 1 and 2).
Next, the LFA performs necessary pre-processing and data
sanitation, such as normalizing numeric values and removing
empty entries (step 3). After this step, we begin the data
filtering process where subsets of features are extracted from
the cleaned data (either based on configurable human input or
automatic selection, and in this particular study, the features
are grouped together based on similar types) to create multiple
data subsets that are then split for training and testing (steps
4a and 4b).

The training set is used to train a machine learning classifier
i.e., Random Forest in our study (step 5), and the test set is
used to evaluate the trained model (step 6). The classification
results obtained from the current feature subset are then sent to
the Filter component to be later compared with other feature
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Fig. 1: Iterative Process of Our Learned Filtering Architecture (LFA).

subsets (step 7). The filter component has a configurable
tolerance value, which is used to select feature subset(s) that
have relatively good classification results compared to the most
performant model(s) or other benchmark(s).

Next, the LFA checks whether other feature subsets are
available for processing (step 8). If so, the Feature Selection
process is repeated to create the next subset (step 9). Other-
wise, the filtering process terminates and ouputs the filtered
results, i.e., feature subsets with relatively strong predictive
power of the target outcomes (step 10).

After feature selection, a large portion (e.g., 75%) of the
input data forms a structured training set. This training set is
used to construct a machine learning classifier. The remaining
data becomes a hold-out test set, which is used to evaluate
and enhance the classifier.

The classification results then go through a filter component
that extracts the most impactful predictor group(s) of the target
class variable. For example, if the performance metrics exceed
their threshold values, the predictor group is added to the final
output queue. When all feature subsets have been evaluated,
LFA returns the final insights learned from the input data.

A. Subjects

A total of 49 patients were recruited from an academic
pediatric diabetes center. Youth who were patients in the clinic
were invited to participate if they were between the age of 13
and 19, had been diagnosed of type 1 diabetes for at least 6
months, owned a smart phone, understood and spoke English,
and were willing to use a Bluetooth meter during the study.
Three subjects dropped out of the study noting competing
demands, leaving 46 for our analyses (n=31 in the app + meter
group; n=15 in the meter-only group).

B. Momentary Assessments and Glucose Meter Data

The goal of our study was to examine associations between
self-management (SMBG, self-monitored blood glucose and
IA, insulin administration) and other relevant collected data,
including participant demographics and momentary assess-
ment variables. All blood glucose data for both groups was
unobtrusively obtained using iHealth [37] Bluetooth meters.
The app group was instructed to use the MyDay mobile app
at each mealtime and bedtime to answer questions focused on
factors likely to impact self-management of diabetes, including
stress, fatigue, mood, social context, location, and contextual
barriers to self-care [36]. Mealtime insulin administration was
also self-reported into the app.

Blood glucose monitoring was objectively assessed via data
transfer from the Bluetooth meters. The MyDay app provided
notifications personalized to meal-times identified by partici-
pants each day as a reminder to complete EMA. Timestamps
were associated with all data entries. Bedtime EMA was not
included in analyses since self-management tasks could not be
expected at that specific time point as they are with mealtimes.
A subset of only mealtime EMA were used in analyses for the
app group. At the initial recruitment session, parents of minors
and adult participants provided consent, assent, demographic
information.

C. Statistical Analyses

We were interested in studying the factors associated with
the following

• All daily SMBG frequency in terms of the following two
observations for all study participants: (1) if a subject
monitored more than 4 times a day (4 being the clinically
recommended minimum number of daily BG measure-
ments [38]) and (2) if a subject monitored fewer than 4
times a day,
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• Whether SMBG was missed or not at mealtimes, and
• Whether insulin was administered or not at mealtimes.

D. Feature Categories

Based on our hypothesis that different feature types may
have varying impact on the self-management outcomes, we
configured the LFA to produce data subsets of the following
categories (wherever there were data present): demograph-
ics, time variables (time of day, weekday/weekend), context
(social context and location associated with each mealtime
app entry), stress/fatigue/mood values, and situational barriers
such as without supplies (dichotomous behavioral questions).
By grouping features into categories, we potentially eliminate
variables that are less relevant to the outcomes. In turn, we
significantly reduce the amount of information requested from
MyDay app users in future studies.

Although the number of observations per participant was
substantial, the overall number of participants was relatively
small. Naturally, because performing self- management tasks
is critical for patients with T1D, adolescents are expected
to adhere to the daily regimen. As a result, the collected
data encountered some imbalance in the distribution of the
outcomes, with failure to perform these tasks (particularly
missed mealtime insulin) being the minority instances.

It is well-known in the machine learning community that
classification models constructed using imbalanced datasets
may result in the minority class being neglected [39]. To avoid
this problem, we applied an imbalanced learning algorithm
that combined the Synthetic Minority Oversampling Technique
(SMOTE) [40] and Tomek link [41]. Both SMOTE and Tomek
link have been used effectively for training imbalanced data,
especially for small datasets [42], [43], [44]. Our combined
algorithm oversampled the minority class and cleaned noisy
data, but only in the training set.

We employed SMOTE to enrich the minority class by
creating artificial examples in the minority class, rather than
replicating the existing examples to avoid the problem of over-
fitting. Specifically, SMOTE creates new samples from linear
combinations of two or more similar samples selected from
the minority class using a distance measure. Each instance
is created by perturbing the original sample’s attributes one
at a time by a random amount within the difference to the
neighboring instances.

We employed Tomek link to remove noisy data from the ma-
jority class that may have been introduced from oversampling.
Noisy data is detected by comparing the distances between any
two samples from different classes and the distances between
an arbitrary sample and one of the two samples [41]. If the
distance between the former pair is smaller, then either one
of the samples in that pair is a noise or both are border-line
instances [45].

IV. RESULTS

This section analyzes the results obtained from the LFA we
constructed using the method described in Section III.

A. Descriptive Statistics of the Sample

Table I shows the demographic and clinical characteristics
of the study sample.

TABLE I: Characteristics of the Sample (n=46)

Variable Mean (SD) or %
Age 13.33 (1.67)
Female 53.33%
Race/ethnicity

White 84.44%
African American 10.20%
Asian 2.22%
Hispanic 2.22%
Other 0.00%

Father education
Less than high school 2.22%
High school/GED 28.89%
2-year college 15.56%
4-year college 33.33%
Master’s degree 11.11%
Doctoral degree 0.00%
N/A 8.89%

Mother education
Less than high school 0.00%
High school/GED 22.22%
2-year college 26.67%
4-year college 37.78%
Master’s degree 4.44%
Doctoral degree 0.00%
N/A 26.67%

Income
Less than $25,000 4.44%
25, 001−35,000 6.67%
35, 001−75,000 15.56%
75, 001−100,000 31.11%
100, 001−100,000 26.67%
More than $70,000 6.67%
N/A 8.89%

Duration of diabetes (years) 5.47 (3.59)
HbA1c 9.03 (1.91)
Use insulin pump (yes) 57.46%

1) Descriptive Statistics: From all 46 participants, we ob-
tained a total of 6,524 blood glucose measurements from their
Bluetooth glucose meters. After aggregating each individual’s
SMBG counts by day and combining their demographic data,
we produced a new dataset with 1,779 daily SMBG entries
with the following schema:

1) Feature Category: Demographics, including gender, age,
father’s education, mother’s education, family income,
and race

2) Feature Category: Time Variables, including weekday,
weekend, and time of day.

After analyzing the target outcome variables, we observed
the distribution as follows: Below 4 class contains 794 True
(count < 4) outcomes and 839 False (count ≥ 4) outcomes,
which is a fairly evenly distributed set. For Above 4, however,
the True (count > 4) outcome had 475 entries, while False
(count ≤ 4) had 1158 entries, a fairly imbalanced class.

To minimize the potential imbalance in the training set and
maximize learning performance, we first split the dataset into
75% for training and 25% for testing and then applied an
automatic imbalanced learning algorithm to the training set
for a more even distribution for Above 4. As discussed in
Section III, our imbalanced learning algorithm combines the
SMOTE and Tomek Link methods.
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2) Classification of Daily SMBG Occurrences: We trained
the dataset using a Random Forest classifier with a 10-fold
cross validation and obtained the classification results against
the test data. The results are shown in Table II for SMBG
below 4 and Table III for SMBG above 4.

TABLE II: SMBG Below 4 Classification Performance
Metrics

Feature Group Accuracy Precision Recall F1 Score
Demographics 72.6% 0.73 0.73 0.73
Time variables 49.1% 0.51 0.49 0.47

All 71.2% 0.71 0.71 0.71

TABLE III: SMBG Above 4 Classification Results

Feature Group Accuracy Precision Recall F1 Score
Demographics 76.5% 0.78 0.77 0.77
Time Variables 55.6% 0.54 0.56 0.55

All 76.5% 0.77 0.77 0.77

As a benchmark for the learned filter component, we used
all features for predicting the target variables and recorded the
results. The filter then compared the benchmark value with
the classification results obtained from each data subset. We
configured a tolerance value of 15% for the filter to select
subsets of significant predictive power.

B. Missing Mealtime SMBG and Insulin Administration

1) Descriptive Statistics of the Sample: From the app group
with 31 subjects (n=31), we collected a total of 2,535 entries.
From this data we extracted 1,855 valid entries that are
associated with breakfast, lunch, and dinner records to analyze
factor(s) that could impact SMBG and IA at mealtimes.

The target class Insulin Administration had a distribution of
1:6 for True (insulin missed) vs False (insulin administered)
outcomes; whereas target class Missing SMBG had a class
distribution of 1:5 for True (SMBG missed) vs False (SMBG
taken). The dataset used to analyze both target classes was
divided into the following subsets of features based on our
hypothesis regarding features’ relativeness:

1) Feature Category: Demographics, including gender, age,
father’s education, mother’s education, family income,
and race

2) Feature Category: Time Variables, including weekday,
weekend, and time point (breakfast, lunch, dinner)

3) Feature Category: Social Context, who was the teen
with at time of self-management as indicated through
EMA (including parent, sibling, alone, casual friend,
close friend, other family, other person, strangers,
and boyfriend/girlfriend), and location, including home,
school, work, restaurant, friends house, or on the road

4) Feature Category: Stress, Energy, Mood, continuous val-
ues within range 0-100

5) Feature Category: Barriers, psychosocial indicators (in-
cluding rushing, tired of diabetes, sick, on the road,
hungry, wanting privacy, busy, without supplies, low,
high, having fun)

After transforming the input data into various smaller sub-
sets, the LFA created classification models for each predictor

group using the same 75%/25% split for creating the training
and test sets. Due to the imbalance of the dataset in this exper-
iment, we employed the SMOTE and Tomek Link techniques
to create artificial samples for the minority class and perform
undersampling to remove noise that may have been introduced,
both in the training data to ensure the integrity of the actual
test data.

The final class distribution of all datasets had a majority-
minority ratio between 1:1 and 1.2:1. After comparing the
initial results of three classifiers (random forest, logistic re-
gression, and support vector machine) on the training data,
we chose the random forest classifier with a 10-fold cross
validation that outperformed other models.

2) Classification Results: Tables IV and V present the
classification performance metrics of missing SMBG and
missing mealtime IA against their respective tests, using our
trained Random Forest classifier.

TABLE IV: Missing Mealtime Blood Glucose Measurement
Classification Performance Metrics

Feature Group Accuracy Precision Recall F1 Score
Demographics 85.5% 0.85 0.85 0.85
Time Variables 71.8% 0.61 0.72 0.64
Social Context 71.3% 0.73 0.71 0.72

Stress, Fatigue, Mood 73.1% 0.71 0.73 0.71
Barriers 75.4% 0.70 0.75 0.68

All 86.7% 0.87 0.87 0.87

TABLE V: Missing Mealtime Insulin Administration
Classification Performance Metrics

Feature Group Accuracy Precision Recall F1 Score
Demographics 65.9% 0.84 0.66 0.71
Time Variables 56.7% 0.79 0.57 0.63
Social Context 62.1% 0.78 0.62 0.67

Stress, Fatigue, Mood 72.5% 0.78 0.73 0.75
Barriers 75.6% 0.77 0.76 0.76

All 80.1% 0.84 0.80 0.82

We configured the filter using the same approach to obtain
the benchmark values and tolerance. As a result, the filter se-
lected demographic data as the most predictive group of miss-
ing SMBG, while psychosocial barriers and the combination
of stress, fatigue, mood values are stronger predictors in the
missing IA analyses. We also identified stress, fatigue, mood
group and social contexts as the next best predictor subsets
for missing SMBG because those values only marginally fell
below the tolerance values for the performance metrics that
we have configured for the filter.

V. DISCUSSION

This section discusses our main findings and analyzes
limitations regarding our work.

A. Main Findings

To gain a better understanding of the factors impacting self-
management behavior of adolescents with T1DM, our study
applied machine learning methods to construct a learning
filter architecture (LFA) for novel momentary psychosocial
data and other relevant demographic and physiological data.
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Based on feature similarities, we configured the LFA into
meaningful subsets of variables: demographics; social context;
stress, mood, fatigue levels; time variables; and psychosocial
barriers.

As a benchmark, we compared the predictability of differ-
ent subsets of data against the general predictability of the
behavior using all the features combined. The LFA applied
a 15% threshold to evaluate the performance metrics of all
subsets, and the preliminary results indicated that (1) stress,
fatigue, and mood levels were stronger predictors of both
missed SMBG and IA and (2) demographics factors (such
as parents education, family income, and race) was best at
predicting average daily SMBG outcomes.

Our methods show promise to quantify the impact of psy-
chosocial factors on self-management on a population level.
We also employed a similar research approach in previous case
studies [46], [47] in the context of identifying patterns of hand
hygiene compliance monitoring, from which we obtained very
useful initial insights into which type of features had the most
impact on compliance behavior. Based on these promising
findings, similar experiments are needed with larger samples to
advance the assessment and analytic approaches utilized here.

B. Limitations

For small datasets that have disparities in the frequencies
of observed classes or outcomes, applying an oversampling
technique is a strategy to mitigate the negative impact this im-
balance has on model fitting. Nevertheless, synthetic sampling
(undersampling or oversampling) methods have the following
drawbacks:

• Overestimation of performance. The trained model with
synthetic samples may not reflect the class imbalance
future studies may encounter, potentially leading to overly
optimistic estimates performance.

• Model uncertainty. Synthetic samples could induce
model uncertainty. Depending on how accurately the
synthesized samples represent the actual samples, the
prediction outcomes may be better or worse, so the model
could appear more or less effective than it actually is.

With the above drawbacks notwithstanding, we did not
consider these threats to validity crucial to our goals since we
were relatively less focused on absolute levels of predictability
for this pilot study compared to relative value of predictor
groups. General patterns are harder to obscure by adding
artificial samples using the algorithms we had chosen.

VI. CONCLUDING REMARKS AND FUTURE DIRECTIONS

This paper reports the results of a study that applied machine
learning methods to better understand what triggers poor self-
management behavior in adolescents with T1D through. We
learned the following lessons from our study:

• LFA can reduce the scale of EMA data collection.
By employing the learned filtering architecture (LFA),
we systematically selected the more relevant information
by filtering out data fields that had relatively less impact
on the outcomes. As we collect larger-scale data, the

filtering capability will be useful to reduce information
yet guarantee relatively accurate clinical insights.

• Combining EMA data with machine learning methods
may result in enhanced clinical decision-making and
just-in-time patient support. The collection of primar-
ily passive psychosocial and behavioral data streams
combined with machine learning methods provides a
population-based monitoring systems that can help guide
clinical management and just-in-time guidance for self-
management problem solving [48].

• EMA data may be used to create personalized behav-
ioral medicine targeting T1D. Data from homogeneous
sub-groups or even individuals can be used to tailor be-
havioral treatments and prevent blood glucose excursions
and long-term consequences of poor glycemic control for
personalized behavioral medicine.

In future work we plan to enhance the MyDay system’s
ability to utilize unobtrusive indicators as much as possible.
For example, experimental unobtrusive indicators of mealtimes
are in development and if successful would greatly enhance
our methodological approach [49]. Finally, the LFA machine
learning methods employed here should be applied to a large
diverse sample of patients to confirm and expand results
reported in this paper.
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