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Detecting Web Attacks with End-to-End Deep Learning

Yao Pan, Fangzhou Sun, Jules White, Douglas C. Schmidt, Jacob Staples, and Lee Krause

Abstract—Web applications are popular targets for cyber-attacks because they are network accessible and often contain
vulnerabilities. An intrusion detection system monitors web applications and issues alerts when an attack attempt is detected. Existing
implementations of intrusion detection systems usually extract features from network packets or string characteristics of input that are
manually selected as relevant to attack analysis. Manual selection of features is time-consuming and requires in-depth security domain
knowledge. Moreover, large amounts of labeled legitimate and attack request data is needed by supervised learning algorithms to
classify normal and abnormal behaviors, which is often expensive and impractical to obtain for production web applications.
This paper provides three contributions to the study of autonomic intrusion detection systems. First, we evaluate the feasibility of an
unsupervised/semi-supervised approach for web attack detection based on the Robust Software Modeling Tool (RSMT), which
autonomically monitors and characterizes the runtime behavior of web applications. Second, we describe how RSMT trains a stacked
denoising autoencoder to encode and reconstruct the call graph for end-to-end deep learning, where a low-dimensional representation
of the raw features with unlabeled request data is used to recognize anomalies by computing the reconstruction error of the request
data. Third, we analyze the results of empirically testing RSMT on both synthetic datasets and production applications with intentional
vulnerabilities. Our results show that the proposed approach can efficiently and accurately detect attacks, including SQL injection,
cross-site scripting, and deserialization, with minimal domain knowledge and little labeled training data.

Index Terms—Web security, Deep learning, Application instrumentation
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1 INTRODUCTION

Emerging trends and challenges. Web applications are
attractive targets for cyber attackers. SQL injection [1],
cross site scripting (XSS) [2] and remote code execution
are common attacks that can disable web services, steal
sensitive user information, and cause significant financial
loss to both service providers and users. Protecting web
applications from attack is hard. Even though developers
and researchers have developed many counter-measures,
such as firewalls, intrusion detection systems (IDSs) [3] and
defensive programming best practices [4], to protect web
applications, web attacks remain a major threat.

For example, researchers found that more than half of
web applications during a 2015-2016 scan contained high
security vulnerabilities, such as XSS or SQL Injection [5].
Moreover, hacking attacks cost the average American firm
$15.4 million per year [6]. The Equifax data breach in
2017 [7], [8], which exploited a vulnerability in Apache
Struts, exposed over 143 million American consumers’ sen-
sitive personal information. Although the vulnerability was
disclosed and patched in March 2017, Equifax took no action
until four months later, which led to an estimated insured
loss of over 125 million dollars.

There are several reasons why conventional intrusion
detection systems do not work as well as expected:
•Workforce limitations. In-depth domain-knowledge in

web security is needed for web developers and network
operators to deploy these systems [9]. An experienced se-
curity expert is often needed to determine what features
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are relevant to extract from network packages, binaries, or
other inputs for intrusion detection systems. Due to the large
demand and relatively low barrier to entry into the software
profession, however, many developers lack the necessary
knowledge of secure coding practices.
• Classification limitations. Many intrusion detection

systems rely on rule-based strategies or supervised machine
learning algorithms to differentiate normal requests from
attack requests, which requires large amounts of labeled
training data to train the learning algorithms. It is hard and
expensive, however, to obtain this training data for arbitrary
custom applications. In addition, labeled training data is
often heavily imbalanced since attack requests for custom
systems are harder to get than normal requests, which poses
challenges for classifiers [10]. Moreover, although rule-based
or supervised learning approaches can distinguish existing
known attacks, new types of attacks and vulnerabilities
emerge continuously, so they may be misclassified.
• False positive limitations. Although prior work has

applied unsupervised learning algorithms (such as PCA [11]
and SVM [12]) to detect web attacks, these approaches re-
quire manual selection of attack-specific features. Moreover,
while these approaches achieve acceptable performance
they also incur false positive rates that are too high in
practice, e.g., a 1% increase in false positives may cause
an intrusion detection system to incorrectly flag 1,000s of
legitimate users [13]. It is therefore essential to reduce the
false positive rate of these systems.

Given these challenges with using conventional intru-
sion detection systems, an infrastructure that requires less
expertise and labeled training data is needed.

Solution approach⇒ Applying end-to-end deep learn-
ing to detect cyber-attacks autonomically in real-time
and adapt efficiently, scalably, and securely to thwart
them. This paper explores the potential of end-to-end deep
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learning [14] in intrusion detection systems. Our approach
applies deep learning to the entire process from feature
engineering to prediction, i.e., raw input is fed into the
network and high-level output is generated directly. There is
thus no need for users to select features and construct large
labeled training sets.

We empirically evaluate how well an unsupervised-
/semi-supervised learning approach based on end-to-end
deep learning detects web attacks. Our work is motivated
by the success deep learning has achieved in computer
vision [15], speech recognition [16], and natural language
processing [17]. In particular, deep learning is not only
capable of classification, but also automatically extracting
features from high dimensional raw input.

Our deep learning approach is based on the Robust
Software Modeling Tool (RSMT) [18], which is a late-stage
(i.e., post-compilation) instrumentation-based toolchain tar-
geting languages that run on the Java Virtual Machine (JVM).
RSMT is a general-purpose tool that extracts arbitrarily fine-
grained traces of program execution from running software,
which is applied in this paper to detect intrusions at runtime
by extracting call traces in web applications. Our approach
applies RSMT in the following steps:

1. During an unsupervised training epoch, traces gen-
erated by test suites are used to learn a model of correct
program execution with a stacked denoising autoencoder,
which is a symmetric deep neural network trained to have
target value equal to a given input value [19].

2. A small amount of labeled data is then used to
calculate reconstruction error and establish a threshold to
distinguish normal and abnormal behaviors.

3. During a subsequent validation epoch, traces ex-
tracted from a live application are classified using previ-
ously learned models to determine whether each trace is
indicative of normal or abnormal behavior.

A key contribution of this paper is the integration of
autonomically runtime behavior monitoring and character-
ization of web applications with end-to-end deep learning
mechanisms, which generate high-level output directly from
raw feature input.

The remainder of this paper is organized as follows:
Section 2 summarizes the key research challenges we are
addressing in our work; Section 3 describes the struc-
ture and functionality of the Robust Software Modeling Tool
(RSMT); Section 4 explains our approach for web attack
detection using unsupervised/semi-supervised end-to-end
deep learning and the stacked denoising autoencoder; Sec-
tion 5 empirically evaluates the performance of our RSMT-
based intrusion detection system on representative web
applications; Section 6 compares our work with related
web attack detection techniques; and Section 7 presents
concluding remarks.

2 RESEARCH CHALLENGES

This section describes the key research challenges we ad-
dress and provides cross-references to later portions of the
paper that show how we applied RSMT to detect web
attacks with end-to-end deep learning.

Challenge 1: Comprehensive detection of various types
of attacks that have significantly different characteristics.
Different types of web attacks, such as SQL injection, cross

site scripting, remote code execution and file inclusion vul-
nerabilities, use different forms of attack vector and exploit
different vulnerabilities inside web applications. These at-
tacks therefore often exhibit completely different character-
istics. For example, SQL injection targets databases, whereas
remote code execution targets file systems. Conventional
intrusion detection systems [2], [20], however, are often
designed to detect only one type of attack. For example,
a grammar-based analysis that works on SQL injection
detection will not work on XSS. Section 3 describes how
we applied RSMT to characterize the normal behaviors and
detect different types of attacks comprehensively.

Challenge 2: Minimizing monitoring overhead. Static
analysis approaches that analyze source code and search for
potential flaws suffer from various drawbacks, including
vulnerability to unknown attacks and the need for source
code access. An alternative is to apply dynamic analysis
by instrumenting applications. However, instrumentation
invariably incurs monitoring overhead [21], which may de-
grade web application throughput and latency, as described
in Section 5.3. Section 3.2 explores techniques RSMT applies
to minimize the overhead of monitoring and characterizing
application runtime behavior.

Challenge 3: Addressing the labeled training data
problem in supervised learning. Machine learning-based
intrusion detection systems rely on labeled training data
to learn what should be considered normal and abnormal
behaviors. Collecting this labeled training data can be hard
and expensive in large scale production web applications
since labeling data requires extensive human effort and it is
difficult to cover all the possible cases. For example, normal
request training data can be generated with load testing
tools, web crawlers, or unit tests. If the application has
vulnerabilities, however, then the generated data may also
contain some abnormal requests, which can undermine the
performance of supervised learning approaches.

Abnormal training data is even harder to obtain [22], e.g.,
it is hard to know what types of vulnerabilities a system
has and what attacks it will face. Even manually creating
attack requests targeted for a particular application may
not cover all scenarios. Moreover, different types of attacks
have different characteristics, which makes it hard for su-
pervised learning methods to capture what attack requests
should look like. Although supervised learning approaches
often distinguish known attacks effectively, they may miss
new attacks and vulnerabilities that emerge continuously,
especially when web applications frequently depend on
many third-party packages [8]. Section 4.3 describes how
we applied an autoencoder-based unsupervised learning
approach to resolve the labeled training data problem.

Challenge 4: Developing intrusion detection systems
without requiring users to have extensive web security
domain knowledge. Traditional intrusion detection systems
apply rule-based approach where users must have domain-
specific knowledge in web security. Experienced security ex-
perts are thus needed to determine what feature is relevant
to extract from network packages, binaries or other input for
intrusion detection systems. This feature selection process
can be tedious, error-prone, and time-consuming, such that
even experienced engineers often rely on repetitive trial-
and-error processes. Moreover, with quick technology re-
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fresh cycles, along with the continuous release of new tools
and packages, even web security experts may struggle to
keep pace with the latest vulnerabilities. Section 4.1 and 4.2
describe how we applied RSMT to build intrusion detection
systems with “featureless” approaches that eliminated the
feature engineering step and directly used high-dimensional
request traces data as input.

3 THE STRUCTURE AND FUNCTIONALITY OF THE
ROBUST SOFTWARE MODELING TOOL (RSMT)
This section describesthe structure and functionality of the
Robust Software Modeling Tool (RSMT), which we developed
to autonomically monitor and characterize the runtime be-
havior of web applications, as shown in Figure 8. After

Fig. 1. The Workflow and Architecture of RSMT’s Online Monitoring and
Detection System

giving a brief overview of RSMT, this section focuses on
RSMT’s agent and agent server components and explains
how these components address Challenge 1 detection dif-
ferent types of attacks) and Challenge 2 (minimizing instru-
mentation overhead) summarized in Section 2. Section 4
then describes RSMT’s learning backend components and
examines the challenges they address.

3.1 Overview of RSMT

As discussed in Section 2, different attacks have differ-
ent characteristics and traditional feature engineering ap-
proaches lack a unified solution for all types of attacks.
RSMT bypasses these attack vectors and instead captures
the low-level call graph. It assumes that no matter what the
attack type is (1) some methods in the server that should
not be accessed are invoked and/or (2) the access pattern is
statistically different than the legitimate traffic.

RSMT operates as a late-stage (post-compilation)
instrumentation-based toolchain targeting languages that
run on the Java Virtual Machine (JVM). It extracts arbitrarily
fine-grained traces of program execution from running soft-
ware and constructs its models of behavior by first injecting
lightweight shim instructions directly into an application bi-
nary or bytecode. These shim instructions enable the RSMT
runtime to extract features representative of control and data
flow from a program as it executes, but do not otherwise
affect application functionality.

Figure 8 shows the high-level workflow of RSMT’s web
attack monitoring and detection system. This system is
driven by one or more environmental stimuli (a), which are
actions transcending process boundaries that can be broadly
categorized as manual (e.g., human interaction-driven) or

automated (e.g., test suites and fuzzers) inputs. The man-
ifestation of one or more stimuli results in the execution
of various application behaviors. RSMT attaches an agent
and embeds lightweight shims into an application (b). These
shims do not affect the functionality of the software, but
instead serve as probes that allow efficient examination of
the inner workings of software applications. The events
tracked by RSMT are typically control flow-oriented, but
dataflow-based analysis is also possible.

As the stimuli drive the system, the RSMT agent inter-
cepts event notifications issued by the shim instructions.
These notifications are used to construct traces of behavior
that are subsequently transmitted to a separate trace man-
agement process (c). This process aggregates traces over a
sliding window of time (d) and converts these traces into
“bags” of features (e). RSMT uses feature bags to enact
online strategies (f), which involve two epochs: (1) During a
training epoch, where RSMT uses these traces (generated by
test suites) to learn a model of correct program execution,
and (2) During a subsequent validation epoch, where RSMT
classifies traces extracted from a live application using pre-
viously learned models to determine whether each trace is
indicative of normal or abnormal behavior.

Figure 8 also shows the three core components of
RSMT’s architecture, which include (1) an application, to
which the RSMT agent is attached, (2) an agent server, which
is responsible for managing data gathered from various
agents, and (3) a machine learning backend, which is used
for training various machine learning models and validating
traces. This architecture is scalable to accommodate arbitrar-
ily large and complex applications, as shown in Figure 2.
For example, a large web application may contain multiple

Fig. 2. The Scalability of RSMT

components, where each component can be attached with
a different agent. When the number of agents increases, a
single agent server may be overwhelmed by requests from
agents. Multiple agent servers can therefore be added and
agent requests can then be directed to different agent servers
using certain partitioning rules.

It is also possible to scale the machine learning backend,
e.g., by deploying machine learning training and testing
engine on multiple servers. An application generally com-
prises multiple tasks. For example, the tasks in a web
forum service might be init, registerNewUser, createThread,
and createPost. Machine learning models are built at the task
granularity. Different machine learning backends store and
process different models.
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3.2 The RSMT Agent

Problem to resolve. To monitor and characterize web ap-
plication runtime behavior, a plugin program is needed
to instrument the web application and record necessary
runtime information. This plugin program should require
minimum human intervention to avoid burdening develop-
ers with low-level application behavior details. Likewise,
instrumentation invariably incurs performance overhead,
but this overhead should be minimized, otherwise web ap-
plication throughput and latency will be unduly degraded.

Solution approach. To address the problem of instru-
mentation with minimum developer burden and perfor-
mance overhead, the RSMT agent captures features that are
representative of application behavior. This agent defines a
class transformation system that creates events to generalize
and characterize program behavior at runtime. This trans-
formation system is plugin-based and thus extensible, e.g.,
it includes a range of transformation plugins providing in-
strumentation support for extracting timing, coarse-grained
(method) control flow, fine-grained (branch) control flow,
exception flow, and annotation-driven information capture.

For example, a profiling transformer could inject ultra-
lightweight instructions to store the timestamps when meth-
ods are invoked. A trace transformer could add method-
Enter() and methodExit() calls to construct a control flow
model. Each transformation plugin conforms to a common
API. This common API can be used to determine whether
the plugin can transform a given class, whether it can
transform individual methods in that class, and whether it
should actually perform those transformations if it is able.

We leverage RSMT’s publish-subscribe (pub/sub) mech-
anism to (1) rapidly disseminate events by instrumented
code and (2) subsequently capture these events via event
listeners that can be registered dynamically at runtime.
RSMT’s pub-sub mechanism is exposed to instrumented
bytecode via a proxy class that contains various static meth-
ods.1 In turn, this proxy class is responsible for calling var-
ious listeners that have been registered to it. The following
event types are routed to event listeners:
• Registration events are typically executed once per

method in each class as its < clinit > (class initializer)
method is executed. These events are typically consumed
(not propagated) by the listener proxy.
• Control flow events are issued just before or just after a

program encounters various control flow structures. These
events typically propagate through the entire listener dele-
gation tree.
• Annotation-driven events are issued when annotated

methods are executed. These events propagate to the offline
event processing listener children.

The root listener proxy is called directly from instru-
mented bytecode and delegates event notifications to an er-
ror handler, which gracefully handles exceptions generated
by child nodes. Specifically, the error handler ensures that
all child nodes receive a notification regardless of whether
that notification results in the generation of an exception
(as is the case when a model validator detects unsafe be-
havior). The error handler delegates to the following model

1. We use static methods since calling a Java static method is up to 2x
faster than calling a Java instance method.

construction/validation subtrees: (1) the online model con-
struction/validation subtree performs model construction
and verification in the current thread of execution (i.e., on
the critical path) and (2) the offline model construction/val-
idation subtree converts events into a form can be stored
asynchronously with a (possibly remote) instance of Elas-
ticsearch [23], which is an open-source search and analytics
engine that provides a distributed real-time document store.

To address Challenge 1 (minimizing the overhead of
monitoring and charactering application runtime behavior)
described in Section 2, RSMT includes a dynamic filtering
mechanism. We analyzed the method call patterns and
observed that most method calls are lightweight and occur
in a small subset of nodes in the call graph. By identifying
a method as being called frequently and having a signif-
icantly larger performance impact, we can disable events
issued from it entirely or reduce the number of events it
produces (thereby improving performance). These observa-
tions, along with a desire for improved performance, moti-
vated the design of RSMT’s dynamic filtering mechanism.

To enable filtering, each method in each class is associ-
ated with a new static field added to that class during the
instrumentation process. The value of the field is an object
used to filter methods before they make calls to the runtime
trace API. This field is initialized in the constructor and is
checked just before any event would normally be issued to
determine if the event should actually occur.

To characterize feature vector abilities to reflect appli-
cation behaviors, we added an online model builder and
model validator to RSMT. The model builder constructs two
views of software behavior: a call graph (used to quickly
determine whether a transition is valid) and a call tree (used
to determine whether a sequence of transitions is valid).
The model validator is a closely related component that
compares current system behavior to an instance of a model
assumed to represent correct behavior.

Fig. 3. Call Graph (L) and Call Tree (R) Constructed for a Simple Series
of Call Stack Traces

Figures 4 and 5 demonstrate the complexity of the
graphs we have seen. Each directed edge in a call graph
connects a parent method (source) to a method called by the
parent (destination). Call graph edges are not restricted wrt
forming cycles. Suppose the graph in Figure 3 represented
correct behavior. If we observed a call sequence e,a,x at
runtime, we could easily tell that this was not a valid
execution path because no a,x edge is present in the call
graph.

Although the call graph is fast and simple to construct,
it has shortcomings. For example, suppose a transition
sequence e,a,d,c,a is observed. Using the call graph, none
of these transition edges violated expected behavior. If we
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Fig. 4. Call Tree Generated for a Simple SQL Statement Parse

Fig. 5. Call Tree Generated for a Simple SQL Statement Parse (zoomed
in on heavily visited nodes)

account for past behavior, however, there is no c,a transition
occurring after e,a,d. To handle these more complex cases, a
more robust structure is needed. This structure is known as
the call tree, as shown in the right-hand side of Figure 3.

Whereas the call graph falsely represents it as a valid
sequence, there is no path along sequence e,a,d,c,a in the
call tree (this requires two backtracking operations), so we
determine that this behavior is incorrect. The call tree is not
a tree in the structural sense. Rather, it is a tree in that each
branch represents a possible execution path. If we follow
the current execution trace to any node in the call tree, the
current behavior matches the expectation.

Unlike a pure tree, the call tree does have self-referential
edges (e.g., the c,a edge in Figure 3) if recursion is observed.
Using this structure is obviously more processor inten-
sive than tracking behavior using a call graph. Section 5.3
presents empirical evaluation of the performance overhead
of the RSMT agent.

3.3 The RSMT Agent Server
Problem to resolve. A web application may comprise mul-
tiple components where multiple agents are attached. Like-
wise, there multiple instances of the application may run on
different physical hardware for scalability. It is important
for agents to communicate effectively with our machine
learning backend to process collected traces, which requires
some means of mapping the task- and application-level
abstractions onto physical computing resources.

Solution approach. To address the problem of mapping
task/application-level abstractions to physical computing
resources, RSMT defines an agent server component. This
component receives traces from various agents, aligns them
to an application architecture, maps application components
to models of behavior, and pushes the trace to the correct
model in a remote machine learning system that is architec-
ture agnostic. The agent server exposes three different REST
APIs, which are described below:

• A trace API, to which RSMT agents transmit execution
traces. This API provides the following functionality: (1) it
allows an agent to register a recently launched JVM as a
component in a previously defined architecture and (2) it
allows an agent to push execution trace(s).
• An application management API, which is useful

for defining and maintaining applications. It provides the
following functionality: (1) define/delete/modify an appli-
cation, (2) retrieve a list of applications, and (3) transition
components in an application from one state to another.
This design affects how traces received from monitoring
agents are handled. For example, in the IDLE state, traces are
discarded whereas in the TRAIN state they are conveyed to a
machine learning backend that applies them incrementally
to build a model of expected behavior. In the VALIDATE
state, traces are compared against existing models and clas-
sified as normal or abnormal.
• A classification API, which monitors the health of

applications. This API can be used to query the status of ap-
plication components over a sliding window of time, whose
width determines how far back in time traces are retrieved
during the health check and which rolls up into a summary
of all classified traces for an applications operation. The API
can also be used to retrieve a JSON representation of the
current health of the application.

4 UNSUPERVISED WEB ATTACK DETECTION WITH
END-TO-END DEEP LEARNING

This section describes our unsupervised/semi-supervised
web attack detection system that enhances the RSMT archi-
tectural components described in Section 3 with end-to-end
deep learning mechanisms [16], [24], which generate high-
level output directly from raw feature input. The RSMT
components covered in Section 3 provide feature input
for the end-to-end deep learning mechanisms described in
this section, whose output indicates whether the request is
legitimate or an attack. This capability addresses Challenge
4 (developing intrusion detection systems without domain
knowledge) summarized in Section 2.

4.1 Traces Collection with Unit Tests

RSMT agent is responsible for collecting an application’s
runtime trace. The collected traces include the program’s
execution path information, which is then used as the fea-
ture input for our end-to-end deep learning system. Below
we discuss how the raw input data is represented.

When a client sends a request to a web application, a
trace a recorded with an RSMT agent. A trace is a sequence
of directed f-calls-g edges observed beginning after the
execution of a method. From a starting entry method A,
we record call traces up to depth d. We record the number
of times each trace triggers each method to fulfill a request
from a client. For example, A calls B one time and A calls B
and B calls C one time will be represented as: A-B: 2; B-C:
1; A-B-C: 1. Each trace can be represented as a 1*N vector
[2,1,1] where N is the number of different method calls.
Our goal is, given the trace signature Ti = {c1, c2, ..., cn}
produced in response to a client request Pi, determine if the
request is an attack request.
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4.2 Anomaly Detection with Deep Learning
Machine learning approaches for detecting web attacks can
be categorized into two types: supervised learning and
unsupervised learning.

Supervised learning approaches (such as Nave
Bayes [25] and SVM [26]) work by calibrating a classifier
with a training dataset that consists of data labeled as either
normal traffic or attack traffic. The classifier then classifies
the incoming traffic as either normal data or an attack
request. Two general types of problems arise when applying
supervised approaches to detect web attacks: (1) classifiers
cannot handle new types of attacks that are not included
in the training dataset, as described in Challenge 3 (hard to
obtain labeled training data) in Section 2 and (2) it is hard
to get a large amount of labeled training data, as we have
described in Challenge 3 in Section 2.

Unsupervised learning approaches (such as Principal
Component Analysis (PCA) [27] and autoencoder [19]) do
not require labeled training datasets. They rely on the as-
sumption that data can be embedded into a lower dimen-
sional subspace in which normal instances and anomalies
appear significantly different. The idea is to apply dimen-
sion reduction techniques (such as PCA or autoencoders)
for anomaly detection. PCA or autoencoders try to learn a
function h(X) = X that maps input to itself.

The input traces to web attack detection can have a
very high dimension (thousands or more). If no constraint
is enforced, an identity function will be learned, which is
not useful. We therefore force some information loss during
the process. For example, in PCA we only select a subset
of eigenvalues. In autoencoder, the hidden layers will have
smaller dimension than the input.

For PCA, the original input X will be projected to
Z = XV . V contains the eigenvectors and we can choose k
eigenvectors with the largest eigenvalues. To reconstruct the
original input, x = XV V T . If all the eigenvectors are used,
then V V T is an identity matrix, no dimensionality reduction
is performed, the reconstruction is perfect. If only a subset
of eigenvectors are used, the reconstruction is not perfect,
the reconstruction error is given by E = ||x−X||2.

If a test input shares similar structure or characteristics
with training data, the reconstruction error should be small.
To apply the same principle to web attack detection, if a
test trace is similar to the ones in the training set, the
reconstruction error should be small, and it is likely to be
a legitimate request. If the reconstruction error is large, it
implies the trace is statistically different, thereby suggesting
it has a higher probability of being an attack request.

4.3 End-to-end Deep Learning with Stacked Denoising
Autoencoders
The transformation performed by PCA is linear, so it cannot
capture the true underlying input and output relationships
if the modeled relationship is non-linear. Deep neural net-
works (DNNs) [28] have achieved great success in computer
vision, speech recognition, natural language processing, etc.
With non-linear activation functions and multiple hidden
layers, DNNs can model complex non-linear functions.

The decision functions for anomaly detection in web
attacks are often be complex since no simple threshold can
be used to determine if the request is an attack. Complicated

interactions, such as co-occurrence and order of method
calls, are all involved in the decision making. These com-
plexities make DNNs ideal candidates for anomaly detec-
tion in web attacks. More specifically, we use a special case
of neural network called an autoencoder [19], which is a
neural network with a symmetric structure.

An autoencoder consists of two parts: (1) an encoder that
maps the original input to a hidden layer h with an encoder
function h = f(x) = s(Wx + b), where s is the activation
function and (2) a decoder that produce a reconstruction
r = g(h). The goal of normal neural networks is to learn a
function h(x) = y where the target variable y can be used
for classification or regression. An autoencoder is trained
to have target value equal to input value, i.e., to minimize
the difference between target value and input value, e.g.,
L(x, g(f(x)) where L is the loss function. In this case, the
autoencoder penalizes g(f(x)) for being dissimilar from x.

Fig. 6. Structure of Stacked Autoencoder.

If no constraint is enforced, an autoencoder will likely
learn an identity function by just copying the input to the
output, which is not useful. The hidden layers in autoen-
coders are therefore usually constrained to have smaller
dimensions than the input x. This dimensionality constraint
forces autoencoders to capture the underlying structure of
the training data.

Fig. 7. t-SNE Visualization of Normal and Abnormal Requests.

Figure 7 shows a visualization of normal and abnor-
mal requests using the compressed representation learned
from an autoencoder via a t-Distributed Stochastic Neigh-
bor Embedding (t-SNE) [29]. Blue dots in this figure rep-
resent normal requests and red dots represent abnormal
requests (which can thus be easily distinguished in the low-
dimensional subspace learned with the autoencoder).

To address Challenge 2 (detecting different types of at-
tacks) described in Section 2, the autoencoder performs
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feature extraction automatically. The input x is mapped to
a low dimensional representation and reconstructed trying
to restore input. When the reconstruction g(f(x)) is different
from x, the reconstruction error e = ||g(f(x) − x)||2 can be
used as an indicator for abnormality.

If the training data share similar structure or character-
istics, the reconstruction error should be small. An outlier is
data that has very different underlying structure or charac-
teristic. It is therefore hard to represent the outlier with the
feature we extract. As a result, the reconstruction error will
be larger. We can use the reconstruction error as a standard
to distinguish abnormal traffic and legitimate traffic.

Compared to PCA, autoencoders are more powerful
because the encoder and decoder functions can be chosen
to be non-linear, thereby capturing non-linear manifolds. In
contrast, PCA just does linear transformations, so it can only
create linear decision boundaries, which may not work for
complex attack detection problems. Moreover, non-linearity
allows the network to stack to multiple layers, which in-
creases the modeling capacity of the network. While the
combination of multiple linear transformation is still one
linear layer deep, it may lack sufficient capacity to model
the attack detection decision.

Challenge 4 (developing intrusion detection systems
without domain knowledge) in Section 2 is also addressed
by applying two extensions to conventional autoencoders:

1. Stacked autoencoders, which may contain more than
one hidden layer [19]. Stacking increases the expressing
capacity of the model, which enables the autoencoders to
differentiate attacks and legitimate traffic from high dimen-
sional input without web security domain knowledge. The
output of each preceding layer is fed as the input to the
successive layer. For the encoder: h1 = f(x), hi = f(hi−1),
whereas for the decoder: g1 = g(hi), gi = g(gi−1). Deep
neural networks have shown promising applications in a
variety of fields such as computer vision, natural language
processing due to its representation power. These advan-
tages also apply to deep autoencoders.

To train our stacked autoencoder we use a pretraining
step involving greedy layer-wise training. The first layer of
encoder is trained on raw input. After a set of parameters
are obtained, this layer is used to transform the raw input to
a vector represented as the hidden units in the first layer.
We then train the second layer on this vector to obtain
the parameters of second layers. This process is repeated
by training the parameters of each layer individually while
keep the parameters of other layers unchanged.

2. Denoising, which prevents the autoencoder from
over-fitting. Our system must be able to generalize to cases
that are not presented in the training set, rather than only
memorizing the training data. Otherwise, our system would
not work for unknown or new types of attacks. Denoising
works by corrupting the original input with some form of
noise. The autoencoder now needs to reconstruct the input
from a corrupted version of it, which forces the hidden layer
to capture the statistical dependencies between the inputs.
More detailed explanation of why denoising autoencoder
works can be found in [30]. In our experiment (outlined
here and described further in Section 5) we implemented the
corruption process by randomly setting 20% of the entries
for each input to 0.

A denoising autoencoder with three hidden layers was
chosen for our experiment. The structure of the autoencoder
is shown in Figure 6. The hidden layer contains n/2, n/4,
n/2 dimensions respectively. Adding more hidden layers
does not improve the performance and is easily overfit.
Relu [31] was chosen as the non-linear activation function
in the hidden layer. Section 5.5 presents the results of exper-
iments that evaluate the performance of a stacked denoising
autoencoder in web attack detection.

The architecture of our unsupervised/semi-supervised
web attack detection system is shown in Figure 8 and
described below (each numbered bullet corresponds to a
numbered portion of the figure):

Fig. 8. The Architecture of the Unsupervised/Semi-supervised Web
Attack Detection System.

1. RSMT collected a large number of unlabeled training
traces by simulating normal user requests. These unla-
beled training traces should contain mostly normal requests,
though a few abnormal requests may slip in.

2. A stacked denoising autoencoder is used to train on
the unlabeled training traces. By minimizing the reconstruc-
tion error, the autoencoder learns an embedded low dimen-
sional subspace that can represent the normal requests with
low reconstruction error.

3. A semi-supervised learning step can optionally be
performed, where a small amount of labeled normal and
abnormal request data is collected. Normal request data
can be collected by running repetitive unit tests or web
traffic simulators, such as Apache JMeter [32]. Abnormal
request data can be collected by manually creating attack
requests, such as SQL injection and Cross Site Scripting
attacks against the system. The transformation learned in
unsupervised learning is applied to both normal and ab-
normal requests and their average reconstruction error is
calculated respectively. A threshold for reconstruction error
is chosen to maximize a metric, such as the F1 score, which
measures the harmonic average of the precision and recall.

4. If no semi-supervised learning is conducted, the
highest reconstruction error for unlabeled training data is
recorded and the threshold is set to a value that is higher
than this maximum by a adjustable percentage.

5. When a new test request arrived, the trained au-
toencoder will encode and decode the request vector and
calculate reconstruction error E. If E is larger than the
learned threshold θ, it will be classified as attack request. If
E is smaller than θ, it will be considered as normal requests.
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Fig. 9. Several Cyber-attacks Are Exploited in the Test Video Manage-
ment Application

5 ANALYSIS OF EXPERIMENTAL RESULTS

This section presents the results of experimentally evaluat-
ing our deep learning-based intrusion detection system. We
first describe the test environment and evaluation metrics.
We then compare the performance of our end-to-end deep
learning approach with other evaluated methods.
5.1 Experiment Testbed
We used the following two web applications as the basis
for the testbed in our experiments: (1) Video Management
Application, which is built on Apache Spring framework
using an embedded HSQL database and handles HTTP
requests for uploading, downloading, and viewing video
files, and (2) Compression Service Application, which is
built upon the Apache Commons Compress library and
takes a file as input and outputs a compressed file in the
chosen compression format. Figure 9 shows how the test
video management application provides several RESTful
APIs, including: (1) user authentication, where a GET API
allows clients to send usernames and passwords to the
server and then checks the SQL database in the back-end for
authentication, (2) video creation, where a POST API allows
clients to create or modify video metadata, and (3) video
uploading/downloading, where POST/GET APIs allow users
to upload or download videos from the server’s back-end
file system using the video IDs.

Our test wev applications (webapps) were engineered
in a manner that intentionally left them susceptible to
several widely-exploited vulnerabilities. The test emulated
the behavior of both normal (good) and abnormal (mali-
cious) clients by issuing service requests directly to the test
webapps REST API. For example, the test harness might
register a user with the name “Alice” to emulate a good
clients behavior or “Alice OR true” to emulate a malicious
client attempting a SQL injection attack.

To evaluate the system’s attack detection performance,
we exploited three attacks from OWASP’s top ten cyberse-
curity vulnerabilities list [33] and used them against the test
webapp. These attacks included (1) SQL injection, (2) Cross-
site Scripting (XSS), and (3) object deserialization vulnerabil-
ities. The SQL injection attack was constructed by creating
queries with permutations/combinations of keywords IN-
SERT, UPDATE, DELETE, UNION, WHERE, AND, OR, etc.
The following types of SQL injections were examined:
• Type1: Tautology based. Statements like OR ’1’ = ’1’

and OR ’1’ < ’2’ were added at the end of the query to make
the preceding statement always true. For example, SELECT
* FROM user WHERE username = ’user1’ OR ’1’ = ’1’.
• Type2: Comment based. A comment was used to

ignore the succeeding statements, e.g., SELECT * FROM user
WHERE username = ’user1’ AND password = ’123’.

• Type3: Use semicolon to add additional statement,
e.g., SELECT * FROM user WHERE username = ’user1’;
DROP TABLE users; AND password = ’123’.

For the XSS attack, we added a new method with a
@RequestMapping2 in a controller that was never called
in the “normal” set. We then called this method in the
abnormal set to simulate an XSS attack that accessed code
blocks a client should not be able to access. We also modified
an existing controller method with @RequestMapping so
a special value of one request path called a completely
different code path to execute. This alternate code path was
triggered only in the abnormal set.

Object deserialization vulnerabilities [34] can be ex-
ploited by crafting serialized objects that will invoke re-
flective methods that result in unsafe behaviors during
the deserialization process. For example, we could store
ReflectionTransformer items in an ArrayList that result in
Runtime.exec being reflectively invoked with arguments
of our choice (effectively enabling us to execute arbitrary
commands at the privilege level of the JVM process). To
generate such serialized objects targeting the Commons-
Collections library, we used the ysoserial tool [35].

For the compression service application 1,000 traces
were collected. All runs compress 64 MB of ran-
domly generated data using a different method of ran-
dom data generation for each run. For each of x ∈
{1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096}, a sin-
gle chunk of size 64 MB/x was generated and duplicated
times (with x = 4096 the data is repetitive, whereas with
x = 1, the data is not repetitive at all). This test shows the
input dependency of compression algorithm control flow,
so it was not feasible to create inputs/test cases that would
exercise all possible control flow paths.
5.2 Evaluation Metrics
An ideal system should detect the legitimate traffic as
normal and detect attack traffic as abnormal. Two types of
errors therefore exist: (1) A false positive (FP) or false alarm,
which refers to the detection of benign traffic as an attack,
and (2) A false negative (FN), which refers to detecting
attack traffic as benign traffic. A key goal of an intrusion
detection system should be to minimize both the FP rate
and FN rate. A trade-off exists, however, since a more strict
algorithm will tend to reduce the FN rate, but at the cost of
detecting benign traffic as attack traffic.

Anomaly detection is an imbalanced classification prob-
lem, which means the attack test cases appear much rarely
than normal test cases. Accuracy is thus not a good metric
because simply predicting every request as normal will give
a very high accuracy. To address this issue, we use the
following metrics to evaluate our approaches: (1) Precision
= TP/(TP+FP), which penalizes false positives, (2) Recall
= TP/(TP+FN), which penalizes false negatives, and (3) F1
score = 2*precision*recall/(precision+recall), which evenly
weights precision and recall.

5.3 Overhead Observations
To examine the performance overhead of the RSMT agent
described in Section 3, we conducted experiments that eval-

2. @RequestMapping is an annotation used in Spring framework
for mapping web requests onto specific handler classes or handler
methods.
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uated the runtime overhead in average cases and worst
cases, as well as assessed how “real-time” application ex-
ecution monitoring and abnormal detection could be. As
discussed in Section 3, RSMT modifies bytecode and sub-
sequently executes it, which incurs two primary sources
of overhead. The first is the cost of instrumentation itself.
The second is the performance cost of executing the new
instructions injected into the original bytecode.

Such instruction-level tracing can increase execution
time significantly in the worst case. For example, consider
a while loop that iterates 100,000 times and contains 5
instructions. If a visitInstruction() method call is added to
each static instruction in the loop, roughly 500,000 dynamic
invocations of the visitInstruction() method will be incurred,
which is a two-fold increase in the number of dynamic
instructions encountered. Moreover, when considering the
number of instructions needed to initialize fields and make
the appropriate calls to visitMethodEnter() or handle excep-
tions, this overhead can be even greater.

RSMT has low overhead for non-computationally con-
strained applications. For example, a Tomcat web server that
starts up in 10 seconds takes roughly 20 seconds to start up
with RSMT enabled. This startup delay is introduced since
RSMT examines and instruments every class loaded by the
JVM. However, this startup cost typically occurs once since
class loading usually happens just once per class.

In addition to startup delays, RSMT incurs runtime over-
head every time instrumented code is invoked. We tested
several web services and found RSMT had an overhead
ranging from 5% to 20%. The factors most strongly impact-
ing its overhead are the number of methods called (more
frequent invocation results in higher overhead) and the ratio
of computation to communication (more computation per
invocation results in lower overhead).

To evaluate worst-case performance, we used RSMT to
monitor the execution of an application that uses Apaches
Commons-Compress library to bz2 compress randomly gen-
erated files of varying sizes ranging from 1x64 byte blocks
to 1024x64 byte blocks, which is a control-flow intensive
task. Moreover, the Apache Commons implementation of
bz2 is “method heavy” (e.g., there are a significant number
of setter and getter calls), which are typically optimized
away by the JVMs hotspot compiler and converted into
direct variable accesses. The instrumentation performed by
RSMT prevents this optimization from occurring, however,
since lightweight methods are wrapped in calls to the model
construction and validation logic. As a result, our bz2 bench-
mark represents the worst-case for RSMT performance.

Figure 10 shows that registration adds a negligible over-
head to performance (0.5 to 1%), which is expected since
registration events only ever occur once per class, at class
initialization. Adding call graph tracking incurs a signif-
icant performance penalty, particularly as the number of
randomly generated blocks increases. Call graph tracking
ranges from 1.5x to over 10x slower than the original
application. Call tree tracking results in a 2-5x slowdown.
Similarly, fine-grained control flow tracking results in a 4-
6x slowdown. As a result, with full, fine-grained tracking
enabled, an application might run at 1% its original speed.
By filtering getters and setters, however, it is possible to
reduce this overhead by several orders of magnitude, as

described later.

Fig. 10. Analysis of RSMT Performance Overhead

To further quantify RSMT’s performance overhead, we
used SPECjvm2008 [36], which is a suite comprising various
integer and floating point benchmarks that quantitatively
compare the performance of JVM implementations (e.g.,
to determine whether one implementations JIT compiler is
superior to another for a certain type of workload). We used
the same JVM implementation across our tests, but varied
the configuration of our instrumentation agents to measure
the performance tradeoffs.

We evaluated the following configurations: (a) no in-
strumentation (no RSMT features emitted), (b) reachability
instrumentation only (disabled after first access to a code
region), (c) call tracing but all events passed into a null
implementation, and (d) reachability + call tracing (null).
We executed each configuration on a virtualized Ubuntu 14
instance provisioned with two cores and 8 GB of memory.
The results of this experiment are shown below in Figure 11.
We would expect a properly tuned RSMT system to perform
somewhere between configurations c and d.

Although we observed that the overhead incurred by
naively instrumenting all control flows within an applica-
tion could be quite large (see Figure 10), a well-configured
agent should extract useful traces with overheads rang-
ing from nearly 0% (for computation-bound applications)
to 40% (for control-bound applications). Most produc-
tion applications contain a blend of control-bound and
computation-bound regions. Under this assumption we an-
ticipate an overhead of 15-20% based on the composite score
impact shown in Figure 11.

Fig. 11. SPECjvm2008 Performance Impact for Various Benchmarks
and Test Configurations
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5.4 Supervised Attack Detection with Manually Ex-
tracted Features

Before evaluating the performance of our deep learning
approach, we present several supervised learning methods
as benchmark for comparison. We described the manually
extracted features we used.

5.4.1 Experiment benchmarks

Datasets and feature vectors are crucial for cyber-attack
detection systems. The following feature attributes were
chosen as the input for our supervised learning algorithms:

1. Method execution time. Attack behaviors can result in
abnormal method execution times, e.g., SQL injection attacks
may execute faster than normal database queries.

2. User Principal Name (UPN). UPN is the name
of a system user in an e-mail format, such as
my name@my domain name. When attackers log into the
test application using fake user principal names, the ma-
chine learning system can use this feature to detect it.

3. The number of characters of an argument, e.g., XSS attacks
might input some abnormally large argument lengths,
such as http://www.msn.es/usuario/guias123/default.
asp?sec=\discretionary{-}{}{}&quot;&gt;&lt;/script&gt;
&lt;script&gt;alert(&quot;Da\discretionary{-}{}{}iMon&
quot;)&lt;/script&gt;

4. Number of domains, which is the number of domains
found in the arguments. The arguments can be inserted with
malicious URLs by attackers to redirect the client “victim”
to access malicious web sources.

5. Duplicate special characters. Many web browsers ignore
and correct duplicated characters, so attackers can insert
duplicated characters into requests to fool validators.

6. N-gram. Feature vector was built using the n-gram [37]
model. The original contents of the arguments and re-
turn values are filtered by Weka’s StringToWordVector tool
(which converts plain word into a set of attributes repre-
senting word occurrence) and the results are then applied to
make the feature vectors.

After instrumenting the runtime system to generate mea-
surements of the system when it is executing correctly or
incorrectly, supervised approaches use these measurements
to build a training data set, whereby the measurements are
viewed as features that can characterize the correct and
incorrect system operation. Machine learning algorithms
use these features to derive models that classify the cor-
rectness of the execution state of the system based on a
set of measurements of its execution. When new execution
measurements are given to the machine-learned model,
algorithms can be applied to predict whether the previously
unseen trace represents a valid execution of the system.

To provide an environment for classification, regression,
and clustering we used the following three supervised ma-
chine learning algorithms from the Weka workbench:

1. Naive Bayes, whose classification decisions calculate
the probabilities/costs for each decision and are widely
used in cyber-attack detection [38].

2. Random forests, which is an ensemble learning method
for classification that train decision trees on sub-samples
of the dataset and then improve classification accuracy
via averaging. A key parameter for random forest is the

number of attributes to consider in each split point, which
are selected automatically by Weka.

3. Support vector machine (SVM), which is an efficient
supervised learning model that draws an optimal hyper-
plane in the feature space and divides separate categories
as widely as possible. RSMT uses Weka’s Sequential Minimal
Optimization algorithm to train the SVM.

Likewise, to reduce variance and avoid overfitting [39],
we also used the following two aggregate models:

1. Aggregate vote, which returns ATTACK if a majority of
classifiers detect attacks and NOT ATTACK otherwise.

2. Aggregate any, which returns attack if any classifier
detects attacks and NOT ATTACK otherwise.
5.4.2 Experiment Results

Table 1 and Table 2 show the performance comparison of
different algorithms on testbed web applications. For the
SQL injection attacks, the training dataset contains 160 safe
unit tests and 80 attack unit tests, while the validation
dataset contains 40 safe unit tests and 20 attack unit tests.
The SQL injection attack samples bypass the test applica-
tions user authentication and include the most common SQL
injection attack types.

TABLE 1
Machine Learning Models’ Experimental Results for SQL Injection

Attacks

Precision Recall F-score
Naive bayes 0.941 0.800 0.865

Random forest 1.000 0.800 0.889
SVM 0.933 0.800 0.889

AGGREGATE VOTE 1.000 0.800 0.889
AGGREGATE ANY 0.941 0.800 0.865

The XSS training dataset contains 1,000 safe unit tests
and 500 attack unit tests, while the validation dataset con-
tains 150 safe unit tests and 75 attack unit tests (XSS attack
samples were obtained from www.xssed.com). All three
classifiers are similar in detecting XSS attacks.

TABLE 2
Machine Learning Models’ Experimental Results for Cross-site

Scripting Attacks

Precision Recall F-score
Naive bayes 0.721 1.000 0.838

Random forest 0.721 1.000 0.838
SVM 0.728 1.000 0.843

AGGREGATE VOTE 0.724 1.000 0.840
AGGREGATE ANY 0.710 1.000 0.831

5.5 Unsupervised Attack Detection with Deep Learning

5.5.1 Experiment benchmarks

There are several techniques we can use to differentiate
benign traffic and attack traffic. The first is the naive ap-
proach, which learns a set of method calls from a training
set (obtained by unit test or simulated legitimate requests).
If encounter a new trace, the naive approach checks if the
trace contain any method call that is never seen from the
training set. If there is such method, the trace will be treated
as attack trace. Otherwise, it is considered safe.

http://www.msn.es/usuario/guias123/default.asp?sec=\discretionary {-}{}{}&quot;&gt;&lt;/script&gt;&lt;script&gt;alert(&quot;Da\discretionary {-}{}{}iMon&quot;)&lt;/script&gt;
http://www.msn.es/usuario/guias123/default.asp?sec=\discretionary {-}{}{}&quot;&gt;&lt;/script&gt;&lt;script&gt;alert(&quot;Da\discretionary {-}{}{}iMon&quot;)&lt;/script&gt;
http://www.msn.es/usuario/guias123/default.asp?sec=\discretionary {-}{}{}&quot;&gt;&lt;/script&gt;&lt;script&gt;alert(&quot;Da\discretionary {-}{}{}iMon&quot;)&lt;/script&gt;
http://www.msn.es/usuario/guias123/default.asp?sec=\discretionary {-}{}{}&quot;&gt;&lt;/script&gt;&lt;script&gt;alert(&quot;Da\discretionary {-}{}{}iMon&quot;)&lt;/script&gt;
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The naive approach can detect attack traces easily since
attack traces usually contains some dangerous method calls
that will not be used in legitimate operation. However, the
naive approach also suffer from high false positive rate
as it is sometimes impossible to iterate all the legitimate
request scenario. A legitimate request may thus contain
some method call(s) that do not exist in training set, which
results in blocking benign traffic.

A more advanced technique is one-class SVM [40]. Tra-
ditional SVM solves the two or multi-class situation. While
the goal of a one-class SVM is to test new data and found
out whether it is alike or not like the training data. By just
providing the normal training data, one-class classification
creates a representational model of this data. If newly en-
countered data is too different (e.g., outliers in the projected
high-dimensional space), it is labeled as out-of-class.

5.5.2 Experiment Results

Table 3 and Table 4 show the performance comparison of
different algorithms on our two testbed web applications.
For the video upload application, the attack threat is SQL
injection and XSS. The results in these tables show that
autoencoder outperforms the other algorithms. For the com-
pression application, we evaluate the detection performance
in terms of deserialization attack. Figure 12 plots the
precision/recall/F-score curve along with threshold value.
We can observe a tradeoff between precision and recall.
If we choose a threshold that is too low, many normal
request will be classified as abnormal, resulting in higher
false negative and low recall score. In contrast, if we choose
a threshold that is too high, many abnormal requests will
be classified as normal, leading to higher false positive and
low precision score. To balance precision and recall in our
experiements, we choose a threshold that maximizes the F-
score in the labeled training data .

To understand how various parameters (such as training
data size, input feature dimension, and test coverage ra-
tio) affect the performance of machine learning algorithms,
we manually created a synthetic dataset to simulate web
application requests. Figure 13 shows the performance of

TABLE 3
Performance Comparison of Different Machine Learning Algorithms on

Video Management Application

Precision Recall F-score
Naive 0.722 0.985 0.831
PCA 0.827 0.926 0.874
One-class SVM 0.809 0.909 0.858
Autoencoder 0.898 0.942 0.914

TABLE 4
Performance Comparison of Different Machine Learning Algorithms on

Compression Application

Precision Recall F-score
Naive 0.421 1.000 0.596
PCA 0.737 0.856 0.796
One-class SVM 0.669 0.740 0.702
Autoencoder 0.906 0.928 0.918

Fig. 12. Threshold is Chosen with Max F-score.

Fig. 13. Performance of Different Machine Learning Algorithm Under
Different Unlabeled Training Data Size.

machine learning algorithms with different unlabeled train-
ing data size. Since the test case contains method calls that
were not presented in the training data, the naive approach
simply treats every request as abnormal, resulting 100%
recall, but 0% precision. Both PCA and autoencoder’s per-
formance improve as we have more training data. PCA per-
forms better, however, when there is limited training data
(below 1,000). The autoencoder needs more training data
to converge, but outperforms the other machine learning
algorithms after it is given enough training data . Our results
show the autoencoder generally needs 5,000 unlabeled
training data to achieve good performance. Figure 14 shows
the performance of machine learning algorithms under dif-
ferent test coverage ratios. The test coverage ratio is the
percentage of method calls covered in the training dataset.
For large-scale web applications, it is may be impossible
to traverse every execution path and method calls due to
the path explosion problem [41]. If only a subset of method
calls are present in the training dataset, thereore, the naive
approach or other supervised learning approaches may clas-
sify the legitimate test request with uncovered method calls
as abnormal. PCA and autoencoder algorithms, however,
can still learn a hidden manifold by finding the similarity
in structure instead of exact method calls. They can thus
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Fig. 14. Performance of Different Machine Learning Algorithms Under
Different Test Coverage Ratios.

perform well even given only a subset of coverage for
all the method calls. Figure 15 shows the performance of

Fig. 15. Performance of Different MachineLlearning Algorithms Under
Different Input Feature Dimensions.

machine learning algorithms under different input feature
dimensions (the unique feature ratio is kept constant). This
figure shows the difference between the autoencoder and
other approaches are not significant when the number of
feature is small. As the number of feature keep increasing,
however, this gap becomes larger. The autoencoder shows
robust performance even with complicated high dimension
input data. Figure 16 shows the performance of machine
learning algorithms under different unique feature ratios.
This figure shows that the performance of the machine
learning algorithms improves as the unique feature ratio
increase. This result is not surprising because the statistical
difference between normal and abnormal requests is larger
and easier to capture. For the autoencoder algorithm at least
2% of unique features are needed in the abnormal requests
for acceptable performance. The experiment was conducted
on a desktop with Intel i5 3570 and GTX 960 GPU running
Windows 10. Autoencoder was implemented with keras 2.0
with TensorFlow backend.

Table 5 compares the training/classification time for
different algorithms. The training was performed with the
same set of 5,000 traces with default parameters specified
in Section 4.3. The classification time is the average time to
classify one trace over 1,000 test traces.

Fig. 16. Performance of Different Machine Learning Algorithm Under
Different Unique Feature Ratios.

The results in Table 5 show that the training time of
the deep autoencoder is significant longer than other ap-
proaches. However, the training need not be performed
frequently and can be done offline. Moreover, existing deep
learning frameworks (such as TensorFlow) support GPUs,
which can also significantly accelerate the training time with
more powerful GPUs.

For the classification time, all algorithms can perform
classification in an acceptable short period of time with the
trained model. Moreover, hardware advances (such as the
Tensor Processing Unit [42]) are bringing high performance
and low cost computing resources in the future, so computa-
tion cost should not be a bottleneck for future deployments
of deep learning to detect web attacks.

6 RELATED WORK

Intrusion detection systems monitor a network and/or sys-
tem for malicious activity or policy violations [3]. These
types of systems have been studied extensively in the
literature based on various approaches, including static
analysis [2], [20], manual modeling [43], [44], and machine
learning [45], [46]. This section describes prior work and
compares/contrasts it to our research on RSMT, which we
presented in this paper.

6.1 Static Analysis
Static analysis approaches examine an applications source
code and search for potential flaws in its construction and
expected execution that could lead to attack. For example,
Fu et al. [20] statically analyzed SQL queries and built gram-
mars representing expected parameterization. Wassermann
et al. [2] presented a static analysis for detecting XSS vulner-
abilities using tainted information flow with string analysis.
Kolosnjaji et al. [47] proposed an analysis on system call
sequences for malware classification.

TABLE 5
Comparison of Training/Classification Time for Different Algorithms.

Training Time Classification Time
Naive 51s 0.05s
PCA 2min 12s 0.2s
One-class SVM 2min 6s 0.2s
Autoencoder 8min 24s 0.4s
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Statically derived models can also be used at runtime
to detect parameterizations of the SQL queries that do not
fit the grammar and indicate possible attack. Static analysis
approaches, however, typically focus on specific types of at-
tacks that are known as a priori. In contrast, RSMT bypasses
these various attack vectors and captures the low-level call
graph under the assumption that the access pattern of
attack requests will be statistically different than legitimate
requests, as shown in Section 3.

Moreover, many static analysis techniques require access
to application source code, which may not be available
for many production systems. Employing attack-specific
detection approaches requires building a corpus of known
attacks and combining detection techniques to secure an
application. A significant drawback of this approach, how-
ever, is that it does not protect against unknown attacks
for which no detection techniques have been defined. In
contrast, RSMT models correct program execution behaviors
and uses these models to detect abnormality, which works
even if attacks are unknown, as shown in Section 4.
6.2 Manual Modeling
Manual modeling relies on designers to annotate code or
build auxiliary textual or graphical models to describe
expected system behavior. For example, SysML [43] is a
language that allows users to define parametric constraint
relationships between different parameters of the system to
indicate how changes in one parameter should propagate
or affect other parameters. Scott [44] proposed a Bayesian
model-based design for intrusion detection systems. Ilgun et
al. [48] used state transitions to model the intrusion process
and build a rule-based intrusion detection system.

Manual modeling is highly effective when analysis can
be performed on models to simulate or verify that er-
ror states are not reached. Although expert modelers can
manually make errors, many errors can be detected via
model simulation and verification. A key challenge of us-
ing manual modeling alone for detecting cyber-attacks,
however, is that it may not fully express or capture all
characteristics needed to identify the attacks. Since manual
models typically use abstractions to simplify their usage and
specification of system properties, these abstractions may
not provide sufficient expressiveness to describe properties
needed to detect unknown cyber-attacks. Our deep learning
approach uses RSMT to analyze raw request trace data
without making any assumption of the relationships or
constraints of the system, thereby overcoming limitations
with manual modeling, as shown in Section 3.
6.3 Machine Learning
Machine learning approaches require instrumenting a run-
ning system to measure various properties (such as exe-
cution time, resource consumption, and input characteris-
tics) to determine when the system is executing correctly
or incorrectly due to cyber-attacks, implementation bugs,
or performance bottlenecks. For example, Farid et al. [45]
proposed an adaptive intrusion detection system by com-
bining naive bayes and decision tree. Zolotukhin et al. [46]
analyzed HTTP request with PCA, SVDD, and DBSCAN for
unsupervised anomaly detection. Likewise, Shar et al. [49]
used random forest and co-forest on hybrid program fea-
tures to predict web application vulnerabilities.

Anomaly detection is another machine learning [22]
application that addresses cases where traditional classifica-
tion algorithms work poorly, such as when labeled training
data is imbalanced. Common anomaly detection algorithms
include mixture Gaussian models, support vector machines,
and cluster-based models [50]. Likewise, autoencoder tech-
niques have shown promising results in many anomaly
detection tasks [51], [52].

Our approach described in this paper uses a stacked
autoencoder to build an end-to-end deep learning system
for the intrusion detection domain. The accuracy of conven-
tional machine learning algorithms [45], [49] rely heavily on
the quality of manually selected features, as well as the la-
beled training data. In contrast, our deep learning approach
uses RSMT to extract features from high-dimensional raw
input automatically without relying on domain knowledge,
which enables it to achieve better detection accuracy with
large training data, as shown in Section 5.5.

7 CONCLUDING REMARKS

This paper describes the architecture and results of ap-
plying a unsupervised end-to-end deep learning approach
to automatically detect attacks on web applications. We
instrumented and analyzed web applications using the Ro-
bust Software Modeling Tool (RSMT), which autonomically
monitosr and characterizes the runtime behavior of web
applications. We then applied a denoising autoencoder to
learn a low-dimensional representation of the call traces ex-
tracted from application runtime. To validate our intrusion
detection system, we created several test applications and
synthetic trace datasets and then evaluated the performance
of unsupervised learning against these datasets.

The following are key lessons learned from the work
presented in this paper:
• Autoencoders can learn descriptive representations

from web application stack trace data. Normal and anoma-
lous requests are significantly different in terms of re-
construction error with representations learned by autoen-
coders. The learned representation reveals important fea-
tures, but shields application developers from irrelevant
details. The results of our experiments in Section 5.5 suggest
the representation learned by our autoencoder is sufficiently
descriptive to distinguish web request call traces.
• Unsupervised deep learning can achieve over 0.91

F1-score in web attack detection without using domain
knowledge. By modeling the correct behavior of the web
applications, unsupervised deep learning can detect dif-
ferent types of attacks, including SQL injection, XSS or
deserialization with high precision and recall. Moreover, less
expertise and effort is needed since the training requires
minimum domain knowledge and labeled training data.
• End-to-end deep learning can be applied to detect

web attacks. The accuracy of the end-to-end deep learning
can usually outperform systems built with specific human
knowledge. The results of our experiments in Section 5.5
suggest end-to-end deep learning can be successfully ap-
plied to detect web attacks. The end-to-end deep learning
approach using autoencoders achieves better performance
than supervised methods in web attack detection without
requiring any application-specific prior knowledge.
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