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Abstract. Test and evaluation (T&E) of enterprise distributed real-time and em-
bedded (DRE) system quality-of-service (QoS) during early phases of the soft-
ware lifecycle helps increase confidence levels that the system under develop-
ment will meet its QoS requirements. Conventional T&E techniques are complex
since they tightly couple system implementations with metrics of interest. To help
alleviate this complexity, the Embedded Instrumentation Systems Architecture
(EISA) initiative defines an architecture that provides a metadata-driven method-
ology for heterogeneous data collection and aggregation in a synchronized and
time-correlated fashion.
This paper describes our experiences applying an EISA-based T&E middleware
framework to the Unified SHIP platform, which is a representative system for
next-generation shipboard computing systems. The middleware framework dis-
cussed in this paper enables instrumenting shipboard computing systems to col-
lect and extract metrics without a priori knowledge of the metrics collected. We
found that the flexibility of EISA’s metadata-driven approach to instrumentation
and data collection increased developer and tester knowledge and analytical ca-
pabilities of end-to-end QoS in shipboard computing systems.

1 Introduction

Challenges of developing shipboard computing systems. Shipboard computing sys-
tems are a class of enterprise distributed real-time and embedded (DRE) systems with
stringent quality-of-service (QoS) requirements (such as latency, response time, and
scalability) that must be meet in addition to their functional requirements [9]. To en-
sure QoS requirements of such systems, system developers must analyze and optimize
end-to-end performance throughout the software lifecycle. Ideally, this test and eval-
uation (T&E) [2] process should start in the architectural design phase of shipboard
computing, as opposed to waiting until final system integration later in the lifecycle.
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T&E of shipboard computing system QoS requirements typically employs software
instrumentation techniques [1, 5, 7, 9] that collect metrics of interest (e.g., CPU utiliza-
tion, memory usage, response of received events, and heartbeat of an application) while
the system executes in its target environment. Performance analysis tools then evalu-
ate the collected metrics and inform system developers and testers whether the system
meets its QoS requirements. These tools can also identify bottlenecks in system and
application components that exhibit high and/or unpredictable resource usage [3, 6].

Although software instrumentation facilitates T&E of shipboard computing system
QoS requirements, conventional techniques for collecting metrics are tightly coupled to
the system’s implementation [2, 9, 11]. For example, shipboard computing developers
often decide during the system design phase what metrics to collect for T&E, as shown
in Figure 1. Developers then incorporate into the system’s design the necessary probes
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Fig. 1. Conventional Way to Instrument Shipboard Computing Systems

to collect these metrics from the distributed environment.
The drawback with a tightly-coupled approach is that shipboard computing devel-

opers must either (1) redesign the system to incorporate the new/different metrics or (2)
use ad hoc techniques, such as augmenting existing code with the necessary interfaces
without understanding its impact to the overall system’s design and maintainability,
to collect such metrics. Developers therefore need better techniques to simplify instru-
menting shipboard computing systems for collecting and extracting metrics—especially
when the desired metrics are not known a priori.

Our approach→ EISA-based T&E framework. The Embedded Instrumentation
Systems Architecture (EISA) [10] initiative defines a metadata-driven method for het-
erogeneous data collection and aggregation in a synchronized and time-correlated fash-
ion [10]. EISA uses a data-centric approach to instrumentation and data collection for
T&E, as opposed to an interface-centric approach. Instead of integrating into the sys-
tem’s design many interfaces and methods to extract and collect metrics, EISA treats
all metrics as a arbitrary data that flows over a common reusable channel and discover-
able via metametrics5 [8], as shown in Figure 2. EISA thus helps reduce the coupling

5 Metametrics are metadata that describe metrics collected at runtime without knowing its struc-
ture and quantity a priori.
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Fig. 2. Conventional Approach vs. EISA’s Approach to T&E

between system design and instrumentation logic incurred with the conventional T&E
techniques described above.

This experience report discusses our insights and lessons learned while develop-
ing and applying the Open-source Architecture for Software Instrumentation of Systems
(OASIS) in the context of shipboard computing systems. OASIS is a service-oriented
middleware framework that enables lightweight dynamic instrumentation of EISA-
based T&E from the domain of shipboard computing. OASIS provides techniques and
tools that enable shipboard computing developers and testers to (1) collect metrics from
a distributed environment at runtime without a priori knowledge of what metrics are
being collected, (2) apply performance analysis tools to evaluate QoS without being
tightly coupled to the system’s implementation, and (3) use the results of the met-
ric analysis to evaluate end-to-end QoS of application and infrastructure components
throughout their lifecycle.

Our experiences gained from developing and applying OASIS to shipboard com-
puting systems show that EISA’s metadata-driven approach to instrumentation and data
collection provides flexibility that can increase DRE system developers and tester’s
knowledge base and analytical capabilities of end-to-end QoS. We also found that OA-
SIS helped quantify which technologies were most beneficial for collecting metamet-
rics.

Paper organization. The remainder of this paper is organized as follows: Section 2
summarizes the challenges that motivate the need for OASIS in the context of shipboard
computing; Section 3 describes how OASIS addresses these challenges; and Section 4
presents concluding remarks and lessons learned.

2 The Unified SHIP Platform

In previous work [10], EISA-based tools were used to instrument hardware compo-
nents (e.g., sensor hardware components) of enterprise DRE systems. These systems,
however, are composed of both hardware and software components. Ideally, end-to-end
QoS evaluation of shipboard computing systems should employ performance analysis
of both hardware and software components.

To help evaluate EISA in a representative enterprise DRE system, we created the
Unified Software/Hardware Instrumentation Proof-of-concept (Unified SHIP) platform,
which provides a representative environment for investigating technical challenges of
next-generation domain of shipboard computing systems. As shown in Figure 3, the
Unified SHIP platform contains software components (i.e., the rectangles in Figure 3)



implemented using the Component Integrated ACE ORB (www.dre.vanderbilt.
edu/CIAO), which is a C++ implementation of the Lightweight CORBA Component
Model [4]. Conversely, performance analysis tools are implemented using a variety of
programming languages, such as C++, C#, and Java. The software applications run on
real-time Linux and Solaris operating systems, whereas performance analysis tools run
on Windows and conventional Linux operating systems.
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Fig. 3. Overview of the Unified SHIP Platform

Figure 3 also shows how the Unified SHIP platform consists of EISA-compliant
sensor hardware components and a collection of software components that performed
the following operational capabilities for shipboard computing systems: 4 components
are trackers that monitor events in the operational environment, 3 components are plan-
ners that process data from the sensor components, 1 component performs configuration
of the effectors, 3 components are effectors that react to commands from the config-
uration component, 3 components allow operators to send commands to the planner
components, and 1 component is a gateway that authenticates login credentials from
the operator components. The directed line between each component in Figure 3 repre-
sents inter-component communication, such as sending an event between two different
components.

Existing techniques for instrumenting shipboard computing systems assume soft-
ware instrumentation concerns (e.g., what metrics to collect and how to extract metrics
from the system) are incorporated into the system’s design. Since the Unified SHIP plat-
form consists of hardware and software components at various degrees of maturity and
deployment, it is hard to use existing instrumentation techniques to collect and extract
metrics for QoS evaluation during early phases of the software lifecycle. In particular,
developers and testers of the Unified SHIP platform face the following challenges:
• Challenge 1: Describing metametrics in a platform- and language- indepen-

dent manner. The heterogeity of the unified SHIP platform’s software and hardware
components makes it undesirable to tightly couple performance analysis tools to the



target platform and language of software and hardware components to collect and an-
alyze metrics. Platform- and language-independent techniques and tools are therefore
needed that will enable description of metrics collected from hardware and software
components.
• Challenge 2: Collecting metrics without a priori knowledge of its structure

and quantity. Metrics collected via instrumentation in the Unified SHIP platform come
from heterogenous sources, which make it tedious and error-prone for system develop-
ers and testers to tightly couple the systems implementation to understand each metric
and technology a priori. Techniques are therefore needed that will enable the collec-
tion of metrics from the Unified SHIP platform for QoS evaluation without a priori
knowledge of which metrics are collected.

The remainder of this experience report discusses the OASIS techniques and tools
we used to address these challenges in the context of the Unified SHIP platform.

3 Applying EISA-based T&E to the Unified SHIP Platform

This section discusses the structure and functionality of the Open-source Architecture
for Software Instrumentation of Systems (OASIS), which is service-oriented middle-
ware that enables lightweight dynamic instrumentation of enterprise DRE systems. We
also describe how OASIS was applied to address the Unified SHIP platform challenges
identified in Section 2.

3.1 Overview of OASIS

The Unified SHIP platform discussed in Section 2 introduced several challenges that
system developers and testers encounter when instrumenting shipboard computing sys-
tems to collect and extract metrics for performance analysis tools. These challenges
involve describing, collecting, extracting, and analyzing metrics without a priori knowl-
edge of the structure and quantity of metrics with respect to the underlying middleware
and system infrastructure.

To address these challenges, we have developed OASIS to collect and extract met-
rics of interest without a priori of their structure or quantity. Metric collection and ex-
traction in OASIS is independent of specific technologies and programming languages,
which decouples OASIS from shipboard computing software details, such as incorpo-
rating into the system’s design the necessary probes to collect and extract metrics for
performance analysis. System developers and testers are thus not constrained to make
decisions regarding what metrics to collect for performance analysis tools during earlier
phases of the lifecycle.

Figure 4 presents an high-level overview of OASIS. As shown in this figure, OASIS
consists of the following five entities:
• Software probes, which are autonomous agents responsible for collecting metrics

of interest in the system, including the current value(s) of an event, the current state of
a component, or the heartbeat the component or the node hosting the component. Soft-
ware probes are considered autonomous agents since they act independently of OASIS.
For example, an event monitor software probe from the Unified SHIP platform may
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Fig. 4. High-level overview of the OASIS middleware.

send metrics every time a component receives an events; where as, a heartbeat software
probe may send metrics at a periodic rate. Finally, each software probe is distinguished
by an user-defined UUID and corresponding human-readable name.

There are two types of software probes in OASIS: application-level probes and
infrastructure-level probes. Application-level probes are embedded into application com-
ponents to collect metrics of interest, such as the state of a component or number of
events sent/received. Infrastructure-level probes collect metrics that are not easily avail-
able at the application-level or may collect redundant metrics at the application-level,
such as current memory usage or heartbeat of each host in the target environment. Both
application- and infrastructure-level probes submit their metrics to the embedded in-
strumentation node described next.
• Embedded instrumentation node (EINode), which is responsible for receiving

metrics from software probes. OASIS has one EINode per application-context, which is
a domain of commonly related data. Examples of an application-context include a single
component, an executable, or a single host in the target environment. The application-
context for an EINode, however, is locality constrained to ensure data transmission
from a software probe to an EINode need not cross network boundaries, only process
boundaries. Moreover, the EINode controls the flow of data it receives from software
probes and submits to the data and acquisition controller described next. Each EINode is
also distinguished by a unique user-defined UUID and corresponding human-readable
name.
•Data acquisition and controller (DAC), which receives data from an EINode and

archives it for acquisition by performance analysis tools, such as querying the perfor-
mance of the latest state of component collected by a application-level software probe.
The DAC is a persistent database with a consistent location in the target environment
that can be located via a naming service. This design decouples an EINode from a DAC
and enables an EINode to dynamically discover at creation time which DAC it will sub-
mit data. Moreover, if a DAC fails during at runtime the EINode can (re)discover a new
DAC to submit data. The DAC registers itself when the test and evaluation manager
(see below) when it is created and is identifiable by a unique user-defined UUID and
corresponding human-readable name.
• Test and evaluation manager (T&E), which is the main entry point for user ap-

plications (see below) into OASIS. The T&E manager gathers data from each DAC that
has registered with it. The T&E manager also enables user applications to send signals



to each software probe in the system at runtime to alter its behavior, e.g., by decreas-
ing/increasing the hertz of the heartbeat software probe in the Unified SHIP platform
scenario. This dynamic behavior is possible because the T&E manager is aware of all
its DACs in the system, the DACs are aware of all its EINodes, and the EINodes are
aware of all their registered software probes.
• Performance analysis tools, which are domain-specific tools, such as distributed

resource managers and real-time monitoring and display consoles from the Unified
SHIP platform, that interact with OASIS by requesting metrics collected from different
software probes via the T&E manager. Tools can also send signals/commands to soft-
ware probes to alter their behavior at runtime. This design enables system developers
and testers and performance analysis tools to control the effects of software instrumen-
tation at runtime and minimize the affects on overall system performance.

Figure 5 shows the integration of OASIS with the Unified SHIP platform. Each
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Fig. 5. Integration of OASIS with the Unified SHIP Platform

hardware and software component is associated with an EINode that contains a set of
software probes (or instruments in the case of hardware components [8]) that collect and
submit metrics for extraction from the system. When an EINode receives metrics from a
software probe (or instrument), it sends it to a DAC for storage and on-demand retrieval.
Performance analysis tools then request collected metrics via the T&E manager, which
locates the appropriate metrics in a DAC.

3.2 Resolving T&E Challenges in the Unified SHIP Platform

The remainder of this section describes how we applied OASIS to address the two
challenges presented in Section 2.



Solution 1. Using XML-based Techniques to Capture Metametrics. Challenge 1
in Section 2 pertained to system developers and testers of the Unified SHIP platform
needing a technique for capturing platform- and language-independent metametrics.
OASIS addresses this challenge by using XSL Schema Definition (XSD) to describe
the metametrics in the Unified SHIP platform. XSD provides fine-grained description
capabilities of data types (such as quantity and constraints) as opposed to other tech-
niques (such as Interface Definition Language (IDL)) that only capture data types and
structure).

1 <? xml v e r s i o n = ’ 1 . 0 ’ ?>
2 <xsd : schema x m l n s : x s d = ’ h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema ’
3 x m l n s : x s i = ’ h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema−i n s t a n c e ’
4 x s i : s c h e m a L o c a t i o n = ’ h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema XMLSchema . xsd ’
5 e l e m e n t F o r m D e f a u l t = ’ q u a l i f i e d ’
6 v e r s i o n = ’ 1 . 0 ’>
7 <x s d : e l e m e n t name= ’ p r o b e M e t a d a t a ’ t y p e = ’ component . s t a t e ’ />
8 <xsd :complexType name= ’ component . s t a t e ’>
9 <x s d : a n n o t a t i o n i d = ’ m e t a d a t a ’>

10 <x s d : a p p i n f o>0A499B6B−7250−4B88−B9DC−360D32639081</ x s d : a p p i n f o>
11 <x s d : d o c u m e n t a t i o n>M o n i to r s a component ’ s s t a t e </ x s d : d o c u m e n t a t i o n>
12 </ x s d : a n n o t a t i o n >
13 <x s d : s e q u e n c e>
14 <x s d : e l e m e n t name= ’ component ’ t y p e = ’ x s d : s t r i n g ’ />
15 <x s d : e l e m e n t name= ’ s t a t e ’ t y p e = ’ x s d : i n t e g e r ’ />
16 </ x s d : s e q u e n c e>
17 </xsd:complexType>
18 </ xsd :schema>

Listing 1.1. Example XSD File for Describing Metrics Collected by a software Probe

Listing 1.1 shows an example XSD file that describes metrics collected by a software
probe for tracking a software component’s state from the Unified SHIP platform. This
listing shows the software probe has an UUID that identifies its metametrics. Each
element in the XSD file represents a data point collected in the metrics, such as the
name of the component as listed in Listing 1.1. This information is sent to the DAC at
registration time (i.e., before the Unified SHIP system is active). Performance analysis
tools, such as distributed resource managers and real-time monitoring and consoles,
then use the XSD file to learn about metrics of interest collected without requiring a
priori knowledge how the metric was collected.

Solution 2. Using Binary Data and Sockets to Transmit Metrics. Challenge 2 in
Section 2 pertained to collecting metrics of interest from a system without a priori
knowledge of its structure and quantity. OASIS addresses this challenge by using binary
data to represent metrics collected by a software probe and transmitting the metrics
using traditional socket programming. It uses binary data and socket programming so it
is not bound to a specific technology or programming language. Moreover, transmitting
binary data over sockets significantly enhances performance (e.g., response-time and
latency) compared with using text-based formats, such as XML. Finally, prior work [10]
has shown the easy of using socket programming to adapt hardware components to the
EISA specification.

Figure 6 shows how metrics are collected from the Unified SHIP platform using
OASIS. This figure shows how software probes package metrics from the Unified SHIP
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Fig. 6. Collecting Metrics as Binary Data in OASIS

platform into blobs of binary data. Before a software probe sends the metrics to an EIN-
ode, it prepends a metric header to identify the origins of the metric. After the EINode
receives a packaged metrics, it prepends a location header that identifies what EINode
is transmitting data and then sends the final package to the Data Acquisition and Con-
troller for storage. Performance analysis tools (such as distributed resource managers
and real-time monitors) then request collected metrics using the T&E manager and use
metametrics (see Section 3.2) to analyze metric contents.

4 Concluding Remarks

Test and evaluation (T&E) of shipboard computing system QoS during early phases
of the software lifecycle helps increase confidence that the system being developed
will meet it requirements. Conventional T&E instrumentation mechanisms, however,
are tightly coupled with the system’s design and implementation. This experience re-
port describes how the OASIS implementation of the Embedded Instrumentation Sys-
tems Architecture (EISA) initiative helped reduce these coupling concerns by apply-
ing a metadata-driven (as opposed to interface-driven) approach to T&E instrumenta-
tion continuously throughout the software lifecycle. OASIS enabled the DRE system to
evolve throughout the software lifecycle without negatively impacting T&E instrumen-
tation needs.

The following are lessons learned based on our experience thus far designing and
implementing OASIS in the context of the Unified SHIP scenario described in Sec-
tion 2:
• Using a metadata-driven approach to shipboard computing system instru-

mentation provides a more flexible solution than using an interface-driven ap-
proach. The flexibility of OASIS’s EISA-based metadata-driven approach to instru-
mentation and data collection helped increase developer and tester knowledge and an-
alytical capabilities of end-to-end QoS. In particular, OASIS’s metadata-driven instru-
mentation of the Unified SHIP platform enabled our team to collect metrics from het-
erogeneous environments and technologies and develop analytical tools that were de-
coupled from metric sources or technologies.
•XML is best used for describing metrics, not transmitting them. We learned by

applying OASIS to the Unified SHIP platform that XML is better used for describing
metrics and metric metadata than transmitting metrics at runtime to the OASIS Data



Acquisition and Controller. In particular, the stringent QoS requirements of shipboard
computing systems conflicted with the overhead incurred from transmitted XML-based
metrics. Instead, we found it was more efficient to transmit metametrics using XML-
based documents (such as XML Schema Definition) and use binary streams to transmit
the actual metrics.
• Although metadata is not transmitted at runtime, it must still be transmitted

efficiently instead of haphazardly. During registration time, an OASIS EINode trans-
mits XML-based metadata that describes the metrics collected by its software probes. In
some cases, an EINode may have different configurations of the same software probe,
such as one event monitor probe that collects data on every event and another probe that
collects data on every other event. For this case, the same metric metadata will be trans-
mitted twice. Our future work is investigating techniques for optimizing transmission
of metadata to reduce redundancy and unnecessary transmission.

OASIS has been integrated in the CUTS system execution modeling tool and is
freely available for download in open-source from the following location: www.dre.
vanderbilt.edu/CUTS.
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