Model-driven Tools for Dependability Management in Comgatibased Distributed
Systems

Sumant Tamble Akshay Dabholkdr;, Jaiganesh BalasubramariiaAniruddha Gokhalg Douglas C. Schmidt
TDepartment of EECS, Vanderbilt University, Nashville, THISA

I. INTRODUCTION

Emerging trends and challengesComponent-based software engineering supported by middéetechnologies, such as
CORBA Component Model (CCM) and Enterprise Java Beans (Hi#) emerged as a preferred way of developing enterprise
distributed real-time and embedded (DRE) systems, suamad buildings, modern office enterprises, and inflight gatement
systems. These systems consist of applications whose d&ipiéty requirements, such as availability and securityst be
satisfied simultaneously to ensure dependable operatjpf2]1

For correct dependable operation of enterprise DRE systbmgever, multiple dependability attributes must often be
simultaneously satisfied. There are inherent challengasatisfying multiple dependability attributes togetheeda tradeoffs
and conflicts between them. For example, deploying repliéas service on hosts that are unauthorized to access bytlien
may result in unavailability of the service to its clients failure of another replica of the same service. It is hard etedt
and analyze these errors at runtime, which motivates the tweeatch as many errors at design-time as possible. Helmee, t
is a need for design-time tools to reason about the inheradeoffs and conflicts between multiple dependabilityiaites
and alleviate complexities in developing dependable priter DRE systems.

Figure 1 depicts desirable properties of a design-timettwail considers multiple dependability attributes (suchwaslability
and security) to reason about system dependal&ligy protecting it from various hazards (such as faults and thmaized
access).

Fault Tolerance Security
(Means) (Means)
Availability Integrity
& &
Reliability Confidentiality

(Attributes) S (Attributes)

Unauthorized LEGEND
Access I Attribute

(Threats) Il Threats

Means

Fauits
(Threats)

Fig. 1: Dependability Solution Space

In addition to addressing these challenges, there are hitenges associated with managing metadata that compesiey
and configure the systems in accordance with design-tindedfés on the underlying middleware that provides a comptne
based programming model. Developers must supply corretadata to ensure that the system satisfies its dependability
requirements. These challenges are exacerbated by contpoiddleware that provides multiple levels of granulafisych
as the component-level, port-level, assembly-level anmtheotion-level) at which dependability attributes canlapp

Solution approach — Unified dependability modeling and reasoning using modelddven engineering. This chapter
describes how model-driven techniques and tools can pefigctive mechanisms to handle multiple dependabilttybattes
all at once and make design-time tradeoffs between the coinflirequirements of these attributes. It also demorestrabw
different levels of granularity offered by the componentidieware are handled simultaneously by the model-drivetsto

To make the discussions concrete, we showcase model-atagmendability techniques in the context of a tool we dewvedbp
calledModel-based Provisioning Engine for Dependabi(ityoPED). MoPED provides intuitive abstractions that hedftware
developers and systems engineers model and reason abauattebility and security requirements simultaneousipRED
provides a domain-specific modeling language (DSML) to @sent the key architectural abstractions of componerdgebas
systems and their dependability requirements expressedakability and security attributes. MoPED also bridghe gap
between high-level system requirements and configuratidovelevel middleware mechanisms.

II. OUTLINE OF THE REMAINDER OF THE CHAPTER

Section 2: Satisfying Dependability Requirements of DRE Sstems — A Case Study Perspectiv@his section describes key
challenges in developing dependable enterprise DRE sgdtgnpresenting a case study of a representative enterpaseity

and hazard sensing system. The challenges associatedepittythg and configuring such a system with integrated stycand
availability requirements are demonstrated using coacseenarios within the enterprise security and hazard rsgisgistem.
Based on these scenarios and challenges, this section simesnand highlights the problems of manually transformntime
described high-level dependability requirements of thenadio into declarative metadata that configures low-leeehponent
middleware mechanisms. The solutions provided by MoPEDoteesthose problems are discussed in subsequent sections of
the chapter.

Section 3: DSML Support for Dependability. Non-functional DRE system requirements, such as avaiialzihd security,
must be satisfied to ensure their dependable operation.¥éonpe, caller access rights must be verified before ingplan
method on a component protected by access control politiese non-functional requirements manifest themselves\aral
levels of granularity ranging from organizational domainrtdividual component methods. For example, access dqgrficies
could be applied on methods, ports, components, and compassemblies. Similarly, availability requirements aneic¢ally
applied at component or assembly level in terms of the nurabegplicas desired.

Supporting multiple dependability attributes requirese hSML to support some key properties. First, it should paevi
built-in constraints to handle several key challengesi{sagcadding constraints to allow composition of multiple efegability
attributesg.qg, failure recovery at the component level and security airttezface level) that must be addressed when combining
multiple attributes of dependability. Second, it shouldvpde generative capabilities so that platform-specifidadata for
deployment and configuration that accurately reflects tisggder’s choice of dependability requirements can be aaticaly
synthesized.

A promising solution is to have the DSML provide first claspport for rich component-based domain-specific abstrastio
so that it can help capture the requirements of componesgebdependable systems. These abstractions should beoable t
account for the diversity in component platforms. When theice of implementation technology is made, dependability
requirements should be transformed into mechanisms arncigsobf the selected component technology.

To provide a concrete exemplar of DSML support for deperligbthis section describes the design Efodel-based
Provisioning Engine for DependabilittMoPED), which is an extensible modeling framework thabwl component-based
system developers to express dependability design intefiffarent levels of granularity using intuitive visualpesentations.
MoPED is developed using the Generic Modeling Environm&ME) [3], which is a meta-programmable tool for developing
DSMLs. This section describes MoOPED’s three key capadslit(1) domain-specific, QoS modeling support for compoenent
based systems, (2) unified availability and security modedind reasoning support, and (3) extensible modeling Egeyand
tool support.

MoPED provides a DSML that is based on mandatory and optif@aiires present across contemporary component-based
middleware infrastructures. Contemporary componenasifuctures, such as EJB, CCM support all the mandatoryriesat
components, connections, remotely invocable methods,aandtion of deployment. Moreover, CCM supports the optional
features €.g, port and assembly) as well. MOPED can be used to model depdityl requirements for target component
infrastructures that support all the mandatory featured, @ptionally ports and assembly.

In MoPED’s model-driven software development process, rttealeling language, its tool support, and instance models
are the primary software artifacts that developers maatpuht design-time. Similar to the object-oriented panadigvhere
modularized and extensible design is integral for systenmtaiaability—MoPED’s DSML and tool support are extensitib
accommodate new dependability requirements that arisgsasnss evolve.

By using MoPED, developers can defer the choice of impleatant technology to later stages of software development,
which simplifies (1) application code by decoupling depénilitg aspects from application functionality and (2) aigption
deployment and configuration by conducting dependabilitgiysis irrespective of the deployment platform.

Figure 2 shows a simplifiédmetamodel of MOPED’s DSML. This metamodel show$vodels> stereotypes of component,
assembly, port, and method, which serve as placeholdece®foponents, assembly, ports, and method abstractiopgatasly,
provided by the underlying middleware technology.

A classification of QoS models that can be associated witlt lzmsnponent middleware abstractions is made using a set of
abstract QoS elements denoted usinghECO>> (First Class Object) stereotype in Figure 2. The abstra& @lements in
the metamodel (e.gGomponentQoSAssemblyQoIFortQoS MethodQo$are used as base classes for concrete QoS models.

Based on the extensible QoS modeling framework, MoPED’s D®kbvides concrete QoS models that capture availability

and security requirements of a component-based systenffaitedit levels of granularity, such as components, conoest
methods and optionally ports and assemblies. Constrairittewin the Object Constraint Language (OCL) help designe
avoid modeling conflicting availability and security desidecisions.
Section 4: Dependability Reasoning Using MoPEDThis section describes how MoPED provides capabilitiesalyae the
tradeoffs between multiple dependability attributes ofegorise DRE systems, and eases the development of sudmsyst
MoPED’s model-driven design and development process stnef the following steps, which are illustrated in the eomt
of the enterprise security and hazard sensing system:

1. Modeling availability requirements. Unlike the traditional client/server model of designingtdbuted systems, component-

1Some elements and associations present in the originahmedel are removed due to space considerations.

Assembly slc lAssemblyQoSConn
<<Model>> t <<Connection>>

Port
<<FCO>> Sm

QoSCharacteristicBasg ComponentQoSConn Component Method
<<FCO>> L { =<Connection>> S’rﬂ,_ <=Model>> | | <<Model>>

§ '_|U grelo*
MethodQoSConn|
InputPort QOutputPort
<<Model>> | [<<Model>> <<Connection>>
bst[o. st ,o»—HT o.:

Abstract PortQoS [QoS MethodQoS

—-—

PortQoSConn
<<C ion:

QoS <<FCO>> <<FCO>> <<FCO>> <<FCO>>
Elements

Subtyping Z> {; 23._‘ ’é Z} Z’&
Concrete P i ityQoS [|FailOverUnit Comp ityQoS ity

QoS
Elements

T ' b

FTMonitorabie tyRule
<<FCO>> <<FCO>>

Fig. 2: Simplified Metamodel of MoPED’s DSML

based systems often have more than one component arrang@eitkflow-like pattern (assembly) to realize critical apation
functionality. In the event of a failure of one component #ntire assembly needs to fail over to a replica assemblgads
of a replica of the failed component to avoid cascaded fedumhe granularity of protection for component-basedesystis
an assembly, which could be part of a single process or s@eds multiple processes on multiple machines.

MoPED provides modeling capabilities to group set of congus into aFailOverUnit to specify the granularity of fault-
tolerance in enterprise DRE systems. MoreovédtadOverUnit does not require modeling of replicas; only the desired rermb
of replicas {.e. the replication degree) need to be provided. Depending upe replication degree, MoPED tool chain
generates the necessary number of replicas of the assemblgllaits constituent components automatically. Whilengjoso,
it also automatically generates complex connection tapolaterconnecting the generated components, which istdidtby
the replication degree of the primary component and rejptinadegree of components that it interacts with.

2. Modeling security requirements. Since security is an essential aspect of a dependable c@npbased system, it must be
configured and enforced at different levels of the systemueaity, such as organizational domain, its subdomaipslieation
assemblies, components, and remotely invocable methocsnmponents.

Support for security QoS modeling in MoPED focuses on twadlattes of security: confidentiality and integrity. MoOPED
provides arole-based access poliRBAP) model to defineole-based access contrdRBAC) for enterprise systems and
to provide secure transport protocol configurations foradategrity. MOPED’s RBAP model is motivated and designed in
response to the OMG’s RBAP Metamodel RFP [4].

3. Integrated reasoning of availability and security requirements. The key contribution of MOPED’s dependability QoS
support is the unification of the RBAP model and secure trariggotocol configurations with availability requiremembodel-
ing. Security QoS leverages MoPED's constraint-checkiegimanisms to detect design-time errors in security cordtgurs.
MoPED also validates the decisions taken by security modedigainst the decisions taken by availability modelinge Th
inherent challenge in integrating availability and seyustems from the fact that they are often tangled with eatleroand
higher level analysis is necessary to resolve the conflietevden them at design-time. MoPED’s design environmens use
constraints written using OCL to check every design degisiken by the QoS modelers. MoPED checks the availability an
security QoS requirements in the model against OCL comitréd detect possible conflicts.

Section 5: Related Work. This section provides a survey of related work that focusesmmdel-based provisioning
of computer system dependability. Related research withénareas of dependability modeling and analysis, and model
driven dependability provisioning techniques will be cargd and reviewed with the context of our MoPED approach.
For example, MEAD [5] and AQUA [6] provide run-time solutierfor dynamic adaptation of fault-tolerance properties in
response to changing resource availabilities. Likewisee DMG’s Model-driven Architecture (MDA) and Unified Modetj
Language (UML) profiles can provide design-time solutiamgnbdel either (1) availability requirements [7], [8] or (@curity
requirements [9], [10] to perform predictive analysis ofyatem’s dependability properties.

Section 6: Concluding Remarks.will present concluding remarks that summarizes how moldgkn tools and techniques
can provide effective mechanisms to make design-time ¢ff&lamong the conflicting requirements of multiple depédmilitst
attributes. It will also present lessons learned from oupeglence developing MoPED. Finally, it will describe pdtah
extensions to MoPED to address some of its limitations. Kkamgple, model-to-model transformation approaches toyaeal
high-level requirements using formal analysis tools cdwddexplored to quantitatively evaluate the dependablesysiesign
and developed using MOPED. We are exploring ways to integrailti-dimensional tradeoff analysis for different degahility
attributes in MoPED.

REFERENCES

[1] A. Avizienis, J. Laprie, and B. Randell, “Fundamental ncepts of dependability,’ 2001. [Online]. Available: aiter.ist.psu.edu/article/
avizienisO1fundamental.html

[2] B. Littlewood and L. Strigini, “Software reliability ashdependability: a roadmap,” ICSE '00: Proceedings of the Conference on The Future ofv@odt
Engineering New York, NY, USA: ACM, 2000, pp. 175-188.

[3] A. Lédeczi, A. Bakay, M. Maréti, P. Vélgyesi, G. Nordsimy J. Sprinkle, and G. Karsai, “Composing Domain-SpecifisiBe Environments,Computer
vol. 34, no. 11, pp. 44-51, 2001.

[4] Object Management Group, “Role Based Access Policy (RBMetamodel RFP,” http://www.omg.org/cgi-bin/doc?20i08-02-07, 2008.

[5] P. Narasimhan, T. Dumitras, A. Paulos, S. Pertet, C. Reyd. Slember, and D. Srivastava, “MEAD: Support for Reak Fault-Tolerant CORBA,"
Concurrency and Computation: Practice and Experiengal. 17, no. 12, pp. 1527-1545, 2005.

[6] Y. Ren, D. Bakken, T. Courtney, M. Cukier, D. Karr, P. RUb@. Sabnis, W. Sanders, R. Schantz, and M. Seri, “AQUA: Amptiye Architecture that
Provides Dependable Distributed Object€dmputers, IEEE Transactions owol. 52, no. 1, pp. 31-50, 2003.

[7] A.Bondavalli, . Mura, and I. Majzik, “Automatic depeadility analysis for supporting design decisions in umi,HASE '99: The 4th IEEE International
Symposium on High-Assurance Systems Engineeridashington, DC, USA: IEEE Computer Society, 1999, p. 64.

[8] G.Rodrigues, “A Model Driven Approach for Software Sgsts Reliability,” inln the proceedings of the $6ICSE/Doctoral Symposium, May 2004 -
Edinburgh, Scotland ACM Press, May 2004.

[9] J. Jlrjens, “Umlsec: Extending uml for secure systemgid@ment,” inUML '02: Proceedings of the 5th International Conference Tme Unified
Modeling Language London, UK: Springer-Verlag, 2002, pp. 412-425.

[10] D. Basin, J. Doser, and T. Lodderstedt, “Model drivenwsiy: From uml models to access control infrastructtiré&€CM Trans. Softw. Eng. Methodol.
vol. 15, no. 1, pp. 39-91, 2006.

IIl. RELEVANCE FORTHIS BOOK

This proposed chapter describes a practical approach telingdkey attributes of dependable systems (availabilitg a
security) via a unified QoS modeling framework. This apphoigcpresented in the context of a model-driven tool chaitedal
MoPED that provides intuitive, domain-specific modelingtaéctions to capture availability, security and netwakel QoS
requirements of component-based systems. The technigedsruMoPED are within the context of model-driven engimagr
such as domain-specific modeling, and widely used compandaidleware, such as CCM, EJB, and J2EE. This chapter can
serve as a novel demonstration of using model-driven eegimgto address dependability issues in component-baterpeise
DRE systems, despite the variabilities in the componertfgrtas used to develop such systems.

IV. AUTHOR BIOGRAPHIES

Sumant Tambeis a Ph.D. student at the department of EECS at Vanderbiltadsity. He received his MS (Computer
Science) from New Mexico State University, Las Cruces, NNk kesearch interests are Model-driven Engineering (MDE),
QoS requirements modeling and provisioning for DRE systemad model-driven development and deployment of faultrtoit
distributed systems.

Akshay Dabholkar is a Ph.D. student at the department of EECS at Vanderbilvedsity where he received his MS
(Computer Science). His research interests are Featigrted Middleware Specialization using Model-driven Erggring
techniques for varied domains, QoS requirements modelggpaovisioning for DRE systems.

Jaiganesh Balasubramanianis a Ph.D. student at the department of EECS at Vanderbiltddsity. He received his MS
(Computer Science) from University of California, Irvirtéis research interests are in designing, and developiggrigims and
middleware architectures for adaptive resource managemenal-time fault-tolerant systems, and model-drivepldgment
and configuration of distributed systems.

Dr. Aniruddha S. Gokhale is an Assistant Professor of Computer Science and Engirgeirithe Department of Electrical
Engineering and Computer Science at Vanderbilt Universiy received his BE (Computer Eng) from Pune University; MS
(Computer Science) from Arizona State University; and O(Samputer Science) from Washington University. Prior timijog
Vanderbilt, he was a Member of Technical Staff at Bell Labscént Technologies. Dr. Gokhale is a member of IEEE and
ACM. Dr. Gokhale’s research combines model-driven engingeand middleware for distributed systems, notably teaé
and embedded systems. He is the project leader for the Co®hbidzI-driven engineering tool suite at Vanderbilt.

Dr. Douglas C. Schmidtis a Professor of Computer Science and Associate Chair df¢imeputer Science and Engineering
program at Vanderbilt University. He has published 9 bookd aver 400 papers that cover a range of topics, including
patterns, optimization techniques, and empirical analygesoftware frameworks and domain-specific modeling emirents
that facilitate the development of distributed real-tinredl @mbedded (DRE) middleware and applications. Dr. Schimdt
over 15 years of experience leading the development of A@B), TTIAO, and CoSMIC, which are open- source middleware
frameworks and model-driven tools that implement pattants product-line architectures for high- performance DR&ems.

