
Masking the Overhead of Protocol Layering

Robbert van Renesse �

rvr@cs.cornell.edu

Dept. of Computer Science

Cornell University

Ithaca, NY 14853

Abstract

Protocol layering has been advocated as a way of dealing
with the complexity of computer communication. It has also
been criticized for its performance overhead. In this paper,
we present some insights in the design of protocols, and how
these insights can be used to mask the overhead of layering,
in a way similar to client caching in a �le system. With our
techniques, we achieve an order of magnitude improvement
in end-to-end message latency in the Horus communication
framework. Over an ATM network, we are able to do a
round-trip message exchange, of varying levels of semantics,
in about 170 �seconds, using a protocol stack of four layers
that were written in ML, a high-level functional language.

1 Introduction

Modern network technology supports very low latency com-
munication. For example, the U-Net [1] interface to ATM
allows for 75 �second round-trip communication as long as
the message is 40 bytes or smaller. For larger messages, the
latency is at least twice as long. It is therefore important
that protocols that are run over U-Net use small headers,
and do not introduce much processing overhead.

Distributed systems employ communication protocols for
reliable �le transfer, window clients and servers, RPC, atomic
transactions, multi-media communication, etc. Many of these
protocols are complex. The traditional approach taken to
deal with this complexity is protocol layering. A problem
with layering is that it introduces overhead. One source of
overhead is interfacing: crossing a layer costs some CPU
cycles. The other is header overhead. Each layer uses its
own header, which is prepended to every message and usu-
ally padded so that each header is aligned on a 4 or 8 byte
boundary. When combined with a trend to very large ad-
dresses (of which at least two per message are needed), it
becomes impossible to �t the total header in 40 bytes.

To deal with both these overheads of layering, we de-
veloped the Protocol Accelerator (PA). The PA eliminates
both overheads almost entirely, and has resulted in one to

�

This work was supported by ARPA/ONR grant N00014-92-J-1866

three orders of magnitude of latency improvement over ex-
isting protocol implementations. For example, we are using
it on an Objective Caml (O'Caml) [8] implementation of
Horus [13, 12]|a software framework that supports the lay-
ering of general group communication protocols1 . O'Caml
is an object-oriented dialect of ML [9], a high-level, concise,
garbage-collected language, that allows to develop complex
protocols quickly and relatively error-free. Furthermore, the
O'Caml code is suitable for automatic veri�cation. Unfortu-
nately, the code is slow compared to corresponding C code.
Nevertheless, between two SunOS user processes on two
Sparc 20s connected by a 140 Mbit/sec ATM network, we
achieve a roundtrip latency of 170 �seconds using the PA,
down from about 1.5 milliseconds in the original C version
of Horus [12].

Within our group of C a�cionados, this result came as
a surprise. The reason we set out to use the O'Caml ver-
sion of Horus was as a reference implementation for the use
of veri�cation and documentation. Previous work over ML,
such as the CMU FOX project [2] that uses New Jersey
Standard ML, reports a round-trip time of 36 milliseconds
over an Ethernet, a cost of a factor of 9.4 compared to the
same protocol (TCP/IP) implemented in C. Over ATM, this
would be a even larger factor, since CPU overhead will mat-
ter even more compared to network latency.

The PA achieves its results using three techniques. First,
the header �elds that never change are only sent once. Sec-
ond, the rest of the header information is carefully packed,
ignoring layer boundaries, typically leading to headers that
are much less than 40 bytes. Third, a semi-automatic trans-
formation is done on the send and delivery operations, split-
ting them into two parts: one that updates or checks the
header but not the protocol state, and the other vice versa.
The �rst part is then executed by a special packet �lter
(both in the send and the delivery path) to circumvent the
actual protocol layers whenever possible. The second part is
executed, as much as possible, when the application is idle
or blocked.

Although these techniques are applicable to the C imple-
mentation as well, the PA is relatively hard to retro�t into
the existing C code. O'Caml lends itself much better to this
kind of high-level manipulation. The optimizations that re-
sult are more signi�cant than the low-level optimizations of
C code.

This paper is organized as followed. In the next section
we describe how we eliminated much of the header overhead

1
In this paper we will only deal with point-to-point communication

for clarity, but the techniques extend to multicast protocols.

Horus:
http://www.cs.cornell.edu/Info/Projects/HORUS

U-Net:
http://www.cs.cornell.edu/Info/Projects/U-Net

Objective Caml:
http://pauillac.inria.fr/ocaml

Table 1: URLs for various information of interest.

of layering. Section 3 shows how we eliminated much of the
CPU overhead in the critical path. The implementation is
described in Section 4. In Section 5, we report the result-
ing performance. Section 6 discusses some of the current
problems of the PA.

2 Reducing Header Overhead

In traditional layered protocol systems, each protocol layer
designs its own header layout. The headers are concatenated
and prepended to each user message. For convenience, each
header is aligned to a 4 or 8 byte boundary to allow easy
access. In systems like the x-kernel or Horus, where many
simple protocols may be stacked on top of each other, this
may lead to extensive padding overhead.

Also, some �elds in the headers, such as the source and
destination addresses, never change from message to mes-
sage. Instead of agreeing on these values, they are included
in every message, and used as the identi�er of the connec-
tion to the peer. Since addresses tend to be large, and are
getting signi�cantly larger to deal with the rapid growth of
today's internet, this is no longer a good idea.

In this section, we describe how the PA reduces the
header overhead signi�cantly by eliminating padding, and
agreeing on immutable �elds in headers. For clarity, note
that we employ a PA per connection rather than per host
or process.

2.1 Header Information Classes

To enable the optimizations, the PA divides the �elds in the
protocol headers into four classes:

1. Connection Identi�cation | �elds that never change
during the period of a connection, and that are typ-
ically used for identifying connections. Examples of
such �elds are the source and destination addresses
and ports of the communicating peers, as well as byte-
ordering information of their architectures.

2. Protocol-speci�c Information| �elds that are impor-
tant for the correct delivery of the particular message
frame. We require that protocol-speci�c information
depend only on the protocol state, and not on the con-
tents or length of the message, or the time at which the
message was sent. Examples are the sequence number
of a message, or the message type (e.g., data, ack, or
nak).

3. Message-speci�c Information| other �elds that need
to accompany the message, such as the message length
and checksum, or a timestamp. Typically, such infor-
mation does not depend on the protocol state, but just
on the message itself. However, we do not require this.

4. Gossip | �elds that technically do not need to ac-
company the message, but are included for message ef-
�ciency. Piggybacked acknowledgements fall into this
category. Like protocol-speci�c information, these �elds
cannot depend on the message contents itself. Often
these �elds do depend on the protocol state, but can be
out-of-date without a�ecting the protocol correctness.

Each protocol layer requests a set of �elds to be included
in the header using calls to

handle = add �eld(class, name, size, o�set);

Here class speci�es the header information class, name
is the name of the �eld (which does not need to be unique),
and size speci�es the size of the �eld in bits. O�set speci�es
the bit o�set of the �eld in the header if this is important,
but is usually set to �1 to indicate don't care. The function
returns a handle for later access.

After the initialization function of all layers have been
called, the PA collects all the �elds, and compiles them into
four compact headers, one for each class. It does so as e�-
ciently as possible, observing size, and if so requested, o�-
set, but not layering. Therefore, �elds requested by di�erent
layers may be mixed arbitrarily, minimizing padding while
optimizing alignment. In the original Horus system, for ex-
ample, each layer's header was aligned to 4 bytes, resulting
in a total padding of at least 12 bytes|for a fairly small pro-
tocol stack|and going up quickly for each additional layer.

The PA provides a set of functions to read or write a
�eld. The functions take byte-ordering into account, so that
layers do not have to worry about communicating between
heterogeneous machines. Also, this makes the entire system
directly portable to 64-bit architectures.

2.2 Connection Cookies

The PA includes the Protocol-speci�c and Message-speci�c
information in every message. Currently, although not tech-
nically necessary, Gossip information is also always included,
since it is usually small. However, since the Connection
Identi�cation �elds never change, they are only included oc-
casionally because they tend to be large. The idea is similar
to Van Jacobson's TCP/IP header compression technique
for point-to-point links [6], but generalized for arbitrary pro-
tocols. A PA message starts out with an 8-byte header,
called the Preamble (see Figure 1). The Preamble contains
three �elds:

1. Connection Identi�cation Present Bit | a single bit
that is set if and only if the Connection Identi�cation is
included. If set, the Preamble is immediately followed
by the Connection Identi�cation header, the remaining
headers, and the user message itself, in that order. If
cleared, the connection identi�cation is left out.

2. Byte Ordering Bit | a single bit that is set if the
ordering of the bytes in this message is little endian,
and clear if the ordering is big endian. Other orderings
are not supported.

3. Connection Cookie | a 62-bit magic number. It is
chosen at random and identi�es the connection.

The PA includes the Connection Identi�cation on the
�rst message. In addition, it is included on retransmis-
sions and other unusual messages. The receiver remem-
bers for each connection what the current (incoming) cookie

Connection Cookie (62 bits)

Connection Identification (optional)

Protocol-Specific Information

Message-Specific Information

Gossip

Packing Information

Connection Identification Present

Byte Order

Application Data

Figure 1: The format of a PA message. Note that the head-
ers collect �elds of the same category, rather than �elds of
the same protocol layer. Except for the �rst 64 bits, all
headers are variable length. The Packing Information is de-
scribed in Section 3.4.

is. When a message is received with an unknown cookie,
and the Connection Identi�cation Present Bit cleared, it is
dropped. If the bit is set, the Connection Identi�cation is
used to �nd the connection.

Since the Connection Identi�cation tends to include very
large identi�ers, this mechanism reduces the amount of header
space in the normal case signi�cantly. For example, in Ho-
rus, the connection identi�cation typically occupies about
76 bytes. Cookies also reduce connection lookup time for
delivery of messages. In [7], a similar idea was exploited
for TCP/IP over an FDDI network of DEC Alphas, and
resulted in a 31% latency improvement.

There is a problem with this approach. For example, if
the �rst message is lost, the next message will be dropped
as well because the cookie is unknown and the connection
identi�cation is not included. Currently, the PA relies on
retransmission by one of the protocol layers to deal with
this problem. Perhaps a better solution would be to agree
on a cookie before starting to use it.

Finally, we note that the gossip information does not
necessarily need to be included in each message either. For
older networks, when there was a considerable overhead for
each message sent, this made sense. But now that we have

a low latency for small messages, it makes sense to send
the gossip information in separate messages. The PA could
automate this, since it knows which information is gossip.
However, since we have only seen a small amount of gossip
information until now, we have not dealt with this issue yet.

3 Eliminating Layered Protocol Processing Overhead

In most protocol implementations, layered or not, a lot of
processing is done between the application's send operation,
and the time that the message is actually sent out onto the
network. The same applies between the arrival of a message
and the delivery to the application. We call these paths
between the application and the network the send critical

path and the delivery critical path. All other processing done
by the protocol can be done in parallel with the application,
and is mostly of little concern (but see Section 6).

The processing that is done on the critical path is com-
plicated by layering. The message passes through the layers,
and only the state of the current layer can be inspected and
updated. Without layers, the protocol implementor would
be free to reorder the protocol processing arbitrarily to re-
duce the length of the critical path [3]. Furthermore, the
processor's instruction cache is likely to be less e�ective if
the critical path is divided over many software modules.

The PA uses three approaches to deal with this. First,
it minimizes the critical path by delaying all updating of
the protocol state until after the actual message sending or
delivery. Secondly, it predicts the Protocol-speci�c header of
the next message, so in most cases the creation or checking
of the protocol-speci�c header can be eliminated. Finally,
it uses packet �lters, both in the send and delivery critical
paths to avoid passing through the layers altogether.

This section discusses these techniques.

3.1 Canonical Protocol Processing

In this subsection, we observe that the send and delivery
processing of a protocol layer can be done in two phases:

1. Pre-processing Phase | In this phase, the message
header is built (in case of sending), or checked (in case
of delivery), but the protocol state is left untouched.
For example, a sequence number can be added to a
message, or the sequence number in the message can
be checked against the current one, without changing
the state of the protocol.

2. Post-processing Phase | in this phase the protocol
state is updated. For example, when sending or deliv-
ering, the sequence number maintained in the protocol
state has to be incremented.

We call this canonical protocol processing. We use the
term pre-sending for pre-processing of sending, and pre-
delivery for the pre-processing of delivery. Similarly, we use
the terms post-sending and post-delivery. Note that it is al-
ways possible to convert a protocol to its canonical form.
If necessary, the protocol state can be checkpointed and re-
stored to implement the pre-processing part, but typically a
much less drastic and more e�cient approach can be taken.
In a layered system, the pre-processing at every layer may
be done before the post-processing at any layer. The signi�-
cance of this is that a message can be sent onto the network,
or delivered to the application (in case the check succeeds),
without changing the state of any protocol layer immedi-
ately. The update of the protocol state (e.g., incrementing

a sequence number or saving a message for retransmission)
can be done afterwards, out of the critical path|in a lazy
fashion|but before the next send or delivery operation.

3.2 Header Prediction

In this subsection, we observe that the protocol-speci�c in-
formation of a message can be predicted, that is, calculated
before the message is sent or delivered. This is because this
information does not depend on the message contents or the
time on which it is sent.

After the post-processing has �nished for a previous mes-
sage, the protocol-speci�c header of the next message could
be generated by pre-processing a dummy message. However,
we found it more convenient to have the post-processing
phase of the previous message predict the next protocol
header immediately. This is an artifact of layers generat-
ing their own messages (acknowledgements, retransmissions,
etc.). Such messages only update those �elds in the pre-
dicted header that are maintained by that layer or the layers
below.

Each connection maintains a predicted protocol-speci�c
header for the next send operation, and another for the next
delivery (much like a read-ahead strategy in a �le system).
For sending, the gossip information can be predicted as well,
since this does not depend on the message contents either.

At the time of sending, only the message-speci�c header
has to be generated. We will show in the next subsection
how we do this by means of a packet �lter. This packet
�lter may also be used to check the contents of the message
to decide whether to use the predicted header or not.

When delivering, the contents of the protocol-speci�c
header can be quickly compared against the predicted header.
For delivery, the gossip information is not important. The
message-speci�c information is checked using a packet �lter
in the delivery path.

Each layer can disable the predicted send or delivery
header (e.g.,, when the send window of a sliding window
protocol is full). For this, each header has a counter as-
sociated with it. When zero, the header is enabled. By
incrementing the counter, a layer disables the header. The
layer eventually has to decrement the counter. When all
layers have done so, the header is automatically re-enabled.

3.3 Packet Filters

Not all header information, whether in the send or delivery
path, can be predicted. A good example is the checksum of a
message. Another example is when a message arrives out of
order. To deal with these situations, the PA employs packet
�lters not only in the delivery path, such as done in other
systems (e.g., [10]), but also in the send path. The send �lter
is unusual in that it can update headers. Even in the delivery
path, the �lter is used in an atypical way: rather than doing
a pattern match on the header to decide to which module or
connection the message should be forwarded, it checks the
message-speci�c information for correctness (e.g.,, that the
checksum matches the contents of the message).

As in [10], the packet �lter is a stack machine. The op-
erations are listed in Table 2. A packet �lter program is a
series of such operations that operate on a message header.
Particularly interesting is the POP FIELD operation, which
takes a value of the stack and stores it in the given �eld of a
header. There are no loop or function constructs, so a packet
�lter program can be checked in advance, and the necessary
size for the stack can be calculated (typically just a few en-
tries). In case �elds are conveniently aligned, the packet

�lter is optimized automatically using some customized in-
structions. Packet �lter programs are currently interpreted.
We note that in the Exokernel project, a signi�cant perfor-
mance improvement was obtained by compiling packet �lter
programs into machine code [4]. We intend to adopt this
approach eventually.

The packet �lters are constructed by the layers them-
selves, at run-time. Each layer adds instructions to both
packet �lters for their particular message-speci�c �elds. Typ-
ically, the packet �lters only need be programmed once (at
protocol stack initialization time). However, if the message-
speci�c information depends on the protocol state, part of
the packet �lter program may be rewritten when the pro-
tocol state is updated in the post-processing phase, at run-
time.

Using the packet �lter for message-speci�c information,
along with the header prediction technique, sending and de-
livery pre-processing can usually be avoided altogether. This
means that the protocol stack is not invoked until after an
actual send or delivery, masking the overhead of the layered
architecture, and the overhead of using a relatively slow im-
plementation using O'Caml. Only if the predicted header is
disabled, or if the packet �lter returns a non-zero value, or,
in case of delivery, the cookie is unknown or the protocol-
speci�c header does not match the predicted one, the pre-
delivery phase of the protocol is executed.

3.4 Message Packing

The PA as described so far will reduce the latency of individ-
ual messages signi�cantly if they are spaced out far enough
to allow time for post-processing. If not, messages will have
to wait until the post-processing of every previous message
completes. To reduce this overhead, the PA uses message
packing [5] to deal with backlogs.

After the post-processing of a send operation completes,
the PA checks to see if there are messages waiting. If there
are more than one, the PA will pack these messages together
into a single message. The single message is now processed
in the usual way, which takes only one pre-processing and
post-processing phase. When the packed message is ready
for delivery, it is unpacked and the messages are individually
delivered to the application.

The PA therefore uses a sixth header to describe how the
messages are packed, which we call the Packing Header (see
Figure 1). Currently, the PA only packs together messages of
the same size. The Packing header contains the size of each
of the messages. We may use a more sophisticated header,
such as used in the original Horus system, so that any list of
messages may be packed, if applications so demand. Special
care is required in case messages are prioritized.

The PA also bu�ers messages in case the predicted send
header is disabled, for example, in case the send window
of a sliding window protocol is full. Again, this leads to
a backlog which is dealt with e�ectively using the packing
mechanism.

4 Implementation of the PA

The architecture of the PA is shown in Figure 2. Horus has
a PA for each connection. Each PA maintains the layout
descriptors for the headers, as well as a table of information
both for sending and delivery, as shown in Table 3.

A condensed implementation of the PA appears in Figure
3. The real implementation of the PA, including the code
for the packet �lter and the message management code, is

Operation Argument Action

PUSH CONSTANT integer push an integer onto the stack
PUSH FIELD �eld handle push a �eld onto the stack
PUSH SIZE push the size of the message
DIGEST function ptr push a message digest

POP FIELD �eld handle pop top of stack into a �eld
ADD, SUB, ... do operation on top two entries
EQ, NE, LT, ... comparison of top two entries

RETURN integer return the given value
ABORT integer return value if top entry non-zero

Table 2: The operations of a packet �lter.

Field Type Purpose

mode IDLE, PRE, or POST state of operation
predict msg header[6] all six headers
disable integer predicted header disabled
pre msg message message to post-process

packet �lter packet �lter packet �lter to apply
backlog list of messages waiting for processing

Table 3: Each Protocol Accelerator maintains two tables of this information, one for sending and one for delivery.

Application

Router

Network

Stack

ML
Protocol

Packer

PreSend

PreDeliver

Protocol
Accelerator

Unpacker

Figure 2: The architecture of the Protocol Accelerator. The
application, network driver, router (which delivers messages
to the correct PA), and PA itself are all written in C. The
protocol stack may be written in any language, but is cur-
rently written in O'Caml|a dialect of ML.

about 1500 lines of C. When the application invokes send(),
the PA �rst checks to see if the disable counter is zero. If
not, the message is added to the backlog. If so, the pack-
ing information and the predicted header are added to the
message, and the send packet �lter is run. This packet �lter
�lls out the message-speci�c and gossip information. It can
be programmed to fail, for example, if the message is too
large to be sent unfragmented. If successful, the connection
cookie is pushed onto the message and it is sent. Then the
message is passed to the protocol stack for post-processing.
When this completes, the backlog will be inspected.

If this path could not be followed, the message will be
passed to the protocol stack for pre-processing. This usually
results in actual sending, but any layer may bu�er the mes-
sage until later instead. When the pre-processing completes,
the message is sent out onto the network and is passed to
the stack again for post-processing. This will update the
predicted header for the next message.

The conn ident present bit is inspected when a mes-
sage arrives from the network, If set, the connection identi-
�cation is used to �nd the connection. If unsuccessful, the
message is dropped. If successful, the connection cookie is
stored. If the connection identi�cation is not present in the
message (the usual case), the cookie in the message is used
to locate the connection. Next, the packet �lter is run to
see if the message-speci�c information is acceptable. If so,
and if the disable counter is zero and the protocol-speci�c
information is the same as the predicted information, the
deliver() routine is invoked.

The deliver() routine pops the packing information of
the message. If the message is not packed, it is handed to
the application immediately. If the message is packed, it
is unpacked and the individual messages are handed to the
application separately. After completion, the protocol stack
is invoked for post-processing.

If the disable counter was non-zero, or if the protocol-
speci�c information did not match, the message is handed
to the protocol stack for pre-processing �rst. This usually

/* called by application */

send(con, msg){

if (con->send.disable > 0) {

add_to_backlog(con->backlog, msg);

return;

}

push_packing_info(msg);

push_predict_header(con->predict, msg);

if (run_packet_filter(con->send.filter, msg)) {

push_cookie(con->cookie, msg);

to_network(con, msg);

to_protocol_stack(con, POSTSEND, msg);

}

else to_protocol_stack(con, PRESEND, msg);

}

/* called by network driver */

from_network(msg){

pop_preamble(msg, &preamble);

if (conn_ident_present(preamble)) {

pop_conn_ident(msg, &conn_ident);

if (!get_conn_by_ident(conn_ident, &con))

return;

con->cookie = preamble.cookie;

con->conn_ident = conn_ident;

} else

if (!get_conn_by_cookie(preamble.cookie, &con))

return;

if (!run_packet_filter(con->recv.filter, msg))

return;

if (con->recv.disable == 0 &&

msg->predict.prot_spec ==

con->predict.prot_spec) {

deliver(con, msg);

to_protocol_stack(con, POSTDELIVER, msg);

}

else to_protocol_stack(con, PREDELIVER, msg);

}

/* called by from_network() and PREDELIVER */

deliver(con, msg){

pop_packing_info(msg, &pack_info);

if (is_packed(pack_info)) {

msg_list = unpack(pack_info, msg);

for_each msg in msg_list

to_application(msg);

}

else to_application(msg);

}

Figure 3: The code of the Protocol Accelerator.

results in an invocation of deliver() as well. However, the
message may be bu�ered or dropped instead. When the pre-
processing completes, the message is handed to the stack
again for post-processing.

The post-processing of sending and delivery, as well as
garbage collection, is carefully scheduled by the PA so as
to minimize the round-trip latency. Since, as we will see
in the next section, post-processing and garbage collection
actually take longer than the U-Net round-trip time, post-
processing and garbage collection are scheduled to occur af-
ter message deliveries. On slower networks, such as Ether-

What Performance

one-way latency 85 �secs
message throughput 80,000 msgs/sec
#roundtrips/sec 6000 rt/sec
bandwidth (1 Kbyte msgs) 15 Mbytes/sec

Table 4: The basic performance of the O'Caml protocol
stack using the Protocol Accelerator. Except for measur-
ing the bandwidth, messages with 8 bytes of user data have
been used.

net, post-processing and garbage collection could be done
between round-trips as well.

5 Performance

In this section, we report on the user-level process to pro-
cess performance of this system. We used two Sun Sparc-
Station 20s, each running SunOS 4.1.3. The workstations
were connected by a Fore 140 Mbit/sec ATM network. The
�rmware and driver used are not by Fore; instead we used
the U-Net software [1]. The messages in our experiments
contained 8 bytes of user data, unless noted otherwise. The
raw U-Net one-way latency in this con�guration is about 35
�secs. U-Net provides unreliable communication, but in our
experiments no message loss was detected. In spite of this,
we used a protocol stack that implements a basic sliding
window protocol, with a window size of 16 entries, written
in O'Caml [8]. For predictable results without hiccups, we
triggered garbage collection after every message reception
unless noted otherwise. The basic performance results are
listed in Table 4.

Figure 4 shows the breakdown of computation and com-
munication costs. The sender (on the right) �rst spends
about 25 �secs before the message is handed to U-Net. The
message is received 35 �secs later. It is delivered in another
25 �secs. The receiver immediately sends a reply message,
which takes the same amount of time to delivery. The total
round-trip time is therefore about 170 �secs. After delivery
of a message, the PA does the post-processing of both send-
ing and delivery, and garbage collection. The time when
this occurs depends on which layers are stacked together.

In this case, four layers have been stacked together to im-
plement a basic sliding window protocol. The post-processing
of sending takes about 80 �secs, while the post-processing
of delivery takes 50 �secs. Garbage collection, in this case,
takes between 150 and 450 �secs, with an average of about
300 �secs (which we used in the �gure). The �gure shows,
using dashed lines, when the earliest next possible round-
trip is possible. Because of the post-processing and garbage
collection overheads, the maximum number of round-trips
per second over this stack is about 1900, with an average
round-trip latency of about 400 �seconds (in the worst case,
about 550 �seconds). Only if fewer than 1650 roundtrips
per second are done, a round-trip latency of 170 �secs can
be maintained (see Figure 5).

To see how each layer adds to the overhead, we also mea-
sured the performance for a stack, where the layer that ac-
tually implemented the sliding window was stacked twice.
This layer is about 200 lines of O'Caml code. We found
that the post-processing of the send and delivery operations
take about 15 �secs each. We did not �nd additional over-
head for garbage collection.

POSTSEND DONE

POSTSEND DONE

POSTDELIVER DONE

GARBAGE COLLECTED

µsec

GARBAGE COLLECTED

SEND()

DELIVER()

DELIVER()

SEND() 100

200

400

700

0

400

600

POSTDELIVER DONE

500

700

300

100

500

Figure 4: A breakdown of the round-trip execution. The �rst round-trip is the typical case. The dashed one depicts the
round-trip performance if the system is pushed to its limits, and results in a higher latency.

µ(sec)

100

200

300

Latency

400

Round-trips / second

1000 2000 3000 4000 5000 6000

Figure 5: The round-trip latency as a function of the num-
ber of round-trips per second. The solid line is when each
round-trip is followed by a garbage collection phase. The
dashed line is for the case when garbage collection is only
done occasionally. This results in improved performance,
but leads to occasional hiccups.

It is not necessary to garbage collect after every round-
trip. By not garbage collecting every time, we can increase
the number of round-trips per second to about 6000. With
the current protocol accelerator, this is in fact the maximum
that can be achieved, because all of the post-processing is
done between the actual sending and delivery of the mes-
sages. That is, even by rewriting the protocol stack in as-
sembly this performance could not be improved. However,

the garbage collection does lead to occasional hiccups which
last about a millisecond.

We have seen that the PA improved the round-trip com-
munication dramatically. The packing technique used by the
PA also improves one-way streaming performance. For ex-
ample, we are able to sustain about 80,000 8 byte messages
per second streaming from a sender to a receiver (compara-
ble to the C version of Horus). In addition, we achieve the
full bandwidth of the underlying communication network (in
this case about 15 Mbytes/sec).

These are best case behaviors. We have no reason to
believe that the worst case behavior of Horus can be made
worse by using the PA. Therefore the PA leads to an overall
improvement of performance, no matter what the pattern of
communication is.

6 Discussion

In this section, we will discuss some of the problems of
the PA, and the use of a high-level language for protocol
implementation. In particular, we will look at fragmenta-
tion/reassembly, the application of the PA to standard pro-
tocols like TCP/IP, the reduced maximum load that can be
handled by layering, and the negative e�ects of garbage col-
lection. We will present some possible solutions to each of
these problems.

Fragmentation/Reassembly

Most networks only accept messages up to a certain maxi-
mum size, so that fair access to the medium can be guaran-

teed. Also, with any bit error rate, the chances of a large
message getting through undamaged are smaller than those
for a small message. For these reasons, large application
messages have to be split into fragments before being sent.
The fragments are reassembled at the peer side before de-
livery.

The PA does not fragment messages. Therefore, the pre-
processing of large messages needs to be handled by the pro-
tocol stack. The fragmentation/reassembly layer adds code
to the send packet �lter to reject messages over a certain
size to accomplish this. Also, by using a protocol-speci�c
bit that is non-zero if and only if the message is a fragment
of a larger message, it makes sure that the receiving PA does
not \predict" the header, so that it is passed to the protocol
stack for reassembly.

Usually, if low latency is a consideration only for small
messages, this is not a problem. If ever this becomes a
problem, the packing/unpacking mechanism of the PA can
be extended with fragmentation/reassembly functionality.

Application to Standard Protocols

The PA may be applied to standard protocol implemen-
tations, such as TCP/IP, to improve latency. However, it
cannot be used to communicate with a peer that uses a con-
ventional implementation without the PA. The problem is
that the peer would not understand the connection cookie,
nor the di�erent layout of the headers.

However, even if the header compression techniques can-
not be used, the pre-processing and post-processing tech-
niques are applicable. Messages would be larger, and com-
paring the protocol-speci�c information with the predicted
information will be more expensive. Nevertheless, a signi�-
cant latency improvement may be expected.

Maximum Load

The PA results in improvements of latency and message
throughput, but not of all aspects of performance. Con-
sider a server that uses a PA for each client. As seen in the
performance section, the maximum number of Remote Pro-
cedure Calls that an individual client may do is limited to
6000 per second. Even with multiple clients, a server cannot
process more than 6000 requests per second total, because
the post-processing will consume all the server's available
CPU cycles. For more complex stacks, this maximum is
reduced even further.

This limit may be improved in at least three ways. With
the current PA, the maximum number of round-trips per
client that can be achieved is about 6000 roundtrips per sec-
ond per connection (1=:000170), but we may be able to use
less CPU time to accommodate more clients. First, an even
faster implementation of the ML language may be chosen, or
a di�erent language altogether (e.g.,, C or Modula-3). We
are currently working on annotating the critical path of the
post-processing code, and generating a more e�cient in-line
version of it. Next, we plan to compile highly optimized
code for the in-line \by-pass" function on the y.

Secondly, modern servers are likely to be multi-processors.
The protocol stacks for di�erent connections may be divided
among the processors. Since the protocol stacks are indepen-
dent, there will be no synchronization necessary. This way
the maximum number of RPCs per second is multiplied by
the number of processors.

Finally, the server may be replicated. In this case, syn-
chronization of the server's processing and data may be re-
quired, leading to additional, complex protocols. However,

this is exactly the intention of this work|to encourage dis-
tribution. Distribution introduces complexity, but allows for
higher client loads. The complexity can be managed by lay-
ering and high-level languages, while the overhead of this is
masked by the PA.

Use of a High-Level Language

It is well-known that most of the execution time in a system
is spent in a fraction of the system. By o�-loading this
\critical path" execution to a specialized piece of code, the
PA, we have gained exibility in how we implement the bulk
of the system. To implement the bulk of the system, it
is important to use a exible, layered architecture, and a
high-level language to minimize implementation cost, and
maximize experimentation and optimization. The use of
a high-level language typically implies garbage collection,
which may lead to hiccups in the execution. Moreover, the
lazy reclamation of resources may lead to bad caching or
paging performance.

In our case, we have chosen Objective Caml, a high-level
object-oriented functional language, to implement all of our
system except for the PA. O'Caml uses a \stop, collect, and
resume" garbage collector that does produce occasional hic-
cups. Obviously, exactly how often depends a lot on what
code gets executed, which, in turn, depends on the appli-
cation, the protocol layers that are stacked, and the partic-
ular network driver that is used. Such a garbage collector
gives good performance for interactive applications, but the
hiccups may be unacceptable for applications that require
predictable high-performance networking.

We have been experimenting with allocating and deal-
locating \high-bandwidth" objects explicitly (in particular,
messages)|a practice that O'Caml allows. Doing this, the
number of garbage collections reduce dramatically (exact
measurements are not available at this time).

The hiccups could be eliminated entirely by developing a
\real-time" garbage collector that executes in parallel with
the rest of the system (see, for example, [11]).

7 Conclusion

The Protocol Accelerator (PA) eliminates most of the over-
head associated with layering of protocols, allowing for clean,
e�cient, and exible protocol implementations. The PA
achieves this using a variety of techniques, including header
compression, header prediction, moving code of the critical
path, and message packing. The PA has been used in an ML
version of the Horus group communication system, and re-
sulted in 170 �seconds round-trip delays (down from about
1.5 milliseconds in the original C version of Horus that does
not use the PA), and a throughput of over 80,000 messages
per second over an ATM network.

Acknowledgements

The idea for this work came from discussions with Mark
Hayden. Mark is also responsible for several of the solu-
tions to problems presented in Section 6, including code
by-passing and explicit allocation and deallocation of high-
bandwidth objects. We thank the Caml group at INRIA
and the U-Net group at Cornell for their generous help, and
Ken Birman, Roy Friedman, Greg Morrisett, and Werner
Vogels, and the SIGCOMM reviewers for helpful comments.

References

[1] Anindya Basu, Vineet Buch, Werner Vogels, and
Thorsten von Eicken. U-Net: A user-level network
interface for parallel and distributed computing. In
Proc. of the Fifteenth ACM Symp. on Operating Sys-
tems Principles, pages 40{53, Copper Mountain Resort,
CO, December 1995.

[2] Edoardo Biagioni. A structured TCP in Standard ML.
In Proc. of the '94 Symp. on Communications Archi-
tectures & Protocols, pages 36{45, University College
London, UK, August 1994. ACM SIGCOMM.

[3] David D. Clark and David L. Tennenhouse. Architec-
tural considerations for a new generation of protocols.
In Proc. of the '90 Symp. on Communications Archi-

tectures & Protocols, pages 200{208, Philadelphia, PA,
September 1990. ACM SIGCOMM.

[4] Dawson R. Engler, M. Frans Kaashoek, and James
O'Toole. Exokernel: An operating system architecture
for application-level resource management. In Proc. of
the Fifteenth ACM Symp. on Operating Systems Prin-

ciples, pages 251{266, Copper Mountain Resort, CO,
December 1995.

[5] Roy Friedman and Robbert van Renesse. Packing Mes-
sages as a Tool for Boosting the Performance of Total
Ordering Protocols. Technical Report 94-1527, Cornell
University, Dept. of Computer Science, July 1995. Sub-
mitted to IEEE Transactions on Networking.

[6] Van Jacobson. Compressing TCP/IP headers for low-
speed serial links. RFC 1144, Network Working Group,
February 1990.

[7] Jonathan S. Kay. PathIDs: A Mechanism for Reduc-
ing Network Software Latency. PhD thesis, Univ. of
California, San Diego, May 1994.

[8] Xavier Leroy. The Caml Special Light system release

1.10. INRIA, France, November 1995.

[9] Robin Milner, Mads Tofte, and Robert Harper. The

De�nition of Standard ML. The MIT Press, 1990.

[10] Je�rey C. Mogul, Richard F. Rashid, and Michael J.
Accetta. The Packet Filter: An e�cient mechanism for
user-level network code. In Proc. of the Eleventh ACM
Symp. on Operating Systems Principles, pages 39{51,
Austin, TX, November 1987.

[11] Scott Nettles and James O'Toole. Real-time replication
garbage collection. In Proceedings of the ACM Confer-
ence on Programming Language Design and Implemen-

tation, pages 217{226, Albuquerque, New Mexico, June
23{25 1993. SIGPLAN Notices, 28(6).

[12] Robbert Van Renesse, Kenneth P. Birman, Roy Fried-
man, Mark Hayden, and David A. Karr. A Frame-
work for Protocol Composition in Horus. In Proc.
of the Fourteenth ACM Symp. on Principles of Dis-

tributed Computing, pages 80{89, Ottawa, Ontario, Au-
gust 1995. ACM SIGOPS-SIGACT.

[13] Robbert van Renesse, Kenneth P. Birman, and Silvano
Ma�eis. Horus: A exible group communication sys-
tem. Communications of the ACM, 39(4):76{83, April
1996.

