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Abstract. This chapter presents design techniques for software engi-
neering, in the form of prompt patterns, to solve common problems
that arise when using large language models (LLMs) to automate com-
mon software engineering activities, such as ensuring code is decoupled
from third-party libraries and creating API specifications from lists of re-
quirements. This chapter provides two contributions to research on using
LLMs for software engineering. First, it provides a catalog of patterns
for software engineering that classifies patterns according to the types
of problems they solve. Second, it explores several prompt patterns that
have been applied to improve requirements elicitation, rapid prototyping,
code quality, deployment, and testing.
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1 Introduction

Overview of LLMs and prompts for automating software engineer-
ing tasks. Large language models (LLMs) [4] are rapidly being adopted by
software developers and applied to generate code and other artifacts associated
with software engineering. Popular examples of LLM-based tools applied for
these purposes include ChatGPT [3] and GitHub Copilot [1]. Initial research
indicates that these chat-assisted artificial intelligence (AI) tools can aid a range
of common software development and engineering tasks [6].

Key to the adoption of these tools has been the creation of LLMs and IDE-
integrated services around them. Any user can access these complex LLM capa-
bilities by simply typing a message to ChatGPT and/or opening popular inte-
grated development environments (IDEs) [1,2,18], such as IntelliJ [13] and Visual
Studio Code. Leveraging these capabilities previously required much more time
and effort. In addition, prior state-of-the-art LLMs were not widely accessible to
users.

Interacting with an LLM in general involves feeding it ”prompts” [14], which
are natural language instructions used to provide context to the LLM and
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guide its generation of textual responses. In a chat-assisted LLM environment,
a prompt is a message that a user sends to an LLM, such as ChatGPT, Claude,
or Bard. The remainder of this chapter focuses on the ChatGPT chat-assisted
LLM.

In the context of software engineering, a prompt is a natural language in-
struction given to an LLM to facilitate its generation of requirements, code and
software-related artifacts (such as documentation and build scripts), as well as
to simulate certain aspects of a software system. Prompts are thus a form of
programming used to instruct an LLM to perform software engineering tasks.
For example, in an IDE environment (such as Copilot [1]), a prompt can be a
comment, method definition, or source file.

One way to use prompts in the software development lifecycle is to ask an
LLM directly to provide some information or generate some code. Another use
of prompts is to dictate rules for the LLM to follow going forward, such as
conforming to certain coding standards. Both types of prompts program the LLM
to accomplish a task. The second type of prompt, however, customizes future
interactions with the LLM by defining additional rules to follow or information
to use when performing subsequent tasks. We cover both types of patterns in
this chapter.

Overview of prompt patterns for software engineering tasks. This
chapter builds on our prior work that introduced the concept of prompt pat-
terns [24], which are reusable prompt designs to solve problems in LLM interac-
tion. Similar to software patterns [10,20], prompt patterns codify sound design
experience, thereby providing a reusable solution to common problems in LLM
interaction, such as ensuring that software adheres to certain design principles,
programming paradigms, and/or secure coding guidelines.

Software developers and engineers can use prompt patterns to establish rules
and constraints that improve software quality attributes (such as modularity or
reusability) when working with LLMs. For example, prompt patterns can ensure
that generated code (or user-provided code being refactored) separates business
logic from code with side-effects (e.g., file system access, database access, network
communication, etc.). These types of constraints make business logic easier to
test and reason about since it is decoupled from harder-to-test and harder-to-
understand side-effecting code. Prompt patterns can also require that third-party
libraries have intermediate abstractions inserted between the libraries and the
business logic depending on them to ensure the code is not tightly-coupled to
external dependencies that would otherwise limit its portability and reusability.

Towards a prompt pattern catalog for software engineering. This
chapter extends our prior work [24] by focusing on creating a catalog of prompt
patterns that can be applied collaboratively throughout the software life-cycle.
We introduce a variety of prompt patterns in this chapter, ranging from patterns
that simulate and reason about systems early in the design phase to patterns that
help alleviate issues with LLM token limits when generating code. In addition,
we explore relationships between patterns by examining patterns compounds
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and sequences that are most effective when employed in combination with each
other.

The remainder of this chapter is organized as follows: Section 2 gives an
overview of prompt pattern structure and functionality; Section 3 introduces the
catalog of prompt patterns covered in the chapter; Section 4 describes prompt
patterns used during requirements elicitation and system design; Section 5 de-
scribes prompt patterns that help LLMs generate higher quality code and refac-
tor human-produced code; Section 6 compares our research on prompt pat-
terns with related work; and Section 7 presents concluding remarks and lessons
learned.

2 Prompt Pattern Structure and Functionality

Prompt patterns are documented using a similar structure to software patterns,
with analogous versions of the name, classification, intent, motivation, struc-
ture, example implementation, and consequences. Each of these sections for the
prompt pattern form is described briefly below:!

A name and classification. The name provides a unique identifier for the
pattern that can be referenced in discussions and the classification groups
the pattern with other patterns based on the types of problems they solve.
The classification used in this chapter is shown in Table 1.

— The intent and context captures the problem that the pattern solves and
the goals of the pattern.

— The motivation explains the rationale and importance of the problem that
the pattern is solving.

— The structure and key ideas. The structure describes the fundamental
contextual information that needs to be provided by the LLM to achieve the
expected behavior. These ideas are listed as a series of statements, but can
be reworded and adapted by the user, as long as the final wordings convey
the key information.

— Example implementation shows specific implementations of the pattern
and discusses them.

— Consequences discusses the pros and cons of using the pattern and discus-

sion of how to adapt the pattern for different situations.

Prompt patterns can take various forms. In the context of patterns that
enable LLMs to perform software engineering tasks, a prompt typically starts
with a conversation scoping statement, such as ”from now on”, ”act as a X",
”for the next four prompts”, etc. These statements direct the LLM to change its
operation going forward based on the prompt being provided. For example, the
following prompt pattern is an adaptation of the Qutput Automater pattern [24]

L Our prior work [24] defines the fundamental structure of a prompt pattern and com-
pares it with software patterns. We briefly define prompt patterns for completeness
below, but we refer the reader to our prior work for additional details.
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that uses ”from now on” to automate production of a list of dependencies for
generated code:

”from now on, automatically generate a python requirements.txt file that
includes any modules that the code you generate includes.”

After the initial conversational scoping statement, the prompt includes a
number of statements that provide the ground rules the LLM should follow in
output generation and prompt flow for software engineering tasks. These output
rules may include one or more conditional statements indicating when specific
rules should be applied. For example, the following prompt:

”From now on, whenever you generate code that spans more than one
file, generate a python script that can be run to automatically create the
specified files or make changes to existing files to insert the generated
code.”

Normally, a user must manually open and edit multiple files to add generated
code that spans multiple files to a project. With the above prompt, ChatGPT
will generate a script to automate opening and editing each file for the user and
eliminate potential manual errors. The prompt is scoped to ”from now on” and
then includes a conditional ”"whenever you generate code that spans more than
one file”, followed by the rule to generate a python script. This prompt form
is an example of the Output Automator pattern from [24], applied to software
engineering.

3 A Catalog of Prompt Patterns for Automating
Software Engineering Tasks

This section summarizes our catalog of 14 prompt patterns that have been ap-
plied to solve common problems in the domain of conversational LLM interaction
and output generation for automating common software tasks. We partitioned
these 14 prompt patterns into four categories to help pattern users navigate and
apply these patterns more effectively. Table 1 outlines the initial classifications
for the catalog of prompt patterns for automating software engineering tasks
identified by our work with ChatGPT (GPT 3.5-turbo GPT-4).

Two areas of LLM usage in the domain of software engineering that have
received scant attention thus far include (1) requirements elicitation and (2)
system design and specification. These areas represent some of the most im-
portant aspects of software engineering, however, and commonly yield changes
late in the development cycle that cause schedule overruns, unanticipated costs,
and risk. The Requirements Elicitation patterns listed in Table 1 aid in creating
requirements and exploring their completeness with respect to desired system ca-
pabilities and accuracy. Other patterns in this category use an LLM as a trusted
intermediary to reason about the impact of changes.
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Table 1. Classifying Prompt Patterns for Automating Software Engineering Tasks

Requirements Elicitation Requirements Simulator
Specification Disambiguation
Change Request Simulation
System Design and Simulation|API Generator

API Simulator

Few-shot Example Generator
Domain-Specific Language (DSL) Creation
Architectural Possibilities
Code Quality Code Clustering
Intermediate Abstraction
Principled Code

Hidden Assumptions
Refactoring Pseudo-code Refactoring
Data-guided Refactoring

The System Design € Simulation Patterns patterns category listed in Ta-
ble 1 explores patterns that address issues creating concrete design specifications,
domain-specific languages, and exploring alternative architectures. The section
demonstrates ways to simulate aspects of a system to help identify deficiencies
early in the life-cycle, i.e., when they are less costly and disruptive to remediate.

Considerable concern [2,5,18] has arise regarding the quality of code produced
by LLMs, as well as written via collaborations between humans and LLMs. The
Code Quality patterns category introduces several patterns that improve both
LLM and human-generated code. LLMs can often reason effectively about ab-
straction, as well as generate relatively modular code. The patterns listed in this
category in Table 1 help ensure certain abstraction and modularity attributes
are present in code, e.g., they facilitate replacement of third-party libraries by
introducing an interface between them and business logic.

Finally, the Refactoring patterns listed in Table 1 provide various means to
refactor code using LLMs effectively. LLMs like ChatGPT have a surprisingly
powerful understanding of abstract coding constructs, such as pseudo-code. In-
novative pattern-oriented approaches to refactoring are therefore discussed to
allow specification of refactoring at a high-level, such as using pseudo-code to
describe code structure.

All examples in this chapter were tested with the ChatGPT LLM. Our pro-
cess for identifying and documenting these patterns combined exploring community-
posted prompts on the Internet and creating independent prompts to support
our own software engineering work with ChatGPT. Our broader goal is to codify
a catalog of software engineering prompt patterns that can be easily adapted or
reused for various LLMs, much like how classic software patterns can be imple-
mented independently in various programming languages.
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4 System Requirements & Architecture Patterns

This section describes prompt patterns used during requirements elicitation and
system design.

4.1 The Requirements Simulator Pattern

Intent and Context The Requirements Simulator pattern allows stakeholders
to explore the requirements of a software-reliant system interactively to deter-
mine if certain functionality is captured properly. The simulation output should
provide additional details regarding the initial requirements and new require-
ments added to accomplish the tasks the stakeholders tried to perform in the
simulation. The goal of this pattern is to aid in elicitation and analysis of the
completeness of software requirements.

Motivation Changes late in a software system’s development are generally
more expensive to remediate than early in the development phase. Unfortunately,
many requirement changes are made late in the development cycle when they
are more costly to fix. A common source of issues with requirements is that the
requirements do not adequately describe the needs of the system. The motivation
of the Requirements Simulator pattern is to use an LLM to simulate interactions
with the system based on descriptions of the tasks that a user might want to
perform and identify missing requirements.

Structure and Key Ideas The fundamental contextual statements are as
follows:

4 D

Requirements Simulator Pattern
1. I want you to act as the system
2. Use the requirements to guide your behavior

3. I will ask you to do X, and you will tell me if X is possible given the
requirements.

4. If X is possible, explain why using the requirements.
5. If I can’t do X based on the requirements, write the missing requirements

needed in format Y.

\. J

Example Implementation A sample implementation of the Requirements
Simulator pattern is shown below. This implementation focuses on task-based
exploration of the system’s capabilities. It also specifically refines the format of
the requirements to be user stories, so the LLM will produce requirements in
the desired format.
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The prompt implementation assumes that the requirements have been given
to the LLM prior to use of the prompt. The requirements could be typed in
manually or generated by ChatGPT through a series of prompts asking for re-
quirements related to a particular system. Any approach will work as long as
the requirements are in the current context of the prompt.

”"Now, I want you to act as this system. Use the requirements to guide
your behavior. I am going to say, I want to do X, and you will tell me if X
is possible given the requirements. If X is possible, provide a step-by-step
set of instructions on how I would accomplish it and provide additional
details that would help implement the requirement. If I can’t do X based
on the requirements, write the missing requirements to make it possible
as user stories.”

An extension to this implementation is to include a screen-oriented explo-
ration of the system. Whereas the prior example focuses more on interrogating
the system to see if a task is possible, the example below walks the user through
individual screens. This approach of screen-by-screen walkthrough is similar to
classic text-based adventure games, such as Zork.

”"Now, I want you to act as this system in a text-based simulator of the
system. Use the requirements to guide your behavior. You will describe
the user interface for the system, based on the requirements, and what
I can do on each screen. I am going to say, I want to do X, and you will
tell me if X is possible given the requirements and the current screen.
If X is possible, provide a step-by-step set of instructions how I would
accomplish it and provide additional details that would help implement
the requirement. If I can’t do X based on the requirements, write the
missing requirements to make it possible as user stories. Whenever the
state of the user interface changes, update the user on what they are
looking at.

Tell me what I am looking at in the system and ask me what I want to
do.”

This pattern showcases two unique exploration methods. First, the task-
based exploration handles tasks and investigates their feasibility. Second, the
screen-based exploration focuses on helping the user imagine an interface-driven
walk-through of system functionalities akin to a textual adventure game. Each
has its merits depending on the use case; task-based explorations are be better
for back-end services, whereas screen-based explorations are suited for front-end
or user-interface heavy applications.

Consequences the Requirements Simulator pattern enables simulation of a
software-reliant system in greater levels of fidelity as the requirements are ex-
panded. Since requirements can be rapidly expanded with this pattern through
interactive exploration, the simulation of the system gains fidelity throughout the
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simulation. This iterative process allows rapid generation of large requirement
sets.

However, a limitation of using this pattern in isolation is that the descriptions
of the system are purely textual, which may provide insufficient information to
capture all requirements accurately. One way to overcome this limitation and
help write better requirements and later generate design mockups is to combine
this pattern with the Visualization Generator pattern [24] This combination of
patterns enables simulation of the system, as well as possible visualizations of
each screen generated by another AT tool, such as Dall-E, Midjourney, or Stable
Diffusion. A modified prompt that combines the Requirements Simulator and
Visualization Generation patterns would be:

”...In addition to the textual screen description, provide a Dall-E prompt
that I can use to generate wireframes of what the screen might look like.

A sample output of combining these two patterns when used in an exploration
of a web application with Twitter-like functionality for socially sharing ChatGPT
prompts is shown below:

ChatGPT: Sure, I can provide a DALL-E prompt to generate a wire-
frame for the screen description. Here is the DALL-E prompt for the
screen where users can delete their prompts: A wireframe of the "My
Prompts’ screen where users can see a list of their own prompts. Each
prompt is displayed with its title and description. Next to each prompt
is a 'Delete’ button that users can click to remove the prompt from the
social network. At the bottom of the screen, there is a 'Back’ button
that users can click to return to the previous screen.

The resulting wireframe generated with Midjourney rather than Dall-E is
shown in Figure 1. This figure shows the generated image is a rough interpreta-
tion of possible realizations of the prompt. However, such visualizations may be
easier to reason about than textual descriptions, which can spur productive dis-
cussions between participants. In addition, the randomness in image generation
may yield unexpected layouts or user interface approaches that may inspire new
ideas.

4.2 The Specification Disambiguation Pattern

Intent and Context The Specification Disambiguation pattern causes the
LLM to review specifications provided to a developer or development team by
non-technical or semi-technical personnel. The goal is to ensure any areas of
potential miscommunication or ambiguity is caught early and clarified.

Motivation Creating a specification (which could take the form of requirements
or non-formal description of the system) is complicated since errors, areas of
ambiguity, and/or omissions are often not discovered until after a system is
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initially implemented and deployed. In many cases, developers make assumptions
that enable them to implement ambiguous ideas, even if those assumptions do
not align with the original specification designers intention. Even experienced
system designers and software engineers are prone to ambiguous language and
incomplete specification, particularly for ultra large-scale systems [8].

It is common for software developers to work with one or more product or
project managers who generate requirements and provide those to the develop-
ers. Often these requirements stem from discussions with customers and there
may be a loss of meaningful context in the capture and delivery of those re-
quirements. The Specification Disambiguation pattern helps automate some of
the work needed to clarify requirement specifications, ideally before they are
delivered to developers.

Structure and Key Ideas The fundamental contextual statements are as
follows:

Specification Disambiguation Pattern
1. Within this scope
2. Consider these requirements or specifications

3. Point out any areas of ambiguity or potentially unintended outcomes

Example Implementation Here we consider a scenario in which a non-technical
product manager has consulted with customers and tried to capture the essence

of their requirements. These requirements have been communicated in natural

language unsuitable for software requirements due to inconsistent context (i.e.,

the what, not the how). The product manager may request additional areas of

clarification by posing the following prompt to the LLM:

“The following will represent system requirements. Point out any areas
that could be construed as ambiguous or lead to unintended outcomes.
Provide ways in which the language can be more precise.”

By providing the prompt above along with the captured requirements, the
LLM can provide results of interest to the product manager. For example, if
some requirement specifications were:

1. Create a user interface that allows file uploads via web browser.
2. Keep the files secure.

3. Make sure the files are movie file types.

4. Files can be no larger than 100 MB

the LLM would provide a path for the product manager to bolster the re-
quirement specifications prior to providing them to the development team. For
example the LLM might suggest
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“The system requirement to “Keep the files secure” could be made more
precise by specifying which security measures should be implemented to
ensure the files are kept secure. For example: “Implement access control
and encryption measures to ensure that uploaded files can only be ac-
cessed by authorized users and are protected against unauthorized access
or tampering.”

Follow-up questions such as “provide example requirements for a system that
accepts file uploads by logged-in users, and keeps the files secure the entire time”
may then be posed to guide product manager decision-making and ensure the
requirements delivered to developers are more precise and actionable.

Consequences The Specification Disambiguation pattern helps overcome er-
rors, areas of ambiguity, and/or omissions in requirement specifications by pro-
viding an automated ”devil’s advocate” that can attempt to find points of weak-
ness in a requirement specification. In addition, whereas social concerns (such
as the concern of questioning a more senior developer) may cause developers to
not ask questions, LLMs do not suffer from these same biases and reservations.

A particularly compelling use of the Specification Disambiguation pattern is
integrating two separate systems, such as two different development teams build-
ing separate parts of a system using a common integration specification. This
pattern can be used independently by the team members to collect potential am-
biguities and then bring them to a joint meeting before kicking off development
to discuss. The LLM can serve as an unbiased source of topics of discussion for
a kick-off.

This pattern is also helpful when a specification is being developed for an
external audience (such as consumers of an unreleased API) who are not involved
in the specification writing process. In this case, developers may not be able to
talk to the target consumers due to secrecy or lack of an audience for the product,
and thus lack the mean to easily get external feedback on the specification. This
patterns allows the LLM to serve as a representative for external users.

The Specification Disambiguation pattern is also effective when combined
with the Persona [24], API Generator, and API Simulator or Requirements
Simulator patterns. Ambiguities can be further discovered by interactively sim-
ulating the system or converting it into an API specification. Each transform-
ing the specification into another format through one of these prompt patterns
can help identify ambiguities that are uncovered through this pattern since the
transformation may produce an unexpected reification of the requirements. In
addition, the Persona pattern [24] can be used to consider potential ambiguities
from different perspectives.

A drawback of the Specification Disambiguation pattern arises when the
user assumes that the LLM’s output is comprehensive and complete. Devel-
opers might assume that the LLM has identified all possible ambiguities, which
may not be the case. As a result, unnoticed ambiguities might still exist after
using the pattern. Moreover, LLMs are trained on large datasets but they might
not understand specific domain or contextual nuances as well as a human would.
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Consequently, there may be occasions where the LLM misinterprets specifica-
tions and inaccurately flags non-ambiguities as ambiguous or vice versa.

4.3 The API Generator Pattern

Intent and Context The API Generator pattern generates an application
programming interface (API) specification, such as a REST API specification,
from natural language requirement statements or descriptions of the system. The
goal of this pattern is to allow developers to rapidly explore multiple possible API
designs, formalize API design earlier, and produce a starting point for manual
refinement of the design.

Motivation Designing a complete API specification to support a set of require-
ments—or even a high-level description of a software-reliant system—often in-
volves manual effort. If this level of effort is significant then (1) fewer potential
designs may be explored, (2) systematic API specifications may be deferred until
after key portions of the system are implemented, and/or (3) ad hoc alignment
and integration of disparate systems, services, or modules many use the code
as the only source of truth. A key motivation for applying the API Generator
pattern is to dramatically reduce and/or eliminate the cost of the API creation
so these specifications are created earlier and careful thought goes into their
design.

Structure and Key Ideas The fundamental contextual statements are as
follows:

API Generator Pattern
1. Using system description X
2. Generate an API specification for the system

3. The API specification should be in format Y

Example Implementation A sample implementation of the API Generator
pattern showing a prompt to generate an OpenAPI specification, which is a
specification for a REST API, is shown below:

”Generate an OpenAPI specification for a web application that would
implement the listed requirements.”

The implementation uses a concrete format for the specification, OpenAPI,
and assumes that the requirements for the system were previously discussed.
Typically, the API Generator pattern is used after a discussion of the require-
ments or even a simple textual description of a system, such as ”a web application
for a customer relationship management system”. The more detailed the list of
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requirements, the more accurate the generated API will be, although developers
can perform thought experiments and simulations with prompts as simple as
"generate an OpenAPI specification for a web application related to cooking.”

Consequences The API Generator pattern enables developers and/or teams to
rapidly create multiple potential API designs and compare/contrast them before
selecting their final design. In contrast, writing these APIs manually is tedious,
so developers often only have time to write and explore a limited number of API
design options. In general, providing developers with tools to experiment with
different APT designs from a system description or requirements list is a powerful
tool.

Another benefit of the API Generator pattern is that developers may choose
to write the API specification after the code is implemented because they do
not want to spend time specifying the same information twice (i.e., once in the
API specification and again in the actual code). By automating API production,
developers are incentivized to create API specifications earlier in the design pro-
cess. Although existing (i.e., non-LLM) tools can generate an API specification
from code, they still require the initial production of code. Moreover, tools that
can generate skeletons of code from the API specification can be combined with
this pattern to accelerate the API implementation compare with writing it man-
ually.

This pattern can be combined effectively with the API Simulator pattern
described in Section 4.4 to both generate and evaluate the proposed specification.
Simulating the API can allow developers to get a sense of the ”ergonomics” of
the API and evaluate how hard it is to accomplish various tasks in code. The
APIT can also be refactored through the LLM using the Data-guided Refactoring
pattern described in Section 5.6.

Applying the API Generator pattern provides the benefits to the design and
development process discussed above. As with all tools and processes, however,
it also has potential drawbacks and considerations. For example, LLMs may
produce inconsistent API designs when given similar or updated requirements.
These inconsistencies make it hard to maintain consistency across a project or
large code base and could potentially lead to confusion during the comparison
and selection of final API design or in ensuring different teams use a consistent
APT design strategy. The LLM will likely require significant context to ensure
consistency across API generations.

4.4 The API Simulator Pattern

Intent and Context The API Simulator pattern causes the LLM to simulate
the API from a specification, thereby enabling developers to interact immedi-
ately with an API and test it through a simulation run by the LLM. LLMs
possess powerful—and often largely unrecognized—capabilities to generate syn-
thetic data and tailor that data to natural language descriptions of scenarios.
In addition, LLMs can help developers explore a simulated API by synthesizing
sample requests, as well as providing usage guidance and explaining errors.



14 J. White et al.

Motivation Although tools are available to simulate an API [12], they require
setup to use and may have limited ability to generate effective synthetic data.
Current infrastructure for simulating APIs also often just supports strict in-
teraction, typically through HTTP or code, rather than a more fluid interface
based on a combination of pseudo-operations and concrete operation specifica-
tion. Early interaction with an API design can aid developers in uncovering
issues, omissions, and awkward designs.

Structure and Key Ideas The fundamental contextual statements are as
follows:

4 D

API Simulator Pattern
1. Act as the described system using specification X
2. I will type in requests to the API in format Y

3. You will respond with the appropriate response in format Z based on
specification X

Example Implementation An example implementation of the API Simulator
pattern that asks an LLM to simulate a REST API based on an OpenAPI
specification is shown below. This implementation specifies that requests to the
system will be typed in as HTTP requests and that the system should output
the HTTP response. It is also possible to have the LLM generate a description
of state changes in the system as the simulation, data saved, etc. Similarly, the
specification of the user input could be simply a description of what a user is
doing with the API or a web client.

” Act as this web application based on the OpenAPI specification. I will
type in HTTP requests in plain text and you will respond with the
appropriate HT'TP response based on the OpenAPI specification.”

The specification can take a number of forms, such as a programmatic in-
terface or a common API specification domain-specific language, such as Ope-
nAPI [17]. In the example above, the OpenAPI specification for an HTTP API
is used. Requests can then be input to the LLM, which then replies with the
corresponding HTTP responses.

Consequences The API Simulator pattern enables users to customize their
interactions or scenarios of interaction with an LLM using natural language,
which may be easier than trying to accomplish the same thing in code. For
example, users can tell the LLM, "for the following interactions, assume that
the user has a valid OAuth authorization token for the user Jill” or ”assume
that 100 users exist in the system and respond to requests with sample data for
them.” More complex customization can also be performed, such as ”assume the
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users are from a set of 15-25 families and come from multiple countries in North
America.”

Interactions with a simulated API can be done through either a rigorous
programmatic form, such as ”strictly interpret my input as an HTTP request
and reject any malformed requests” or "I am going to only provide pseudo data
for the input and you should fix any formatting issues for me.” The flexibility
of interacting with the LLM simulation and customizing it via natural language
facilitates rapid exploration of an API.

Another benefit of the API Simulator pattern arises when combining it with
other patterns so users can (1) have the LLM create examples of usage that
are later used as few-shot examples [23] in future prompts or (2) leverage the
LLM to reason about how hard or easy it is to accomplish various tasks in
code. In particular, combining this pattern with the Change Request Simulation
pattern described in Section 4.8 allows users to reason about the effort needed
to accommodate changing assumptions later in the software life-cycle.

One important consideration is that the simulation will not be completely
accurate, so fine-grained analysis can not be performed. It is important to ensure
that the analysis done with the simulation is at a high-level and mainly used for
thinking through how interactions with the interface will work, sequencing, etc.
Users should not infer other properties of the interface, such as performance,
based on the simulation.

The API Simulator pattern, like any tool or process, has potential drawbacks
and considerations, despite its advantages. For example, users might start relying
heavily on simulated results, disregarding the fact that simulations may not
accurately reflect the behavior of a deployed API. This over-reliance could lead
to unrealistic expectations about system behavior or performance. Moreover, this
pattern is driven by the LLM, which is not designed to provide in-depth, detailed
analysis of API behavior, such as exact performance metrics and fine-grained
error conditions. Therefore, users may erroneously assume that the simulated
performance is representative of the actual API when implemented.

4.5 Pattern: Few-shot Code Example Generation

Intent and Context The Few-shot Code Example Generation pattern instructs
the LLM to generate a set of usage examples that can later be provided back
to the LLM as examples in a prompt to leverage few-shot learning [23], which
provides a limited set of example training data in a prompt to an LLM. In the
software domain, the few-shot examples are proper usage of code that an LLM
can learn from. In some cases, these examples can convey the function and use
of code in a more space/token-efficient manner than the actual code itself.

This pattern leverages the LLM itself to generate few-shot examples that can
later be provided in a prompt, in lieu of writing the actual code. In response, an
LLM can reason about the original code more effectively. These examples can
be helpful to remind the LLM of the design/usage of the system that it designed
in prior conversations.
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Motivation LLMs typically have a limit on the number of tokens (e.g., words
or symbols) that can be input in a single prompt. Since a large software system
or module may exceed an LLM’s token limit, it may be necessary to describe
design or programming aspects (such as a module, class, set of functions, etc.)
within the LLM’s token limit to use it properly. This overrunning of the token
limit necessitates a way to remind the LLM of prior decisions it made in the
past.

One approach to solve the token limit problem is to provide few-shot training
examples in a prompt that are based on the usage of the code, API, state tran-
sitions, or other specification usage examples. These examples can demonstrate
proper usage and train the LLM on-the-fly to use the related design or code
properly. However, manually generating few-shot examples may not be feasible,
which motivates the Few-shot Code Example Generation pattern.

Structure and Key Ideas The fundamental contextual statements are as
follows:

Few-shot Code Example Generation Pattern
I am going to provide you system X
Create a set of N examples that demonstrate usage of system X

Make the examples as complete as possible in their coverage

= <~ EEN 5

(Optionally) The examples should be based on the public interfaces of
system X

5. (Optionally) The examples should focus on X

Example Implementation The example implementation below generates few-
shot examples of using a RESTful API and focuses the examples on the creation
of new users:

”T am going to provide you code. Create a set of 10 examples that demon-
strate usage of this OpenAPI specification related to registration of new
users.”

These examples could then be used in later prompts to the LLM to remind
it of the design of the API with regard to the creation of users. Providing the
examples may be more concise and convey more meaning than natural language
statements that try to convey the same information.

In another example, the Few-shot Code Example Generation pattern imple-
mentation asks the LLM to create few-shot examples for usage of portion of
code:

”T am going to provide you code. Create a set of 10 examples that demon-
strate usage of this code. Make the examples as complete as possible in
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their coverage. The examples should be based on the public interfaces of
the code.”

One valuable use of the LLM examples is to teach the LLM about the same
code in future interactions. It is common to need to teach an LLM about code
and one way to teach it is with natural language documentation. However, doc-
umentation is often not information dense and can use significant context in a
prompt to the LLM. In contrast, code examples can be information-rich and
token-efficient relative to natural language, particularly when the examples con-
vey important meaning, such as ordering of operations, required data, and other
details, that are concise when described in code but overly verbose in natural
language. The Few-shot Code Example Generation pattern aids in creating ex-
amples that can be provided to the LLM to either remember or learn how to use
a library, interface, or other code artifact.

Consequences The Few-shot Code Example Generation pattern can be used
early in the design cycle to help capture expected usage of a system and then later
provide a usage-based explanation back to the LLM to highlight its past design
decisions. When combined with patterns, such as the API Simulator pattern,
developers can rapidly interact with the system and record the interactions and
then supplement them with additional generated examples.

This pattern is best applied when example usage of the system also con-
veys important information about constraints, assumptions, or expectations that
would require more tokens to express in another format, such as a written natural
language description. In some cases, a document, such as an OpenAPI specifica-
tion, may be more token-efficient for conveying information. However, example
usage has been shown to be an effective way of helping an LLM perform problem
solving [27], so this pattern may be a useful tool even when it is not the most
token-efficient mechanism for conveying the information.

The Few-shot Code Example Generation pattern yields many advantages,
particularly helping LLMs understand and operate on code. However, developers
may face challenges in creating code examples that cover all possible use cases,
scenarios, or edge cases. As a result, the LLM may hallucinate when faced with
situations not covered by the examples, which can negatively effect downstream
behaviors since inaccurate code examples or examples containing bad practices
could mislead the LLM later. Likewise, the LLM could amplify these mistakes
by using those examples as the basis for future code generations, potentially
creating bigger problems.

4.6 The Domain-Specific Language (DSL) Creation Pattern

Intent and Context The Domain-Specific Language (DSL) Creation pattern
enables an LLM to create its own domain-specific language (DSL) that both
it and users can leverage to describe and manipulate system concepts, such
as requirements, deployment aspects, security rules, or architecture in terms of
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modules. The LLM can then design and describe the DSL to users. In addition,
the examples and descriptions the LLM generates can be stored and used in
future prompts to reintroduce the DSL to the LLM. Moreover, the examples the
LLM generates will serve as few-shot examples for future prompts.

Motivation DSLs can often be used to describe aspects of a software-reliant
system using more succinct and token-efficient formats than natural language,
programming languages, or other formats [19]. LLMs have a maximum number
of "tokens”, which corresponds to the maximum size of a prompt, and creating
more token-efficient inputs is important for large software projects where all the
needed context may be hard to fit into a prompt. Creating a DSL, however, can
be time-consuming. In particular, the syntax and semantics of the DSL (e.g.,
its metamodel) must be described to an LLM a priori to enable subsequent
interactions with users.

Structure and Key Ideas The fundamental contextual statements are as
follows:

DSL Creation Pattern
1. I want you to create a domain-specific language for X
2. The syntax of the language must adhere to the following constraints

3. Explain the language to me and provide some examples

Example Implementation A sample implementation of the Domain-Specific
Language (DSL) Creation pattern creating a DSL for requirements is shown
below. This implementation adds a constraint that the DSL syntax should be
YAML-like, which aids the LLM in determining what the textual format should
take. An interesting aspect of this is that ”like” may yield a syntax that is not
valid YAML, but looks similar to YAML.

7T want you to create a domain-specific language to document require-
ments. The syntax of the language should be based on YAML. Explain
the language to me and provide some examples.”

Another implementation approach is to ask the LLM to create a set of re-
lated DSLs with references between them. This approach is helpful when you
need to describe related aspects of the same system and want to trace concepts
across DSL instances, such as tracing a requirement to its realization in an archi-
tectural DSL describing modules. The LLM can be instructed to link the same
concept together in the DSLs through consistent identifiers so that concepts can
be tracked across DSL instances.
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Consequences The Domain-Specific Language (DSL) Creation pattern may
facilitate system design without violating token limits. The specific syntax rules
that are given to the LLM must be considered carefully, however, since they
directly influence the space-efficiency of the generated DSL. Although users of
a DSL may only need to express relevant concepts for a designated task, this
high concept-density may not translate into the token-efficiency of a textual
representation of such concepts. For example, an XML-based syntax for a DSL
will likely be much more space consumptive than a YAML-based syntax.

Token efficiency in a DSL design can be improved via conventions and implicit
syntax rules. For example, positional conventions in a list can add meaning
rather than marking different semantic elements in the list via explicit labels.
The downside, however, is that the DSL may be harder to interpret for users
unfamiliar with its syntax, although this problem can be rectified by using the
Few-shot Code FErample Generation pattern in Section 4.5 to create examples
that teach users how to apply the DSL. Combining these two pattern also helps
the LLM self-document usage of the pattern for later prompting based on the
DSL.

The Domain-Specific Language (DSL) Creation pattern provides substantial
benefits, particularly when dealing with complex systems that might require
multiple DSLs for different aspects. However, there are potential drawbacks that
may arise. For example, introducing multiple DSLs may increase the overall
complexity of a system, particularly for human developers that did not create
the DSLs. Understanding and maintaining multiple DSLs, and their references,
can be hard for humans over a project life-cycle. Each DSL has its own structure
and syntax rules, which developers need to understand to supervise the LLM
effectively.

4.7 The Architectural Possibilities Pattern

Intent and Context The Architectural Possibilities pattern generates several
different architectures for developers to consider, with little effort on the part of
developers. An ”architecture” can be very open-ended and it is up to the devel-
oper to explain to the LLM what is meant by this term. A developer may desire
seeing alternative architectures for how code is laid out into files, communication
is performed between modules, or tiers in a multi-tiered system.

The intent of this pattern, therefore, is to allow the developer to explore any
of these architectural aspects of the system with the LLM. Moreover, developers
can interactively refine architectural suggestions by adding further constraints
or asking the LLM to describe the architecture in terms of a different aspect
of the system, such as file layout, modules, services, communication patterns,
infrastructure, etc.

Motivation Devising software architectures often requires considerable cogni-
tive effort on the development team, particularly when architectures are mapped
all the way to system requirements. Developers may therefore only consider a rel-
atively small number of possible architectures when designing a software-reliant
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system due to the effort required to generate such architecture. In addition, de-
velopers may not have familiarity with architectures that could be a good fit for
their systems and hence would not explore these architectural possibilities. Since
architecture plays such an important role in software-reliant system design, it
is important to facilitate exploration of many different alternatives, including
alternatives that developers many not be familiar with.

Structure and Key Ideas The fundamental contextual statements are as
follows:

a D

Architectural Possibilities Pattern
I am developing a software system with X for Y
The system must adhere to these constraints

Describe N possible architectures for this system

(& w o =

Describe the architecture in terms of Q

Example Implementation The example implementation below explores ar-
chitectures related to using a web application built on a specific set of frame-
works:

71 am developing a python web application using FastApi that allows
users to publish interesting ChatGPT prompts, similar to twitter. De-
scribe three possible architectures for this system. Describe the archi-
tecture with respect to modules and the functionality that each module
contains.”

The implementation specifies that the architecture should be described in
terms of the modules and functionality within each module. The ”with respect
to” portion of the pattern is important to guide the LLM’s output to appro-
priately interpret the term architecture. The same prompt could be changed to
ask for architecture in terms of the REST API, interaction of a set of services,
communication between modules, data storage, deployment on virtual machines,
or other system aspects. The ”with respect to” focuses the output on which of
the many aspects the architecture is being explored in terms of.

Consequences Performance-sensitive applications can use the Architectural
Possibilities pattern to propose possible architectures to meet performance goals
and then generate experiments, in the form of code, to test each architecture.
For example, a cloud application might be implementable as (1) a monolithic
web application and run in a container or (2) a series of microservices in a mi-
croservice architecture. The LLM can first generate a sample implementation of
each architecture and then generate a script to deploy each variation to the cloud
and test it under various workloads. In addition, the workload tests could allow
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for comparative cost analysis from the resulting expenses incurred in the cloud.
The Architectural Possibilities pattern is particularly powerful when combined
with this type of LLM-based rapid implementation and experimentation.

Another way to expand this rapid architectural experimentation capability is
to combine it with the API Generator pattern described in Section 4.3 and API
Simulator pattern described in Section 4.4. The architecture can serve as the
basis of the API generation, which can then be simulated. This approach allows
developers to see what the realization and use of this architecture from a code-
perspective might look like. Likewise, the Change Request Simulator pattern
described in Section 4.8 can be employed to reason about how hard/easy it
would be to change different assumptions later given a proposed architecture.

Since an LLM may not fully understand the specific detailed requirements
and constraints of the system, some of the proposed architectures may not suit-
able, leading to wasted time and effort. This drawback of the Architectural Pos-
sibilities pattern can be combated by giving additional context during the gen-
eration of the alternatives, but the onus is on the user to provide the relevant
context. In addition, an LLM can only propose architectures based on the infor-
mation it has been trained on and/or provided as context to user prompts. Its
output may therefore not include newer or less-well-known architectural patterns
that could be a good fit for a given project.

4.8 The Change Request Simulation Pattern

Intent and Context The Change Request Simulation pattern helps users rea-
son about the complexity of a proposed system change, which could be related
to requirements, architecture, performance, etc. For example, this pattern helps
users reason about what impact a given change might have on some aspect of
the system, such as which modules might need changing. This pattern is particu-
larly helpful when a group of stakeholders need to discuss a possible requirements
change, where the LLM serves as a (potentially) unbiased estimator of the scope
and impact of the change.

Motivation In many situations, it may not be immediately clear to stake-
holders what the impact of a change would be. Without an understanding of
a change’s impact, however, it is hard to reason about the associated effects
on schedule, cost, or other risks. Getting rapid feedback on potential impacts
can help stakeholders initiate the appropriate conversations and experiments to
better determine the true risk of the change. Distrust between users may also
complicate the discussion of the change and necessitate an “unbiased” external
opinion.

Structure and Key Ideas The fundamental contextual statements are as
follows:
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Change Request Simulation Pattern

My software system architecture is X

The system must adhere to these constraints

I want you to simulate a change to the system that I will describe

Describe the impact of that change in terms of Q

U Nl < BN

This is the change to my system

Example Implementation In this example implementation, the prompt refers
back to a previously generated OpenAPI specification [17] as the basis of the
simulation:

”My software system uses the OpenAPI specification that you generated
earlier. I want you to simulate a change where a new mandatory field
must be added to the prompts. List which functions and which files will
require modifications.”

The prompt above focuses the simulation on how the change will impact
various functions and files in the system. This approach allows stakeholders to
estimate the cost of a change by examining the complexity of the referenced
files, functions, and the total count of each. Alternatively, in cases where the
entire affected section of code can fit into the prompt, the LLM can be asked to
identify lines of code that may require changing.

Consequences The hardest part of applying the Change Request Simulation
pattern is establishing enough context for the LLM to reason about a proposed
change. This pattern works best, therefore, when it is employed with other Sys-
tem Design category patterns, such as the API Generator in Section 4.3, where
conversation history can be used to seed the analysis. The more concrete the
change description is in relation to the context, the more likely the LLM can
provide a reasonable estimate of change impact.

The Change Request Simulation pattern can also be used to reason either (1)
abstractly about a software-reliant system in terms of modules or (2) concretely
in terms of files, functions, and/or lines of code. Existing LLMs have token
limits that only consider a limited amount of information about a system. Large
sweeping changes to a system can generally only be reasoned about at a higher
level of abstraction since the detailed information needed to implement such
changes would exceed an LLM’s token limit. Within a smaller set of files or
features, however, an LLM may be able to reason precisely about what needs to
change.

One way to handle the tension between token limits and detailed output is
to apply the Change Request Simulation pattern iteratively to zoom in and out.
Initially, an abstract analysis is performed to identify features, modules, etc. that
need to change. The prompt is then modified to refine the context to a specific
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module or feature and obtain greater detail from the LLM. This process can be
repeated on individual parts of the module or feature until sufficient detail is
obtained. Likewise, this process can be repeated for each high-level module to
estimate the overall impact of a proposed change.

Applying the Change Request Simulation pattern is reliant on providing the
LLM with enough context to reason about the proposed changes. The more
detailed this context is, the better the LLM can evaluate the possible impact
of the change. Providing enough context can be hard as users must present
clear, detailed, and specific scenarios. Moreover, the fidelity of the LLM’s output
depends on the accuracy of the context given.

5 Code Quality & Refactoring Patterns

This section describes prompt patterns that help LLMs generate higher quality
code and refactor human-produced code.

5.1 The Code Clustering Pattern

Intent and Context The Code Clustering pattern separates and clusters code
into packages, classes, methods, etc. based on a particular property of the code,
such as separating pure code (i.e. code with no side-effects) and impure code
(i.e., code with side-effects) [22], business logic from database access, HTTP
request handling from business logic. etc. The Code Clustering pattern defines
the expected cluster properties to the LLM and then asks the LLM to restructure
the code automatically to realize the desired clustering. This pattern helps ensure
that LLM-generated code exhibits desired the clustering and can also be used
to refactor human-produced code to add the clustering that wasn’t originally
present.

Motivation How software is decomposed and clustered into packages, classes,
methods, etc. has a significant impact on how easily the code can be changed,
extended, and easily maintained. By default, an LLM will not have guidelines
on the decomposition/clustering needs for an application. This lack of context
can lead an LLM to produce code that appears monolithic, brittle, messy, and
generally low quality. A key motivation for applying the Code Clustering pattern,
therefore, is to provide the missing clustering context an LLM needs to generate
higher quality code.

Structure and Key Ideas The fundamental contextual statements are as
follows:
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Code Clustering Pattern
1. Within scope X

2. I want you to write or refactor code in a way that separates code with
property Y from code that has property Z.

3. These are examples of code with property Y.

4. These are examples of code with property Z.

Example Implementation A sample implementation of the Code Clustering
pattern is shown below:

”Whenever I ask you to write code, I want you to write code in a way that
separates functionality with side-effects, such as file system, database, or
network access, from functionality without side-effects.”

Some common properties that are effective in generating higher quality code
with this pattern include:

— Side-effects, where code is decomposed into functions to isolate code with
side-effects from code that is pure business logic so that it is easier to test
and reason about in isolation,

— Tiers, where code is decomposed based on a layered architecture, such as
the business logic tier and the data management tier,

— Features, where code is grouped into cohesive features that are isolated in
separate files or groups of files.

One way to specify the properties used for this decomposition is by defining
one property as the absence of the other property. In the implementation example
above, the ”side-effects” property is clearly defined. The ”without side-effects”
property is defined as the converse of the side-effects property. A common form
of implementation is to define properties that are opposites of each other.

Many other properties can be used to separate and cluster code as long
as they are describable to an LLM. Well-understood properties, such as side-
effects, are likely to have been concepts that were present in the LLM’s training
set, so they will require less prompt design work for the LLM to reason about.
Custom properties can be reasoned about through a combination of natural
language description and few-shot examples. The Code Clustering pattern can
be combined with the Few-shot Code Example Generator pattern in Section 4.5
to create code samples that demonstrate the desired property-based clustering
and then use them in the Code Clustering pattern for in-context learning of the

property.

Consequences The Code Clustering pattern can dramatically improve the
quality of LLM-produced code. Unless the LLM is told otherwise, its code will
solve the problem at hand and often does not solve structuring problems, such as
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separating pure and impure functions, that it has not been asked to solve. The
Code Clustering pattern surfaces a key issue in LLM software engineering, i.e.,
an LLM'’s output is only as good as the prompt it is given. Implicit knowledge
(e.g., the project requires code that exhibits certain clustering properties) will
not be known to the LLM unless this information is provided to it in a prompt.

The Code Clustering pattern depends crucially on understanding implicit
requirements, such as coding conventions, architectural constraints, separation
of concerns, etc. An LLM may be unaware of these implicit requirements unless
users explicitly mention them in the prompt. Making the LLM understand how
the implicit requirements may require substantial space in the prompt. LLMs
have limitations in learning and understanding the semantics behind code struc-
turing and clustering that are not yet fully understood, so they may not always
be capable of autonomously defining meaningful clusters even when given sig-
nificant context.

5.2 The Intermediate Abstraction Pattern

Intent and Context The Intermediate Abstraction pattern instructs an LLM
to not tightly couple some aspects of generated code by introducing an intermedi-
ate abstraction. This intermediate abstraction helps ensure that certain aspects
of the code can be changed more easily at a later point in time. Abstraction
and modularity are fundamental components of high-quality maintainable and
reusable code. Code should be written in a way that isolates cohesive concepts
into individual classes or methods so that edits can be isolated in scope. In
addition, when working with an LLM, refactoring existing code is easier if refac-
torings can be isolated to a single function or method that needs to be modified,
replaced, or added.

Motivation Be default, LLMs often generate code that is highly procedural
and directly translates the requirements spelled out in the prompt into code. In
particular, the implementation may not have sufficient abstraction or modularity,
making it hard to maintain. Moreover, as an LLM is continually prompted to
add features to the code, it may produce increasingly long methods with little
separation of concepts into packages, classes, or other abstractions that facilitate
long-term maintainability.

Structure and Key Ideas The fundamental contextual statements are as
follows:
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Intermediate Abstraction Pattern

If you write or refactor code with property X
that uses other code with property Y
(Optionally) Define property X

(Optionally) Define property Y

Insert an intermediate abstraction Z between X and Y

B S

(Optionally) Abstraction Z should have these properties

Example Implementation A sample implementation of the Code Clustering
pattern is shown below:

”Whenever I ask you to write code, I want you to separate the busi-
ness logic as much as possible from any underlying third-party libraries.
Whenever business logic uses a third-party library, please write an in-
termediate abstraction that the business logic uses instead so the third-
party library could be replaced with an alternate library if needed.”

A common risk in software is third-party libraries since their dependencies are
not directly under the control of a developer, thereby creating project risk. For
example, a third-party library developer introduce changes to its dependencies
that make it hard to incorporate into an existing project and limit access to
future security updates in the new version. This example implementation uses
the LLM to insert an intermediate abstraction to mitigate this type of risk.

Consequences The Code Clustering pattern can aid in producing high-quality
code. By explicitly instructing an LLM to structure its output in a certain way
(e.g., separating pure and impure functions), the resulting code can adhere to
best practices and be easier to understand and maintain. Another benefit of this
pattern is that it can help ensure consistency, particularly in large projects where
multiple LLMs or even human developers might be involved. Consistent code is
more predictable and easier to understand.

However, the Code Clustering pattern may not be able to design a good
abstraction simply from analysis of a single third-party library that provides a
given capability. For example, different dependencies may have different funda-
mental architectures and interfaces. One way to address this heterogeneity is to
leverage the Few-shot Example Generator pattern in Section 4.5 to create exam-
ples of other comparable third-party libraries and their usage and then ask the
LLM to refactor the interface so it can be implemented with any alternatives.

5.3 The Principled Code Pattern

Intent and Context The Principled Code pattern uses well-known names
for coding principles to describe the desired code structure without having to
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explicitly describe each individual design rule. For example, an organization may
want to ensure that their code follows SOLID [15] design principles.? The goal is
to ensure that generated, refactored, and reviewed code adheres to the expected
design principles.

Motivation Writing software with good design characteristics is important to
maintain a code base effective. However, developers may not be able to easily
articulate and specify all the rules and patterns for what constitutes good design.
Many articles and books have been written to explain how good design practices
can be applied to different languages, frameworks, platforms, etc. The motivation
for the Principled Code pattern is to enable developers to define these rules in
natural language, as long as they know the commonly accepted name of the
design method.

Structure and Key Ideas The fundamental contextual statements are as
follows:

Principled Code Pattern
1. Within this scope

2. Generate, refactor, or create code to adhere to named Principle X

Example Implementation A sample implementation of the Principled Code
pattern is shown below:

”From now on, whenever you write, refactor, or review code, make sure
it adheres to SOLID design principles.”

This example uses the SOLID design principles as the desired design guide-
lines. This named design methodology informs the LLM of the underlying prin-
ciples that code it generates should follow.

Consequences The Principled Code pattern works best with LLMs trained
on a substantial volume of written material that explains the application of
the named principle to a range of code bases. The more well-known the design
principle(s), the more examples the LLM will likely have been trained on. The
availability of training examples is particularly important for less mainstream
languages or languages with more uncommon designs, such as Prolog or Clojure.
This situation is similar to the Persona Pattern presented in our prior work [24],
where users describe the desired output using a well-known name. A consequence

2 The SOLID code refers to software that applies the following design principles: (1)
Single responsibility, (2) Open-closed, (3) Liskov substitution, (4) Interface segrega-
tion, and (5) Dependency inversion.
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of the Principled Code pattern is that it only works with well-known named de-
scriptions of code qualities that existed before the LLM was trained. Newer
coding or design styles that came after the training date will not be accessible
through this pattern. However, other approaches could be used to leverage in-
context learning and few-shot examples to incorporate these inaccessible named
coding or design styles.

5.4 The Hidden Assumptions Pattern

Intent and Context The Hidden Assumptions pattern has an LLM identify
and describe any assumptions made in a section of code. The pattern helps
users identify these assumptions or remind them of assumptions they may have
forgotten about. By showing key assumptions from the code to users, the LLM
can help ensure users account for these assumptions in their decisions related to
their code.

Motivation Any code, regardless if it is produced by a human or LLM, may
have hidden assumptions that user must understand. If users are unaware of
these assumptions, however, they may use, modify, or otherwise leverage the
code incorrectly. Hidden assumptions are particular risky for LLM-generated
code, where users may have less familiarity with what is being produced for
them.

Structure and Key Ideas The fundamental contextual statements are as
follows:

( A

Hidden Assumptions Pattern

1.  Within this scope

2. List the assumptions that this code makes

3. (Optionally) Estimate how hard it would be to change these assumptions
or their likelyhood of changing

\. J

Example Implementation Several sample implementations of the Hidden
Assumptions pattern are shown below, starting with this one:

”List the assumptions that this code makes and how hard it would be
to change each of them given the current code structure.”

This first example focuses on listing assumptions that may be hard to change
in the future. This refinement of the pattern helps make developers aware of
liabilities in the code with respect to future change. If one of the assumptions
is hard to change—but developers expect this aspect will need to change—they
can request the LLM to refactor it to remove this flawed assumption.
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A second example of the Hidden Assumptions pattern shows how it can
be used to aid in refactoring code from being tightly-coupled to an underlying
database:

”List the assumptions in this code that make it hard to change from a
MongoDB database to MySQL.”

With this example, the LLM will list assumptions that are tightly coupling
to a specific database. User could then take this list and use it as the basis for
refactoring, e.g., by asking the LLM to refactor the code to eliminate the listed
assumptions.

Consequences The Hidden Assumptions pattern enables the discovery of pre-
suppositions or hidden assumptions present in the code. These insights can be
invaluable in understanding the background context and underlying functioning
of the code in question. Uncovering hidden assumptions of the code helps ensure
that it is used, modified, or referenced correctly, mitigating the risk of misuse
due to misunderstood or overlooked assumptions.

However, the Hidden Assumptions pattern may not identify all hidden as-
sumptions in the code. For example, there may be code outside of what is in
the context provided to the LLM that is needed to identify the assumption. The
risk of this pattern is that developers will take it as a source of truth for all
assumptions in the code, rather than flagging of some possible assumptions for
consideration by developers.

5.5 The Pseudo-code Refactoring Pattern

Intent and Context The Pseudo-code Refactoring pattern give users fine-
grained control over the algorithm, flow, or other aspects of the code, while not
requiring explicit specification of details. It also allows users to define pseudo-
code for one or more details of generated or refactored code. The LLM is expected
to adapt the output to fit the pseudo-code template while ensuring the code is
correct and runnable.

Motivation In many cases, users may have strong opinions or specific goals in
the refactoring or generation of code that are tedious to describe—and duplica-
tive of an LLM’s work—if is were necessary to type the exact code structures
they wanted. In particular, the benefit of using an LLM is reduced if developers
must do as much coding work as the LLM to specify what they want. The moti-
vation of the Pseudo-code Refactoring pattern is to provide a middle ground that
allows greater control over code aspects without explicit coding and considering
all the details.
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Structure and Key Ideas The fundamental contextual statements are as
follows:

Pseudo-code Refactoring Pattern
1. Refactor the code
2. So that it matches this pseudo-code

3. Match the structure of the pseudo-code as closely as possible

Example Implementation A sample implementation of the Pseudo-code Refac-
toring pattern is shown below:

”Refactor the following code to match the following psuedo-code. Match
the structure of the pseudo-code as closely as possible.

files = scan_features()
for file in files:

print file name
for file in files:

load feature

mount router
create_openapi()
main():

launch app"

In this example, the prompt is asking the LLM to refactor a much larger body
of code to match the structure of the pseudo-code. The pseudo-code defines the
outline of the code, but not the details of how individual tasks are accomplished.
In addition, the pseudo-code does not provide exact traceability to which lines
are part of the described functionality. The LLM determines what the intent of
the refactoring is and how to map it into the current code provided to it.

Consequences The Pseudo-code Refactoring pattern enables more precise con-
trol over code generation or refactoring. It empowers users to influence the al-
gorithm’s flow, structure or other aspects without going into exhaustive details.
The pattern also boosts efficiency by enabling users to outline pseudo-code struc-
tures that the LLM can populate. This pseudo-code reduces duplicate work and
saves time since developers need not program the full code structure that they
desire.

The Pseudo-code Refactoring pattern can trigger more substantial refactoring
than what is outlined in the pseudo-code. For example, rewriting the code to
match the pseudo-code may require the LLM to remove a method and split its
code between two other methods. However, removing the method could then
change the public interface of the code.
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5.6 The Data-guided Refactoring Pattern

Intent and Context The Data-guided Refactoring pattern allow users to refac-
tor existing code to use data with a new format. Rather than specifying the exact
logic changes needed to use the new format, users can provide the new format
schema to the LLM and ask the LLM to make the necessary changes. This
pattern helps automate code refactoring for the common task of incorporating
changes to data formats.

Motivation Refactoring code to use a new input or output data structure can be
tedious. When communicating with an LLM, explaining the explicit refactoring
steps to may also require more time than actually conducting the needed steps.
The Data-guided Refactoring pattern provides a concise way of explaining to
the LLM what refactoring is needed. Since changing data formats can have such
a large-scale impact on a system, this pattern can automate these refactorings,
potentially reducing costs and accelerating overall system development.

Structure and Key Ideas The fundamental contextual statements are as
follows:

Data-guided Refactoring Pattern
1. Refactor the code
2. So that its input, output, or stored data format is X

3. Provide one or more examples of X

Example Implementation An example implementation of the Data-guided
Refactoring pattern is shown below:

"Let’s refactor execute_graph() so that graph has the following format
{"graph’:{ ...current graph format... }, ’sorted_nodes’: { ’a’: ['b’,’¢’...],...}}”

This example asks the LLM to refactor a method to use a different format
for the graph. In the example, the specific use of the graph format is not de-
fined, but could potentially be input, output, or internal to the method. All the
different uses of the graph would be supportable by the pattern. In addition, the
implementation uses ellipses to indicate portions of the data structure, which
allows the LLM to fill in user intent with concrete details.

Consequences The Data-guided Refactoring pattern reduces the manual effort
to specify refactoring for many types of code changes necessitated by a change
in data format. In many cases, the refactoring can be completely automated
through this process, or at least boostrapped, thereby accelerating and poten-
tially reducing the cost of changing data formats.
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While LLMs can operate with many different schemas and refactor code
accordingly, they may struggle with complex or niche data formats different
from what the LLM saw in its training data. Developers may therefore need
to provide additional guidance or instruction in these cases. Moreover, an LLM
might not understand the full implications of the data format change and may
not refactor all necessary parts of the code, leading to an inconsistent codebase
that uses multiple data formats at different points in the code.

6 Related Work

Software patterns [10,20] have been studied extensively and shown their value
in software engineering. Software design patterns have also been specialized for
other types of non-traditional uses, such as designing smart contracts [26, 28].
Prompt design patterns for software engineering are complementary to these,
although not focused on the design of the system itself, but on the interactions
with an LLM to produce and maintain software-reliant systems over time.

Prompt engineering is an active area of study and the importance of prompts
is well understood [7]. Many problems cannot be solved by LLMs unless prompts
are structured correctly [9]. Some work has specifically looked at prompting ap-
proaches to help LLMs learn to leverage outside tooling [27]. Our work comple-
ments these approaches, focusing on specific patterns of interaction that can be
used to tap into LLM capabilities to solve specific problems in software engi-
neering.

Much discussion on LLM usage in software engineering to date has centered
on the use of LLMs for code generation and the security and code quality risks
associated with that usage. For example, Asare et al. [2] compared LLM code
generation to humans from a security perspective. Other research has examined
the quality of generated answers and code from LLMs [5,9,11,16] and interaction
patterns for fixing bugs [21,25]. Our research draws inspiration from these explo-
rations and documents specific patterns that can be used to improve code quality
and help reduce errors. Moreover, as more prompt patterns are developed, dif-
ferent patterns can be quantitatively compared to each other for effectiveness in
solving code quality issues.

7 Concluding Remarks

Ever since ChatGPT was released to the public in November 2022, much at-
tention [1,2,18] has focused on the mistakes that LLMs make when performing
software engineering tasksm particularly with respect to generating code with de-
fects and/or security vulnerabilities. As shown in this chapter, however, prompt
patterns can be used to help alleviate many of these mistakes and reduce er-
rors. Moreover, prompt patterns can tap into LLM capabilities that are hard
to automate using existing technologies, including simulating a system based on
requirements, generating an API specification, and pointing out assumptions in
code,.
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The following are lessons learned thus far from our work on applying Chat-

GPT to automate common software engineering tasks:

Prompt engineering is crucial for unlocking the full capabilities of
LLMs for software engineering tasks. The prompt patterns described in
this chapter codify effective prompt design techniques that can help address
common software engineering challenges. Thoughtful prompt design is key
to tapping into ChatGPT’s strengths.

Prompt patterns enable rapid exploration and experimentation
throughout the software life-cycle. Patterns like the API Generator,
API Simulator, and Architectural Possibilities allow developers to experi-
ment rapidly with multiple designs and approaches early in the life-cycle.
This agility can accelerate development and lead to better solutions.
Integrating prompt patterns together into pattern catalogs can
further enhance their effectiveness. This chapter discusses chaining
prompt patterns together, such as combining the Requirements Simulator
and Visualization Generator patterns. These sequences and combinations of
patterns can build upon each other to accomplish more complex goals.
The depth of capabilities of LLMs, such as ChatGPT, is not widely
or fully understood or appreciated. LLMs hold immense potential for
helping to automate common tasks throughout the software engineering life-
cycle. Many LLM capabilities have the potential to accelerate software engi-
neering, not just by generating code, but by making rapid experimentation
at many different levels of abstraction possible. A key to leveraging these
capabilities is to codify an effective catalog of prompts and guidance on how
to combine them at different stages of the software life-cycle to improve
software engineering.

Significant human involvement and expertise is currently necessary
to leverage LLMs effectively for automating common software en-
gineering tasks. The tendency of ChatGPT to ”hallucinate” confidently
and enthusiastically when generating incorrect output requires close scrutiny
from human users at this point. While prompt patterns can help mitigate
some of these issues, much further work is needed on other aspects of prompt
engineering (such as quality assurance and versioning) to ensure output of
LLMs is accurate and helpful in practice.

We encourage readers to test the prompt patterns described in this chapter by

using ChatGPT to replicate our findings in their own domains and environments.
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