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Abstract

Although component middleware is increasingly used to
develop distributed, real-time and embedded (DRE) sys-
tems, it poses new fault tolerance challenges, such as the
need for efficient synchronization of internal component
state, failure correlation across groups of components, and
configuration of fault-tolerance properties at the compo-
nent granularity level. This paper makes two contribu-
tions to R&D on component-based fault-tolerance. First,
we present the structure and functionality of our COmpo-
nent Replication based on Failover Units (CORFU) middle-
ware, which provides fail-stop behavior and fault correla-
tion across groups of components in DRE systems. Second,
we empirically evaluate CORFU and compare/contrast it
with existing object-oriented fault-tolerance methods. Our
results show that component middleware (1) has acceptable
fault-tolerance performance for DRE systems and (2) eases
the burden of application development by providing middle-
ware support for fault-tolerance at the component level.

1 Introduction
Fault-tolerance is a key requirement for mission-critical

distributed real-time and embedded (DRE) systems, such
as air traffic management, total-shipboard computing, and
fractionated spacecraft. Software for DRE systems increas-
ingly uses component middleware to reduce application de-
velopment time and effort. Component-based DRE systems
incur a new set of fault-tolerance challenges compared with
DRE systems based on distributed object computing that
operate at the granularity of individual objects.

For example, DRE system functionality may be obtained
by assembling a group of components procured from differ-
ent providers. Supporting fault-tolerance for this function-
ality requires treating the group of components as a single
failure and recovery unit. Other challenges include the need
to maintain consistent state across components and com-
ponent groups, as well as the tedious and error-prone pro-
cess of configuring fault-tolerance properties into middle-
ware and application components.

This paper presents theCOmponent Replication based
on Failover Units(CORFU) component middleware, which
supports fault-tolerance of component-based DRE systems,
specifically for groups of components. CORFU extends
FLARe [1] middleware, which operates at the level of
distributed objects to provide passive replication and fast

client-side failover mechanisms. It is specifically targeting
real-time systems with stringent resource constraints and
short response time requirements. By capturing component
dependencies in specific component groups (called failover
units), CORFU reduces error reaction time at run-time and
therefore ensures immediate and deterministic behavior as
required by real-time applications.

CORFU implements algorithms that provide efficient
fail-stop behavior of component groups. Instead of reac-
tively providing failover capabilities for a sequence of con-
secutive failures of single components, CORFU can restore
system consistency in a single execution step. Failover op-
erations can thus be more deterministic through directly
dealing with the original error and not allowing error prop-
agation.

This paper evaluates several capabilities of CORFU
qualitatively and quantitatively. It presents a qualitative
analysis that compares the effort involved in applying
conventional object-level fault-tolerance versus CORFU’s
component level fault-tolerance. This analysis shows how
CORFU improves efficiency and reliability of system devel-
opment by making fault-tolerance aspects orthogonal to ap-
plication development. The paper also presents experiments
that quantify the latencies involved in a failover operation of
component based fault-tolerant applications and the timing
characteristics of the fail-stop behavior of CORFU compo-
nent groups.

The remainder of this paper is organized as follows: Sec-
tion 2 uses a space system case study to motivate the need
for component middleware and dependency-based compo-
nent groupings; Section 3 summarizes the structure and
functionality of CORFU; Section 4 analyzes experimental
results to evaluate CORFU’s performance; Section 5 com-
pares CORFU with related work; Section 6 presents con-
cluding remarks.

2 System Model and Case Study

CORFU enhances the OMG’s Lightweight CORBA
Component Model (LwCCM) [9] to support component-
based fault-tolerance. This section briefly describes key
characteristics of LwCCM and highlights the need for
component-based fault-tolerance using a space system case
study.



2.1 Overview of the Lightweight CORBA Component
Model (LwCCM)

Componentsin LwCCM are implemented byexecutors
and collaborate with other components viaports, includ-
ing (1) facets, which define an interface that accepts point-
to-point method invocations from other components, (2)
receptacles, which indicate a dependency on a point-to-
point method interface provided by another component,
and (3)event sources/sinks, which indicate a willingness to
exchange typed messages with one or more components.
There are two general types of components in LwCCM:
(1) monolithic components, which are executable binaries,
and (2)assembly-based components, which are a set of in-
terconnected components that can either be monolithic or
assembly-based.

A containerin LwCCM provides the run-time execution
environment for the component(s) it manages. Each con-
tainer is responsible for initializing instances of the compo-
nents it manages and mediating their access to other com-
ponents and common middleware services.

LwCCM component deployment and configuration
(D&C) [10] is performed by the actors shown in Figure 1.
The central entity is theExecutionManager, which is re-
sponsible for instantiatingDomainApplications as defined
in deployment plans. Every node is represented by aNode-
Managerin the management layer. Each deployment plan
will be represented by aDomainApplicationManagerthat
is the administration interface to start and stop the applica-
tion. TheExecutionManagersplits a deployment plan into
partial deployment plans that is processed by each associ-
atedNodeManager.

Figure 1: System Model for Component-based Deployment
and Configuration

Each node deployment plan is represented by aNodeAp-
plicationManagerthat starts and stopsNodeApplications
andcomponent servers. A component serverhosts contain-
ers and provides the run-time process context. ANodeAp-
plication is a management entity that controls the life-cycle
of components hosted in a component server.

2.2 DRE Component-based Case Study

The domain of space systems has stringent requirements
for real-timeliness as well as for fault tolerance. To show-
case the challenges confronting component-based DRE sys-
tems, we describe the Mission Control System (MCS) being

Figure 2: Component-Based Mission Control System
developed by the European Space Agency [11] to control
satellites that perform missions, such as earth observation
or deep-space exploration.

2.2.1 Overview of the Mission Control System (MCS)

An MCS controls satellites and processes data they gather.
It is deployed in a central control station and communicates
with a network of ground stations that provide communica-
tion links to the satellites. Figure 2 shows the structure ofa
component-based MCS.

The time windows for active connections to satellites can
be very short due to their orbit and visibility to ground sta-
tions, so the availability of the MCS during such phases
is crucial. The MCS therefore uses redundant hardware
and software. Each entity is deployed twice and some are
grouped into chains of functionality, which are groups of
components working closely together.

For example, an MCS must be tailored to specific mis-
sions and reconfigured for different mission phases. The
Mission Planning Systemis responsible for configuring and
observing the other system entities based on the mission
specific characteristics. Likewise, theTelemetry Serverana-
lyzes telemetry data and preprocesses it for the mission op-
erators. TheArchivestores telemetry data permanently and
is fed by the Telemetry Server. TheTelecommand Serveris
responsible for creating and sending new commands issued
by the mission operators.

Together, these four entities form a task chain that pro-
vides the main MCS functionality. To avoid single points
of failure, this chain is replicated. A primary chain is ac-
tive during normal operation, as shown in Figure 2. If an
error occurs in the primary chain, the complete chain must
be passivated and a backup chain must assume operation
through a warm passive failover. All components of the
backup chain are already deployed to assume operation as
quickly as possible.

TheNetwork Interface Systemserves as a gateway from
the ground stations to the MCS through a wide area net-
work. It uses the space link extension protocol to process
and transmit all mission relevant data to and from the MCS.
The Network Interface System is not part of the MCS chain
and is replicated separately.
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2.2.2 Fault-Tolerance Requirements of the MCS Case
Study

The MCS chain forms a unit of failover and recovery. Pro-
viding replication and recovery semantics for component
groups must support the following requirements: (1) fault
isolation, (2) ensure fail-stop behavior of failed groups
and (3) service recovery at the group level.

Requirement 1: Fault isolation. In the MCS scenario
the components within one chain depend on each other. A
failure of one component must lead to the automated shut-
down and failover of all components within the same chain.

Requirement 2: Ensure fail-stop behavior.If a failure
of a component has been detected and its chain has been
identified, this chain must be shutdown immediately so the
system state is not corrupted.

Requirement 3: Service recovery.When components
of the primary chain fail and are deactivated, all components
in the backup chain must become active and process incom-
ing requests. Although the MCS scenario presented here
only contains one backup failover unit (and thus only one
backup replica per component), the mechanism generally
must account for any number of backups. With more than
one backup, however, the system could end up having com-
ponents failing over to replicas in different chains, which
can cause performance problems or even malfunctions due
the way components are deployed on a given infrastructure.

3 The Structure and Functionality of
CORFU

This section describes the structure and functionality of
CORFU, focusing on how it provides DRE systems with
passive replication of a group of components treated as a
logical failover unit [13]. A failover unit contains a set of
components have dependencies with respect to failure prop-
agation. Failover units allow for failure reaction times suit-
able for real-time systems by proactively failing over depen-
dent components instead of reacting on slow failure propa-
gations.

CORFU’s layered architecture is shown in Figure 3.
This architecture enables CORFU to provide sophisticated
fault-tolerance capabilities, including support for compo-
nent group replication and failover. Each layer of fault-
tolerance functionality is provided along three fundamental
dimensions of fault-tolerance, including (1)replica group-
ing, which defines which replicas form one logical entity
for group failover and recovery, (2)error detection,which
detects and reports failures to initiate failover operations for
the group, and (3)failover mechanism, which redirects pro-
cessing of client requests in case of a detected failure.

The rest of this section describes how CORFU’s lay-
ered architecture provides these three dimensions of fault-
tolerance. We describe our approach starting at the lowest
layer working our way up the layers.

Figure 3: CORFU contributions

3.1 Fault-Tolerance for Individual Objects

CORFU’s lowest layer of support for fault-tolerance at
the level of individual objects is based on FLARe [1], which
is a middleware framework that achieves real-time fault-
tolerance through passive replication of distributed objects,
as shown in Figure 4. We base our implementation on top
of FLARe because of its capabilities to assure real-time per-
formance even in the presence of failures through its adap-
tive and predictable failure recovery mechanisms. The three
dimensions of fault-tolerance are obtained in FLARe as fol-
lows:

Replica grouping. FLARe’s middleware replication
manager(Label A in Figure 4) provides the replication
needs of applications hosted in the system. FLARe’sstate
transfer agent(label D in Figure 4) allows server objects
within one group to synchronize their application states.

Error detection. FLARe’s client request interceptor
(label C in Figure 4) catches failure exceptions, observes
process and host liveliness via amonitordeployed on each
processor and provides application transparent failover for
clients.

Figure 4: The FLARe Middleware Architecture

Failover mechanism.FLARe’s client failover manager
(labelB in Figure 4) contains aredirection agentthat is up-
dated with failover and redirection targets by themiddle-
ware replication manageras it tracks group membership
changes.

3.2 Fault-Tolerance for Individual Components

The next layer in CORFU’s architecture provides fault-
tolerance to individual components. This layer adds no
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new fault-tolerance capability, but instead raises the level of
fault-tolerance abstraction provided by FLARe to encom-
pass components rather than objects. The three dimensions
of fault-tolerance at this layer are provided as follows:

Replica grouping. Since components can consist of
several objects, replica objects must not only be grouped
according to which object they represent, but also by the
component to which they belong. CORFU’s component
server helps automate the registration of replicas within the
FLARe infrastructure. The component server will create as
many names as there are objects implementing a compo-
nent, using the component name as a prefix of the replica
object id name. This design allows grouping the replicas
according to their component and also preserving the object
id scheme of the basic FLARe mechanism.

Error detection. The component server not only au-
tomatically initializes the ClientRequestInterceptor that de-
tects connection failures as described earlier, but also auto-
matically starts a thread for communication with the local
HostMonitor. It also establishes the necessary connection
to the HostMonitor and thus ensures that each fault-tolerant
component server is observed automatically.

Failover mechanism. CORFU automates server-side
and client-side initialization of FLARe’s mechanisms for
failover, including the redirection agent on the client-side
that allows all component servers to automatically receive
the rank lists from the ReplicationManager. On the server-
side all IORInterceptors are automatically registered and
allow for transparent enhancement of IORs to contain the
replica object id necessary for failover operations.

3.3 Fault-Tolerance for Component Groups

The topmost layer in CORFU is responsible for provid-
ing fault-tolerance to groups of components that are desig-
nated as failover units. This capability is a significant con-
tribution of CORFU and is thus explained in depth below
along the three dimensions of fault-tolerance.

3.3.1 Replica Grouping for Component Groups

Challenge.The MCS chain in our case study in Section 2.2
requires a fault-tolerance solution to treat each chain as a
logical failover unit. LwCCM does not provide first class
support for treating components as part of a group. Ad-
dressing these limitations while remaining spec-compliant
is necessary since it ensures that the standard LwCCM pro-
gramming model and existing application code is not im-
pacted.

Solution→ Failover units managed by a FaultCorre-
lationManager. Adding support for failover units involves
two steps: (1) the notion of a failover unit must be integrated
into existing LwCCM D&C system descriptions and (2) at
the run-time level, failover units must be realized within a
management service. At the D&C level, CORFU realizes
each failover unit as a separate deployment plan. Addi-

tional standard compliant properties are added to the D&C
descriptors in the form ofinfoProperties,which indicate the
id of the failover unit and its rank in the list of failover tar-
gets. Doing so enables CORFU to seamlessly use existing
D&C actors (see Figure 1) to start and shutdown a failover
unit when necessary.

The run-time aspects of failover units are realized by
a management service called theFaultCorrelationMan-
ager (FCM), which manages failover units belonging to a
system. To integrate the FCM into the existing D&C infras-
tructure, the Decorator pattern [5] is applied. The FaultCor-
relationManager implements the ExecutionManager inter-
face and can therefore be accessed by any service that uses
the ExecutionManager interface.

The benefit of this approach is that for a client (i.e., the
PlanLauncher) it is indistinguishable whether it interacts
with the ExecutionManager directly or with a FCM. The
FCM will forward all requests to the ExecutionManager,
but will also perform additional actions prior to delegating
to the ExecutionManager.

The FCM design ensures that all computation-
intensive operations are performed at system start-up,
which optimizes reaction times after a system is acti-
vated. To accomplish this, the FCM enhances the in-
terface methodspreparePlan(), getManagers(), and
destroyManagers(). The main tasks are performed at
start-up of the system through thepreparePlan() method,
as discussed next.

3.3.2 Efficient Error Detection at Component Group
Level

Challenge.If any component of a failover unit fails, the en-
tire component group must fail. In the MCS case study this
applies to components within the primary chain, where the
failure of one component leads to the shutdown of the com-
plete chain. The challenge for error detection is that failover
units can be large. Despite the size, it is necessary that er-
rors be detected quickly and correlated with the failover unit
semantics since otherwise it may adversely impact the QoS
requirements of DRE systems.

Solution → A fast fault correlation algorithm.
CORFU relies on the underlying FLARe layer to detect a
fault in a single object, and hence in a single component.
CORFU provides a fast fault correlation algorithm to corre-
late these detected errors with the failover unit so that shut-
down operations for the unit can be initiated. Algorithm 1
depicts the fault correlation algorithm. The efficiency of
this algorithm hinges on actions the FCM takes during the
deployment phase and how it populates different data struc-
tures.

CORFU’s FCM uses the following data structures in its
fault correlation algorithm.

a. A hash mapI uses component instance names as keys
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Algorithm 1 FAILURE-REACTION (h,F)
Input : host nameh
Input : list of failed object idsF
Data: Component Instance MapI
Data: Node MapN
Data: DomainApplicationManager MapM

/* phase 1 - determining affected failover units */;
look up object_id mapO with key h in N;
create empty setP of deployment plan names;
for each Fi ∈ F do

look up instance namei with key Fi in O;
look up plan namep with key i in I ;
if p is not in Pthen

addp to P;
end

end
/* phase 2 - shutting down all affected components */;
for each p∈ P do

look up DomainApplicationManagermwith key p in M;
retrieve list of ApplicationManagers A through
m.getApplications ();
for each NodeApplication a∈ A do

call m.destroyApplication (a);
end

end

and associates them with the id of the deployment plan
they are hosted in.

b. A mapO is maintained for each node that uses the ob-
ject_id as a key to find the component instance name
that represents a replica for this object_id on that node.
The object_id of the incoming failure notification can
therefore be associated with a concrete component in-
stance. The node maps themselves are stored within a
hash mapN that allows to find them by using the node
name as a key.

c. Each created DomainApplicationManager is stored in
a mapM with its deployment plan id as key.

Algorithm 1 operates on these maps to process fault no-
tifications during system operation. This processing is done
in two phases. In phase one, all affected failover units, rep-
resented as deployment plans, are determined based on the
failure information. This phase uses the internal maps. In
phase two, existing D&C actors (namely the DomainAppli-
cationManagers) stop all component applications that be-
long to these deployment plans.

The run-time complexity of this algorithm is propor-
tional to the number of affected node applications, which
can maximally beO(m∗n), wherem is the number of de-
ployment plans in the system andn the number of nodes in
the system. This complexity stems from the fact that each
NodeApplication of each affected deployment plan must be
shut down separately according to the D&C interfaces. The
complexity of the part that determines which plans are af-
fected is proportional only to the number of received failure

entities and is optimized by using hash maps.

3.3.3 Failover of Component Groups

Challenge. Supporting failover units as a first class at-
tribute in the CORFU middleware implies that after failure,
all components within the group must failover to a replica
failover unit. Since CORFU builds upon the object-level
failover capabilities provided by FLARe, it is necessary to
map the semantics of the group to a collection of objects.
Moreover, since FLARe uses the notion of a ranked order-
ing for objects, this concept should carry over to the seman-
tics of the failover unit. Adding these semantics directly
within the ReplicationManager would break the abstraction
layering, since the ReplicationManager operates on the ob-
ject level.

Solution→ Failover constraints. CORFU handles this
challenge by modifying the ReplicationManager’s RankList
ordering algorithm such that it can process failover con-
straints. Figure 5 shows an example system infrastructure
with three replicated components grouped into a failover
unit with two backup units. The FCM transforms this in-

Figure 5: Interaction between FaultCorrelationManager and
ReplicationManager through Failover Constraints

formation into failover constraints that define an order of
objects per replica object id. An ordered sequence of host
names defines the failover order of each replica. The first
host list entry indicates where the primary is hosted and the
following hosts contain backup component replicas. Since
every host has only one replica of the same group, this ob-
ject id uniquely identifies a replica.

The FCM provides another algorithm called FOU-
ORDERING to create constraints based on information
from the deployment plan. Each deployment plan repre-
senting a failover unit has an assigned rank within its group
of failover unit replicas. Algorithm 2 describes how the
failover unit-based replica ordering is done. All known
plans are processed in the order of their failover unit rank.
Each component entity results in one host name entry in the
corresponding object replica group.

Constraints are updated using this algorithm whenever
the system structure changes. These changes occur when
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Algorithm 2 FOU-ORDERING
Data: List of deployment plansD
Output : A constraint listL
partially sort plans inD by their ranks;
for each plan d∈ D do

for each instance i∈ d do
get object_ido property fromi;
get host namen property fromi;
appendn to list entry ofL with object_ido;

end
end

new deployment plans are loaded or when failures occur
and deployments are removed.

4 Qualitative and Quantitative Analysis of
CORFU

Section 3 describes how CORFU provides advanced
fault-tolerance capabilities for DRE systems. This section
evaluates CORFU using two different approaches. First, we
conduct a conceptual analysis of the development effort by
comparing object-based development of fault-tolerant ap-
plications with development using the CORFU infrastruc-
ture. Second, we present measurements of CORFU’s timing
behavior to show its suitability for real-time systems. This
includes measurements of client-side failover latency andof
the round-trip latency of failover unit fail-stop events.

4.1 Benefits of Component-based Fault-Tolerance
compared to Object Level Fault-Tolerance

Developing applications that support distributed object-
oriented fault-tolerance as provided by FLARe involves ad-
ditional effort with respect to application development. This
evaluation qualifies those efforts and contrasts them with
the component-based fault-tolerance approach CORFU pro-
vides.

Development obligations of object-oriented fault-
tolerance. FLARe requires different means to implement
fault-tolerance on the server-side, where the object to be
replicated resides, and on the client-side, which containsthe
failover mechanisms.

Figure 6 gives an overview of all obligations related
to server-side development. These obligations can be
grouped into (1) object implementation obligations that
each CORBA servant needs to implement to integrate into
the fault-tolerance infrastructure, (2) initialization obliga-
tions an application needs to perform to use FLARe func-
tionality and (3) configuration obligations at start-up that
configure fault-tolerant aspects of the application.

Some initialization steps, such as HostMonitor thread in-
stantiation and registration, must be performed only once
per process. Other steps, such as the object implementa-
tion obligations, application configuration and registration
of objects with the ReplicationManager, must be done for

Figure 6: Development Obligations for Server-Side Fault-
Tolerance

each object in the process. The client-side initializationis
not as complex, but still involves some process wide initial-
ization steps, such as creating and registering the redirection
agent and the request interceptor.

Consequences for application development.The pre-
sented obligations result in considerable effort for applica-
tion development. Manually implementing these initializa-
tion steps in clients and servers increases the risk of acci-
dentally omitting or confusing steps. It also limits software
reuse for different deployment scenarios, since the num-
ber and types of object replicas per-server process are hard
coded. Collocating objects within one process require re-
compilation of the server application and changes of con-
figuration meta-data.

Benefits of CORFU’s component-based approach.By
integrating FLARe functionality into a fault-tolerant com-
ponent server, CORFU overcomes many of these limitations
of traditional object-oriented fault-tolerance approaches.
Server- and client-side capabilities are available withinthe
same component server. Since CORBA objects often play
both roles of server and client at the same time this is a suit-
able architectural decision. We present the benefits of the
component server approach by relating them to the three
different types of obligations as presented earlier.

a. Object Implementation. CCM provides code gener-
ation functionality in the form of the IDL and CIDL
compilers that automatically can create necessary code
artifacts.

b. Initialization. Most of the steps of client and server
initialization can be done automatically. The fault-
tolerant component server, hides the complexity of ini-
tializing FLARe entities from the component devel-
oper. The registration of individual components with
the framework are also done automatically by a fault-
tolerance aware session container.

c. Configuration. Instead of using proprietary mecha-
nisms on a per-application level the component server
approach enables the use of standardized configuration
mechanism provided by the D&C specification. Spe-
cial fault-tolerant component attributes are used in the
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context of the automated configuration framework. No
proprietary solutions that differ from application to ap-
plication are needed anymore.

Summary of analysis. CORFU increases the trans-
parency of using fault-tolerance mechanisms for both client
and server development. This transparency allows appli-
cation developers to focus on business logic implementa-
tion while fault tolerance aspects can be added and config-
ured orthogonally. It is possible to collocate fault-tolerant
components without changing their implementation code.
CORFU therefore also substantially improves the flexibil-
ity of system deployment and system evolution. Moreover,
there are fewer possibilities for accidental faults in appli-
cation development, since initialization is performed in a
standard way by the component server.

4.2 Experimental Results

This section presents experiments that evaluate the tim-
ing behavior of CORFU. These experiments allow a better
understanding of latencies involved in the failover mecha-
nisms and clarifies for which timing requirements CORFU
is sufficient. The first experiment evaluates failover latency
as experienced by a client application. The second one fo-
cuses on timing latency of the coordinated shutdown of a
failover unit.

4.2.1 Testbed

All experiments have been conducted on ISISLab1, a LAN
virtualization environment with identical blades connected
through 4 Gbps switches that allow for dedicated links per
experiment. The blades each have two 2.8GHz Xeon CPUs
and 1 gigabyte RAM. The Fedora Core 6 Linux distribu-
tion with rt11 real-time kernel patches is used as operating
system. The enhancements to FLARe and the CORFU im-
plementation are based on TAO version 1.6.8, a real-time
CORBA implementation and CIAO version 0.6.8, which
is an implementation of the CORBA component model.
CORFU and all testing applications have been built using
the GNU compiler collection gcc version 3.4.6.

4.2.2 Failover Latency

Experiment setup. This experiment compares the failover
latency a client experiences for CORBA 2.x applications
and component-based applications. A client application pe-
riodically calls a replicated server application. For each
call the server processing time and the response time on
the client side are measured. The communication latency
is calculated by subtraction of the processing time from the
response time.

Requests are made with a period of 200 milliseconds.
A defined execution time of 20 milliseconds is realized
through the CPU worker component of the system execu-

1http://www.isislab.vanderbilt.edu

tion modeling tool CUTS[8]. After 10 calls a fault is in-
jected that causes the server to shut down. This causes the
client to fail over to the server’s backup replica.

All primary servers are hosted on one host, the backup
servers are hosted on a separate host. The clients are de-
ployed on an additional host as well as all CORFU infras-
tructure entities to not interfere with the timing measure-
ments. The experiment is implemented in two variants.
Variant 1 is object-oriented and consists of a client and
a server executable that directly use FLARe functionality.
Variant two is component-based and uses CORFU’s fault-
tolerant component server. Each variant has three differ-
ent experiment configurations with one, two and four client
server groups running simultaneously. Each measurement
configuration is repeated 100 times to gain representative
results.

Figure 7: Single Failover Latency Measurement

Measurement results. An example for a single mea-
surement for failover latency is given in figure 7, which rep-
resents the component-based case with one application set
running. The ten invocations before and after a failure event
are recorded. The first 10 invocations show a communica-
tion overhead between zero and one millisecond, which rep-
resents failure free communication with the primary server.

The client experiences an increased response time on the
eleventh request, since the primary server is no longer re-
sponding. This results in a client side failover that involves
the interception of a CORBA exception and the forward-
ing to a backup replica. As the diagram shows, this incurs
latency increase from one millisecond to four milliseconds
for the client.

Figure 8 shows the latency averages and jitter min-
ima and maxima as measured in all six configurations.
The CORBA 2.x based object-oriented experiment with
one application shows a communication overhead of ap-
proximately three milliseconds, while the corresponding
component-based experiment has a latency of four mil-
liseconds. This result shows that the extra cost for the
component-based fault-tolerance with 25 percent additional
overhead is relatively small.

7



 0

 10

 20

 30

 40

 50

 60

Object 1 App Object 2 App Object 4 App Comp 1 App Comp 2 App Comp 4 App

La
te

nc
y 

(m
s)

3.1
5.9

9.97

3.91 3.59 4.22

Figure 8: Results for Failover Latency Measurements

Looking at the configurations with two and four appli-
cations, we can see that the component-based experiments
have a much lower jitter and have a similar average of
four milliseconds, while the object-oriented examples have
growing latencies. This latency increase—which is propor-
tional to the number of applications—is not directly related
to the failover-mechanism but reflects the implicit differ-
ences between the experiment variants. In the object-based
case, executables start processing right away while a com-
ponent is first loaded into the container and then triggered
later on to start processing. Nevertheless, the results show
that there is no unreasonably high overhead for component
based fault-tolerance.

4.2.3 Failover Unit Shutdown Latency

Experiment setup. The second experiment is designed to
give insight into the latency involved in the process of shut-
ting down a failover unit.

The structure of the experiment and its logical sequence
of events is shown in figure 9. The setup includes six

Figure 9: Experiment Setup for Failover Unit Shutdown La-
tency Measurement

processing nodes of which one node is dedicated for the
CORFU management entities, such as the ReplicationMan-
ager, the FCM, the ExecutionManager and other elements
of the D&C run-time. The other five nodes have a Host-
Monitor deployed to observer the system state per node.

Each node hosts one component for each of the five de-

Time Formula MIN AVG MAX

tround-trip t5− t1 25.87 70.59 260.06
treaction t3− t2 42.37 56.04 73.84
tshutdown t4− t3 0.11 0.24 0.86

Table 1: Measurement results for fail-stop latencies (ms)

ployed failover units. There is one primary failover unit that
includes one component per node, namedA0 to E0. This
failover unit is replicated four times through the backup
failover units one through four. Each of the backup units
contains replica componentsAn to En of each component in
the primary unit. The failover order of the units corresponds
to their number.

The experiment will inject failures in the currently ac-
tive component, leading to a failover sequence of primary
FOU, backup FOU 1, backup FOU 2, backup FOU 3 and
finally backup FOU 4. Each experiment run therefore al-
lows us to measure four failover latencies. Due to the need
for consistent time, all measurements are taken on node-1 in
the ReplicationManager and the FaultCorrelationManager,
which alleviates the need for synchronized clocks. The
measurements are done in the following sequence:

a. A failure is provoked in componentAn of the active
FOU.

b. The failure is detected by the HostMonitor and re-
ported to the ReplicationManager.

c. The ReplicationManager takes a time-stamp at timet1
when it receives the failure notification and notifies the
FCM about the occurred failure. The FCM takes a
times tamp at timet2 when it is notified about a fail-
ure.

d. The FCM performs the FAILURE-REACTION algo-
rithm and takes a time-stampt3 after the affected
failover units have been identified in phase 1.

e. The FCM will then access the DomainApplication-
Manager to retrieve all node applications for the cor-
responding deployment plans and then will iterate
through them to shut them down. After the last call
is returning, a time-stamp att4 is taken to indicate the
finishing of the shutdown request.

f. The ReplicationManager will be notified about all the
shutdowns of the affected components by the Host-
Monitors. On reception of the last shutdown notifica-
tion, a time-stamp fort5 is taken that represents the
time when the FOU is completely shut down and a
client would failover to a backup replica no matter
which component in the FOU it tries to access.

Measurement results. As summarized in table 1, we
can determine three essential durations from our experi-
ment. First, the round-trip time is the sum of all latencies
involved in the shutdown of a failover unit, which includes
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failure detection, reaction time within the FCM, and shut-
down time by the D&C run-time. Second, the reaction time
is the time spent within the FCM between the failure noti-
fication and the start of the shutdown process, which is the
time needed to perform the FAILURE-REACTION algo-
rithm 1 and to serialize incoming notifications into a thread-
safe queue to ensure correct processing of parallely detected
errors. Third, the shutdown time as measured by the FCM
allows us to understand which proportion oftround-trip is not
related to the D&C shutdown mechanism, which cannot be
changed without breaking the LwCCM standard.

4.2.4 Summary of the Analysis

Based on the experiments described above, several charac-
teristics of CORFU are exposed. Using a client-side failover
mechanism allows for short failover latencies, since com-
munication with the central replication manager in the in-
stant of a failure is avoided. This interaction with the Repli-
cationManager would be a bottleneck in performance of
large-scale systems.

As shown by the first experiment, the client-side failover
latency is relatively small, being three milliseconds for the
object variant. Having evaluated the benefits for CORFU
concerning application development and system deploy-
ment we also needed to ensure that this does not drasti-
cally degrade performance and therefore render the solution
unusable for DRE applications. As our experiment shows,
client failover in CORFU is comparable in performance and
occurs only minimal overhead, having an average response
time of four milliseconds.

Compared to the client failover latency the failover unit
shutdown latency with 70 milliseconds in average is rela-
tively high. The reason for this is partly to be found in the
iterative way a deployment has to be shutdown based on the
domain application and node application interfaces. An-
other source of high response times is the communication
time between the different entities, such as the HostMon-
itors, the ReplicationManager and the FCM. The internal
reaction time of the FCM to determine deployments that
are affected by faults is already optimized through the use
of hash maps with close to constant access times. With an
average beneath 0.25 milliseconds it does not substantially
contribute to the overall processing time.

Our results show the need for further optimizations. Pos-
sible approaches to do so are (1) parallelized shutdown of
all node application parts using asynchronous invocation,
(2) collocation of the ReplicationManager, the FaultCorre-
lationManager and the ExecutionManager to reduce com-
munication time and (3) application of RTCORBA to im-
prove determinism in network communication. Although
there still is potential for performance improvement, the
measurements show that CORFU is suitable for DRE sys-
tems, such as MCS, and offers comparable performance to

distributed object computing fault-tolerance.

5 Related Work

This section compares our work on CORFU with related
work in the areas of fault-tolerance dependency analysis,
frameworks for fault-tolerance, and modeling techniques
for dependability aspects.

Fault-Tolerance dependency analysis.Research on de-
tection and expression of failure dependencies between sys-
tem components can be categorized into (1) static model-
ing and (2) observation-based techniques. Static modeling
follows a white box approach that allows system develop-
ers to explicitly specify different types of dependencies and
then reasons on fault propagation based on this informa-
tion. The component based dependency model [15], Cade-
nas dependency model [7] and event correlation based on
dependency graphs [6] use different type of system models
to achieve a high-level understanding of component depen-
dencies. Observation-based modeling treats systems as a
black box and uses fault injection and monitoring to anal-
yse which errors cause which parts of the systems to fail.
This information is then used to build a system model. Ac-
tive dependency discovery [2] and active failure-path infer-
ence [3] are observation based approaches. This work on
dependency analysis relates to CORFU since it provides
methodologies to define groups of depended components.
CORFU provides a mechanism to use the dependency in-
formation gathered by these techniques for efficient failover
operations.

Frameworks for fault-tolerance. A framework for
fault-tolerance integrates different aspects of dependability.
AQuA [12], an adaptive architecture for dependable dis-
tributed objects focuses on providing redundancy for dis-
tributed objects. It uses CORBA to define and implement
objects, but maps them to an underlying group communi-
cation mechanism. AQuA supports fault-tolerance on the
granularity of objects, while CORFU provides component-
based fault-tolerance. JAGR [4] builds on a component-
based infrastructure for the domain of three tier web ap-
plications with permanent data storage. JAGR uses auto-
matic failure-path inference and escalating micro-reboots.
CORFU’s approach is more suited for DRE systems since
it focuses on passive replication rather than simple reboots
of system parts.

Modeling techniques for dependability aspects.R&D in
modeling fault-tolerance aspects on a higher level of ab-
straction in form of modeling languages resulted in several
solutions. Cadena [7] focuses on the modeling of compo-
nent behavior early in the design process based on prop-
erty specifications that capture external and internal com-
ponent dependencies. Cadena provides a domain specific
modeling tool suite for system modeling and a simulation
environment for model verification. CORFU provides fault-

9



tolerance at a higher level of abstraction by grouping com-
ponents into failover units.

MDDPro[13] and GRAFT [14] are two modeling en-
vironments that support failover units. MDDPro focuses
on algorithms that automatically place components and
their replicas while minimizing the chances of their si-
multaneous failure (necessary deployment meta-data is also
auto-generated). CORFU’s approach is complementary to
MDDPro by providing a run-time infrastructure that can
process and instantiate a system modeled by MDDPro.

Like CORFU, the GRAFT project identifies the lack of
first class support for fault-tolerance in component mid-
dleware. GRAFT relies on an aspect-oriented approach to
weave in fault-tolerance, which may however become a lim-
iting factor when fault management and recovery results in
a need for interactions with complex semantics (e.g., tim-
ing, consistency). In these circumstances, a first class sup-
port within the middleware is preferable. Moreover GRAFT
uses exceptions to detect critical errors, while CORFU pro-
vides a monitoring framework that allows for advanced er-
ror detection.

6 Concluding Remarks
Prior research on fault-tolerant DRE systems has not ac-

counted for application development effort, application life-
cycles, and system evolution. Moreover, many middleware-
based solutions provide relatively low-level abstractions,
e.g., on the level of objects. Our work on CORFU pre-
sented in this paper shows that component middleware can
provide advanced error reaction behavior for real-time sys-
tems, while also improving transparency of fault-tolerance
aspects in the application development process. CORFU is
thereby enhancing system flexibility, evolvability, and qual-
ity. Our measurements of CORFU performance showed that
component-based fault-tolerance can be provided without
undue overhead.

CORFU is available in open-source form as part of
the CIAO LwCCM distribution available fromwww.dre.
vanderbilt.edu/CIAO.
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