
Automated Diagnosis of Product-line Configuration Errors on
Feature Models∗

Jules White and Doulas C. Schmidt
Vanderbilt University,

Department of Electrical Engineering and Computer Science
Box 1679 Station B

Nashville, TN, 37235, USA
Email:{jules, schmidt}@dre.vanderbilt.edu

David Benavides and Pablo Trinidad and Antonio Ruiz–Cortés
University of Seville

Department of Computer Languages and Systems
ETSII - Av. de la Reina Mercedes S/N

41012 Seville - Spain
Email:{benavides, ptrinidad, aruiz}@us.es

Abstract

Feature models are widely used to model software
product-line (SPL) variability. SPL variants are config-
ured by selecting feature sets that satisfy feature model con-
straints. Configuration of large feature models involve mul-
tiple stages and participants, which makes it hard to avoid
conflicts and errors. New techniques are therefore needed
to debug invalid configurations and derive the minimal set
of changes to fix flawed configurations.

This paper provides three contributions to debugging
feature model configurations: (1) we present a technique
for transforming a flawed feature model configuration into
a Constraint Satisfaction Problem (CSP) and show how a
constraint solver can derive the minimal set of feature se-
lection changes to fix an invalid configuration, (2) we show
how this diagnosis CSP can automatically resolve con-
flicts between configuration participant decisions, and (3)
we present experiment results that evaluate our technique.
These results show how our technique scales to models with
over 5,000 features, which is beyond the size used to vali-
date other automated techniques.

∗This work has been partially supported by the European Commission
(FEDER) and Spanish Government under CICYT project Web–Factories
(TIN2006-00472).

1 Introduction

Current trends and challenges. Software Product-
Lines (SPLs) are a technique for creating software applica-
tions composed from reusable parts that can be re-targeted
for different requirement sets. For example, in the automo-
tive domain, an SPL can be created that allows a car’s soft-
ware to provide Anti-lock Braking System (ABS) capabili-
ties or simply standard braking. Each unique configuration
of an SPL is called avariant.

SPL variants cannot be constructed arbitrarily. For ex-
ample, a car cannot have both ABS and standard braking
software controllers. A key step in building an SPL, there-
fore, is creating a model of the SPL’s variability and the
constraints on variant configuration. An effective technique
for capturing these configuration constraints isfeature mod-
eling [11].

Feature models document SPL variability and configu-
ration rules through the notion offeatures. Each feature
represents a point of variability in the SPL, such as the type
of braking system. A feature model can capture different
types of variability, ranging fromSPL variability(variations
in customer or market requirements) tosoftware variability
(variations in software implementation)[13].

SPL variants can be specified as a selection or config-
uration of features. Feature models of these SPL variants
are arranged in a tree-like structure where each successively
deeper level in the tree corresponds to a more fine-grained

1

configuration option for the product-line variant, as shown
by the feature model in Figure 1. The parent-child and
cross-tree relationships capture the constraints that must be
adhered to when selecting a group of features for a variant.

Existing research has focused on ensuring that the fea-
tures chosen from feature models are correct and consis-
tent with the SPL and variant requirements. For example,
work has been done on automating the process of deriving
a set of features that meet a requirement set using boolean
circuit satisfiability techniques [12] or Constraint Satisfac-
tion Problems (CSPs) [4]. Moreover, numerous tools have
been developed, such as Big Lever Software Gears [6],
Pure::variants [5], and the Feature Model Plug-in [7], to
support the construction of feature models and correct se-
lection of feature configurations. Yet other research has fo-
cused on performing some of the configuration implemen-
tation work by using model driven development [17].

Regardless of what tools and processes are used to con-
figure SPL variants, however, there is always the possibility
that mistakes will occur. For example, large SPLs often use
staged configuration[8, 9], where features are selected in
multiple stages to form a complete configuration iteratively,
rather than choosing all features at once. At a late stage
in the configuration process, developers may realize that a
critically needed feature cannot be selected due to one or
numerous decisions in some previous stages. It is hard to
debug a configuration to figure out how to change decisions
in previous stages to make the critical feature selectable.

Another challenging situation can arise when multiple
participants are involved in the feature selection processand
their desired feature selections conflict. For example, hard-
ware developers for an automobile may desire a lower cost
set of Electronic Control Units (ECUs) that cannot support
the features needed by the software developer’s embedded
controller code. In these situations, methods are needed to
evaluate and debug conflicts between participants. Methods
are also needed to recommend modifications to the partici-
pants feature selections to make them compatible.

Although prior research has shown how to identify
flawed configurations [3, 12], conventional debugging
mechanisms cannot pinpoint configuration errors and iden-
tifying corrective actions. More specifically, techniquesare
lacking that can take an arbitrary flawed configuration and
produce the minimal set of feature selections and deselec-
tions to bring the configuration to a valid state. This paper
focuses on addressing these gaps in existing research.

Solution approach→ Constraint-based feature con-
figuration diagnosis. Our approach to debugging fea-
ture model configurations transforms an invalid feature
model configuration into a Constraint Satisfaction Prob-
lem (CSP) [18] and then uses a constraint solver to derive
the minimal set of feature selection modifications that will
bring the configuration to a valid state. performance. This

paper shows how this CSP-based diagnostic technique pro-
vides the following contributions to work on debugging er-
rors in feature model configurations:

1. We provide a CSP-based [18] diagnostic technique, in-
spired by the diagnostic framework in [16], that can
pinpoint conflicts and constraint violations in feature
models

2. We show how this CSP diagnostic technique can be
used to remedy a configuration error by automatically
deriving the minimal set of features to select and dese-
lect

3. We provide mechanisms for using this CSP technique
to create cost-optimal mediation of conflicting config-
uration participant feature selection needs

4. We show how our CSP diagnostic technique allows
stakeholders to debug a configuration error or conflict
from different viewpoints

5. We provide empirical results showing that this CSP-
based diagnostic technique is scalable enough to sup-
port industrial SPL feature models containing over
5,000 features.

The remainder of the paper is organized as follows: Sec-
tion 2 describes the challenges of diagnosing configura-
tion errors and conflicts in SPLs; Section 3 presents our
CSP-based technique for diagnosing configuration errors
and conflicts; Section 4 shows how our CSP-based tech-
nique can be extended to support conflict mediation, multi-
viewpoint debugging, and faster diagnosis times; Section 5
presents empirical results demonstrating the ability of our
technique to scale to feature models with thousands of fea-
tures; Section 6 compares our work with related research;
and Section 7 presents concluding remarks.

2 Challenges of Debugging Feature Model
Configurations

This section evaluates different challenges that arise in
realistic configuration scenarios; Section 3 describes ourso-
lutions to these challenges.

2.1 Challenge 1: Staged Configuration
Errors

Staged configuration is a configuration process whereby
developers iteratively select features to reduce the variabil-
ity in a feature model until a variant is constructed. Czar-
necki et al. [8, 9] use the context of software supply chains
for embedded software in automobiles to demonstrate the
need for staged configuration. In the first stage, software
vendors provide software components that can be provided

2

in different configurations to actuate brakes, control info-
tainment systems, etc. In the second stage, hardware ven-
dors of Electronic Control Units (ECUs) the software runs
on must provide ECUs with the correct features and config-
uration to support the software components selected in the
first stage.

The challenge with staged configuration is that feature
selection decisions made at some point in timeT have ram-
ifications on the decisions made at all points in timeT ′ > T.
For example, it is possible for software vendors to choose
a set of software component features for which there are
no valid ECU configurations in the second configuration
stage. Identifying the fewest number of configuration mod-
ifications to remedy the error is hard because there can be
significant distance betweenT andT ′.

This challenge also appears in larger models, such as
those for software to control the automation of continuous
casting in steel manufacture [14]. In large-scale models,
configuration mimics staged configuration since develop-
ers cannot immediately understand the ramifications of their
current decisions. At some later decision point, critical fea-
tures that developers need may no longer be selectable due
to some previous choice. Again, it is hard to identify the
minimal set of configuration decisions to reverse in this sce-
nario. Section 4.2 describes how we address this challenge
using the pre-assignment of some variables with our CSP-
based diagnosis technique.

2.2 Challenge 2: Mediating Conflicts

In many situations the desired features and needs of mul-
tiple stakeholders involved in configuring an SPL variant
may conflict. For example, when configuring automotive
systems, software developers may want a series of software
component configurations that cannot be supported by the
ECU configurations proposed by the hardware developers.
To each party, their individual needs are critical and finding
the middle ground to integrate the two is hard.

Another conflict scenario arises when configuration de-
cisions made for an SPL variant must be reconciled with
the constraints of the legacy environment in which it will
run. For example, when configuring automotive software
for the next year’s model of a car, a variant may initially
be configured to provide the features most sought after by
customers, such as a complex infotainment system. Typi-
cally, new model cars are not complete redesigns and thus,
developers have to figure out how to run the new software
configuration on the existing ECU configuration of the pre-
vious year’s model. If the new software configuration is not
compatible with the legacy ECU configuration, developers
need a way to derive the lowest cost set of modifications to
the either the new software or the legacy ECU configura-
tion, which is hard.

Section 4.3 describes how we address this challenge by
diagnosing the superset of the desired conflicts and lever-
aging an alternate optimization goal for the CSP-diagnosis
technique.

2.3 Challenge 3: Viewpoint-dependent
Errors

The feature labeled as the source of an error in a feature
model configuration may vary depending on the viewpoint
used to debug it. In the feature model shown in Figure 1,
for example, if a configuration is created that includes both
Non-ABS Controllerand1 Mbit/s CAN Bus, either feature
can be viewed as the feature that is the source of the er-
ror. If we debug the configuration from the viewpoint that

Figure 1: Simple Feature Model for an Automobile

software trumps ECU hardware decisions, then the1 Mbit/s
CAN Busfeature is the error. If we assume that ECU de-
cisions precede software, however, then theNon-ABS Con-
troller feature is the error.

A feature model may therefore require debugging from
multiple viewpoints since the diagnosis of the feature that
is the source of an error in a feature model depends on the
viewpoint used to debug it. For small feature models, de-
bugging from different points of view may be relatively sim-
ple. When feature models contain hundreds or thousands of
features, the complexity of diagnosing a configuration from
multiple viewpoints increases greatly. Section 4.2 describes
how we address this challenge by specifying feature selec-
tions that cannot be modified by the solver during the diag-
nosis.

3 Configuration Error Diagnosis

The solution we propose is a technique for creating au-
tomated SPL variant diagnosis tools. Developers can use
these tools to identify the minimal set of features that should
be selected or deselected to transform an invalid configura-
tion to a valid configuration. Moreover, depending on the
input provided to diagnosis tools, a flawed configuration can
be debugged from different viewpoints or mediate conflicts
between multiple stakeholder decisions in a configuration
process.

3

The key component of our automated SPL variant con-
flict diagnosis technique is the application of a CSP-based
error diagnostic technique. In prior work, Benavides et
al. [4] have shown how feature models can be transformed
into CSPs to automate feature selection with a constraint
solver [10]. Trinidad et al. [16] subsequently showed to
extend this CSP technique to identifyfull mandatory fea-
tures, void features, anddead feature modelsusing Reiter’s
theory of diagnosis [15]. This section presents an alternate
diagnostic model for deriving the minimum set of features
that should be selected or deselected to eliminate a conflict
in a feature configuration.

Background: Feature Models and Configurations as
CSPs. A CSP is a set of variables and a set of constraints
over those variables. For example,A+ B≤ 3 is a CSP in-
volving the integer variablesA andB. The goal of a con-
straint solver is to find a validlabeling(set of variable val-
ues) that simultaneously satisfies all constraints in the CSP.
(A= 1, B = 2) is thus a valid labeling of the CSP.

To build the CSP for the error diagnosis technique, we
construct a set of variables,F , representing the features in
the feature model. Each configuration of the feature model
is a set of values for these variables, where a value of 1 indi-
cates the feature is present in the configuration and a value
of 0 indicates it is not present. More formally, a configura-
tion is a labeling ofF , such that for each variablefi ⊂ F ,
fi = 1 indicates that theith feature in the feature model is se-
lected in the configuration. Correspondingly,fi = 0 implies
that the feature is not selected.

Given an arbitrary configuration of a feature model as
a labeling of theF variables, developers need the ability
to ensure the correctness of the configuration. To achieve
this constraint checking ability, each variablefi is associ-
ated with one or more constraints corresponding to the con-
figuration rules in the feature model. For example, iff j is
a required subfeature offi , then the CSP would contain the
constraint:fi = 1⇔ f j = 1.

Configuration rules from the feature model are captured
in the constraint setC. For any given feature model con-
figuration described by a labeling ofF , the correctness of
the configuration can be determined by seeing if the label-
ing satisfies all constraints inC. The steps of transforming
a feature model to a CSP are described in [4].

3.1 Configuration Diagnostic CSP

When diagnosing configuration conflicts, developers
need a list of features that should be selected or deselected
to make an invalid configuration a valid configuration. The
output of our CSP diagnostic architecture is this list of fea-
tures to select and deselect, as shown in Figure 2. In Step
1 of Figure 2, the rules of the feature model and the current

Figure 2: Diagnostic Technique Architecture

invalid configuration are transformed into a CSP. For exam-
ple,o1 = 1 because theAutomobilefeature is selected in the
current invalid configuration. In Step 2, the solver derivesa
labeling of the diagnostic CSP. Step 3 takes the output of the
CSP labeling and transforms it into a series of recommen-
dations of features to select or deselect to turn the invalid
configuration into a valid configuration. Finally, in Step 4,
the recommendations are applied to the invalid configura-
tion to create a valid configuration where each variablefi
equals 1 if the corresponding feature is selected in the new
and valid configuration. For example,f7 = 1, meaning that
the250 Kbit/s CAN Busis selected in the new valid config-
uration.

To enable the constraint solver to recommend features to
select and deselect, two new sets of recommendation vari-
ables,S andD, are introduced to capture the features that
need to be selected and deselected, respectively, to reach a
valid configuration. For example, a value of 1 for variable
si ⊂ S indicates that the featurefi should be added to the
current configuration. Similarly,di = 1 implies that the fea-
ture fi should be removed from the configuration.

Thus, for each featurefi ⊂ F , there are variablessi ⊂ S
and di ⊂ D. After the diagnosis CSP is labeled, the val-
ues ofSandD serve as the output recommendations to the
user as to what features to add or remove from the current
configuration, as shown in Table 1.

Table 1 shows the complete inputs and outputs to diagnose
the invalid configuration scenario shown in Figure 2.

The next step is to allow developers to input their current

4

Variables
Variable Expla-
nations

fi ⊂ F : feature variables for the valid
configuration that will be transitioned
to; oi ⊂ O: the features selected (oi =
1) in the current invalid configuration;
si ⊂ S: features to select (si = 1) to
reach the valid configuration;di ⊂ D:
features to deselect (di = 1) to reach the
valid configuration

Inputs
Current Config. o1 = 1,o2 = 1,o3 = 0,o4 = 1,o5 =

1,o6 = 1,o7 = 0
Feature Model
Rules

f1 = 1⇔ (f2 = 1), f1 = 1⇔ (f5 = 1),
f2 = 1⇒ (f3 = 1)⊕(f4 = 1), f5 = 1⇒
(f6 = 1)⊕ (f7 = 1), (f6 = 1)∨ (f7 =
1) ⇒ (f5 = 1), (f3 = 1)∨ (f4 = 1) ⇒
(f2 = 1), f3 = 1⇒ (f6 = 1), f4 = 1⇒
(f7 = 1)

Diagnostic
Rules

(fi ⊂F |{(fi = 1)⇒ (oi = 1⊕si = 1)∧
(di = 0),(fi = 0)⇒ (oi = 0⊕di = 1)∧
(si = 0)})

Outputs
Features to Se-
lect

s1 = 0,s2 = 0,s3 = 0,s4 = 0,s5 =
0,s6 = 0,s7 = 1

Features to Des-
elect

d1 = 0,d2 = 0,d3 = 0,d4 = 0,d5 = 0,

d6 = 1, d7 = 0
New Valid Con-
fig.

f1 = 1, f2 = 1, f3 = 0, f4 = 1, f5 =
1, f6 = 0, f7 = 1

Table 1: Diagnostic CSP Construction

configuration into the solver for diagnosis. Rather than di-
rectly setting values for the variables inF , developers use
a special set of input variables called theobservations. The
observations are contained in the set of variablesO. For
each featurefi present in the current flawed configuration,
oi = 1. Similarly, if fi is not selected in the current invalid
configuration,oi = 0. As shown in Table 1, the observations
capture the current invalid configuration that is provided as
input to the solver.

To diagnose the CSP, we want to find an alternate but
valid configuration of the feature model and suggest a se-
ries of changes to the current invalid configuration to reach
the valid configuration. A valid configuration is a labeling
of the variables inF (a configuration) such that all of the
feature model constraints are satisfied. For each variablefi ,
the value should be 1 if the feature is present in the new
valid configuration that will be transitioned to. If a feature
is not in the new configuration,fi should equal 0. We al-
ways requiref1 = 1 to ensure that the root feature is always
selected. It also must be noted that the technique only works
with non-void feature models.

If feature fi is included in the current configuration (oi =
1), but must be removed to reach the new valid configu-
ration, we want the solver to recommend that it be dese-
lected (di = 1). Moreover, the solver should recommend
that a featurefi be selected (si = 1) if it is not currently
selected (oi = 0), but needs to be selected to reach a cor-
rect configuration. If a feature is not in the current con-
figuration (oi = 0), and is not needed to reach a correct
state, then the solver should not recommend any changes
to it (si = 0 and di = 0). To produce this desired be-
havior, we introduce two new constraints for each vari-
able fi ⊂ F : (fi = 1) ⇒ (oi = 1⊕ si = 1)∧ (di = 0) and
(fi = 0) ⇒ (oi = 0⊕di = 1)∧ (si = 0). The symbol⊕ rep-
resentsexclusive or(XOR). These new constraints form the
diagnostic rules, as shown in Table 1.

The behavior produced by these new constraints explains
the following four cases that a feature modification can fall
into:

1. A feature is selected and does not need to be dese-
lected. If the ith feature is in the current invalid con-
figuration (oi = 1), and also in the new valid configu-
ration (fi = 1), no changes need be made to it (si = 0,
di = 0)⇒{(fi = 1) ⇒ (oi = 1⊕si = 0)∧ (di = 0)}

2. A feature is selected and needs to be deselected.If
the ith feature is in the current invalid configuration
(oi = 1) but not in the new valid configuration (fi = 0),
it must be deselected (di = 1)⇒ {(fi = 0) ⇒ (oi =
0⊕di = 1)∧ (si = 0)}

3. A feature is not selected and does not to be selected.
If the ith feature is not in the current invalid configu-
ration (oi = 0) and is also not needed in the new con-
figuration (fi = 0) it should remain unchanged (si = 0,
di = 0)⇒ {(fi = 0) ⇒ (oi = 0⊕di = 1)∧ (si = 0)}

4. A feature is not selected and needs to be selected.
If the ith feature is not selected in the current invalid
configuration (oi = 0) but is present in the new correct
configuration fi = 1, it must be selected (si = 1) ⇒
{(fi = 1) ⇒ (oi = 1⊕si = 0)∧ (di = 0) = 1}

3.2 Optimal Diagnosis Method

The next step in the diagnosis process is to use the solver
to find a labeling of the variables and produce a series of rec-
ommendations. For any given configuration with a conflict,
there may be multiple possible ways to eliminate the prob-
lem. For example, in the automotive example from Sec-
tion 2.3, the valid corrective actions were to either remove
the1 Mbit/s CAN Busand select the250 Kbit/s CAN Busor
to removeNon-ABS Controllerand selectABS Controller.
We therefore need to tell the solver how to select which of

5

the (many) possible corrective solutions to suggest to devel-
opers.

The most basic suggestion selection criteria that devel-
opers can use to guide the solver’s diagnosis is to tell it to
minimize the number of changes that to make to the cur-
rent configuration,i.e., developers prefer suggestions that
require changing as few things as possible in the current in-
valid configuration. To achieve this, we solve for a labeling
of the CSP that minimizes the sum of the variables inS∪D.
The sum ofS∪D is the total number of changes that the
solution requires the developer to make. By minizing this
sum, therefore, we minimize the total number of required
changes.

Each labeling of the diagnostic CSP will produce two
sets of features corresponding to the features that should be
selected (S) and deselected (D) to reach the new valid con-
figuration. Furthermore, the labeling also causes the solver
to backtrack and create new values forF corresponding to
the proposed solution to transition to. Thus, developers can
cycle through the different potential labelings of the diag-
nostic CSP to evaluate potential remedies and the configu-
rations they will produce.

Table 1 shows a complete set of inputs and output sug-
gestions for diagnosing the automotive software example
from Section 2.3. If there are multiple labelings of the CSP,
initially only one will be returned. After the first solution
has been found, however, the solver can much more effi-
ciently cycle through the other equally ranked sets of cor-
rective suggestions.

4 Solution Extensibility and Benefits

This section presents different benefits of our CSP-based
diagnostic approach and possible ways of extending it.

4.1 Bounding Diagnostic Method

For extremely large feature models, finding the optimal
number of changes may not be possible due to time con-
straints. In these cases, an alternate, more scalable, ap-
proach is to attempt to find any suggestion that requires
fewer thanK changes or with a cost less thanK. Rather
than directly asking for an optimal answer, we instead add
the constraint∑n

i=1si +di ≤ K to the CSP and ask the solver
for any solution.

The sum of all variablessi ⊂ Sanddi ⊂ D represents the
total number of feature selections and deselections that need
to be made to reach the new valid configuration. Therefore,
the sum of both of these sets is the total number of modifica-
tions that must be made to the original invalid configuration.
The new constraint,∑n

i=1si +di ≤ K, ensures that the solver
only accepts diagnosis solutions that require the developer
to makeK or fewer changes to the invalid solution.

The solver is asked forany answer that meets the new
constraints. In return, the solver will provide a solution that
is not necessarily perfect, but which fits our tolerance for
change. If no solution is found, we can incrementK by a
factor and re-invoke the solver or reassess our requirements.
As is shown in Section 5.4, searching for a bounded solution
rather than an optimal solution is significantly faster.

If the solver cannot find a diagnosis that makes fewer
thanK modifications, it will state that there is no valid so-
lution that fits aK change budget. From the experiements
performed in Section 5, we found that in these cases where
no solution can be found, the solver was able to diagnose
the model much faster than if there was a viable solution
underK. Furthermore, the more cross-tree constraints that
were within the feature model, the faster the solver was able
to determine if there was no solution within the boundK.

4.2 Debugging from Different Viewpoints

As we discussed in Section 2.3, we need the ability to
debug the configuration from different viewpoints. Each
viewpoint represents a set of features that the solver should
avoid suggesting to add or remove from the current config-
uration. For example, using the automobile scenario from
Section 2.3, the solver can debug the problem from the point
of view that audio trumps storage by telling the solver not
to suggest selecting or deselecting any audio features.

Debugging from a viewpoint works by pre-assigning val-
ues for a subset of the variables inF andO. For example,
to force the featurefi currently in the configuration to re-
main unaltered by the diagnosis, the valuesfi = 1 andoi = 1
are provided to the solver. Since(fi = 1) ⇒ (oi = 1⊕si =
1)∧(di = 0), pre-assigning these values will force the solver
to labelsi = 0 anddi = 0.

To debug from a given point of view, for each featurefv,
in that viewpoint, we first add the constraints,fv = 1,ov = 1,
sv = 0, anddv = 0. The solver then derives a diagnosis that
recommends alterations to other features in the configura-
tion and maintains the state of each featurefv. The diag-
nostic model can therefore be used to debug from different
viewpoints and address Challenge 3 from Section 2.3.

Pre-assigning values for variables inF andO can also be
used to debug staged configuration errors from Challenge
1, Section 2.1. With staged configuration errors, at some
point in timeT ′, developers attempt to select a feature that
is in conflict with another feature selected at timeT < T ′.
To debug this type of conflict, developers pre-assign the
desired (but currently unselectable) feature at timeT ′ the
value of 1 for itsoi and fi variables. Developers can also
pre-assign values for one or more other features decisions
from previous stages of the configuration that must not be
altered. The solver is then invoked to find a configuration
that includes the desired feature atT ′ and minimizes the

6

number of changes to feature configuration decisions that
were made at all points in timeT < T ′.

4.3 Cost Optimal Conflict Resolution

As shown in Section 2.2, conflicts can occur when mul-
tiple stakeholders in a configuration process pull the solu-
tion in different directions. In these situations, debugging
tools are needed to mediate the conflict in a cost conscious
manner. For example, when the software configuration of
a car is not compatible with the legacy ECU configuration,
it is (probably) cheaper to recommend changes to the soft-
ware configuration than to change the ECU configuration
and possibly the assembly process of the car. Therefore,
the solver should try to minimize the overall cost of the
changes.

We can extend the CSP model to perform cost-based fea-
ture selection and deselection optimization. First, we extend
the model to associate a cost variable,bi ⊂B, with each fea-
ture in the feature model. Each cost variable reprsents how
expensive (or conversely how beneficial) it is for the solver
to recommend that the state of that feature be changed. Be-
fore each invocation of the debugger, the stakeholders pro-
vide these cost variables to guide the solver in its recom-
mendations of features to select or deselect.

Next, we construct the superset of the features that the
various stakeholders desire. The superset represents the
ideal, although incorrect, configuration that the stakehold-
ers would like to have. The goal is to find a way to reach
a correct configuration from this superset of features that
involves the lowest total cost for changes. The superset is
input to the solver as values for the variables inO.

Finally, we alter our original optimization goal so that
the solver will attempt to minimize (or maximize if we pre-
fer) the cost of the features it suggests selecting or dese-
lecting. We define a new global cost variableG and letG
capture the sum of the costs of the changes that the solver
suggests:G = ∑n

i=1(di ∗ bi)+ (si ∗ bi). G is thus equal to
the sum of the costs of all the features that the solver ei-
ther recommends to select or deselect. Rather than simply
instructing the solver to minimize the sum ofS∪D, we in-
stead ask for the minimization or maximization ofG.

The result of the labeling is a series of changes needed to
reach a valid configuration that optimally integrates the de-
sires and decisions of the various stakeholders. Of course,
one particular stakeholder may have to incur more cost than
another in the interest of reaching a globally better solution.
Further constraints, such as limiting the maximum differ-
ence between the cost incurred by any two stakeholders,
could also be added. The mediation process can be tuned to
provide numerous types of behavior by providing different
optimization golas. This CSP diagnostic method enables
use to address Challenge 2 from Section 2.2.

5 Empirical Results

Automated diagnostic methods are of little use if they
cannot scale to handle non-trivial feature models of produc-
tion systems. This section presents empirical results from
experiments we performed to evaluate the scalability of our
CSP-based diagnosis technique. We compare both the op-
timal and bounding methods for diagnosing errors and con-
flicts.

5.1 Experimental Platform

To perform our experiments, we used the implementa-
tion of the diagnosis algorithm which is provided by the
Model Intelligence libraries from the Eclipse Foundation’s
Generic Eclipse Modeling System (GEMS) project [2].
Internally, the GEMS Model Intelligence implementation
uses the Java Choco Constraint Solver [1] to derive la-
belings of the diagnostic CSP. The experiments were per-
formed on a computer with an Intel Core DUO 2.4GHZ
CPU, 2 gigabytes of memory, Windows XP, and a version
1.6 Java Virtual Machine (JVM). The JVM was run in client
mode using a heap size of 40 megabytes (-Xms40m) and a
maximum memory size of 256 megabytes (-Xmx256m).

A challenging aspect of the scalability analysis is that
CSP-based techniques can vary in solving time based on
individual problem characteristics. In theory, CSP’s have
exponential worst case time complexity, but in practice they
are often much faster. To demonstrate a high confidence in
our technique, it was necessary to apply our technique to as
many models as possible. The key challenge with this ap-
proach is that hundreds or thousands of real feature models
are not readily available and manually constructing them is
not practical.

To provide the large numbers of feature models needed
for our experiments, therefore, we built a feature model gen-
erator. This generator can randomly generate feature mod-
els with the desired branching and constraint characteris-
tics. We also imbued the generator with the capability to
generate feature selections from a feature model and proba-
bilistically insert a bounded number of errors/conflicts into
the configuration. The feature model generator is available
in open-source form from [].

From preliminary feasibility experiments we conducted,
we observed that the branching factor of the tree had little
effect on the algorithm’s solving time. We also compared
diagnosis time using models with 0%, 10%, and 50% cross-
tree constraints and saw no difference in diagnosis time.
The key indicator of the solving complexity was the num-
ber of XOR- or cardinality-based feature groups in a model.
XOR and cardinality-based feature groups are features that
require the set of their selected children to satisfy a cardi-
nality constraint (the constraint is 1..1 for XOR).

7

For our tests, we limited the branching factor to at most
five subfeatures per feature. We also set the probability
of XOR- or cardinality-based feature groups being gener-
ated to 1/3 at each feature with children. We chose 1/3
since most feature models we have encountered contain
more required and optional relationships than XOR- and
cardinality-based feature groups.

To generate feature selections with errors, we used a
probability of 1/50 that any particular feature would be con-
figured incorrectly. For each model, we bounded the to-
tal errors at 5. In our initial experiments, the solving time
was not affected by the number of errors in a given feature
model. Again, the prevalence of XOR- or cardinality-based
feature groups was the key determiner of solving time.

5.2 Bounding Method Scalability

First, we tested the scalability of the less computation-
ally complex bounding diagnosis method. The speed of our
technique allowed us to test 2,000 feature models at each
data point (2,000 different variations of each size feature
model) and test the bounding method’s scalability for fea-
ture models up to 500 features. With models above 500 fea-
tures, we had to reduce the number of samples at each size
to 200 models due to time constraints. Although these sam-
ples are small, they demonstrate the general performance
of our technique. Moreover, the results of our experiments
with feature models up to 500 features were nearly identical
with sample sizes between 100 and 2,000 features.

Figure 3 shows the time required to diagnose feature
models ranging in size from 50 to 500 features using the
bounded method. The figure captures the worst, average,

Figure 3: Diagnosis Time with Bounding Method

and best solving time in the experiments. As seen from the
results, our technique could diagnose 500 feature models in
an average of≈600ms.

The upper bound used for this experiment was a max-
imum of 6 feature selection changes. When the 6 feature
bound was too tight for the diagnosis (i.e., more than 6
changes were needed to reach a correct state) the solver
would declare that there was no valid solution in a very short
amount of time. We therefore discardedall instances where

the bound was too tight to avoid skewing the results towards
shorter solving times.

Figure 4 shows the results of testing the solving time of
the bounding method on feature models ranging in size from
750 to 5,000 features. Models of this size were sufficient to

Figure 4: Diagnosis Time Using Bounding Method for
Large Feature Models

demonstrate scalability for production systems. The results
show that for a 5,000 feature model, the average diagnosis
time was≈ 1 minute.

Another key variable that we tested was how the tight-
ness of the bound on the maximum number of feature
changes affected the solving time of the technique. We took
a set of 200 feature models and applied varying bounds to
see how the bound tightness affected solution time. Figure 5
shows that tighter bounds produced faster solution times.
We hypothesize that the tighter bound allows the solver to

Figure 5: 500 Feature Diagnosis Time with Bounding
Method and Varying Bounds

discard infeasible solutions more quickly and thus arrive at
a solution faster.

5.3 Optimal Method Scalability

Next, we tested the scalability of the optimal diagnosis
method. For the tests of the optimal method’s scalability for
feature models up to 2,000 features, the slower speed of the
technique allowed us to test 200 feature models at each data
point. We stopped at 2,000 features because by that data
point, each diagnosis required an average of≈7.5 minutes
and the 200 samples required over 24 hours to test.

8

The results from feature models up to 500 features can
be seen in Figure 6. At 500 features, the optimal method

Figure 6: Diagnosis Time with Optimal Method

required an average of roughly 8 seconds to produce a di-
agnosis. The tests from larger models ranging in size up
to 2,000 features are shown in Figure 7. For a model with

Figure 7: Diagnosis Time with Optimal Method for Large
Feature Models

2,000 features, the solver required an average of approxi-
mately 7.5 minutes per diagnosis.

5.4 Comparative Analysis of Optimal and
Bounding Methods

Finally, we compared the scalability and quality of the
results produced with the two methods. As seen by com-
paring Figures 3 and 6 the bounding method performs and
scales significantly better than the optimal method. This re-
sult raises the key question of how much of a tradeoff in so-
lution quality for speed is made when the bounding method
is used over the optimal method.

The bound that is chosen determines the quality of the
solution that is produced by the solver. We can state the
optimality of a diagnosis given by the bounding method as
the number of changes suggested by the bounding method,
Bounded(S∪D), divided by the optimal number of changes,

Opt(S∪D), which yieldsBounded(S∪D)
Opt(S∪D)

. Since the bounding

method uses the constraint(S∪D) ≤ K to ensure that at
mostK changes are suggested, we can state the worst case
optimality of the bounded method as K

Opt(S∪D) . The closer

our bound,K, is to the true optimal number of changes to
make, the better the diagnosis will be.

Since tighter bounds produce faster solving timesand
better results, debuggers should start with very small
bounds and iteratively increase them upward as needed.
One approach is to layer an adaptive algorithm on top of the
diagnosis algorithm to move the bound by varying amounts
each time the bound proved too tight. Another approach is
to employ a form of binary search to hone in on the ideal
bound. We will be investigating both of these techniques in
future work.

6 Related Work

In prior work [16], Trinidad et al. have shown how fea-
ture models can be transformed into diagnosis CSPs and
used to identifyfull mandatory features, void features, and
dead feature models[16]. Developers can use this diagnos-
tic capability to identify feature models that do not accu-
rately describe their products and to understand why not.
The technique we described in this paper builds on this idea
of using a CSP for automated diagnosis. Whereas Trinidad
focuses on diagnosing feature models that do not describe
their products, however, we build an alternate diagnosis
model to identify conflicts in feature configurations. More-
over, we provide specific recommendations as to the min-
imal set of features that can be selected or deselected to
eliminate the error.

Batory et al. [3] also investigated debugging techniques
for feature models. Their techniques focus on translat-
ing feature models into propositional logic and using SAT
solvers to automate configuration and verify correctness of
configurations. In general, their work touches on debugging
feature models rather than individual configurations. Our
approach focuses on another dimension of debugging, the
ability to pinpoint errors in individual configurations and
to specify the minimal set of feature selections and dese-
lections to remove the error. Moreover, we show how au-
tomated debugging can be combined with probing to help
understand and integrate bottom-up forces into the configu-
ration process.

Mannion et al. [12] present a method for encoding
feature models as propositional formulas using first-order
logic. These propositional formulas can then be used to
check the correctness of a configuration. Mannion, how-
ever, does not touch on how incorrect configurations are de-
bugged. In contrast, our technique provides this capability
and can therefore recommend the minimal feature modifi-
cations to rectify the problem.

Pure::variants [5], Feature Modeling Plugin (FMP) [7],
and Big Lever Software Gears [6] are tools developed to
help developers create correct configurations of SPL fea-
ture models. These tools enforce constraints on modelers

9

as the features are selected. None of these tools, however,
addresses cases where feature models with incorrect con-
figurations are created and require debugging. The tech-
nique described in this paper provides this missing capabil-
ity. These tools and our approach are complementary since
the tools help to ensure that correct configurations are cre-
ated and our technique diagnoses incorrect configurations
that are built.

7 Concluding Remarks

It is hard to debug conflicts and errors in large feature
models created through staged or multi-stakeholder config-
uration. This paper described how CSPs can be built to di-
agnose errors and conflicts in configurations. The diagnosis
provided by a CSP can specifically recommend the mini-
mum or cost optimal set of features that should be selected
or deselected in a faulty configuration.

The following are lessons learned from our efforts thus
far:

• By applying bounding and optimal diagnosis, our tech-
nique can scale to feature models with several thou-
sand features.

• In future work, we plan to investigate different meth-
ods of honing the boundary used in the bounding
method. We also intend to investigate the diagnosis of
configuration errors in SPLs that use multiple models
to capture different viewpoints of the SPL.

References

[1] Choco constraint programming system.
http://choco.sourceforge.net/.

[2] Generic eclipse modeling system (gems)
http://eclipse.org/gmt/gems.

[3] D. Batory. Feature Models, Grammars, and Prepositional
Formulas.Software Product Lines: 9th International Confer-
ence, SPLC 2005, Rennes, France, September 26-29, 2005:
Proceedings, 2005.

[4] D. Benavides, P. Trinidad, and A. Ruiz-Cortes. Automated
Reasoning on Feature Models.17th Conference on Ad-
vanced Information Systems Engineering (CAiSE05, Pro-
ceedings), LNCS, 3520:491–503, 2005.

[5] D. Beuche. Variant Management with Pure:: variants.
Technical report, Pure-Systems GmbH, http://www.pure-
systems.com, 2003.

[6] R. Buhrdorf, D. Churchett, and C. Krueger. Salion’s Expe-
rience with a Reactive Software Product Line Approach. In
Proceedings of the 5th International Workshop on Product
Family Engineering, Siena, Italy, November 2003.

[7] K. Czarnecki, M. Antkiewicz, C. Kim, S. Lau, and K. Piet-
roszek. InFMP and FMP2RSM: Eclipse Plug-ins for Model-
ing Features Using Model Templates, pages 200–201. ACM
Press New York, NY, USA, October 2005.

[8] K. Czarnecki, S. Helsen, and U. Eisenecker. Staged Con-
figuration Using Feature Models.Software Product Lines:
Third International Conference, SPLC 2004, Boston, MA,
USA, August 30-September 2, 2004: Proceedings, 2004.

[9] K. Czarnecki, S. Helsen, and U. Eisenecker. Staged config-
uration through specialization and multi-level configuration
of feature models.Software Process Improvement and Prac-
tice, 10(2):143–169, 2005.

[10] J. Jaffar and M. Maher. Constraint Logic Programming: A
Survey.constraints, 2(2):0.

[11] K. C. Kang, S. Kim, J. Lee, K. Kim, E. Shin, and M. Huh.
FORM: A Feature-Oriented Reuse Method with Domain-
specific Reference Architectures.Annals of Software Engi-
neering, 5(0):143–168, January 1998.

[12] M. Mannion. Using first-order logic for product line model
validation. Proceedings of the Second International Confer-
ence on Software Product Lines, 2379:176–187, 2002.

[13] A. Metzger, K. Pohl, P. Heymans, P.-Y. Schobbens, and
G. Saval. Disambiguating the documentation of variabilityin
software product lines: A separation of concerns, formaliza-
tion and automated analysis. InRequirements Engineering
Conference, 2007. RE ’07. 15th IEEE International, pages
243–253, 2007.

[14] R. Rabiser, P. Grunbacher, and D. Dhungana. Supporting
Product Derivation by Adapting and Augmenting Variabil-
ity Models. Software Product Line Conference, 2007. SPLC
2007. 11th International, pages 141–150, 2007.

[15] R. Reiter. A theory of diagnosis from first principles.Artifi-
cial Intelligence, 32(1):57–95, 1987.

[16] P. Trinidad, D. Benavides, A. Durán, A. Ruiz-Cortés, and
M. Toro. Automated error analysis for the agilization of fea-
ture modeling. Journal of Systems and Software, in press,
2007.

[17] S. Trujillo, D. Batory, and O. Diaz. Feature Oriented Model
Driven Development: A Case Study for Portlets.29th Inter-
national Conference on Software Engineering (ICSE 2007),
Minneapolis, Minnesota, USA, May 20, 26:61, 2007.

[18] P. Van Hentenryck. Constraint Satisfaction in Logic Pro-
gramming. MIT Press Cambridge, MA, USA, 1989.

10

