
Template Patterns for Improving Configurability and
Scalability of Enterprise Distributed Real-time and

Embedded System Testing and Experimentation

James H. Hill, Aniruddha Gokhale, and Douglas C. Schmidt

Vanderbilt University, Nashville, TN, USA
{hillj,gokhale,schmidt}@dre.vanderbilt.edu

http://www.dre.vanderbilt.edu

Abstract. Testing and experimentation (T&E) is the process of executing many
tests of a system using different configurations and scenarios. T&E is particularly
important for enterprise distributed real-time and embedded (DRE) systems since
its enables evaluation of quality-of-service (QoS) attributes, such as performance
and reliability, throughout the software lifecycle. The heterogeneity of software
and hardware, however, makes T&E of enterprise DRE systems hard, e.g., de-
velopers often use handcrafted T&E solutions that evaluate just a few of many
different host, threading model, and workload configurations. Moreover, existing
T&E techniques (such as handcrafted shell scripts) are tedious, time consuming,
and labor intensive when trying to scale to address T&E concerns of enterprise
DRE systems.
This paper presents four related patterns for improving T&E scalability and flex-
ibility by deferring realization of T&E configurations until as late as possible,
e.g, based on the operating environment. We provide a synopsis, evaluation, and
application for each pattern in the context of a representative enterprise DRE sys-
tem. Our experience applying these patterns shows they can significantly improve
the scope of T&E and evaluation of enterprise DRE system QoS.

1 Introduction

Enterprise distributed real-time and embedded (DRE) systems, e.g., shipboard comput-
ing environments, mission avionic systems, and air traffic control, possess character-
istics that complicate verification and validation [12], such as complexity, heterogene-
ity, and scale. Testing and experimentation (T&E), i.e., running many tests of the sys-
tem under different configurations to exercise validation of enterprise DRE systems, is
the conventional method for evaluating system behavior and quality-of-service (QoS).
T&E of enterprise DRE systems in realistic environments and operating conditions also
helps increase confidence that the system being developed meets its functional and QoS
requirements [5, 11]. For example, enterprise DRE system developers can leverage dy-
namically configurable testbeds, such as Emulab [18], to produce realistic environments
for understanding and evaluating system QoS throughout the software lifecycle.

The T&E process, however, can be expensive and time consuming [11], even when
it is automated. Moreover, the effectiveness of T&E relates directly to the ability to
test many different system configurations (such as number of hosts, threading model,

2 James H. Hill et al.

and number of clients) in realistic and hypothetical operating conditions. For example,
understanding and evaluating the worst-case response time of critical execution paths
in a DRE system requires testing a DRE system under different workloads.

Existing techniques that address T&E configuration concerns include domain-
specific modeling languages [15], which can help alleviate the complexity of handcraft-
ing configuration files via models and model interpreters. These techniques, however,
rely largely on single instance configurations, where one configuration is used to evalu-
ate a system under a single operating condition. To evaluate the system under different
operating conditions, enterprise DRE system developers must produce multiple variants
of the same configuration file (or model), which is tedious, time-consuming, and error-
prone. Developers therefore need improved techniques and patterns to improve T&E
configurability and scalabilty to broaden their evaluation scope.

Solution approach → Template patterns. A template is an abstraction that cap-
tures the fixed and variable portions of a context, such as an algorithm [3, 7], model
transformation [14, 20], and configuration file [9, 21]. For example, the Template Me-
thod [8] design pattern enables developers to capture the fixed portion of an algorithm
while deferring certain variable steps to subclasses. Template patterns describe tech-
niques for transforming the variable portion of a given template, such as setting a vari-
able in a configuration file’s template based on it hostname. In general, templates help
increase the configurability and scalability of their application context, including offline
situations where timing constraints are not an issue.

This paper describes the following related template patterns that help increase
T&E configurability and scalability: Variable Configuration, Batch Variable Config-
uration, Dynamic Variable Configuration, and Batch Dynamic Variable Configuration.
We have implemented variants of each pattern in the Component Workload Emula-
tor (CoWorkEr) Utilization Test Suite (CUTS) Template Engine (CUTE). CUTE uses a
domain-specific language to capture fixed and variable portions of T&E configurations,
such as resolving the correct network interface based on the operating enviroment of a
test. Enterprise DRE system developers can use CUTE to decrease the amount of single
instance configuration files for T&E, while increasing T&E configurablity and scope.
This paper shows how the template patterns supported by CUTE help improve enter-
prise DRE systems evaluation capabilities, such as testing hypothetical workloads or
migrating to between different operating environments.

Paper Organization. The remainder of this paper is organized as follows: Section 2
introduces a case study of a representative enterprise DRE system project to motivate
the need for CUTE; Section 3 describes the four template patterns that CUTE imple-
ments to improve T&E configurability and scalabilty; Section 4 provides quantitatively
analyzes these template patterns in the context of the case study; Section 5 explores the
relationship between CUTE and related work on improving T&E configurability and
scalability; and Section 6 presents concluding remarks.

2 Case Study: The QED Project

The QoS-Enabled Dissemination (QED) [1] project is a large-scale, multi-team collab-
orative project involving Vanderbilt, Boeing, BBN Technologies, and IHMC aimed at

Template Patterns for T&E 3

addressing QoS concerns within the Global Information Grid (GIG) [2]. In particular,
this project provides reliable and real-time communication middleware to application-
level components and end-user scenarios that operate within dynamically changing con-
ditions and environments. Figure 1 shows the relationship of components in QED and
the GIG. As shown in this figure, QED is a layer between the application-level compo-

Fig. 1. Conceptual Model of QED in the Context of the GIG

nents and communication protocols for the GIG. At the heart of the QED middleware
is a Java-based information broker that tailors and prioritizes information based on end-
user scenario needs and importance.

The goal of the QED project is to improve QoS concerns of the GIG, which involves
evaluating many points-of-variability, such as scalablity, operating environments, and
workload. To evaluate that GIG QoS concerns are addressed adequately, QED devel-
opers plan to test many different candidate technologies and implementations, includ-
ing Mockets [22] and differentiated service queues [4, 13], under various deployment
scenarios. Conventional T&E techniques, such as handcrafted and hardcoded scripts
or conventional domain-specific modeling language, require QED testers to expend
much time and effort conducting T&E on the QED middleware. For example, if QED
testers used domain-specific modeling languages to auto-generate configuration files,
they would have to create a model for each single instance configuration. More specifi-
cally, QED testers are faced with the following challenges:

– Varying T&E scenario configurations with minimal effort. Each T&E scenario in
the QED project is expensive in both time and effort to create. Forcing QED testers to
(re)implement each scenario for each different configuration is also an expensive—
yet tedious and error prone—task to undertake. QED testers, therefore, need tech-
niques that will enable them to define a T&E scenario once and vary its configuration
without incurring the effort required to realize the original T&E scenario.

– Supporting multiple testers and operational environments for single T&E sce-
nario. Each stackholder in QED, such as BBN Technologies, Boeing, IHMC, and
Vanderbilt, have testers responsible for evaluating their respective development fea-
tures in QED against the GIG middleware under different scenarios. Moreover, all

4 James H. Hill et al.

tests are conducted in a dynamic testing environment named ISISlab 1. Forcing QED
testers to manage duplicate versions of a single T&E scenario to account for the dy-
namics and heterogeneity of each individual tester and the target testing environment
is an expensive process. QED testers therefore need better techniques to reduce such
complexity when defining T&E scenarios.

The remainder of this paper discusses four T&E template patterns we identified, im-
plemented, and analyzed to address the challenges of QED testers and simplify T&E
efforts, while increasing evaluation capabilities of QED.

3 Template Patterns for Testing and Experimentation

This section discusses four template patterns for T&E that increase configurability and
scalability. As shown in Figure 2, each pattern builds upon the other, and are the building
blocks of CUTE. The remainder of this paper provides a detailed synopsis (i.e., problem
statement and solution), evaluation, and application of each pattern in the context of
CUTE and the QED project case study described in Section 2.

!"#$"%&'()*+,-.#"/*+(

01+"2$3(!"#$"%&'(

)*+,-.#"/*+(

4"536(!"#$"%&'(

)*+,-.#"/*+(

4"536(01+"2$3(!"#$"%&'()*+,-.#"/*+(

)789(

Fig. 2. Template patterns that are building blocks for CUTE.

3.1 Variable Configuration Pattern

Problem statement. Traditional techniques for T&E rely on configuration files to deter-
mine the test scenario for the enterprise DRE system under developement. The benefit
of configuration files is that they decouple the implementation from configuration and
behavior, i.e., enable late-binding. For example, component-based middleware [16, 17]
1 ISISlab (www.isislab.vanderbilt.edu) is a software integration testbed powered by

Emulab software that allows developers to configure network topologies and operating sys-
tems on-the-fly to produce a realistic operating environment for distributed system testing.

Template Patterns for T&E 5

uses verbose XML files that determine how components intercommunicate, what prop-
erties to set for the underlying middleware, and what values to set for attributes of a
component. System developers therefore implement the static portion of the enterprise
DRE system in terms of the variable portion, and let the variable portion (which realizes
the decoupling) be controlled by external configuration files.

In T&E, a single instance configuration file represents a single instance of a test run.
To evaluate an enterprise DRE system, such as QED, under many different scenarios
(i.e., configurations), system developers must manually produce many different config-
urations. In many cases, however, the size of the static portion of the configuration has
greater cost (e.g., time to generate, or number of characters) than the variable portion of
the configuration. Even in cases when the cost of the static portion is less than the cost
of the variable portion, manually producing multiple variants is both time-consuming
and error prone.
Solution. The Variable Configuration pattern allows enterprise DRE system developers
to define the static portion of a configuration file, such as required header information
in an XML document, while using variables (or placeholders) to capture the variable
portion of the configuration. We formally define the Variable Configuration patternC =
(S, V) as:

– A set S of characters that capture the static portion of the configuration C.
– A set V of variables that define the variable portion of the configuration C.

A configuration instance is a single configuration used to execute a test scenario. It
is derived from a template configuration C by replacing the variable portions V of the
configuration with concrete values. Equation 1 defines the equation used to evaluate a
template configuration C.

C ′ = eval(C,D) (1)

where C ′ is a single instance configuration of C and D is a set of tuples (K, v) de-
termined by system testers such that K ∈ V and v = value(K) for configuration
C ′—which is analogous to a dictionary.
Manifestation in CUTE and QED. We have realized the Variable Configuration pat-
tern in CUTE and applied to the QED project. QED testers utilize the Variable Config-
uration pattern using the following steps:

1. Define a text-based file that captures a single configuration.
2. Replace static portions of the single configuration with a template variable. This

represents a point-of-variablity in the template configuration.2

3. Define a dictionary file that consists of all key-value pairs for each variable in the
Variable Configuration. Developers also have the option of overriding keys in the
dictionary file at the command-line when invoking CUTE.

Using the user-defined template and dictionary, CUTE applies Equation 1 to produce a
single instance configuration. QED testers then use the derived configuration to evaluate
the system under development.
2 It is possible to combine this step and the previous step by auto-generating a template with its

variables already defined.

6 James H. Hill et al.

1 . . .
2 <c o n f i g P r o p e r t y >
3 <name>cpuTime </name>
4 <va lue>
5 <type><kind>t k l o n g </ k ind ></ type>
6 <va lue><long>${cpuTime}</ long ></va lue>
7 </ va lue>
8 </ c o n f i g P r o p e r t y >
9 <c o n f i g P r o p e r t y >

10 <name>t e s tOwner </name>
11 <va lue>
12 <type><kind>t k s t r i n g </ k ind ></ type>
13 <va lue><s t r i n g >${ t e s t O w n e r }</ s t r i n g ></va lue>
14 </ va lue>
15 </ c o n f i g P r o p e r t y >
16 . . .

Listing 1. Example of the deployment and configuration that uses the Variable Configuration
pattern

Listing 1 shows an excerpt from the deployment and configuration (D&C) file of a
test scenario from the QED project. Listing 1 contains two variables named cpuTime
(line 6) and testOwner (line 13), which are points-of-variability. Likewise, Listing 2
is an example dictionary for the template configuration in Listing 1, and Listing 3 shows
the concrete instantiation of the template configuration using the dictionary in Listing 2.

1 cpuTime =33 .4
2 t e s t O w n e r = h i l l j

Listing 2. Dictionary for the D&C template.

1 . . .
2 <c o n f i g P r o p e r t y >
3 <name>cpuTime </name>
4 <va lue>
5 <type><kind>t k l o n g </ k ind ></ type>
6 <va lue><long >33.4</ long ></va lue>
7 </ va lue>
8 </ c o n f i g P r o p e r t y >
9 <c o n f i g P r o p e r t y >

10 <name>t e s tOwner </name>
11 <va lue>
12 <type><kind>t k s t r i n g </ k ind ></ type>
13 <va lue><s t r i n g >h i l l j </ s t r i n g ></va lue>
14 </ va lue>
15 </ c o n f i g P r o p e r t y >
16 . . .

Listing 3. Evaluation of the Variable Configuration pattern for the D&C.

Without the Variable Configuration pattern of the configuration, QED testers would
have to define each single instance configuration manually. Moreover, CUTE helped

Template Patterns for T&E 7

increase the configurability and flexibility of T&E configuration by deferring realization
of a single instance configuration until as late as possible, i.e., not solely at test design
time.
Pattern evaluation. The following is a list of benefits for using the Variable Configu-
ration pattern:

– It reduces the number of single instance configurations that must be handcrafted since
system testers have to produce a template only once and use a dictionary to define
each configuration instance.

– It reduces the amount of error that can be incurred from manually replicating each
configuration and modifying a small portion of it. In the case of tools that can auto-
generate configuration files, e.g., domain-specific modeling languages, it reduces the
amount of effort required to produce each configuration, such as manually modeling
each configuration via a cumbersome and tedious process. This also in turn helps
increase the scalability of T&E.

– It highlights the points-of-variability in a configuration. This makes is easier for en-
terprise DRE system developers to know what are the control parameters in a test
scenario (or configuration)—similar to control parameters in an experiment. This
also helps increase the scope of T&E.

Although the Variable Configuration pattern has many benefits, it also has several
consequences. The following is a list of consequences for using the Variable Configu-
ration pattern:

– Developers must define the value of each variable in V , or the configuration is con-
sidered to be invalid since all variables do not expand to a concrete value. This can
become problematic in situations where portions of the Variable Configuration can
be ignored, such as doing multiple passes n a single template using different config-
uration dictionaries and each configuration dictionary contains a disjoint subset of
the variables in the template configuration. Developers must take this scenario into
account to ensure each variable is properly expanded before using the single instance
configuration.

– The usability of a configuration is unknown until it is applied to the system under
development in a test scenario. This can be overcome, however, if the mechanism for
generating the dictionary understands the contraints of the target context, similar to
constraints in domain-specific modeling languages.

3.2 Batch Variable Configuration Pattern

Problem statement. In Section 3.1, we discussed the Variable Configuration pattern
and how it enables developers to generate single instance configuration files using a
template and dictionary. This technique is acceptable when testing only a few different
configurations since the number of dictionaries required to realize each single instance
configuration is minimal. For example, if a developer wanted to validate a single con-
figuration by executing a test run of the configuration, then the Variable Configuration
pattern is a satisfactory technique.

8 James H. Hill et al.

When trying to test many different configurations derived from a single template,
however, it becomes problematic trying to manage many different dictionary files—
where each instantiates a single instance configuration. Moreover, it becomes hard to
logically understand how each dictionary relates without using ad hoc techniques, such
as creating test suites where each configuration is representative of each test in the test
suite. For example, a QED tester who is testing performance and security logically
maintains each dictionary for evaluating the respective concern in a directory that has
the appropriate name, such as ./performacnce or ./security. Although this is
acceptable it negatively impacts T&E maintainability and scalability.
Solution. The Batch Variable Configuration pattern builds upon the Variable Configu-
ration pattern and enables enterprise DRE system developers to logically group com-
mon configurations (i.e., dictionaries) that are evaluated at once. Developers leverage
the Batch Variable Configuration pattern by defining logically related dictionaries, such
that all the dictionaries used to generate configurations for evaluating performance, in a
single monolithic configuration.

The Batch Variable Configuration has the same formal definition as the Variable
Configuration (see Section 3.1) since it is using a single template. It, however, has a
different evaluation function as illustrated by Equation 2:

C ′′ = batcheval(C,D′) = {∀d ∈ D′ : eval(C,D)} (2)

where D′ is the set of dictionaries such that if d ∈ D′ then d is an instance of D
(see Section 3.1) and C ′′ is the set of configurations such that C ′ = eval(C, d) and
C ′ ∈ C ′′.
Manifestation in CUTE and QED. We have realized the Batch Variable Configuration
pattern in CUTE and applied it to the QED project. QED testers leverage the Batch
Variable Configuration pattern using the following steps:

1. Define a text-based template configuration file that contains variables, similar to the
process in the Variable Configuration pattern (see Section 3.1).

2. Define a set of dictionaries in a single file where each individual dictionary defines
the key-value pair for each variable in the template configuration file.

Using the user-defined template file and batch configuration file, CUTE applies Equa-
tion 2 to produce a set of configuration files. QED testers then use the derived configu-
ration files to evaluate system QoS.

1 c o n f i g (lowCPU . cdp) {
2 cpuTime =33 .4
3 t e s t O w n e r = h i l l j
4 }
5
6 c o n f i g (highCPU . cdp) {
7 cpuTime =87 .8
8 t e s t O w n e r = h i l l j
9 }

Listing 4. Batch dictionary for the D&C template.

Template Patterns for T&E 9

Listing 4 illustrates a set of dictionaries for the template configuration in Listing 1.
As highlighted in Listing 4, there are two different—yet related—configurations for
testing CPU workload named: lowCPU.cdp (line 1) and highCPU.cdp (line 6).
Likewise, Listing 5 shows the concrete instantiation of the D&C excerpt for the batch
configurations in Listing 4.

1 / / lowCPU . cdp
2 . . .
3 <c o n f i g P r o p e r t y >
4 <name>cpuTime </name>
5 <va lue>
6 <type><kind>t k l o n g </ k ind ></ type>
7 <va lue><long >33.4</ long ></va lue>
8 </ va lue>
9 </ c o n f i g P r o p e r t y >

10 <c o n f i g P r o p e r t y >
11 <name>t e s tOwner </name>
12 <va lue>
13 <type><kind>t k s t r i n g </ k ind ></ type>
14 <va lue><s t r i n g >h i l l j </ s t r i n g ></va lue>
15 </ va lue>
16 </ c o n f i g P r o p e r t y >
17 . . .
18
19 / / highCPU . cdp
20 . . .
21 <c o n f i g P r o p e r t y >
22 <name>cpuTime </name>
23 <va lue>
24 <type><kind>t k l o n g </ k ind ></ type>
25 <va lue><long >87.8</ long ></va lue>
26 </ va lue>
27 </ c o n f i g P r o p e r t y >
28 <c o n f i g P r o p e r t y >
29 <name>t e s tOwner </name>
30 <va lue>
31 <type><kind>t k s t r i n g </ k ind ></ type>
32 <va lue><s t r i n g >h i l l j </ s t r i n g ></va lue>
33 </ va lue>
34 </ c o n f i g P r o p e r t y >
35 . . .

Listing 5. Evaluation of the Batch Variable Configuration pattern for the D&C.

Without the Batch Variable Configuraton pattern, QED testers would have to a hard
time logically maintaining and producing multiple configuration files used to evaluate
system QoS.
Pattern evaluation. In addition to the benefits for using the Variable Configuration
pattern, the following is a list of benefits of using the Batch Variable Configuration
pattern:

10 James H. Hill et al.

– It reduces the amount of single configurations that must be managed by enterprise
DRE system developers. Developers can just define all valid configurations in a sin-
gle file and batch process it.

– It helps logically group different configurations that can be processed at once. For
example, using the Batch Variable Configuration pattern, developers can group con-
figurations by ownership (i.e., who created the configuration) or by QoS concern each
individual configuration tests, such as performance, reliability, and security.

Although the Batch Variable Configuration patterns has many benefits, it also has
several consequences. In addition to the consequences of the Variable Configuration
pattern, the following is a list of consequences for using the Batch Variable Configura-
tion pattern:

– The Batch Variable Configuration is valid if and only if each individual configura-
tion is valid. It is, however, possible to suppress this consequence through partial
validity where it is acceptable to have invalid configurations in the batch configura-
tion, or ensuring each individual configuration is valid before including it in the batch
configuration.

– The Batch Variable Configuration can be a point-of-failure because multiple configu-
rations are defined in a single file. If the batch file is lost, then testers must redefine the
configuration file. This can be overcome, however, by chaining a batch configuration
using external configuration—similar to the C++ include preprocessor definition.

3.3 Dynamic Variable Configuration Pattern

Problem statement. In Section 3.1 and Section 3.2, we discussed two template patterns
for improving both configurability and scalability of T&E. Both patterns, however, do
not fully take into account T&E concerns, such as operating environment. For example,
testOwner in Listing 2 and Listing 4 is hardcoded to hillj. There can be situations
where the value of testOwner needs to be determined by the username of the person
evaluating the configuration for accountability purposes.

Requiring enterprise DRE system developers to maintain many different configura-
tion files based on some side-effect of the operating environment—even in the case of
the Batch Variable Configuration pattern—can negatively affect adaptability and con-
figurability. For example, if developers were using dynamic testing environments, such
as ISISlab, and want to evaluate performance of the same enterprise DRE system under
different experiments, then it would require developers to maintain different (yet sim-
ilar) configurations for each experiment since the operating environment is logically
different, e.g., different hostnames and IP addresses.
Solution. The Dynamic Variable Configuration pattern builds upon the Variable Config-
uration pattern, and enables developers to capture the variable portion of a configuration
that depends on a context-based side-effect, such as the hostname of a node in an exper-
iment or the output of an equation evaluator. We formally define the Dynamic Variable
Configuration pattern DC = (C,∆) as:

– A template configuration C that contains the static and variable portions of the con-
figuration file (see Section 3.1).

Template Patterns for T&E 11

– A set ∆ of context-based side-effects (or dynamic variables) that capture dynamic
portions of configuration DC. We assume that δ ∈ ∆ produces a single line of text
that can be used in place of its respective dynamic variable in C.

We derive a single instance configuration of DC by first evaluating C using Equa-
tion 1 in Section 3.1. Next, we evaluate the result C ′ using Equation 3:

DC ′ = eval(C ′, ∆) (3)

where DC ′ is a single instance configuration for the Dynamic Variable Configuration
pattern that enterprise DRE system developers use for T&E.
Manifestation in CUTE and QED. We have realized the Dynamic Variable Config-
uration pattern in CUTE and applied it to the QED project. QED testers leverage the
Dynamic Variable Configuration pattern using the following steps:

1. Define a text-based template configuration file that contains variables similar to the
process in the Variable Configuration pattern (see Section 3.1).

2. Replace portions of the configuration with dynamic variables that will perform a
side-effect to determine the value for that particular portion of the document.

3. Define a dictionary file that consists of all key-value pairs for each variable in the
configuration. Developers also have the option of overriding keys in the dictionary
file at the command-line when invoking CUTE.

Using the user-defined template, dictionary, and side-effects, CUTE uses Equation 1
then Equation 3 to evaluate the configuration. QED testers then use the derived single
instance configuration to evaluate system QoS.

1 . . .
2 <c o n f i g P r o p e r t y >
3 <name>cpuTime </name>
4 <va lue>
5 <type><kind>t k l o n g </ k ind ></ type>
6 <va lue><long>${cpuTime}</ long ></va lue>
7 </ va lue>
8 </ c o n f i g P r o p e r t y >
9 <c o n f i g P r o p e r t y >

10 <name>t e s tOwner </name>
11 <va lue>
12 <type><kind>t k s t r i n g </ k ind ></ type>
13 <va lue><s t r i n g >${userName}</ s t r i n g ></va lue>
14 </ va lue>
15 </ c o n f i g P r o p e r t y >
16 . . .

Listing 6. Example of the D&C that uses the Dynamic Variable Configuration pattern

Listing 6 illustrates an example configuration that uses the Dynamic Variable Configu-
ration pattern, which is a variant of the configuration from Listing 1. As highlighted on
line 13, we have replaced hillj with a variable named userName. Likewise, List-
ing 7 lists an example dictionary for Listing 6, which produces the same single instance

12 James H. Hill et al.

configuration in Listing 33. In this case, userName is defined as a dynamic variable
where userName is determined by the output of the command /usr/bin/whoami.

1 cpuTime =33 .4
2 userName = ‘ / u s r / b i n / whoami ‘

Listing 7. Example dictionary for the Dynamic Variable Configuration pattern.

Without the Dynamic Variable Configuration pattern, QED testers would have to either
use ad hoc techniques of maintaining many different single instance configuration files
for different operating contexts, such as different developers executing tests or running
experiments on different hosts. CUTE, therefore, improves the adaptability, configura-
bility, and scalability of T&E.
Pattern evaluation. In addition to the benefits of using the Variable Configuration pat-
tern, the following is a list of benefits for using the Dynamic Variable Configuration
pattern:

– It enables configurations to adapt to their operating environment. Developers do not
have to have multiple configurations for each context, such as different hosts or users.

– It greatly increases the agility and configurability of a configuration for T&E.
– Developers can implement user-defined side-effects that understand the execution

environment, such as auto-generating a UUID or binding to the appropriate network
interface, and can be applied to the configuration. This helps increase the configura-
tion flexibility for T&E.

Although the Dynamic Variable Configuration pattern has many benefits, it has sev-
eral consequences. In addition to the consequences from the Variable Configuration
pattern, the Dynamic Variable Configuration pattern has the following consequences:

– The configuration is valid if and only if C is valid and all side-effects in ∆ execute
successfully. This means developers are not able to learn about the validity of the
configuration until it is evaluated in its target operating environment.

– Even if each side-effect executes successfully, the result of each side-effect may pro-
duce an invalid value for its respective variable in the configuration. This can make
the Dynamic Variable Configuration invalid.

3.4 Batch Dynamic Variable Configuration Pattern

Problem statement. In Section 3.3 we discussed the Dynamic Variable Configuration
pattern, which enables developers to determine portions of a configuation using context-
based side-effects. Similar to the Variable Configuration pattern, the Dynamic Variable
Configuration only produces a single instance configuration. When trying to logically
group common configurations, it requires developers to rely on ad hoc techniques to
realize the logical associations, such as grouping all configurations generated by each
user based on tests that evaluate performance. Although this is acceptable in some cases,
e.g., testing the validity of a single instance configuration, it can negatively impact the
scalability and maintainability of configurations for T&E.
3 The configuration in Listing 6 is invalid on standard Windows-based machines

Template Patterns for T&E 13

Solution. The Batch Dynamic Variable Configuration pattern builds upon the Dynamic
Variable Configuration pattern and enables enterprise DRE system developers to log-
ically group common configurations that are derived at once. Developers leverage the
Batch Dynamic Variable Configuration pattern by defining logically related dictionar-
ies, such as all the dictionaries used to generate configurations for evaluating security,
in a single monolithic dictionary.

The Batch Dynamic Variable Configuration has the same formal definition of the
Dynamic Variable Configuration (see Section 3.3) since it is using a single template. It,
however, has a different evaluation function as illustrated by Equation 4:

DC ′′ = batcheval(C,D′, ∆) = {∀d ∈ D′ : eval(eval(C, d), ∆)} (4)

where D′ is the set of dictionaries such that if d ∈ D′ then d is an instance of D
(see Section 3.1) and DC ′′ is the set of configurations such that C ′ = eval(C, d),
DC ′ = eval(C ′, ∆), and DC ′ ∈ DC ′′.
Manifestation in CUTE and QED. We have realized the Batch Dynamic Variable
Configuration pattern in CUTE and applied it to the QED project. QED testers leverage
the Batch Dynamic Variable Configuration pattern using the following steps:

1. Define a template configuration file that contains variables and side-effects similar
to the process in the Dynamic Variable Configuration pattern (see Section 3.3).

2. Define a set of dictionaries in a single file where each individual dictionary defines
the key-value pair for each variable in the template configuration file.

Using the user-defined template file and batch configuration file, CUTE applies Equa-
tion 4 to produce a set of configuration files. QED testers then use the derived configu-
ration files to evalate the system under development.

1 c o n f i g (veryLowCPU . cdp) {
2 cpuTime =12 .5
3 userName = ‘ / u s r / b i n / whoami ‘
4 }
5
6 c o n f i g (veryHighCPU . cdp) {
7 cpuTime =207.1
8 userName = ‘ / u s r / b i n / whoami ‘
9 }

Listing 8. Batch dictionary for D&C that uses the Dynamic Variable Configuration pattern.

Listing 8 illustrates a set of dictionaries for template in Listing 6. As highlighted in
Listing 8, there are two different configurations named: veryLowCPU.cdp (line 1)
and veryHighCPU.cdp (line 6). Likewise, Listing 9 shows the evaluation of the
D&C excerpt for the batch configurations in Listing 8.

1 / / veryLowCPU . cdp
2 . . .
3 <c o n f i g P r o p e r t y >
4 <name>cpuTime </name>
5 <va lue>

14 James H. Hill et al.

6 <type><kind>t k l o n g </ k ind ></ type>
7 <va lue><long >12.5</ long ></va lue>
8 </ va lue>
9 </ c o n f i g P r o p e r t y >

10 <c o n f i g P r o p e r t y >
11 <name>t e s tOwner </name>
12 <va lue>
13 <type><kind>t k s t r i n g </ k ind ></ type>
14 <va lue><s t r i n g >h i l l j </ s t r i n g ></va lue>
15 </ va lue>
16 </ c o n f i g P r o p e r t y >
17 . . .
18
19 / / veryHighCPU . cdp
20 . . .
21 <c o n f i g P r o p e r t y >
22 <name>cpuTime </name>
23 <va lue>
24 <type><kind>t k l o n g </ k ind ></ type>
25 <va lue><long >207.1</ long ></va lue>
26 </ va lue>
27 </ c o n f i g P r o p e r t y >
28 <c o n f i g P r o p e r t y >
29 <name>t e s tOwner </name>
30 <va lue>
31 <type><kind>t k s t r i n g </ k ind ></ type>
32 <va lue><s t r i n g >h i l l j </ s t r i n g ></va lue>
33 </ va lue>
34 </ c o n f i g P r o p e r t y >
35 . . .

Listing 9. Evaluation of the Batch Variable Configuration pattern for the D&C.

Without Batch Dynamic Variable Configuration pattern, QED testers would have a hard
time logically maintaining and producing multiple configuration files used to evaluate
system QoS. CUTE, therefore, helps increase the adaptability and configurability T&E
configurations.
Pattern evaluation. In addition to the benefits of the Dynamic Variable Configuration
and Batch Variable Configuration, the following is a benefit for using the Batch Dy-
namic Variable Configuration pattern:

– Reduces the amount of single instance configurations needed to logically associate
common configurations.

Although the Batch Dynamic Variable Configuration pattern has many benefits, it
has several consequences. In addition to the consequences from the Dynamic Variable
Configuration and Batch Variable Configuration Pattern, the Batch Dynamic Variable
Configuration pattern has the following consequence:

– The batch configuration is valid if and only if all the individual configurations in the
batch file are valid.

Template Patterns for T&E 15

4 Quantitative Analysis of Template Patterns

In this section, we quantify the improvement testers gain for T&E from using each
template pattern in the context of an example test scenario from the QED project.

4.1 Multistage Workflow Application Scenario

The multistage workflow application scenario is an example T&E scenario designed
to test QED’s ability to ensure application-level QoS properties, such as reliability and
end-to-end response time, when handling applications with different priorities and priv-
ileges. The multistage workflow application illustrated in Figure 3 is composed of six
different components (each represented by a rectangle object). The lines between each
component represents a communication channel that must pass through both QED and
the GIG middlware as illustrated in Figure 1.

Fig. 3. Model of the multistage workflow application

Each component in the multistage workflow application contains behavior and
workload, which can be configured by QED testers at D&C time using configuration
files similar to the listings in Section 3. For example, developers can configure the peri-
odicity of the SensorClient depending on what aspects of the QED they are testing
(e.g., using high periodicity to produce high utilizations) or alter the throughput ratio
for an input event triggering an output event to produce different network workloads.

In addition, all experiments involving the multistage worklow application are con-
ducted in ISISlab. Each development group on the QED project (i.e., BBN Technolo-
gies, Boeing, and IMHC) uses the multistage workflow application to test their fea-
tures in QED. This means T&E for the multistage workflow application must be able
to handle a wide variety of configurations, operational scenarios, heterogeneity, such
as different users executing the same test scenario under different ISISlab projects, or
varying the CPU workload or event publish rate of each component to produce different
effects on QED and the GIG middleware. Overall, the multistage workflow application
provides QED testers with 11 points-of-variability for T&E.

If the QED testers relied on traditional techniques, such as handcrafted configura-
tion files, then they would have a hard time managing T&E for the multistage workflow

16 James H. Hill et al.

application. QED testers, therefore, leverage CUTE and its template patterns to increase
the scalability and configurablity of the multistage workflow application. More impor-
tantly, they elect to use CUTE because CUTE will help them increase their scope of
T&E and evaluate each point-of-variability. The remainder of this section quantifies the
improvement the template patterns manifested in CUTE provide QED testers.

4.2 Quantitative Analysis Results

To evaluate the improvement gained from CUTE, we calculate the number of single
instance configuration files derived from each template pattern in Section 3, which is
analogous to the number of ad hoc configuration files QED testers would have to man-
ually create for T&E using traditional techniques. Although we discussed four template
patterns in Section 3, the Batch Variable Configuration, Dynamic Variable Configu-
ration, and Batch Dynamic Variable Configuration pattern are defined in terms of the
Variable Configuration pattern. The subtle difference is when testers realize the valid
range of each variable, i.e., the set of valid values for the variable.

We, therefore, can determine the number of single instance configuration files by
analyzing the Variable Configuration pattern. Equation 5 highlights the equation for de-
termining the number of single instance configuration files |S|—where S is the set of
single instance configuration files—based on the points-of-variability in a single con-
figuration (see Section 3.1).

|S| =
∏
v∈V

|range(v)| (5)

As illustrated in Equation 5, range(v) is the set of valid values for variable v ∈ V .
The number of the number of single instance configurations S that is realizable from
a single template configuration, therefore, is determined by the product of the size
each variable’s range, i.e., range(v). For example, using only a subset of the 11
points-of-variability in the multistage workflow application, if each component has a
cpuTime integer variable (see Listing 1) that determines its CPU workload for the cur-
rent test, and valid values for cpuTime are [10,100] msec, then QED testers can derive
(100 − 10) × 6 = 540 different single instance configurations from a single template
configuration. Likewise, if there are 5 different QED testers executing the multistage
workflow application in different ISISlab experiments and there is a dynamic variable
named userName=‘/usr/bin/whoami‘ to determine who is executing the test
for accountability reasons, then the number of possible single instance configurations
increases to 540× 5 = 2700.

To QED testers, this a great improvement over manually handcrafting 540 or 2700
different single instance configurations, especially when a large portion of the single
instance configuration is constant (or static) between different configurations. Instead,
QED testers focus on defining the different dictionaries used to instantiate the template
configuration. This also helps concentrate QED testers efforts on locating points-of-
variability in the T&E efforts, which can be used to conduct more controlled experi-
ments against both QED and the GIG.

Template Patterns for T&E 17

5 Related Work

This section compares our work on CUTE with related work on existing approachs for
addressing T&E configurability and scalability.

Model-driven engineering techniques. Model-driven engineering (MDE) [19] is
a common solution for improving T&E configurability and scalability. Existing MDE
tools, such as GME [15], GEMS [23], and Microsoft DSL Tools [6], enable testers to
construct domain-specific modeling languages (DSMLs) that capture the context and
constaint of an application domain, such as T&E. Moreover, models constructed using
a DSML can be tranformed by model interpreters into concrete archifacts, such as T&E
configuration files. Such tools, however, facilate generation of single instance configu-
ration files only.

CUTE extends existing MDE techniques by replacing single instance configuration
files with template files, and delay realization single instance configuration file using
its template patterns. Furthermore, CUTE synergizes with existing MDE techniques
because it is possible to generate the configuration templates from constructed models.
This, therefore, reduces the number of models tester must create to evaluate a enterprise
DRE system under different configurations and operating scenarios (or environments).

Programmatic techniques. Template libraries, such as Google Templates [9] and
CodeSmith [21], enable developers to programmtically construct template engines for
generating files, such as T&E configuration files. End-users, such as testers, then define
dictionaries to derive concrete files via the Template Configuration pattern. In a similar
fashion, CUTE enables derivation of single instance configuration files using the Vari-
able Configuration Pattern. CUTE extends existing template engines by enabling batch
processing of configuration template. We are aware that such support can be added to
existing template engines by handling multiple configurations sequentially.

CodeSmith also has the notion of what we would consider dynamic variables in its
template engine. Unlike CUTE, CodeSmith evaluates its dynamic variables outside of
its target environment, such as the testbed for T&E. CUTE extends CodeSmith’s effort
by allowing evaluating dynamic variables based on its target operating environment.
Consequently, this improves both the configurability and flexibility of CUTE’s template
engine above and beyond what CodeSmith’s capabilities.

6 Concluding Remarks

Increasing T&E scope and scale can improve understanding and evaluation of enter-
prise DRE system QoS concerns, such as performance, reliability, and security. this
paper presented four template patterns for improving T&E configurability and scala-
bility named. Each template pattern has been realized in the CUTE template engine.
Testers use CUTE by defining configuration templates, and delay realization of sin-
gle instance configuration until late in the system lifecycle, e.g., when enough detail
is known about the operating environment. Our analysis of CUTE on a representative
enterprise DRE project showed that it can significantly increase T&E scope without
increasing the number of single instance configurations required to reach that level of

18 James H. Hill et al.

T&E. Moreover, our quantitative analysis showed that CUTE can improve enterprise
DRE system QoS evaluation.

We learned the following lessons while developing and applying CUTE and its tem-
plate patterns to the QED project:

– Handcrafting template configurations for T&E can be labor intensive, especially if
the template configurations are dense XML files. MDE techniques, such as domain-
specific modeling languages, help alleviate the complexity of handcrafting such files
via model interpreters that transform constructed models into concrete files. Our fu-
ture work will integrate the template patterns in CUTE with MDE tools, such as
GME, to improve the shortcomings of MDE tools and CUTE.

– Although CUTE can generate many different single instance configuration using a
single template configuration, testers must manually run each configuration to eval-
uate enterprise DRE system QoS. Continuous integration environments, such as
CruiseControl (cruisecontrol.sourceforge.net) alleviate the complex-
ity of manually executing tests via an autonomous build engine. Our future work
will combine CUTE with continuous integration environments to improve the effi-
ciency and effectiveness of running many tests continuously throughout the software
lifecycle—especially when integrated with system execution modeling tools [10].

CUTS and CUTE are available in open-source format at www.dre.vanderbilt.
edu/CUTS.

References

1. BBN Technologies Awarded $2.8 Million in AFRL Funding to Develop System to Link
Every Warfighter to Global Information Grid. BBN Technologies—Press Releases,
www.bbn.com/news and events/ press releases/2008 press releases/pr 21208 qed.

2. Global Information Grid. The National Security Agency, www.nsa.gov/ia/industry/
gig.cfm?MenuID=10.3.2.2.

3. D. Abrahams and A. Gurtovoy. C++ Template Metaprogramming: Concepts, Tools, and
Techniques from Boost and Beyond (C++ in Depth Series). Addison-Wesley Professional,
2004.

4. W. A. Aiello, Y. Mansour, S. Rajagopolan, and A. Rosén. Competitive Queue Policies for
Differentiated Services. Journal of Algorithms, 55(2):113–141, 2005.

5. G. Concas, M. D. Francesco, M. Marchesi, R. Quaresima, and S. Pinna. An Agile De-
velopment Process and Its Assessment Using Quantitative Object-Oriented Metrics. Agile
Processes in Software Engineering and Extreme Programming, 9:83–93, 2008.

6. S. Cook, G. Jones, S. Kent, and A. C. Wills. Domain-Specific Development with Visual
Studio DSL Tools. Addison-Wesley, 2007.

7. K. Czarnecki and U. W. Eisenecker. Generative Programming: Methods, Tools, and Appli-
cations. Addison-Wesley, Reading, Massachusetts, 2000.

8. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading, MA, 1995.

9. google-ctemplate. google-ctemplate. code.google.com/p/google-ctemplate,
2007.

Template Patterns for T&E 19

10. J. H. Hill, J. Slaby, S. Baker, and D. C. Schmidt. Applying System Execution Modeling Tools
to Evaluate Enterprise Distributed Real-time and Embedded System QoS. In Proceedings
of the 12th International Conference on Embedded and Real-Time Computing Systems and
Applications, Sydney, Australia, August 2006.

11. C.-Y. Huang and M. R. Lyu. Optimal Release Time for Software Systems Considering Cost,
Testing-Effort, and Test Efficiency. IEEE Transactions on Reliability, 54(4):583–591, 2005.

12. S. E. Institute. Ultra-Large-Scale Systems: Software Challenge of the Future. Technical
report, Carnegie Mellon University, Pittsburgh, PA, USA, Jun 2006.

13. Internet Engineering Task Force. Differentiated Services Working Group (diffserv) Charter.
www.ietf.org/html.charters/diffserv-charter.html, 2000.

14. G. Karsai, A. Agrawal, F. Shi, and J. Sprinkle. On the Use of Graph Transformations in
the Formal Specification of Computer-Based Systems. In Proceedings of IEEE TC-ECBS
and IFIP10.1 Joint Workshop on Formal Specifications of Computer-Based Systems, pages
19–27, Huntsville, AL, USA, Apr. 2003. IEEE.

15. Á. Lédeczi, Á. Bakay, M. Maróti, P. Völgyesi, G. Nordstrom, J. Sprinkle, and G. Karsai.
Composing Domain-Specific Design Environments. Computer, 34(11):44–51, 2001.

16. Object Management Group. Deployment and Configuration Adopted Submission, OMG
Document mars/03-05-08 edition, July 2003.

17. Object Management Group. CORBA Components v4.0, OMG Document formal/2006-04-01
edition, Apr. 2006.

18. R. Ricci, C. Alfred, and J. Lepreau. A Solver for the Network Testbed Mapping Problem.
SIGCOMM Computer Communications Review, 33(2):30–44, Apr. 2003.

19. D. C. Schmidt. Model-Driven Engineering. IEEE Computer, 39(2):25–31, 2006.
20. Software Composition and Modeling (Softcom) Laboratory. Constraint-Specification As-

pect Weaver (C-SAW). www.cis.uab.edu/ gray/Research/C-SAW, University of Alabama,
Birmingham, AL.

21. C. Tools. CodeSmith Tools. www.codesmithtools.com, 2009.
22. M. Tortonesi, C. Stefanelli, N. Suri, M. Arguedas, and M. Breedy. Mockets: A Novel

Message-Oriented Communications Middleware for the Wireless Internet. In International
Conference on Wireless Information Networks and Systems (WINSYS 2006), August 2006.

23. J. White, D. C. Schmidt, and A. Gokhale. Simplifying autonomic enterprise java bean ap-
plications via model-driven engineering and simulation. Journal of Software and System
Modeling, 7(1):3–23, 2008.

