
ScatterD: Spatial Deployment Optimization with Hybrid Heuristic /
Evolutionary Algorithms

Jules White, Brian Dougherty, Chris Thompson, and Douglas C. Schmidt
Department of Electrical Engineering and Computer Science,

Vanderbilt University, Nashville, TN, USA
{jules,briand,schmidt}@dre.vanderbilt.edu & chris.m.thompson@vanderbilt.edu

Abstract

Distributed real-time and embedded (DRE) systems can
be composed of hundreds of software components running
across tens or hundreds of networked processors that are
physically separated from one another. A key concern in
DRE systems is determining the spatial deployment topol-
ogy, which is how the software components map to the
underlying hardware components. Optimizations, such as
placing software components with high-frequency commu-
nications on processors that are closer together, can yielda
number of important benefits, such as reduced power con-
sumption due to decreased wireless transmission power re-
quired to communicate between the processing nodes.

Determining a spatial deployment plan across a series
of processors that will minimize power consumption is hard
since the spatial deployment plan must respect a combina-
tion of real-time scheduling, fault-tolerance, resource,and
other complex constraints. This paper presents a hybrid
heuristic/evolutionary algorithm, called ScatterD, for au-
tomatically generating spatial deployment plans that min-
imize power consumption. This work provides the follow-
ing contributions to the study of spatial deployment opti-
mization for power consumption minimization: (1) it com-
bines heuristic bin-packing with an evolutionary algorithm
to produce a hybrid algorithm with excellent deployment
derivation capabilities and scalability, (2) it shows how a
unique representation of the spatial deployment solution
space integrates the heuristic and evolutionary algorithms,
and (3) it analyzes the results of experiments performed
with data derived from a large-scale avionics system that
compares ScatterD with other automated deployment tech-
niques. These results show that ScatterD reduces power
consumption by between 6% and 240% more than standard
bin-packing, genetic, and particle swarm optimization al-
gorithms.

1 Introduction

Modern mobile sensor networks, cooperative robot
swarms, and fractionated spacecraft are examples of dis-
tributed real-time and embedded (DRE) systems. A sen-
sor platform can have 10’s or 100’s of processing units,
spatially separated on several physical platforms, and con-
nected through multiple ad-hoc network links between the
processors. Moreover, several hundred software compo-
nents can be distributed across these multiple networked
processors.

The software in these types of DRE systems has tradi-
tionally been tightly-coupled to the underlying hardware.
In satellites, for example, each software component is often
designed to only function with the APIs provided by a spe-
cific hardware setup on a single satellite. The deployment
topology of the software components (e.g., how software
is mapped to hardware processors) is thus dictated by this
tight-coupling.

Recent trends in DRE development have begun decou-
pling the software from the underlying hardware. For ex-
ample, so-called fractionated spacecraft [8] are being de-
signed to operate in groups and provide a common runtime
environment for satellite software [30]. The standardized
runtime interfaces allow migration of software functional-
ity between satellites with minimal effort to reconfigure and
adapt the capabilities of the satellites for different objec-
tives. The same software can be deployed to a group of
satellites in multiple unique spatial deployment topologies.

The increased flexibility in deployment topologies al-
lows designers to exploit spatial characteristics of the physi-
cal platform to optimize the power consumption of the over-
all system. For example, two software components that
communicate at a high rate can be spatially co-located on
the same computing node to avoid communicating through
a power consumptive wireless communication link. More-
over, variations in performance per watt between processors
or cores can be exploited by the deployment topology to use
processing nodes that consume less power.

Effective spatial deployment of distributed systems can
also lower power consumption simply by more effectively
utilizing hardware. By packing software more tightly onto

hardware, fewer hardware resources and less power can be
used. For example, roughly four pounds of cooling, power
supply, and other supporting hardware are needed for each
pound of processing hardware in a plane. Reducing hard-
ware not only decreases DRE system cost, but also facil-
itates increased ranges for planes/cars, decreased fuel and
power consumption, and reduced waste. Each pound of pro-
cessor savings on a plane has been estimated to decrease
fuel costs by $200 and decrease greenhouse gas production
from less burned fuel [47].

Determining how to optimize the spatial deployment of
software to hardware in DRE systems to minimize power
consumption is hard [6, 10] due to the large number of com-
plex constraints that must be satisfied [28, 34, 40, 38, 23, 7].
Developers must ensure that each software component re-
ceives sufficient processing time to meet any real-time
scheduling constraints [25]. Resource constraints, such
as total available memory on each processor, must also
be respected by the spatial mapping of software to hard-
ware [46, 13]. Finally, components can have complex place-
ment or co-location constraints, such as requiring specific
software components to be deployed to processors a min-
imum distance from the perimeter of a vehicle or robot to
provide crash survivability [13].

Open problem. A key challenge for DRE system de-
velopers is that the techniques for determining the best way
to deploy software components onto hardware to optimize
power consumption have not kept pace with the decou-
pling efforts. Manual techniques for determining spatial de-
ployment topologies—which are commonly used by DRE
system developers—do not scale well and produce solu-
tions that consume more power and hardware than is nec-
essary. Assigning real-time tasks in both multi-processor
and single-processor machines has been shown to be NP-
Hard [9]. Some techniques are available for scheduling soft-
ware on multi-core systems on a chip, but these techiques
are not designed for optimizing deployment across multiple
chips that are spatially separated.

Research using integer programming and constraint pro-
gramming has been performed on optimizing power con-
sumption and performance of software components mapped
to multi-core chips [28, 34, 40, 38, 23, 7]. This prior work,
however, has focused on scenarios where all cores are phys-
ically located on the same chip. A research gap therefore
exists for techniques that can perform deployment optimiza-
tion across cores on multiple chips, distributed across mul-
tiple networked platforms, and spatially separated from one
another.

Solution approach→ Hybrid heuristic/evolutionary
algorithms. Existing work on bin-packing algorithms for
multi-processor scheduling and evolutionary algorithms for
non-linear optimization have addressed specific points in
the spatial deployment problem space. The chief problem

is that a comprehensive approach for adapting and using the
disparate techniques together has not been developed. To
address this problem, we present a spatial deployment algo-
rithm, called theScatter Deployment Algorithm(ScatterD),
which is a hybrid deployment solver that can optimize for
power consumption. ScatterD can adhere to a combination
of deployment constraints that cannot be satisfied by a sin-
gle technique. ScatterD also leverages a novel represen-
tation of the deployment design space based on input per-
mutations to a bin-packing algorithm, as discussed in Sec-
tion 3.4.

This paper provides the following contributions to the
study of automated spatial deployment techniques for min-
imizing power consumption:

• We describe how ScatterD’s hybrid heuris-
tic/evolutionary algorithm optimizes spatial de-
ployment topologies by utilizing variations in network
link and processing node power consumption to
minimize overall system power requirements,

• We show ScatterD’s novel representation of deploy-
ment design spaces based on input permutations to
a bin-packing algorithm can be used to combine a
heuristic bin-packing with an evolutionary algorithm
and overcome many limitations of applying either in-
dependently,

• We show how evolutionary algorithms using this modi-
fied design space representation can be seeded with the
output from a heuristic bin-packer to improve search
convergence speed,

• We present empirical results demonstrating the im-
provements in power consumption yielded by the
ScatterD deployment algorithm versus heuristic bin-
packing algorithms and evolutionary algorithms, and

• We present empirical results that show that the Scat-
terD algorithm is significantly more scalable than a
constraint satisfaction programming (CSP) approach.

The remainder of this paper is organized as follows: Sec-
tion 2 presents a case study used throughout the paper to
motivate the challenges of devising a complex spatial de-
ployment plan for fractionated spacecraft deployment; Sec-
tion 3 presents the ScatterD hybrid heuristic/evolutionary
deployment algorithm; Section 4 analyzes the results from
experiments with ScatterD; Section 5 compares ScatterD
with related work on deployment automation; and Section 6
presents concluding remarks and lessons learned.

2 A Fractionated Spacecraft Case Study

This section presents a case study of a weather satellite
designed using a fractionated spacecraft architecture [8].

Figure 1. A Fractionated Spacecraft Spatial Deployment Problem

We use this case study throughout the paper to motivate the
challenges of devising complex spatial deployment plans.

2.1 Overview of Fractionated Spacecraft

The fractionated spacecraft weather satellite is con-
trolled by a ground station. The satellite runs a set of
software components (such asImage Acquisition for
capturing weather images,Feature Identification
for identifying important characteristics of the images, and
Feature Reporting for relaying image information to
a ground station) that is dictated by the ground control
station. The ground control station can also dynamically
change the spatial deployment of the software components
to satellites to improve performance, change power con-
sumption characteristics, or adapt to hardware failures.

The example fractionated spacecraft deployment prob-
lem in Figure 1 shows how developers must determine a
deployment plan that maps the three imaging software com-
ponents in the upper left hand to the group of satellites.
The generated deployment topology must ensure that each
software component meets its real-time deadlines, memory
consumption does not exceed a maximum limit, communi-
cation links provide sufficient bandwidth and connectivity
for processing, and as little power as possible is used.

We use this fractionated spacecraft scenario to showcase
several key challenges in Section 2.2. The example has been
reduced in scale to simplify the process of illustrating the
complexities of DRE system deployment. Production de-
ployment problems involve hundreds of software compo-

nents and thousands of messaging interactions, as opposed
to the three shown in this example.

2.2 Spatial Deployment Challenges for DRE Sys-
tems

A deployment topology is a mapping of software com-
ponents and their associated tasks to a hardware proces-
sor components. In real-time systems, either fixed prior-
ity scheduling algorithms, such as rate-monotonic (RM)
scheduling [48], or dynamic priority scheduling algorithms,
such as earliest-deadline-first (EDF) [48], control the exe-
cution ordering of the individual tasks on the processors.
A fundamental constraint of finding a spatial deployment
topology for DRE systems is that the topology must ensure
that no processor is assigned more tasks than it can sup-
port. Finding a deployment topology for a series of software
components that ensures schedulability of all tasks has been
shown to be NP-Hard [9].

Since the problem is NP-Hard, developers must make
various assumptions (such as estimates of the worst-case
execution time of software tasks) and employ a variety of
heuristic deployment algorithms. A number of algorithms
assume processor homogeneity and use variations of heuris-
tic bin-packing algorithms [16, 14, 35, 15, 9]. For example,
rate-monotonic first fit scheduling allocates components to
processors using a first fit bin-packing algorithm.

Although these algorithms help facilitate automated gen-
eration of deployment topologies for real-time systems,
they do not account for how variations in deployment topol-

ogy affect the power consumption of a DRE system. Net-
work links—particularly wireless ad-hoc network links—
vary in power consumption based on the transmission
power required to send a signal across the space between
two processing nodes. Moreover, hardware node variations
in clock speed, voltage, and other attributes can impact the
performance per watt that they provide. It is critical to ac-
count for these variations in DRE systems when designing a
spatial deployment topology that optimizes for power con-
sumption. The remainder of this section explores key chal-
lenges of using existing deployment algorithms to optimize
the deployment topology of a DRE system for power con-
sumption.

(a) A Software Deployment Topology for the Fractionated Spacecraft

(b) A Software Deployment Topology for the Fractionated Spacecraft
with Superior Performance per Watt

Figure 2. Comparison of Two Spatial Deploy-
ment Topologies for Processor Power Con-
sumption

2.3 Challenge 1: Accounting for Variations in
Performance Per Watt of Processing Cores

Current deployment techniques, such as bin-packing, are
designed to minimize the number of computational nodes
that are utilized by a deployment topology, but do not pro-
vide assurance or optimization of the power consumed by
the deployment topology. The goal of solving a bin-packing
problem is to take a set of items with varying sizes and pack
them into a series of limited size bins using as few bins as
possible. Properties of the power consumption of the bins
are not considered in the problem. In many spatial deploy-
ment domains, such as the fractionated spacecraft imaging
platform shown in Figure 1, power is severely limited and
minimizing its consumption is a key concern.

Heuristic bin-packing algorithms [16, 14, 35, 15, 9]. typ-
ically use an incremental algorithm that sorts items and bins
based on their sizes and then use a packing strategy, such as
first-fit, to allocate each item to a bin. Specialized variations
of bin-packing [16, 14, 35, 15, 9] are used to pack tasks onto
processors while ensuring real-time schedulability.

For example, both deployment topologies in Figures 2(a)
& 2(b) yield a solution that consumes two bins (e.g., satel-
lites). A bin-packing algorithm would consider both solu-
tions to be equally valid–both use exactly two processing
cores. Clearly, however, the solution in Figures 2(b) is su-
perior since it usesSat 5 andSat 3, which have a higher
performance per watt score. A bin-packing algorithm can-
not discern the advantage of usingSat 3 andSat 5 com-
pared toSat 4 andSat 5. The method that ScatterD
uses to overcome this challenge is discussed in Section 3.5.

2.4 Challenge 2: Handling Variations in Network
Link Power Consumption

A key determinant of power consumption in DRE sys-
tems with mobile ad-hoc networks is radio transmission for
wireless network links [20]. The power consumption of a
wireless link is directly related to the transmit power re-
quired to propagate the transmission over the physical area
separating the computational nodes and the frequency that
the network link is in use. The spatial deployment topol-
ogy determines how often network communication is per-
formed, how far apart the nodes are that are involved in the
communication, and the types of wireless communication
techniques required.

For example, the radio communication link in Fig-
ure 1 betweenSat 1 and Sat 3 spans a shorter dis-
tance than the link fromSat 2 to Sat 3 and thus con-
sumes less power. Clearly, if theImage Acquisition
andFeature Identification components commu-
nicate across one of these links, deploying the components
to Sat 1 andSat 3 and using their radio link will con-

sume less power. It is critical that a spatial deployment
technique account for these types of variation in power con-
sumption between spatial deployment topologies. Again,
work has been done on using heuristic algorithms for task
deployment [16, 14, 35, 15, 9] and integer programming
for optimizing scheduling [11, 5, 39], but no approach cur-
rently optimizes the spatial deployment topology for power
consumption concerns.

Research using integer programming and constraint pro-
gramming has been performed on optimizing power con-
sumption on multi-core chips [28, 34, 40, 38, 23, 7]. This
prior work, however, has focused on scenarios where all of
the cores are physically located on the same chip. When the
processing nodes are not physically co-located one the same
chip or on the same physical platform, expensive wireless
communications must be performed. Since these techniques
do not account for the power consumption of the network
links, they may not produce an ideal deployment topology.

For example, each satellite in Figure 1 has sufficient
CPU capacity to schedule the real-time tasks associated
with both the Image Acquisition and Feature
Ident orFeature Ident andFeature Reporting.
Scheduling the tasks of all three software components on
one satellite’s processor is not possible. As shown in
Figures 3(a) & 3(b), from the point of view of a multi-
core power consumption algorithm, grouping either set
of two software components onto the same satellite is
equivalent–both will yield a solution that utilizes two pro-
cessing nodes with identical power consumption. Clearly,
however, spatially co-locating theImage Acquisition
and Feature Ident software components, as shown
in Figure 3(b), is a better solution since they communi-
cate at 58hz and consume more power communicating be-
tween each other than theFeature Ident andFeature
Reporting sotware components. Colocating the tasks
in the same space saves that power from being consumed
through network communication. Section 3.5 discusses
how ScatterD uses an evolutionary algorithm to drive a
heuristic bin-packer to explore multiple solutions with dif-
fering network power consumption characteristics.

2.5 Challenge 3: Deployment Automation Tech-
nique Scalability

A fundamental constraint of deriving deployment
topologies for DRE systems is that all software components
must meet their real-time deadlines on the processors to
which they are deployed. This basic constraint is known as
themulti-processor scheduling problemand has been shown
to be NP-Hard [9]. Since the problem is NP-Hard, many op-
timization algorithms with exponential time-complexity are
hard to apply.

A number of optimization techniques are available for

(a) A Software Deployment Topology Using Two Nodes

(b) A Software Deployment Topology Using Two Nodes and Less Band-
width

Figure 3. Comparison of Two Spatial Deploy-
ment Topologies Based on Network Utiliza-
tion

similar linear and non-linear problems. For example, a
number of similar deployment problems can be modeled
as constraint satisfaction problems (CSPs) [45, 37] or in-
teger programming problems [11, 5, 39]. The drawback
with these approaches is that they are based on exponential
time algorithms that do not scale up to large spatial deploy-
ment problems with 10s of computational nodes, 100s of
software components, 1000s of software component com-
munication interactions, and multiple interconnecting net-
works. Numerous optimization tricks can be applied, such
as Bender’s Decomposition [24, 22], but research has still
only shown the ability to scale to 10’s of software compo-
nents and communication interactions. As discussed in Sec-
tion 3.3, ScatterD combines an evolutionary algorithm with
heuristic bin-packing to avoid the scalability limitations of
using an exponential algorithm.

3 The ScatterD Deployment Algorithm

This section describes ScatterD, which is a hybrid
heuristic/evolutionary algorithm for optimizing spatialde-
ployment topologies for minimizing power consumption.
ScatterD allows DRE system developers to automatically
derive deployment topologies that meet a combination of
real-time scheduling, memory, co-location, and spatial con-

straints. This section first presents a formal model of spatial
deployment for power consumption minimization and then
provides an overview of evolutionary algorithms. The sec-
tion next discusses how ScatterD combines an evolutionary
and bin-packing algorithm into a hybrid algorithm and pro-
vides an example of how particle swarm optimization (PSO)
is turned into a hybrid heuristic/evolutionary algorithm with
ScatterD.

3.1 Formal Model of DRE Deployment

To optimize a spatial deployment topology for power
consumption, a formal model should first be built that de-
scribes the constraints and objective function to optimize.
A spatial deployment problem for power consumption min-
imization can be described as a 7-tuple:

Dp =< C, N, s(~T), r(~T), p(~T), co(~T), e(~T) >

where:

• C is the set of components that must be deployed to
the hardware processing nodes

• N is the set of hardware processing nodes

• ~T is a deployment topology described as a vector
where theith position holds the index of the node that
ith component is deployed to (e.g., Component 1 to
Node 3,T1 = 3)

• s(~T) is a function that returns 0 if the deployment
topology assigns components to nodes such that no
component will miss any real-time deadlines and oth-
erwise returns the total number of deadlines that will
be missed. The precise definition of this function
varies based on the scheduling policy, such as rate-
monotonic or earliest deadline first, that is used. In
this paper, we use a recurrence relation for checking
rate-monotonic schedulability [48].

• r(~T) is a function that returns 0 if the deployment
topology assigns components to nodes such that no
node has its resources, such as RAM, overconsumed
and otherwise returns the total number of nodes with
overconsumed resources.

• p(~T) is a function that returns 0 if the deployment
topology meets spatial attribute-based constraints,
such as enusring that components that require a min-
imum distance from a specific point in the satellite are
assigned an appropriate location. Otherwise, the func-
tion returns the number of these constraints that are
violated.

• co(~T) is a function that returns 0 if the deployment
topology assigns components to nodes such that no
component co-location constraints, such as requiring
two components to be deployed to different nodes, are
violated. Otherwise, the number of co-location viola-
tions is returned.

• e(~T) is an objective function that calculates the power
consumed by a specific deployment topology.

The constraints are described by functions so that they
can be adapted to a particular spatial deployment scenario.
For example, if the scheduling technique changes, a differ-
ent function can be provided fors(~T). Similarly, if a set of
constraints is not present, a particular function may always
return 0.

A correct deployment topology,~T , requires that:

|~T | = |C| (1)

∀Ti ⊂ ~T , (Ti ≥ 0) ∧ (Ti ≤ |N | − 1) (2)

~T ⇒ (co(~T) + p(~T) + r(~T) + s(~T) = 0) (3)

First, as shown in (1), the deployment topology vector,
~T , must specify a deployment location for every compo-
nent. Second, as seen in (2), the node index specified by
each position in the deployment vector,~T , must refer to a
valid 0-based index in the node array. Finally, in (3), the
solution must not to violate any scheduling or other con-
straints. The goal of an optimized deployment topology is
to assure that these correctness constraints are upheld, while
minimizing the value ofe(~T).

3.2 Evolutionary Algorithms Background

Evolutionary algorithms [4, 21], such as particle swarm
optimization (PSO) [29, 42] and genetic programming [32,
33], are a promising technique for generating deployment
topologies. With an evolutionary algorithm, a set of ran-
domly generated initial solutions [27] is created and then
evolved over a series of generations to reach a final solution.
The evolutionary process uses a scoring criteria to identify
the best solutions and promote their propagation in the evo-
lution. At the end of the evolutionary process, the highest
scoring solution is output as the best result.

Members of a solution population are typically modeled
as vectors, where the vector components represent genes or
positions of particles. In a PSO algorithm, for example,
the vectors represent positions within a multi-dimensional
design space. Permuting the vector corresponds to changing
the design of the solution.

Figure 4. Representing a Spatial Deployment
Topology as a Vector

For example, Figure 4 shows an example method of map-
ping a PSO particle position to a spatial deployment prob-
lem. On the left-hand side of Figure 4, the deployment
topology vector,~T = [1, 2, 2] corresponds to a deployment
topology where the first software component is deployed to
the first hardware node, the second software the to second
hardware node, and the third component to the second hard-
ware node. As the PSO evolution proceeds, the design at
step i is permuted to the deployment topology~T = [2, 1, 2]
at step i+1, corresponding to the first component being de-
ployed to the second hardware node, the second component
to the first hardware node, and the third component to the
second hardware node.

The key problem of applying evolutionary algorithms to
spatial deployment problems is their poor behavior when
the solution space contains large numbers of points in the
search space corresponding to solutions that do not meet
the design constraints. In a complex spatial deployment
problem with real-time scheduling constraints, resource,
co-location, and other constraints, randomly generating a
set of initial solutions is unlikely to generate a set of valid
initial solutions that satisfy the constraints (e.g.,co(~T) +

p(~T) + r(~T) + s(~T) = 0) [17]. Moreover, evolving so-
lutions through arbitrary evolutionary schemes, such as ge-
netic mating [17], is also unlikely to yield new valid solu-
tions where the constraints are satisfied.

One approach to handling this issue is to devise a scor-
ing solution that always ranks valid solutions higher than
invalid solutions, but also scores invalid solutions on their
relativeclosenessto being correct. For example, an invalid
solution can be scored based on the number of constraints it
violates:

−1 ∗ (co(~T) + p(~T) + r(~T) + s(~T))

. The challenge with this strategy is that the number of vi-

olated constraints is not necessarily an accurate predictor
of the solution’s distance from a correct solution. For in-
stance, a solution with a single violated constraint, may re-
quire changing every component to hardware allocation in
order to meet the constraints. If the solution is not close to
valid, the design may be promoted in the evolutionary pro-
cess due to its good score, even though it is not remotely
close to a good solution.

Another remedy is to devise a repair operation that can
take an arbitrary invalid solution and modify it to yield a
valid solution. With complex spatial deployment problems,
however, the constraints are too complex to determine how
to modify an arbitrary invalid solution to satisfy the deploy-
ment constraints.

3.3 ScatterD Hybrid Evolutionary Algorithm
Modifications

To overcome these challenges of applying evolution-
ary algorithms to spatial deployment problems, ScatterD is
based on a combination of first-fit bin-packing and an evo-
lutionary algorithm. The evolutionary algorithm that is used
with ScatterD is pluggable. We demonstrate the use of Scat-
terD with both PSO and a genetic deployment algorithm be-
low.

In these evolutionary algorithms, a population of candi-
date deployment topologies,P , is randomly generated and
then evolved over a series of time steps. At each time step,
the population members are scored using a fitness measure-
ment,F (~pi). An evolutionary operator,evolve(~pi), is then
applied to each solution to either modify it before the next
time step, remove it from the search process, or combine it
with another solution to produce a new population meme-
ber. The evolutionary operator’s output is highly dependent
on the scores received by the individual candidate designs.

In general, an evolutionary algorithm operates as fol-
lows:

1. Each member of the population in the evolutionary
search process is assigned a random initial vector,
~pi = ~random. In a genetic algorithm, the vector rep-
resents the genes in the candidate design. In a PSO
algorithm, the vector specifies the position of a search
particle in the multidimensional search space.

2. Each population member position is scored using a fit-
ness metric,F (~pi).

3. An evolutionary operator,evolve(~pi), is applied to
each population member to produce the population
members for the next iteration of the algorithm.

4. Steps 2-3 are repeated until the maximum number of
steps is reached or the process converges on a single
solution.

5. The highest scoring population member is output as
the result.

3.4 Combining Bin-packing with an Evolutionary
Algorithm

To overcome the challenges of applying evolutionary al-
gorithms to spatial deployment problems, ScatterD is based
on a combination of first-fit bin-packing and an evolution-
ary algorithm. The most straightforward method of apply-
ing an evolutionary algorithm to spatial deployment is to
model each population member’s vector as a deployment
topology, ~T = ~pi. The fitness function for the evolution-
ary optimization can then be set to the power consumption
calculation function,F (~pi) = e(~T). Since the scheduling
and other deployment constraints must also be upheld, the
fitness function can refined and defined as:

V (~pi) = co(~pi) + p(~pi) + r(~pi) + s(~pi)

F (~pi) =

{

e(~pi) if V (~pi) = 0,

−1 ∗ V (~pi) otherwise.
(4)

Since the spatial deployment solution space is highly
constrained, using an arbitrary evolutionary operator,
evolve(~pi), to updatepi is likely to produce a large number
of solutions for which the constraints do not hold and hence
F (~pi) = −1 ∗ V (~pi). Moreover, randomly assigning initial
vectors,~pi = ~random, is unlikely to yield a valid deploy-
ment topology. The evolution may therefore progress using
potentially highly inaccurate estimates of how close the so-
lution is to yielding a spatial deployment topology that is
valid and minimizes power consumption. Section 3 presents
empirical results for a number of deployment problems that
show this inaccuracy in solution quality estimation is a sig-
nificant detriment to the spatial deployment topology search
process.

To minimize the probability that invalid spatial deploy-
ment topologies are explored by the evolutionary optimiza-
tion, ScatterD uses several specialized techniques to over-
come these limitations. The two key challenges that Scat-
terD must use these techniques to address are (1) determin-
ing how to generate the initial vectors to maximize the prob-
ability that they correspond to valid deployment topologies
and (2) ensuring that as the vectors are are evolved, the
probability that they are invalid is minimized.

ScatterD combines an evolutionary algorithm with a bin-
packing algorithm to address these two issues. The key
change made to the evolutionary algorithm is that the popu-
lation member’s vectors are not interpreted as directly rep-
resenting a deployment topology~T but instead represent
a bin-packing order for a subset of the components. This
intermediate input is input into a bin-packing algorithm to
produce the actual deployment topology,~T .

The hypothesis is that since a bin-packer uses specialized
heuristic knowledge to deploy components, it is more likely
to derive a deployment topology that is valid, compared
with a randomized evolutionary scheme. A bin-packer,
however, is designed to produce a single solution, which
as shown in Section 2.2 is not necessarily optimized for
power consumption minimization. The semi-random pack-
ing vector, produced by the evolutionary algorithm, serves
to vary the constraints in the bin-packing problem and coax
the heuristic bin-packing algorithm into producing multiple
solutions. The evolutionary process thus becomes a driver
for exploring the solution space via semi-randomized exe-
cutions of a bin-packing algorithm.

3.5 Packing Order Vectors

In a standard heuristic bin-packer, such as first-fit bin-
packing or best-fit bin-packing, the algorithm sorts the soft-
ware components according to a heuristic, such as highest
CPU consumption. In ScatterD’s modified scheme, the bin-
packer first places a semi-random subset of the components
using the ordering obtained by interpreting the vector of a
population member,~pi, from the evolutionary algorithm as
a packing order for a subset of the components. Only after
those components are placed is the bin-packer allowed to
sort and place the remaining components using its standard
heuristics.

The key step in combining the two algorithms is produc-
ing a modified bin-packing algorithm that packs software
components onto hardware nodes in two phases. In the first
phase, the packing order vector is input into the bin-packing
algorithm and the bin-packer iteratively removes the com-
ponent at the head of the list, finds the first hardware node
that will support it, and deploys it there. The packing order
vector covers a random subset of the components that must
be deployed. Any components packed in the first stage are
removed from the master list of components to pack.

In the second phase, the bin-packing algorithm applies
its standard heuristics to sort the remaining components.
After the components are sorted, the bin-packer iteratively
chooses the item at the head of the list of remaining items
to pack and places it on the first valid hardware node place-
ment. A placement on a specific hardware node is consid-
ered valid if it does not produce any constraint violations,
e.g., it does not causeV (~pi > 0. This process proceeds
until all of the components are placed on nodes.

The modified evolutionary algorithm works as follows
with the hybrid modifications:

1. Each population member in the evolutionary search
process is assigned a random initial vector,~pi =

~random.

2. For i = 0, i < |pi|, a first-fit bin-packing algorithm

takes the software component referred to by positioni

and places it on a hardware node. The node that each
component is placed on is recorded in the deployment
topology vector,T = dpi.

3. The software components that are not placed on a node
in Step 2 are placed into a list,R.

4. The software components inR are sorted using a bin-
packing heuristic, such as CPU consumption.

5. Each software component inR is placed on a hardware
node using a standard bin-packing algorithm. The
node that each component is placed on is recorded in
the deployment topology vector,dpi.

6. The score for each population member is calculated
using a fitness metric, as a function of the deploy-
ment plan,F (~dpi), and not directly from the popula-
tion member’s vector,~pi.

7. An evolutionary operator,evolve(~pi), is applied to
each population member to produce the population
members for the next iteration of the algorithm.

8. Steps 2-7 are repeated until the maximum number of
steps is reached or the process converges on a single
solution.

9. The highest scoring deployment topology,dpi, is re-
turned as the result.

3.6 Example: Using ScatterD to Create a Hybrid
Heuristic Particle Swarm Optimization

PSO is an evolutionary algorithm designed to simulate
the flocking behavior of birds searching for food. A virtual
flock of birds, called particles, is created and each particle is
scored using a fitness metric,F (~pi). Particles are attracted
to the best scoring position and attempt to move towards it.
Each particle also remembers the best solution it has seen
so far and uses this position in determining its movement.
As the particles move, new global and personal bests are
discovered, altering the flocking behavior of the particles.

In general, the PSO algorithm operates as follows:

1. Each member of the population in the evolutionary
search process is assigned a random initial position,
~pi = ~random.

2. Each population member position is scored using a fit-
ness metric,F (~pi).

3. The particle position,pk, with the overall best score is
marked as the global best,~G = ~pk.

4. Each particle has its score compared to the particle’s
personal best score obtained so far. If the score is
higher, the personal best position,~pbi, is set to the cur-
rent position,~pbi = ~pi.

5. The position of each particle,pi ∈ P , is used to calcu-
late a velocity for the particle:

~vi = ~vi + R1C1(~pi − ~pbi) + R2C2(~pi − ~G)

The coefficientsR1 andR2 are random numbers be-
tween zero and one. The coefficientsC1 andC2 are
used to alter the influence of the global and personal
best particle positions on the velocity calculation.

6. Each particle’s position for the next iteration of the
evolution is updated by adding its new velocity,~pi =
~pi + ~vi.

7. Steps 2-5 are repeated until the maximum number of
steps is reached or the process converges on a single
solution.

8. The highest scoring particle position is output as the
result.

Modifying PSO to operate with the ScatterD is straight-
forward. The scoring function is modified to interpret the
particle positions as packing order vectors for a bin-packer.
The modified PSO algorithm works as follows:

1. Each particle in the evolutionary search process is as-
signed a random initial position,~pi = ~random.

2. For i = 0, i < |pi|, a first-fit bin-packing algorithm
takes the software component referred to by positioni

and places it on a hardware node. The node that each
component is placed on is recorded in the deployment
topology vector,T = dpi.

3. The software components that are not placed on a node
in Step 2 are placed into a list,R.

4. The software components inR are sorted using a bin-
packing heuristic, such as CPU consumption.

5. Each software component inR is placed on a hardware
node using a standard bin-packing algorithm. The
node that each component is placed on is recorded in
the deployment topology vector,dpi.

6. The score for each particle’s position is calculated us-
ing a fitness metric as a function of the deployment
plan,F (~dpi), and not the particle position,~pi.

7. The particle position with the overall highest scoring
deployment plan is marked as the global best,~G = ~pi.
The global best position isnot set to the deployment
topology vector of that node.

8. Each particle has its deployment plan’s score com-
pared to the particle’s personal best score obtained so
far. If the score is higher, the personal best position,
~pbi, is set to the current position,~pbi = ~pi.

9. The position of each particle,~pi ∈ P , is used to calcu-
late a velocity for the particle:

~vi = ~vi + R1C1(~pi − ~pbi) + R2C2(~pi − ~G)

10. Each particle’s position for the next iteration of the
evolution is updated by adding its new velocity,~pi =
~pi + ~vi.

11. Steps 2-10 are repeated until the maximum number of
steps is reached or the process converges on a single
solution.

12. The highest scoring deployment plan,dpi, is output as
the result.

Heuristic algorithms, such as bin-packing, are typically
focused on finding exactly one solution to a problem. In
the case of spatial deployment, this characteristic prevents
the algorithms from exploring many potential designs that
may provide excellent power consumption characteristics.
Evolutionary algorithms, in contrast, lack the specialized
problem-specific heuristic knowledge of an algorithm, such
as bin-packing, but are excellent at exploring a number of
design alternatives.

By combining the two approaches into a single algo-
rithm, ScatterD leverages the key advantages of each alo-
girhtmic approach. ScatterD’s soution space representation
as bin-packing algorithm input permutations helps to de-
crease the probability that invalid solutions will be explored
through arbitrary evolutionary population member permu-
tations. The use of an evolutionary exploration technique
also allows the evaluation of multiple candidate solutions
and comparisons based on power consumption characteris-
tics that are missed with a standard heuristic bin-packer.

4 Empirical Results

This section analyzes empirical results obtained by ap-
plying the ScatterD techniques, bin-packing, PSO, and a
genetic algorithm to an example fractionated spacecraft sys-
tem. The fractionated spacecraft example was produced
by modifying a production avionics dataset [19] obtained
from Lockheed Martin Aeronautics through the SPRUCE
project (www.sprucecommunity.org), which is a
web-accessible portal that pairs academic researchers with
industry challenge problems complete with representative
project data. We compared the ability of each deployment
algorithm to reduce the power consumption provided by the
baseline spatial deployment topology from the aeronautics
dataset.

4.1 Experimental Platform

The fractionated spacecraft example contains a spatial
deployment topology and software architectural informa-
tion for a spacecraft system with∼50 processors,∼300
software components, and 15,000 periodic messages. Real-
time scheduling constraints are included in the example, in-
cluding task rates and CPU consumption. The example also
contains information on the messaging interactions between
the software components. A total of∼15,000 messaging in-
teractions are described by their rate, message size, message
type, and source/destination software components.

We obtained the data in the following experiments by
augmenting the original fractionated spacecraft example
with power consumption information for the processors and
network communications. The software architecture re-
mained static throughout the experiments while we varied
the power consumed by the processors to simulate different
deployment scenarios with hardware varying from work-
station Xenon processors to wireless sensor motes. Power
dissipation of the various processors was based on public
power dissipation data published by Intel and empirical re-
sults from sensor motes published by Anastasi et al. [2]. All
network communications were modeled to take place over a
wireless 802.11b network and power consumption was cal-
culated using the results produced by Feeney et al. [20].

For each experiment we compared the deployments
produced by six different automated deployment tech-
niques against the baseline deployment from the aeronau-
tics dataset. The six algorithm variations that we compared
were:

1. Bin-packing – A first-fit heuristic bin-packer was cho-
sen due to their widespread use for deployment prob-
lems.

2. ScatterD PSO – The PSO variant of ScatterD.

3. ScatterD Genetic – The genetic algorithm variant of
ScatterD.

4. PSO with Bin-packing Seeding – A PSO algorithm
was seeded with the results of randomized first-fit bin-
packing. Packing-order vectors were not utilized in
this variant.

5. Genetic with Bin-packing Seeding – A genetic algo-
rithm was seeded with the results of randomized first-
fit bin-packing. Packing-order vectors were not uti-
lized in this variant.

6. PSO – the same PSO algorithm used for the ScatterD
PSO was used but without the packing-order vectors
and initial seeding from a bin-packing algorithm.

7. Genetic Algorithm – the same genetic algorithm used
for the ScatterD was used, but without the packing-
order vectors and initial seeding from a bin-packing
algorithm.

Variations of PSO and genetic algorithms with and without
the ScatterD enhancements were chosen to compare the im-
provements yielded by the ScatterD techniques. A first-fit
bin-packing algorithm was chosen because they are widely
used in deployment problems.

For both the genetic and PSO algorithms, a population
size of 20 was used and a total of 20 search iterations (gen-
erations) were run. The PSO algorithm used a local learning
coefficient of 1 and a global learning coefficient of 2. The
genetic algorithm allowed a total of 10% of the population
to be passed through to the next generation, selected the top
25% of solutions for mating, and applied a mutation proba-
bility of 5%.

Each algorithm was implemented in Java (the im-
plementations are available in open-source form through
the Ascent Design Studio atcode.google.com/p/
ascent-design-studio). The comparisons were per-
formed on an Apple MacBook Pro with 4gb of RAM, a
3.06ghz Intel Core 2 Duo Processor, and Mac OS X 10.5.7.
A version 1.6 Java Virtual Machine (JVM) was used to con-
duct the experiments. The JVM was run in client mode us-
ing a heap size of 40 megabytes (-Xms40m) and a maxi-
mum memory size of 256 megabytes (-Xmx256m).

4.2 Experiment 1: Deployment Across a Homo-
geneous Set of Workstation Processors

This experiment tested the capabilities of each algorithm
to reduce the power consumption of the avionics software
in a deployment across a homogeneous set of 6 core In-
tel Xenon L7455 processors. Power consumption improve-
ments were calculated by comparing the power consump-
tion of the deployments produced by each algorithm to the
original baseline deployment from the aeronautics dataset.

Hypothesis: ScatterD should provide significant
reductions in power consumption compared to bin-
packing. Initially, we believe that ScatterD’s ability to
search multiple spatial deployment permutations would
lead to solutions with far superior power consumption char-
acteristics than those produced by the bin-packing algo-
rithm. We also hypothesized that neither the standard PSO
or genetic algorithms would produce good solutions due to
the complexity of the design space.

Analysis of results.The results from the experiment are
shown in Figure 5. The ScatterD Genetic algorithm pro-
duced the largest power consumption reduction, followed
closely by ScatterD PSO. Interestingly, the bin-packing al-
gorithm produced a power savings that was within≈94%
of the solution produced by ScatterD Genetic.

Figure 5. Homogeneous Xenon Deployment

After careful analysis, it became clear that because the
processors are homogenous, the first-fit bin-packing heuris-
tic performs extremely well. Moreover, because the Xenon
processor draw a substantial amount of power compared to
the network transmissions, idling processors was the most
important concern in this problem. In this particular case,
the emphasis on processor idling and the homogeneity of
the cores allowed the bin-packing algorithm to nearly equal
the more complex searches from ScatterD.

In this experiment, the standard PSO algorithm was un-
able to find a valid solution within the allotted time. The
standard genetic algorithm also produced a poor solution.
Throughout the experiments, both of these algorithms pro-
duced poor results compared to the rest, demonstrating the
importance of ScatterD’s hybrid heuristic optimizations.

4.3 Experiment 2: Deployment Across a Homo-
geneous Set of Low-power Processors

This experiment compared deployments across a group
of Intel XScale processors, which consume substantially
less power than the Xenon workstation processors. The
lower power consumption of the processors meant that re-
ductions in network traffic would play a more important role
in reducing the power consumption in this scenario.

Hypothesis: An emphasis on network traffic reduc-
tion would produce far more power conserving de-
ployment topologies from ScatterD versus bin-packing.
Since the cost of CPU time was decreased, we assumed that
ScatterD’s advantages in network traffic optimization would
allow it to produce much better solutions than bin-packing.

Analysis of results. The results for this experiment are
shown in Figure 6. The ScatterD Genetic algorithm pro-
duced the biggest reduction in power consumption. In this
case, the ScatterD Genetic algorithm saved roughly 25%

Figure 6. XScale Deployment

more power than the first-fit bin-packing algorithm. The
ScatterD PSO algorithm also beat the bin-packing algo-
rithm by roughly 3%.

The Genetic and PSO algorithms that did not use the full
set of ScatterD optimizations were unable to produce a so-
lution better than the bin-packing algorithm. The PSO al-
gorithm did not find a solution in the allotted search time
frame. Moreover, the genetic algorithm produce a solution
that saved less than 50% of the power of the first-fit bin-
packing algorithm’s solution. In this scenario, the packing-
order vector and bin-packing seeding optimizations of Scat-
terD produced a clear advantage over standard PSO and ge-
netic algorithms.

4.4 Experiment 3: Deployment Across a Homo-
geneous Set of Sensor Motes

This experiment compared the deployment topologies
produced by the algorithms when deploying the software
onto a set of low power wireless sensor motes. The power
consumption of the motes was modeled after the results pro-
duced by Anastasi et al. [2]. The extremely low power con-
sumption of the processors meant that reductions in network
traffic would play a far larger role in reducing the power
consumption than in other scenarios.

Hypothesis: Network traffic reduction would be the
dominant factor in determining which algorithm pro-
duced the lowest power spatial deployment topology.
The significantly lower power consumption of CPU pro-
cessing relative to network power consumption should favor
algorithms that reduce network traffic the most. We antic-
ipated that ScatterD would show further improvements in
power consumption versus the previous two experiments.

Analysis of results. The results for this experiment are
shown in Figure 7. The ScatterD Genetic algorithm pro-

Figure 7. Sensor Motes Deployment

duced the biggest reduction in power consumption. More-
over, the ScatterD Genetic’s deployment topology saved
240% more power than the bin-packing algorithm. The
ScatterD PSO algorithm also saved 167% more power
than the bin-packing algorithm. The standard bin-packing
seeded PSO and genetic algorithms also tied or surpassed
the bin-packing algorithm. The standard genetic algorithm
did not produce a power conservative deployment topology.
The PSO algorithm did not find a valid solution.

As hypothesized, ScatterD significantly outperformed
the standard bin-packing algorithm since takes into account
network power consumption variations. Moreover, without
the ScatterD optimizations, the standard genetic and PSO
algorithms had difficulty in the highly constrained deploy-
ment search spaces. For deployments across low-power
wireless sensor networks or in other low-power scenarios,
ScatterD produces the biggest reductions in power con-
sumption.

4.5 Experiment 4: Deployment Across a Hetero-
geneous Set of High and Low Power Proces-
sors

This experiment combined the power consumption mod-
els from the previous three experiment into a single de-
ployment scenario across a set of heterogeneous processors.
This scenario was designed to mimic a large-scale system
combining a variety of servers, mobile devices, and wireless
sensors. One third of the processors were modeled as high-
powered Xenons. One third of the processors were modeled
as lower powered XScale processors. Finally, the remaining
processors were modeled as wireless sensor motes.

Hypothesis: Accounting for power consumption vari-
ations in processor cores would be the most significant
factor in reducing power consumption. With a variety of

processor power consumption profiles, we believed that ac-
counting for these variations would be more important than
reducing network traffic. Again, we anticipated that Scat-
terD would outperform the other algorithms.

Analysis of results. The results for this experiment
are shown in Figure 8. The ScatterD Genetic algorithm

Figure 8. Heterogeneous XScale and Xenon
Deployment

again produced the biggest reduction in power consump-
tion. Suprisingly, the reduction in power consumption was
over 1500% greater than the bin-packing algorithm. The
Genetic PSO algorithm also exceeded the power reduction
of the bin-packing algorithm by over 1300%.

While analyzing the results, we derived a simple modi-
fication to the problem that provided a substantial improve-
ment for the bin-packing algorithm. Instead of providing
the processors to the algorithms in an arbitrary order, we
first sorted the list so that the lowest power processors were
in the front of the list. The intuition is that a first-fit bin-
packing algorithm will use these lowest power processor
first, before moving on to more power consumptive proces-
sors. We also found that this simple modification yielded
improvements from the other techniques as well.

The results of applying this modification to the problem
and re-running it are shown in Figure 9. The modifications
approximately doubled the power reductions produced by
the bin-packing algorithm. The ScatterD PSO algorithm
provided roughly 100% more power consumption savings
compared to the bin-packing algorithm. The ScatterD Ge-
netic algorithm also produced the best overall power con-
sumption score.

Figure 9. Heterogeneous XScale and Xenon
Deployment with Bin-packing Sorting Opti-
mization

4.6 Experiment 5: Measuring Power Consump-
tion Improvements from Reduced Network
Traffic

This experiment measured the power consumption im-
provements yielded by the algorithms through reduced net-
work traffic. Processor time was modeled as consuming
zero power to allow us to only measure variations in power
consumption from network traffic reductions.

Hypothesis: Significant improvements in power con-
sumption can be achieved by co-locating software com-
ponents with high traffic interactions. Although reducing
the number of processors in a spatial deployment topology
can produce significant power consumpton improvements,
we believed that network traffic reduction could also play an
important role. Bin-packing would provide some reduction
in network traffic by packing software more tightly onto
the processors and co-locating more components as a side-
effect. ScatterD should be able to outperform bin-packing
with its more complex search techniques.

Analysis of results. The results for this experiment are
shown in Figure 10. The ScatterD PSO algorithm produced
the biggest reduction in power consumption. The ScatterD
PSO algorithm saved 70% more power than the bin-packing
algorithm. The ScatterD Genetic algorithm reduced power
consumption by 60% more than the bin-packing algorithm.
The standard variants of PSO and genetic deployment algo-
rithms did not perform as well as bin-packing.

Figure 10. Deployment with Wireless Network
Only Power Consumption Optimization

5 Related Work

A number of prior research efforts are related to the spa-
tial deployment problem presented in this paper. This sec-
tion provides a taxonomy of these related works and com-
pares and contrasts them to ScatterD. The related works are
categorized based on the type of algorithm used in the de-
ployment process.

Multi-processor scheduling. Bin-packing algorithms
have been successfully applied to the NP-Hard problem of
multi-processor scheduling [9]. Multi-processor scheduling
requires finding an assignment of real-time software tasks to
hardware processors, such that no tasks miss any deadlines.
A number of bin-packing modifications are used to opti-
mize the assignment of the tasks to use as few processors as
possible [16, 14, 35, 15, 9]. The chief issue of using these
existing bin-packing algorithms for spatial deployment op-
timization to minimize power is that they focus on minimiz-
ing total processors used.

In certain specialized scenarios, such as when all proces-
sors are identical and network communication is not a major
power concern, these algorithms are suitable for perform-
ing power consumption optimization. If processors vary in
performance per watt or power consumptive wireless com-
munication is involved, however, these algorithms will not
make ideal placement decisions. In contrast, ScatterD, is
designed to account for these variations in power consump-
tion and make appropriate placement decisions.

Kirovski et al. [31] have developed heuristic techniques
for assigning tasks to processors in resource constrained
systems to minimize power consumption. Their technique
optimizes a combination of variations in processor power
consumption and voltage scaling. These techniques, how-

ever, do not account for network communication in the
power optimization process.

Okuma and others [38, 1] have developed scheduling
techniques for real-time task scheduling on variable volt-
age processor cores. The scheduling algorithm both opti-
mizes task ordering and voltage levels to minimize power
consumption. Changes in processing time from lowering
processor voltage are also considered in the scheduling pro-
cess. Others, such as Aydin et al. [3, 25], have also investi-
gated real-time task scheduling but across multiple proces-
sors [50]. These techniques, however, do not consider how
network power consumption impacts the overall system.

Task graph scheduling to minimize energy consump-
tion in embedded systems.Energy consumption optimiza-
tion has also been investigated in the context of the schedul-
ing of conditional and unconditional task graphs to underly-
ing hardware processors [43, 41]. This work attempts to op-
timize power consumption while ensuring that tasks execute
on processors in a required order and meet minimum per-
formance requirements. In general, however, this work has
focused on embedded systems that are spatially co-located
and does not account for network usage energy consump-
tion.

Power optimization for multicore systems on a chip.
A large amount of research has focused on power consump-
tion minimization in multicore systems on a chip [28, 34,
40, 38, 23, 7]. These research efforts have investigated
methods of leveraging differing voltages and capabilitiesof
specific processing cores to optimize the power consump-
tion of the system while guaranteeing performance con-
straints. This work mainly focuses on the core assignment
aspects of the allocating computing cores to software tasks.

Power optimization for network systems on a chip.
Others have considered network power consumption in the
context of network systems on a chip, which allow for vari-
able speed interconnect links [26, 44]. These techniques op-
timize task placement and network link speed in the context
of a single chip. Spatially-separated systems on different
chips are not considered in this work.

Hardware/software co-synthesis. Hardware/Software
co-synthesis research has yielded techniques for determin-
ing the number of processing units, task scheduling, and
other parameters to optimize systems for power consump-
tion while meeting hard real-time constraints. Dick et
al. [17, 18], have used a genetic algorithm for the co-
synthesis problem. As with other single-chip work, how-
ever, this research is directed towards systems that are not
spatially separated from one another.

Client/Server Task Partitioning for Power Optimiza-
tion. Network power consumption and processor power
consumption have both been considered in work on par-
titioning client/server tasks for mobile computing [49, 12,
36]. In this research, the goal is to determine how to parti-

tion tasks between a server and mobile device to minimize
power drain on the device. This work, however, is focused
only on how power is saved by moving processing respon-
sibilities between a single client and server.

6 Concluding Remarks and Lessons Learned

Power consumption in DRE systems can be minimized
by carefully choosing a good spatial deployment topol-
ogy. The spatial deployment topology determines how far
apart communicating software components are and thus
how much transmit power is needed for wireless commu-
nication. Moreover, processing nodes vary in performance
per watt for different tasks and these variations can be ex-
ploited to optimize the energy consumption footprint of the
system.

Designing automated algorithms to perform deploy-
ment optimization is hard,e.g., deployment with real-time
scheduling constraints is an NP-Hard problem [9]. Expo-
nential algorithms, such as integer programming, often do
not scale well for industrial size problems. Evolutionary
algorithmic techniques, such as genetic algorithms, tend to
provide poor performance in the highly-constrained solu-
tion spaces that are typical of spatial deployment problems.

This paper described how ScatterD combines heuristic
bin-packing with an evolutionary algorithm to obtain sub-
stantial performance increases in spatial deployment topol-
ogy derivation. In the empirical results presented in Sec-
tion 4, we observed substantial power consumption im-
provements with the hybrid ScatterD algorithm compared
to strictly evolutionary techniques. Moreover, ScatterD pro-
duced deployment topologies that saved 4.5% more power
in server deployments (Experiment 1, Section 4.2) and
saved over 240% more power in wireless sensor mote de-
ployment scenarios (Experiment 3, Section 4.4).

We learned the following lessons from our work re-
searching and developing the ScatterD hybrid heuris-
tic/evolutionary deployment algorithm:

• Power consumption can be reduced significantly by
carefully balancing network utilization and proces-
sor efficiency tradeoffs.The empirical data from Sec-
tion 4 showed that accounting for both network and
processor power consumption provides superior re-
sults to focusing exclusively on either one individually.

• Solution space representation is criticalto the abil-
ity of an evolutionary algorithm to efficiently generate
spatial deployment topologies. By modeling the so-
lution space as permutations of the input to a heuris-
tic bin-packing algorithm, we observed a roughly
four-fold increase in the number of good deployment
topologies that were explored.

• Combining heuristic and evolutionary algorithms
over comes a number of problemsof applying either
independently to spatial deployment topology deriva-
tion. For example, by combining first-fit bin-packing
with PSO, a hybrid algorithm can be created that has
a lower probability of generating invalid solutions dur-
ing the evolutionary solution permutation process.

• Determining the appropriate method of integrating
heuristic and evolutionary algorithms is not easy,
significant experimentation is required to find a way
of integrating the two techniques that yields good re-
sults. For example, preliminary experiments that we
performed that used evolutionary techniques to adjust
the relative weights of bin-packing items did not per-
form nearly as well as modeling the solution space as
packing-order vectors.

• Other combinations of heuristic and evolutionary
algorithms may provide superior results. Each
heuristic algorithm has unique problem characteristics
for which it produces excellent results. In future work,
therefore, we plan to investigate other combinations
of heuristic and evolutionary algorithms that perform
well on spatial deployment optimization problems.

An implementation of the ScatterD deployment al-
gorithm is available in open-source form as part of
the Ascent Design Studio (code.google.com/p/
ascent-design-studio).

References

[1] T. AlEnawy and H. Aydin. Energy-aware task allocation for
rate monotonic scheduling. InProceedings of the 11th
IEEE Real-time and Embedded Technology and
Applications Symposium (RTAS05), pages 213–223, 2005.

[2] G. Anastasi, A. Falchi, A. Passarella, M. Conti, and
E. Gregori. Performance measurements of motes sensor
networks. InProceedings of the 7th ACM international
symposium on Modeling, analysis and simulation of
wireless and mobile systems, pages 174–181. ACM New
York, NY, USA, 2004.

[3] H. Aydin and Q. Yang. Energy-aware partitioning for
multiprocessor real-time systems. InProceedings of 17th
International Parallel and Distributed Processing
Symposium (IPDPS), pages 113–121, 2003.

[4] T. Bäck. Evolutionary Algorithms in Theory and Practice:
Evolution Strategies, Evolutionary Programming, Genetic
Algorithms. Oxford University Press, USA, 1996.

[5] M. Bastarrica, A. Shvartsman, and S. Demurjian. A Binary
Integer Programming Model for Optimal Object
Distribution. In2nd Int. Conf. on Principles of Distributed
Systems.

[6] H. Beitollahi and G. Deconinck. Fault-Tolerant Partitioning
Scheduling Algorithms in Real-Time Multiprocessor

Systems.Pacific Rim International Symposium on
Dependable Computing, IEEE, 0:296–304, 2006.

[7] L. Benini, D. Bertozzi, A. Guerri, and M. Milano.
Allocation, scheduling and voltage scaling on energy aware
mpsocs.Lecture Notes in Computer Science, 3990:44,
2006.

[8] O. Brown, P. Eremenko, and B. Hamilton. The value
proposition for fractionated space architectures.Sciences,
99(1):2538–2545, 2002.

[9] A. Burchard, J. Liebeherr, Y. Oh, and S. Son. New
Strategies for Assigning Real-time Tasks to Multiprocessor
Systems.IEEE Transactions on Computers,
44(12):1429–1442, 1995.

[10] A. Carzaniga, A. Fuggetta, S. Richard, D. Heimbigner,
A. van der Hoek, A. Wolf, and COLORADO STATE UNIV
FORT COLLINS DEPT OF COMPUTER SCIENCE.A
Characterization Framework for Software Deployment
Technologies. Defense Technical Information Center, 1998.

[11] K. Chakrabarty, S. Iyengar, H. Qi, and E. Cho. Grid
Coverage for Surveillance and Target Location in
Distributed Sensor Networks.IEEE Transactions on
Computers, pages 1448–1453, 2002.

[12] G. Chen, B. Kang, M. Kandemir, N. Vijaykrishnan,
M. Irwin, and R. Chandramouli. Studying energy trade offs
in offloading computation/compilation in Java-enabled
mobile devices.IEEE Transactions on Parallel and
Distributed Systems, pages 795–809, 2004.

[13] W. Damm, A. Votintseva, A. Metzner, B. Josko,
T. Peikenkamp, and E. Böde. Boosting Re-use of
Embedded Automotive Applications Through Rich
Components.Proceedings of Foundations of Interface
Technologies, 2005, 2005.

[14] S. Davari and S. Dhall. An On-line Algorithm for
Real-time Tasks Allocation. InIEEE Real-time Systems
Symposium, pages 194–200, 1986.

[15] S. Davari and S. Dhall. On a Periodic Real-Time Task
Allocation Problem. In19th Annual International
Conference on System Sciences, pages 133–141, 1986.

[16] S. Dhall and C. Liu. On a Real-time Scheduling Problem.
Operations Research, 26(1):127–140, 1978.

[17] R. Dick and N. Jha. MOGAC: A multiobjective genetic
algorithm for the co-synthesis of hardware-software
embedded systems. InProceedings of the 1997 IEEE/ACM
international conference on Computer-aided design, pages
522–529. IEEE Computer Society Washington, DC, USA,
1997.

[18] R. Dick and N. Jha. MOCSYN: Multiobjective core-based
single-chip system synthesis. InProceedings of the
conference on Design, automation and test in Europe.
ACM New York, NY, USA, 1999.

[19] B. Dougherty, J. White, J. Balasubramanian, C. Thompson,
and D. C. Schmidt. Deployment Automation with BLITZ.
In Emerging Results track at the 31st International
Conference on Software Engineering, Vancouver, CA, May
2009.

[20] L. Feeney and M. Nilsson. Investigating the energy
consumption of a wireless network interface in an ad hoc
networking environment. InIEEE INFOCOM, volume 3,
pages 1548–1557. INSTITUTE OF ELECTRICAL
ENGINEERS INC (IEEE), 2001.

[21] D. Fogel, N. Inc, and C. La Jolla. What is Evolutionary
Computation?Spectrum, IEEE, 37(2):26–28, 2000.

[22] P. Hladik, H. Cambazard, A. Déplanche, and N. Jussien.
Solving a real-time allocation problem with constraint
programming.The Journal of Systems & Software,
81(1):132–149, 2008.

[23] I. Hong, D. Kirovski, G. Qu, M. Potkonjak, M. Srivastava,
S. Inc, and M. View. Power optimization of
variable-voltage core-based systems.IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
18(12):1702–1714, 1999.

[24] J. Hooker. Planning and scheduling by logic-based benders
decomposition.OPERATIONS RESEARCH-BALTIMORE
THEN LINTHICUM-, 55(3):588, 2007.

[25] H. Hsu, J. Chen, and T. Kuo. Multiprocessor synthesis for
periodic hard real-time tasks under a given energy
constraint. InProceedings of the conference on Design,
automation and test in Europe: Proceedings, pages
1061–1066. European Design and Automation Association
3001 Leuven, Belgium, Belgium, 2006.

[26] J. Hu and R. Marculescu. Energy-aware mapping for
tile-based NoC architectures under performance
constraints. InProceedings of the 2003 conference on Asia
South Pacific design automation, pages 233–239. ACM
New York, NY, USA, 2003.

[27] X. Hu and R. Eberhart. Solving Constrained Nonlinear
Optimization Problems with Particle Swarm Optimization.
In Proceedings of the Sixth World Multiconference on
Systemics, Cybernetics and Informatics, volume 5, pages
203–206, 2002.

[28] T. Ishihara and H. Yasuura. Voltage scheduling problemfor
dynamically variable voltage processors. InProceedings of
the 1998 international symposium on Low power
electronics and design, pages 197–202. ACM New York,
NY, USA, 1998.

[29] J. Kennedy and R. Eberhart. Particle Swarm Optimization.
In Neural Networks, 1995. Proceedings., IEEE
International Conference on, volume 4, 1995.

[30] J. Kinnebrew, N. Shankaran, G. Biswas, and D. Schmidt. A
Decision-Theoretic Planner with Dynamic Component
Reconguration for Distributed Real-Time Applications. In
Poster paper at the Twenty-First National Conference on
Artificial Intelligence, Boston, MA, July 2006.

[31] D. Kirovski and M. Potkonjak. System-level synthesis of
low-power hard real-time systems. InProceedings of the
34th annual conference on Design automation, pages
697–702. ACM New York, NY, USA, 1997.

[32] J. Koza.Genetic Programming: On the Programming of
Computers by Means of Natural Selection. MIT Press,
1992.

[33] J. Koza and J. Rice.Genetic Programming. Springer, 1992.
[34] W. Kwon and T. Kim. Optimal voltage allocation

techniques for dynamically variable voltage processors.
ACM Transactions on Embedded Computing Systems
(TECS), 4(1):211–230, 2005.

[35] S. Lauzac, R. Melhem, and D. Mosse. An efficient RMS
Admission Control and its Application to Multiprocessor
Scheduling. InInternational Parallel Processing
Symposium, pages 511–518, 1998.

[36] Z. Li, C. Wang, and R. Xu. Task allocation for distributed
multimedia processing on wirelesslynetworked handheld
devices. InParallel and Distributed Processing
Symposium., Proceedings International, IPDPS 2002,
Abstracts and CD-ROM, pages 79–84, 2002.

[37] A. Nechypurenko, E. Wuchner, J. White, and D. C.
Schmidt. Application of Aspect-based Modeling and
Weaving for Complexity Reduction in Development of
Automotive Distributed Realtime Embedded Systems. In
Proceedings to the Sixth International Conference on
Aspect-Oriented Software Development, Vancouver, British
Columbia, Mar. 2007.

[38] T. Okuma, T. Ishihara, and H. Yasuura. Real-time task
scheduling for a variable voltage processor. InProc.
International Symposium on System Synthesis, pages
24–29, 1999.

[39] B. Powell and A. Perkins. Fleet Deployment Optimization
for Liner Shipping: An Integer Programming Model.
Maritime Policy & Management, 24(2):183–192, 1997.

[40] G. Quan and X. Hu. Energy efficient fixed-priority
scheduling for real-time systems on variable voltage
processors. InProceedings of the 38th conference on
Design automation, pages 828–833. ACM New York, NY,
USA, 2001.

[41] D. Roychowdhury, I. Koren, C. Krishna, and Y. HL. A
voltage scheduling heuristic for real-time task graphs. In
Dependable Systems and Networks, 2003. Proceedings.
2003 International Conference on, pages 741–750, 2003.

[42] Y. Shi and R. Eberhart. Empirical Study of Particle Swarm
Optimization. InProceedings of the 1999 Congress on
Evolutionary Computation, volume 3, pages 1948–1950.
Piscataway, NJ: IEEE Service Center, 1999.

[43] D. Shin and J. Kim. Power-aware scheduling of conditional
task graphs in real-time multiprocessor systems. In
Proceedings of the 2003 international symposium on Low
power electronics and design, pages 408–413. ACM New
York, NY, USA, 2003.

[44] D. Shin and J. Kim. Power-aware communication
optimization for networks-on-chips with voltage scalable
links. In Proceedings of the 2nd IEEE/ACM/IFIP
international conference on Hardware/software codesign
and system synthesis, pages 170–175. ACM New York, NY,
USA, 2004.

[45] R. Simmons, D. Apfelbaum, D. Fox, R. Goldman,
K. Haigh, D. Musliner, M. Pelican, and S. Thrun.
Coordinated Deployment of Multiple, Heterogeneous
Robots. InIntelligent Robots and Systems, 2000.(IROS
2000). Proceedings. 2000 IEEE/RSJ International
Conference on, volume 3, 2000.

[46] J. Stankovic. Strategic Directions in Real-time and
Embedded Systems.ACM Computing Surveys (CSUR),
28(4):751–763, 1996.

[47] N. R. C. Steering Committee for the Decadal Survey of
Civil Aeronautics.Decadal Survey of Civil Aeronautics:
Foundation for the Future. The National Academies Press,
2996.

[48] K. Tindell and J. Clark. Holistic schedulability analysis for
distributed hard real-time systems.Microprocessing and
Microprogramming, 40(2):117–134, 1994.

[49] C. Wang and Z. Li. A computation offloading scheme on
handheld devices.Journal of Parallel and Distributed
Computing, 64(6):740–746, 2004.

[50] C. Xian, Y. Lu, and Z. Li. Energy-aware scheduling for
real-time multiprocessor systems with uncertain task
execution time. InProceedings of the 44th annual
conference on Design automation, pages 664–669. ACM
New York, NY, USA, 2007.

