
The Factory Method Pattern

Other Considerations

Douglas C. Schmidt



• Recognize how the Factory Method pattern can be applied to extensibly 
create variabilities in the expression tree processing app.

• Understand the structure & functionality of the Factory Method pattern.

• Know how to implement the Factory Method pattern in C++.

• Be aware of other considerations when applying the Factory Method pattern.

Learning Objectives in This Lesson
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Consequences

+ Decoupling

• Clients are more flexible 
since they needn’t specify the 
class name of the concrete 
class & the details of its 
creation. 

Instead of:

User_Command command =       

new Print_Command();

Use:

User_Command command     

= command_factory_.

make_command

("print"));

where userCommand_Factory is an 
instance of User_Command_Factory
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Consequences

+ Decoupling

• Clients are more flexible 
since they needn’t specify the 
class name of the concrete 
class & the details of its 
creation. 

Instead of:

User_Command_Impl command =

new Print_Command();

Use:

User_Command command     

= command_factory_.

make_command

("print");

where command_factory_ is an 
instance of User_Command_Factory

Hard-codes a lexical 
dependency on 
Print_Command

Factory Method             GoF Class Creational



Consequences

+ Decoupling

• Clients are more flexible 
since they needn’t specify the 
class name of the concrete 
class & the details of its 
creation. 

Instead of:

User_Command_Impl command =       

new Print_Command();

Use:

User_Command command     

= command_factory_.

make_command

("print");

where command_factory_ is an 
instance of User_Command_Factory

No lexical dependency 
on any concrete class
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Consequences

− More classes

• Construction of objects may 
require additional class(es).
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Consequences

− More classes

• Construction of objects may 
require additional class(es).

• An alternative is to pass a 
param to the Creator super 
class factory method.
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Format_Command_Factory

make_command()

Macro_Command_Factory

make_command()

Implementation Considerations

• Must vs. may derived class

• The creator class is abstract, i.e.,

• It doesn’t implement factory 
methods & must be derived 
classed.
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Implementation Considerations

• Must vs. may derived class

• The creator class is abstract. 

• The creator class is concrete, i.e., 

• It provides a default factory 
method & may be derived 
classed.
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Implementation Considerations

• Factory method creates variants 

• Pass a parameter to designate 
the variant.
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Implementation Considerations

• Factory method creates variants 

• Pass a parameter to designate 
the variant.
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A Java string or enum
parameter indicates which 
command the user wants.

A string is more flexible, whereas an enum is more type-safe.
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Implementation Considerations

• Constructor references in modern Java may reduce the tedium of creating 
Product derived classes
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See dzone.com/articles/factory-pattern-using-lambda-expression-in-java-8

class ShapeFactory { 

Map<string, Supplier<Shape>> map = 

new std::map<>() {{

put("CIRCLE", Circle::new);

put("RECTANGLE", Rectangle::new);

...

}};

Shape getShape(string shape) {

Supplier<Shape> shape = map.get(shape.toUpperCase());

if (shape != null) 

return shape.get();

throw new IllegalArgumentException

("No such shape " + shape.toUpperCase());

}

}

}

https://dzone.com/articles/factory-pattern-using-lambda-expression-in-java-8


Implementation Considerations

• Constructor references in modern Java may reduce the tedium of creating 
Product derived classes
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See www.javabrahman.com/java-8/constructor-references-java-8-simplified-tutorial

class ShapeFactory { 

Map<string, Supplier<Shape>> map = 

new std::map<>() {{

put("CIRCLE", Circle::new);

put("RECTANGLE", Rectangle::new);

...

}};

Shape getShape(string shape) {

Supplier<Shape> shape = map.get(shape.toUpperCase());

if (shape != null) 

return shape.get();

throw new IllegalArgumentException

("No such shape " + shape.toUpperCase());

}

}

}

Constructor references can be used to create desired shapes.

http://www.javabrahman.com/java-8/constructor-references-java-8-simplified-tutorial


Implementation Considerations

• Constructor references in modern Java may reduce the tedium of creating 
Product derived classes
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class ShapeFactory { 

Map<string, Supplier<Shape>> map = 

new std::map<>() {{

put("CIRCLE", Circle::new);

put("RECTANGLE", Rectangle::new);

...

}};

Shape getShape(string shape) {

Supplier<Shape> shape = map.get(shape.toUpperCase());

if (shape != null) 

return shape.get();

throw new IllegalArgumentException

("No such shape " + shape.toUpperCase());

}

}

}

Get & create the requested Shape derived class



class ShapeFactory { 

Map<string, Supplier<Shape>> map = 

new std::map<>() {{

put("CIRCLE", Circle::new);

put("RECTANGLE", Rectangle::new);

...

}};

Shape getShape(string shape) {

Supplier<Shape> shape = map.get(shape.toUpperCase());

if (shape != null) 

return shape.get();

throw new IllegalArgumentException

("No such shape " + shape.toUpperCase());

}

}

}

Implementation Considerations

• Constructor references in modern Java may reduce the tedium of creating 
Product derived classes
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Doesn’t scale if getShape() takes multiple 
arguments to pass to Shape constructors



Implementation Considerations

• Apply Abstract Factory if many semantically-consistent factory methods needed

See en.wikipedia.org/wiki/Abstract_factory_pattern
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Create families of related 
objects without specifying 

derived class names

https://en.wikipedia.org/wiki/Abstract_factory_pattern


Known uses

• InterViews Kits

• ET++ WindowSystem

• AWT Toolkit

• BREW feature phone frameworks

• The ACE ORB (TAO)

• iterator() factory method in 
the Java Collection interface
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See docs.oracle.com/javase/8/docs/api/java/util/Collection.html#iterator

https://docs.oracle.com/javase/8/docs/api/java/util/Collection.html#iterator--


Known uses

• InterViews Kits

• ET++ WindowSystem

• AWT Toolkit

• BREW feature phone frameworks

• The ACE ORB (TAO)

• iterator() factory method in 
the Java Collection interface

• The begin() & end() factory
methods in C++ STL containers
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Iterators
begin()

cbegin()

returns an iterator to the 
beginning

end()

cend()

returns an iterator to the 
end

rbegin()

crbegin()

returns a reverse iterator to 
the beginning

rend()

crend()

returns a reverse iterator to 
the end

https://en.cppreference.com/w/cpp/container/vector/begin
https://en.cppreference.com/w/cpp/container/vector/end
https://en.cppreference.com/w/cpp/container/vector/rbegin
https://en.cppreference.com/w/cpp/container/vector/rend


Factory Method decouples the creation of objects from their subsequent use.

Summary of the Factory Method Pattern
• Factory Method enables extensible creation of variabilities, such as iterators, 

commands, & visitors.
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