
The Factory Method Pattern

Other Considerations

Douglas C. Schmidt

• Recognize how the Factory Method pattern can be applied to extensibly
create variabilities in the expression tree processing app.

• Understand the structure & functionality of the Factory Method pattern.

• Know how to implement the Factory Method pattern in C++.

• Be aware of other considerations when applying the Factory Method pattern.

Learning Objectives in This Lesson

Other Considerations of the
Factory Method Pattern

Douglas C. Schmidt

Consequences

+ Decoupling

• Clients are more flexible
since they needn’t specify the
class name of the concrete
class & the details of its
creation.

Instead of:

User_Command command =

new Print_Command();

Use:

User_Command command

= command_factory_.

make_command

("print"));

where userCommand_Factory is an
instance of User_Command_Factory

Factory Method GoF Class Creational

Consequences

+ Decoupling

• Clients are more flexible
since they needn’t specify the
class name of the concrete
class & the details of its
creation.

Instead of:

User_Command_Impl command =

new Print_Command();

Use:

User_Command command

= command_factory_.

make_command

("print");

where command_factory_ is an
instance of User_Command_Factory

Hard-codes a lexical
dependency on
Print_Command

Factory Method GoF Class Creational

Consequences

+ Decoupling

• Clients are more flexible
since they needn’t specify the
class name of the concrete
class & the details of its
creation.

Instead of:

User_Command_Impl command =

new Print_Command();

Use:

User_Command command

= command_factory_.

make_command

("print");

where command_factory_ is an
instance of User_Command_Factory

No lexical dependency
on any concrete class

Factory Method GoF Class Creational

Consequences

− More classes

• Construction of objects may
require additional class(es).

Factory Method GoF Class Creational

…

User_Command_Factory

make_command()

Format_Command_Factory

make_command()
<<creates>>

<<creates>>

Print_Command_Factory

make_command()

Macro_Command_Factory

make_command()
<<creates>>

User_Command_Impl

execute()

Print

Command

Format

Command

Expr

Command

Eval

Command

Quit

Command

Macro

Command

Consequences

− More classes

• Construction of objects may
require additional class(es).

• An alternative is to pass a
param to the Creator super
class factory method.

Factory Method GoF Class Creational

<<creates>>

User_Command_Factory

make_command(Param)

User_Command_Impl

execute()

Print

Command

Format

Command

Expr

Command

Eval

Command

Quit

Command

Macro

Command

Format_Command_Factory

make_command()

Macro_Command_Factory

make_command()

Implementation Considerations

• Must vs. may derived class

• The creator class is abstract, i.e.,

• It doesn’t implement factory
methods & must be derived
classed.

Factory Method GoF Class Creational

…

User_Command_Factory

make_command()

<<creates>>

<<creates>>

Print_Command_Factory

make_command()

<<creates>>

User_Command_Impl

execute()

Print

Command

Format

Command

Expr

Command

Eval

Command

Quit

Command

Macro

Command

Implementation Considerations

• Must vs. may derived class

• The creator class is abstract.

• The creator class is concrete, i.e.,

• It provides a default factory
method & may be derived
classed.

Factory Method GoF Class Creational

<<creates>>

User_Command_Factory

make_command()

…

User_Command_Impl

execute()

Print

Command

Format

Command

Expr

Command

Eval

Command

Quit

Command

Macro

Command

Implementation Considerations

• Factory method creates variants

• Pass a parameter to designate
the variant.

Factory Method GoF Class Creational

<<creates>>

User_Command_Factory

make_command(Param)

User_Command_Impl

execute()

Print

Command

Format

Command

Expr

Command

Eval

Command

Quit

Command

Macro

Command

Implementation Considerations

• Factory method creates variants

• Pass a parameter to designate
the variant.

Factory Method GoF Class Creational

A Java string or enum
parameter indicates which
command the user wants.

A string is more flexible, whereas an enum is more type-safe.

<<creates>>

User_Command_Factory

make_command(Param)

User_Command_Impl

execute()

Print

Command

Format

Command

Expr

Command

Eval

Command

Quit

Command

Macro

Command

Implementation Considerations

• Constructor references in modern Java may reduce the tedium of creating
Product derived classes

Factory Method GoF Class Creational

See dzone.com/articles/factory-pattern-using-lambda-expression-in-java-8

class ShapeFactory {

Map<string, Supplier<Shape>> map =

new std::map<>() {{

put("CIRCLE", Circle::new);

put("RECTANGLE", Rectangle::new);

...

}};

Shape getShape(string shape) {

Supplier<Shape> shape = map.get(shape.toUpperCase());

if (shape != null)

return shape.get();

throw new IllegalArgumentException

("No such shape " + shape.toUpperCase());

}

}

}

https://dzone.com/articles/factory-pattern-using-lambda-expression-in-java-8

Implementation Considerations

• Constructor references in modern Java may reduce the tedium of creating
Product derived classes

Factory Method GoF Class Creational

See www.javabrahman.com/java-8/constructor-references-java-8-simplified-tutorial

class ShapeFactory {

Map<string, Supplier<Shape>> map =

new std::map<>() {{

put("CIRCLE", Circle::new);

put("RECTANGLE", Rectangle::new);

...

}};

Shape getShape(string shape) {

Supplier<Shape> shape = map.get(shape.toUpperCase());

if (shape != null)

return shape.get();

throw new IllegalArgumentException

("No such shape " + shape.toUpperCase());

}

}

}

Constructor references can be used to create desired shapes.

http://www.javabrahman.com/java-8/constructor-references-java-8-simplified-tutorial

Implementation Considerations

• Constructor references in modern Java may reduce the tedium of creating
Product derived classes

Factory Method GoF Class Creational

class ShapeFactory {

Map<string, Supplier<Shape>> map =

new std::map<>() {{

put("CIRCLE", Circle::new);

put("RECTANGLE", Rectangle::new);

...

}};

Shape getShape(string shape) {

Supplier<Shape> shape = map.get(shape.toUpperCase());

if (shape != null)

return shape.get();

throw new IllegalArgumentException

("No such shape " + shape.toUpperCase());

}

}

}

Get & create the requested Shape derived class

class ShapeFactory {

Map<string, Supplier<Shape>> map =

new std::map<>() {{

put("CIRCLE", Circle::new);

put("RECTANGLE", Rectangle::new);

...

}};

Shape getShape(string shape) {

Supplier<Shape> shape = map.get(shape.toUpperCase());

if (shape != null)

return shape.get();

throw new IllegalArgumentException

("No such shape " + shape.toUpperCase());

}

}

}

Implementation Considerations

• Constructor references in modern Java may reduce the tedium of creating
Product derived classes

Factory Method GoF Class Creational

Doesn’t scale if getShape() takes multiple
arguments to pass to Shape constructors

Implementation Considerations

• Apply Abstract Factory if many semantically-consistent factory methods needed

See en.wikipedia.org/wiki/Abstract_factory_pattern

Factory Method GoF Class Creational

Create families of related
objects without specifying

derived class names

https://en.wikipedia.org/wiki/Abstract_factory_pattern

Known uses

• InterViews Kits

• ET++ WindowSystem

• AWT Toolkit

• BREW feature phone frameworks

• The ACE ORB (TAO)

• iterator() factory method in
the Java Collection interface

Factory Method GoF Class Creational

See docs.oracle.com/javase/8/docs/api/java/util/Collection.html#iterator

https://docs.oracle.com/javase/8/docs/api/java/util/Collection.html#iterator--

Known uses

• InterViews Kits

• ET++ WindowSystem

• AWT Toolkit

• BREW feature phone frameworks

• The ACE ORB (TAO)

• iterator() factory method in
the Java Collection interface

• The begin() & end() factory
methods in C++ STL containers

Factory Method GoF Class Creational

Iterators
begin()

cbegin()

returns an iterator to the
beginning

end()

cend()

returns an iterator to the
end

rbegin()

crbegin()

returns a reverse iterator to
the beginning

rend()

crend()

returns a reverse iterator to
the end

https://en.cppreference.com/w/cpp/container/vector/begin
https://en.cppreference.com/w/cpp/container/vector/end
https://en.cppreference.com/w/cpp/container/vector/rbegin
https://en.cppreference.com/w/cpp/container/vector/rend

Factory Method decouples the creation of objects from their subsequent use.

Summary of the Factory Method Pattern
• Factory Method enables extensible creation of variabilities, such as iterators,

commands, & visitors.

C
o
m

m
a
n
d

Factory Method

User_Command_FactoryInput_Handler

User_Command_Impl

<<creates>>

Format_Command Expr_Command

Print_Command

Eval_Command

SetCommand Quit_CommandMacro_Command

*

Null_Command

Tree_Context

1

