
Overview of the Patterns 

Applied in the Expression 

Tree Processing App

Douglas C. Schmidt



• Recognize which GoF patterns the expression tree processing app uses.

Learning Objectives in This Lesson

Creational Structural Behavioral

Class Factory 

Method

Adapter 

(class)

Interpreter

Template Method

Object Abstract 

Factory

Builder

Prototype

Singleton

Adapter 

(object)

Bridge

Composite

Decorator

Flyweight

Façade

Proxy

Chain of Responsibility

Command

Iterator

Mediator

Memento

Observer

State

Strategy

Visitor

√

√

√

√

√

√

√

√

√

√√

√

√

√

√

√

√



Lesson Introduction
Douglas C. Schmidt



• The book Design Patterns: Elements of Reusable Object-Oriented Software 
(the so-called "Gang of Four" or "GoF" book) presents recurring solutions to 
common problems in software design in the form of 23 patterns.

Lesson Introduction

Creational Structural Behavioral

Class Factory 

Method

Adapter 

(class)

Interpreter

Template Method

Object Abstract 

Factory

Builder

Prototype

Singleton

Adapter 

(object)

Bridge

Composite

Decorator

Flyweight

Façade

Proxy

Chain of Responsibility

Command

Iterator

Mediator

Memento

Observer

State

Strategy

Visitor



Design Problems & 
GoF Pattern Solutions

Douglas C. Schmidt



Design Problem Pattern

Non-extensible & error-prone designs Composite

Minimizing impact of variability Bridge

Inflexible expression input processing Interpreter

Inflexible interpreter output Builder

Scattered request implementations Command

Inflexible creation of variabilities Factory Method

Inflexible expression tree traversal Iterator

Obtrusive behavior changes Strategy

Non-extensible tree operations Visitor

Incorrect user request ordering State

Non-extensible operating modes Template Method

Minimizing global variable liabilities Singleton

Design Problems & GoF Pattern Solutions

These patterns constitute a “pattern sequence” for the case study app.

See www.dre.vanderbilt.edu/~schmidt/POSA-tutorial.pdf

−35

−5*(3+4)

http://www.dre.vanderbilt.edu/~schmidt/POSA-tutorial.pdf


Composite intent

• Treat individual objects & multiple, recursively-composed objects uniformly

Design Problem Pattern

Non-extensible & error-prone designs Composite

Design Problems & GoF Pattern Solutions

See en.wikipedia.org/wiki/Composite_pattern

https://en.wikipedia.org/wiki/Composite_pattern


Bridge intent

• Separate an abstraction from its implementation(s) so the two can vary independently

Design Problem Pattern

Minimizing impact of variability Bridge

Design Problems & GoF Pattern Solutions

See en.wikipedia.org/wiki/Bridge_pattern

https://en.wikipedia.org/wiki/Bridge_pattern


Interpreter intent

• Given a language, define a representation for its grammar, along with an interpreter 
that uses the representation to interpret sentences in the language 

Design Problem Pattern

Inflexible expression input processing Interpreter

Design Problems & GoF Pattern Solutions

See en.wikipedia.org/wiki/Interpreter_pattern

https://en.wikipedia.org/wiki/Interpreter_pattern


Builder intent

• Separate the construction of a complex object from its representation

Design Problem Pattern

Inflexible interpreter output Builder

Design Problems & GoF Pattern Solutions

See en.wikipedia.org/wiki/Builder_pattern

https://en.wikipedia.org/wiki/Builder_pattern


Command intent

• Encapsulate the request for a service as an object

Design Problem Pattern

Scattered & fixed request implementations Command

ConcreteCommand

Design Problems & GoF Pattern Solutions

See en.wikipedia.org/wiki/Command_pattern

https://en.wikipedia.org/wiki/Command_pattern


Factory Method intent

• Provide an interface for creating an object, but leave the choice of the object’s 
concrete type to a subclass

Design Problem Pattern

Inflexible creation of variabilities Factory Method

Design Problems & GoF Pattern Solutions

See en.wikipedia.org/wiki/Factory_method_pattern

https://en.wikipedia.org/wiki/Factory_method_pattern


Iterator intent

• Access elements of an aggregate without exposing its representation

Design Problem Pattern

Inflexible expression tree traversal Iterator

Design Problems & GoF Pattern Solutions

See en.wikipedia.org/wiki/Iterator_pattern

https://en.wikipedia.org/wiki/Iterator_pattern


Strategy intent

• Define a family of algorithms, encapsulate each one, & make them interchangeable to 
let clients & algorithms vary independently

Design Problem Pattern

Obtrusive behavior changes Strategy

Design Problems & GoF Pattern Solutions

See en.wikipedia.org/wiki/Strategy_pattern

https://en.wikipedia.org/wiki/Strategy_pattern


Visitor intent

• Centralize operations on an object structure so that they can vary independently, but 
still behave polymorphically

Design Problem Pattern

Non-extensible tree operations Visitor

Design Problems & GoF Pattern Solutions

See en.wikipedia.org/wiki/Visitor_pattern

https://en.wikipedia.org/wiki/Visitor_pattern


State intent

• Allow an object to alter its behavior when its internal state changes—the object will 
appear to change its class

Design Problem Pattern

Incorrect user request ordering State

Design Problems & GoF Pattern Solutions

See en.wikipedia.org/wiki/State_pattern

https://en.wikipedia.org/wiki/State_pattern


Template Method intent

• Provide a skeleton of an algorithm in a method, deferring some steps to subclasses

Design Problem Pattern

Non-extensible operating modes Template Method

Design Problems & GoF Pattern Solutions

See en.wikipedia.org/wiki/Template_method_pattern

https://en.wikipedia.org/wiki/Template_method_pattern


Singleton intent

• Ensure a class only has one instance & provide a global point of access 

Design Problem Pattern

Minimizing global variable liabilities Singleton

Design Problems & GoF Pattern Solutions

See en.wikipedia.org/wiki/Singleton_pattern

https://en.wikipedia.org/wiki/Singleton_pattern


Design Problem Pattern

Non-extensible & error-prone designs Composite

Minimizing impact of variability Bridge

Inflexible expression input processing Interpreter

Inflexible interpreter output Builder

Scattered request implementations Command

Inflexible creation of variabilities Factory Method

Inflexible expression tree traversal Iterator

Obtrusive behavior changes Strategy

Non-extensible tree operations Visitor

Incorrect user request ordering State

Non-extensible operating modes Template Method

Minimizing global variable liabilities Singleton

Naturally, these patterns apply to more than expression tree processing apps!

Design Problems & GoF Pattern Solutions




