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Topics Covered in this Part of the Module 
• Motivate the importance of design 

experience & leveraging recurring 
design structure in becoming a 
master software developer 
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• Experts perform differently than 

beginners 
• Unlike novices, professional 

athletes, musicians & dancers 
move fluidly & effortlessly,  
without focusing on each  
individual movement 
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Becoming a Master 
• Experts perform differently than 

beginners 
• Unlike novices, professional 

athletes, musicians & dancers move 
fluidly & effortlessly,  
without focusing on each  
individual movement 

• When watching experts perform  
it’s easy to forget how much effort 
they’ve put into reaching high  
levels of achievement  

• Continuous repetition &  
practice are crucial to success 

• Mentoring from other experts is also 
essential to becoming a  
master 
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Becoming a Master Software Developer 
• Knowledge of programming languages 

is necessary, but not sufficient 
• Can fall prey to “featuritis” or worse 

• e.g., GPERF perfect hash function 
generator, circa 1990 
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Becoming a Master Software Developer 
• Knowledge of programming languages 

is necessary, but not sufficient 
• Can fall prey to “featuritis” or worse 

• e.g., GPERF perfect hash function 
generator, circa 1990 

See www.dre.vanderbilt.edu/~schmidt/PDF/gperf.pdf for a paper on GPERF 

Problems 
• Hard-coded 

algorithms 
• Hard-coded  

data  
structures 

• Hard-coded 
generators 

• etc. 

http://www.dre.vanderbilt.edu/~schmidt/PDF/gperf.pdf
http://www.dre.vanderbilt.edu/~schmidt/PDF/gperf.pdf
http://www.dre.vanderbilt.edu/~schmidt/PDF/gperf.pdf
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Becoming a Master Software Developer 
• Knowledge of programming languages 

is necessary, but not sufficient 
• Can fall prey to “featuritis” or worse 

• e.g., GPERF perfect hash function 
generator, circa 1990 

GPERF is part of the GNU software release at www.gnu.org/software/gperf  

http://www.gnu.org/software/gperf
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Becoming a Master Software Developer 
• Knowledge of programming languages  

is necessary, but not sufficient 
• Can fall prey to “featuritis” or worse! 

• e.g., “Best one-liner” from  
2006 “Obfuscated C Code”  
contest 
 
 
 

• This program prints out the time when it was compiled! 

main(_){_^448&&main(-~_);putchar(--_%64?32|-~7[ 
__TIME__-_/8%8][">'txiZ^(~z?"-48]>>";;;====~$::199" 
[_*2&8|_/64]/(_&2?1:8)%8&1:10);}  

See www.ioccc.org for many examples of obfuscated C 

http://www.ioccc.org/
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Becoming a Master Software Developer 
• Knowledge of programming languages  

is necessary, but not sufficient 
• Can fall prey to “featuritis” or worse! 

• Software methods emphasize design 
notations, such as UML 
• Fine for specification & documentation 

• e.g., omits mundane implementation 
details & focuses on relationships 
between key design entities 
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• Knowledge of programming languages  
is necessary, but not sufficient 
• Can fall prey to “featuritis” or worse! 

• Software methods emphasize design 
notations, such as UML 
• Fine for specification & documentation 

• But good software design is more  
than drawing diagrams 
• Good draftsmen/artists are not  

necessarily good architects! 

Becoming a Master Software Developer 



Overview of Patterns Douglas C. Schmidt 

13 

Becoming a Master Software Developer 

See www.dre.vanderbilt.edu/~schmidt/PDF/ECOOP-95.pdf for more info 

• Knowledge of programming languages  
is necessary, but not sufficient 
• Can fall prey to “featuritis” or worse! 

• Software methods emphasize design 
notations, such as UML 
• Fine for specification & documentation 

• But good software design is more  
than drawing diagrams 
• Good draftsmen/artists are not  

necessarily good architects! 
• Bottom-line: Master software 

developers rely on design experience 
• At least as important as  

knowledge of programming  
languages & environments 

http://www.dre.vanderbilt.edu/~schmidt/PDF/ECOOP-95.pdf
http://www.dre.vanderbilt.edu/~schmidt/PDF/ECOOP-95.pdf
http://www.dre.vanderbilt.edu/~schmidt/PDF/ECOOP-95.pdf
http://www.dre.vanderbilt.edu/~schmidt/PDF/ECOOP-95.pdf
http://www.dre.vanderbilt.edu/~schmidt/PDF/ECOOP-95.pdf
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Where Should Design Experience Reside? 
Well-designed software exhibits recurring structures & behaviors that promote 
• Abstraction 
• Flexibility 
• Reuse 
• Quality  
• Modularity 
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typically located in: 
1. the heads of the experts 
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Where Should Design Experience Reside? 
Well-designed software exhibits recurring structures & behaviors that promote 
• Abstraction 
• Flexibility 
• Reuse 
• Quality  
• Modularity 

Therein lies valuable  
design knowledge 

public class KeyGeneratorImpl extends Service { 
    private Set<UUID> keys = new HashSet<UUID>(); 
    private final KeyGenerator.Stub binder = new KeyGenerator.Stub() { 
            public void setCallback (final KeyGeneratorCallback callback) { 
                UUID id; 
                synchronized (keys) { 
                    do { id = UUID.randomUUID(); } while (keys.contains(id)); 
                    keys.add(id); 
                } 
                final String key = id.toString(); 
                try { 
                    Log.d(getClass().getName(), "sending key" + key); 
                    callback.sendKey(key); 
                } catch (RemoteException e) { e.printStackTrace(); } 
            } 
    }; 
    public IBinder onBind(Intent intent) { return this.binder; } 
} 

Unfortunately, this design knowledge is 
typically located in: 
1. the heads of the experts 
2. the bowels of the source code 
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Where Should Design Experience Reside? 
Well-designed software exhibits recurring structures & behaviors that promote 
• Abstraction 
• Flexibility 
• Reuse 
• Quality  
• Modularity 

Therein lies valuable  
design knowledge 

Unfortunately, this design knowledge is 
typically located in: 
1. the heads of the experts 
2. the bowels of the source code 

 
Both locations are fraught with danger! 
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Summary 
• Achieving mastery of software 

development requires 
continuous repetition, 
practice, & mentoring  
from experts 
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Summary 
• Achieving mastery of software 

development requires 
continuous repetition, 
practice, & mentoring  
from experts 

• Open-source & open  
courses are vital  
resources 

 

Information & registration available at www.coursera.org/course/posa  

http://www.coursera.org/course/posa
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Summary 
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development requires 
continuous repetition, 
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on experience gleaned from 
successful designs 
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Summary 
• Achieving mastery of software 

development requires 
continuous repetition, 
practice, & mentoring  
from experts 

• Good software developers rely  
on experience gleaned from 
successful designs 

• What we need is a means of 
extracting, documenting, 
conveying, applying, & 
preserving this design 
knowledge without undue 
time, effort, & risk! 
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Topics Covered in this Part of the Module 
• Motivate the importance of design 

experience & leveraging recurring 
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master software developer 

• Introduce patterns as a  
means of improving software  
quality & developer  
productivity by… 
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Topics Covered in this Part of the Module 
• Motivate the importance of design 

experience & leveraging recurring 
design structure in becoming a  
master software developer 

• Introduce patterns as a  
means of improving software  
quality & developer  
productivity  

• Summarize common  
characteristics of patterns 

Observer 
pattern 

s->getData() 

Observer 
update 

ConcreteObserver 
update 
doSomething 

state = X; 
notify();  

Subject 

 
setData 
getData 
notify  
attach 
detach 
 

state 
observerList 

for all observers 
in observerList do 
   observer.update() 

* 

Observer 
pattern 
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• Describes a solution to a common problem arising within a context  

Key to Mastery: Knowledge of Software Patterns 

Civil 
engineering 

Mobile 
devices 

Automotive 

Electronic 
Trading 

Aerospace 
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Observer 
pattern 

• Describes a solution to a common problem arising within a context by  

• Naming a recurring design structure 

Key to Mastery: Knowledge of Software Patterns 

Intent: “Define a one-to-many 
dependency between objects so that 
when one object changes state, all 
dependents are notified & updated” 

Observer 

ConcreteObserver 

Subject 
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• Describes a solution to a common problem arising within a context by  

• Naming a recurring design structure 

• Specifying design structure explicitly 
by identifying key class/object 
• Roles & relationships 
• Dependencies 
• Interactions 
• Conventions 

Key to Mastery: Knowledge of Software Patterns 

*Interpret “class” & “object” loosely: patterns are for more than OO languages! 

* 

s->getData() 

Observer 
update 

ConcreteObserver 
update 
doSomething 

state = X; 
notify();  

Subject 

 
setData 
getData 
notify  
attach 
detach 
 

state 
observerList 

for all observers 
in observerList do 
   observer.update() 

* 

Observer 
pattern 
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• Describes a solution to a common problem arising within a context by  

• Naming a recurring design structure 

• Specifying design structure explicitly 
by identifying key class/object 
• Roles & relationships 
• Dependencies  
• Interactions 
• Conventions 

• Abstracting from concrete design  
elements 
• e.g., problem domain, form factor,  

vendor, etc. 
 

Key to Mastery: Knowledge of Software Patterns 

s->getData() 

Observer 
update 

ConcreteObserver 
update 
doSomething 

state = X; 
notify();  

Subject 

 
setData 
getData 
notify  
attach 
detach 
 

state 
observerList 

for all observers 
in observerList do 
   observer.update() 

* 

Observer 
pattern 
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• Describes a solution to a common problem arising within a context by  

• Naming a recurring design structure 

• Specifying design structure explicitly 
by identifying key class/object 
• Roles & relationships 
• Dependencies  
• Interactions 
• Conventions 

• Abstracting from concrete design  
elements 

• Distilling & codifying knowledge  
gleaned by experts from their  
successful design experiences 

Key to Mastery: Knowledge of Software Patterns 

s->getData() 

Observer 
update 

ConcreteObserver 
update 
doSomething 

state = X; 
notify();  

Subject 

 
setData 
getData 
notify  
attach 
detach 
 

state 
observerList 

for all observers 
in observerList do 
   observer.update() 

* 

Observer 
pattern 
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Common Characteristics of Patterns 
• They describe both a thing &  

a process: 
• The “thing” (the “what”) typically 

means a particular high-level 
design outline or description of 
code detail 
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Common Characteristics of Patterns 
• They describe both a thing &  

a process: 
• The “thing” (the “what”) typically 

means a particular high-level 
design outline or description of 
code detail 

• The “process” (the “how”) 
typically describes the steps to 
perform to create the “thing” 

 

csis.pace.edu/~bergin/dcs/SoftwarePatterns_Coplien.pdf has more info 

http://csis.pace.edu/~bergin/dcs/SoftwarePatterns_Coplien.pdf
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Common Characteristics of Patterns 
• They describe both a thing &  

a process  
• They can be independent of 

programming languages & 
implementation techniques 

 
 

Naturally, different patterns apply to different programming languages 
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Common Characteristics of Patterns 
• They describe both a thing &  

a process  
• They can be independent of 

programming languages & 
implementation techniques 

• They define “micro-architectures”  
• In other words, recurring design 

structure 

Observer 

update 

ConcreteObserver 

update 
… 

Subject 

attach 
detact 
notify 

state 
observerList 

for all observers 
in observerList do 
   observer.update() 

* 

Observer pattern 
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Content  
Observer 
onChange 

MyContent 
Observer 

onChange 
… 

Content 
Observable 

registerObserver 
unregisterObserver 
notifyChange 

state 
observerList 

for all observers 
in observerList do 
   observer.onChange() 

* 

One use of the 
Observer pattern in 
Android 

Observer Observer 

Subject Observer 

Observer 

Concrete 
Observer 

Common Characteristics of Patterns 
• They describe both a thing &  

a process  
• They can be independent of 

programming languages & 
implementation techniques 

• They define “micro-architectures”  
• In other words, recurring design 

structure 
• Certain properties may be 

modified for particular contexts 
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Broadcast  
Receiver  
onReceive 

BroadcastHandler 

onReceive 
… 

Context 

registerReceiver 
unregisterReceiver 
sendBroadcast 

state 
observerList 

for all observers 
in observerList do 
   observer.onReceive() 

* 

A different use of 
the Observer 
pattern in Android 

Observer Observer 

Subject Observer 

Observer 

Concrete 
Observer 

Common Characteristics of Patterns 
• They describe both a thing &  

a process  
• They can be independent of 

programming languages & 
implementation techniques 

• They define “micro-architectures”  
• In other words, recurring design 

structure 
• Certain properties may be 

modified for particular contexts 
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Common Characteristics of Patterns 
• They describe both a thing &  

a process  
• They can be independent of 

programming languages & 
implementation techniques 

• They define “micro-architectures”  
• They aren’t code or (concrete) 

designs, so they must be reified  
and applied in particular  
languages 
 

Observer pattern 
in Java 

public class EventHandler  
    extends Observer {  
  public void update(Observable o,  
                     Object arg)  
  { /*…*/ }  
    … 

public class EventSource  
    extends Observable,  
    implements Runnable { 
  public void run()  
  { /*…*/ notifyObservers(/*…*/); } 
    … 
 EventSource eventSource =  
 new EventSource(); 
EventHandler eventHandler =  
 new EventHandler(); 
eventSource.addObserver(eventHandler); 
Thread thread  
            = new Thread(eventSource);  
thread.start(); 
… 
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Common Characteristics of Patterns 
• They describe both a thing &  

a process  
• They can be independent of 

programming languages & 
implementation techniques 

• They define “micro-architectures”  
• They aren’t code or (concrete) 

designs, so they must be reified  
and applied in particular  
languages 

class Event_Handler  
    : public Observer {  
public: 
  virtual void update(Observable o,  
                      Object arg)  
  { /* … */ }  
    … 

class Event_Source  
    : public Observable,  
      public ACE_Task_Base {  
public: 
  virtual void svc()  
  { /*…*/ notify_observers(/*…*/); } 
    … 
 
Event_Source event_source; 
Event_Handler event_handler; 
event_source->add_observer 
                     (event_handler); 
Event_Task task (event_source);  
task->activate(); 
… 

Observer pattern in C++/ACE 
(uses the GoF Bridge pattern with 

reference counting to simplify  
memory management & ensure  

exception-safe semantics) 

www.dre.vanderbilt.edu/ACE has more info on ACE 

http://www.dre.vanderbilt.edu/ACE
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Common Characteristics of Patterns 
• They describe both a thing &  

a process  
• They can be independent of 

programming languages & 
implementation techniques 

• They define “micro-architectures”  
• They aren’t code or (concrete) 

designs, so they must be reified  
and applied in particular  
languages 

• They are not methods but can be  
used as an adjunct to methods, e.g.:  
• Rational Unified Process 
• Agile 
• Others 
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Common Characteristics of Patterns 
• They describe both a thing &  

a process  
• They can be independent of  

programming languages &  
implementation techniques 

• They define “micro-architectures”  
• They aren’t code or (concrete)  

designs, so they must be reified  
and applied in particular  
languages 

• They are not methods but can be  
used as an adjunct to methods  

• There are also patterns for organizing 
effective software development teams  
and navigating other complex settings 
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Common Parts of a Pattern Description 
• Name  

• Should be pithy & memorable 
• Intent 

• Goal behind the pattern & the 
reason(s) for using it 

• Problem addressed by pattern  
• Motivate the “forces” & situations 

in which pattern is applicable  
• Solution  

• Visual & textual descriptions of  
pattern static structure, 
participants, 
and collaboration dynamics  
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Common Parts of a Pattern Description 
• Examples & Implementation 

guidance   
• May include source code snippets  

in one or more programming 
languages 

• Consequences  
• Pros & cons of applying the pattern  

• Known uses  
• Examples of real uses of the pattern 
• Should follow the “rule of three”  

• Related patterns  
• Summarize relationships & tradeoffs 

between alternative patterns for 
similar problems 

See c2.com/cgi/wiki?PatternForms for more info on pattern forms  

http://c2.com/cgi/wiki?PatternForms
http://c2.com/cgi/wiki?PatternForms
http://c2.com/cgi/wiki?PatternForms
http://c2.com/cgi/wiki?PatternForms
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Summary 
• Patterns codify software expertise & 

support design at a more abstract level 
than code 
• Emphasize design qua design,  

not (obscure) language features 
• e.g., the Observer pattern 

can be implemented in many 
programming languages 

s->getData() 

Observer 
update 

ConcreteObserver 
update 
doSomething 

state = X; 
notify();  

Subject 

 
setData 
getData 
notify  
attach 
detach 
 

state 
observerList 

for all observers 
in observerList do 
   observer.update() 

* 

Observer 
pattern 

Patterns often equated with OO languages, but can apply to non-OO languages 
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Summary 
• Patterns codify software expertise & 

support design at a more abstract level 
than code 
• Emphasize design qua design,  

not (obscure) language features 
• Treat class/object interactions  

as a cohesive conceptual unit 
• e.g., form the building blocks  

for more powerful pattern  
relationships s->getData() 

Observer 
update 

ConcreteObserver 
update 
doSomething 

state = X; 
notify();  

Subject 

 
setData 
getData 
notify  
attach 
detach 
 

state 
observerList 

for all observers 
in observerList do 
   observer.update() 

* 

Observer 
pattern 
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Summary 
• Patterns codify software expertise & 

support design at a more abstract level 
than code 
• Emphasize design qua design,  

not (obscure) language features 
• Treat class/object interactions  

as a cohesive conceptual unit 
• Provide ideal targets for design  

and implementation refactoring 
• e.g., adapters & (wrapper)  

facades 
s->getData() 

Observer 
update 

ConcreteObserver 
update 
doSomething 

state = X; 
notify();  

Subject 

 
setData 
getData 
notify  
attach 
detach 
 

state 
observerList 

for all observers 
in observerList do 
   observer.update() 

* 

Observer 
pattern 



Overview of Patterns Douglas C. Schmidt 

51 

Summary 
• Stand-alone “pattern islands”  

are unusual in practice 
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Summary 
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• Patterns are often related & are typically used together 
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Summary 
• Stand-alone “pattern islands”  

are unusual in practice 
• Patterns are often related & are typically used together 
• There are various types of pattern relationships 

• Pattern complements 
 

Factory 
Method  

Disposal
Method  
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Summary 
• Stand-alone “pattern islands”  

are unusual in practice 
• Patterns are often related & are typically used together 
• There are various types of pattern relationships 

• Pattern complements 
• Pattern compounds 

Batch 
(Method) I terator 
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Summary 
• Stand-alone “pattern islands”  

are unusual in practice 
• Patterns are often related & are typically used together 
• There are various types of pattern relationships 

• Pattern complements 
• Pattern compounds 
• Pattern sequences 
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Summary 
• Stand-alone “pattern islands”  

are unusual in practice 
• Patterns are often related & are typically used together 
• There are various types of pattern relationships 

• Pattern complements 
• Pattern compounds 
• Pattern sequences 
• Pattern languages 
 

en.wikipedia.org/wiki/Pattern_language has discussions of pattern languages 

http://en.wikipedia.org/wiki/Pattern_language
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• Patterns can be applied in all  
software lifecycle phases 
• Analysis, design, & reviews 
• Implementation & 

optimization 
• Testing & documentation 
• Reuse & refactoring 

Summary 
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Topics Covered in this Part of the Module 
• Motivate the importance of design 

experience & leveraging recurring 
design structure in becoming a  
master software developer 

• Introduce patterns as a  
means of improving software  
quality & developer  
productivity  

• Summarize common  
characteristics of patterns 

• Describe a variation-oriented process 
for successfully applying patterns to 
software development projects 

Pattern 
Knowledge 

Trade-off 
Analysis 

Design & 
Implementation 

Decisions 

Implement 
& Integrate 
Patterns & 

Code 
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Variation-oriented Process for Applying Patterns 
• To apply patterns successfully,  

software developers need to: 

• Have broad knowledge of patterns 
relevant to their domain(s) 

Client
OBJ
REF

in args
operation()

out args + 
return

DII IDL
STUBS

ORB
INTERFACE Object Adapter

  ORB CORE GIOP/IIOP/ESIOPS

IDL
SKEL DSI

Object (Servant)

Proxy Adapter Adapter 

Facade 

Chain of 
Responsibility 

Bridge 

See www.dre.vanderbilt.edu/~schmidt/PDF/ORB-patterns.pdf for more info 

In
te

rp
re

te
r 

http://www.dre.vanderbilt.edu/~schmidt/PDF/ORB-patterns.pdf
http://www.dre.vanderbilt.edu/~schmidt/PDF/ORB-patterns.pdf
http://www.dre.vanderbilt.edu/~schmidt/PDF/ORB-patterns.pdf
http://www.dre.vanderbilt.edu/~schmidt/PDF/ORB-patterns.pdf
http://www.dre.vanderbilt.edu/~schmidt/PDF/ORB-patterns.pdf
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Variation-oriented Process for Applying Patterns 
• To apply patterns successfully,  

software developers need to: 

• Have broad knowledge of patterns 
relevant to their domain(s) 

See c2.com/cgi/wiki?HistoryOfPatterns for a history of patterns 

http://c2.com/cgi/wiki?HistoryOfPatterns
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Variation-oriented Process for Applying Patterns 
• To apply patterns successfully,  

software developers need to: 

• Have broad knowledge of patterns 
relevant to their domain(s) 
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Variation-oriented Process for Applying Patterns 
• To apply patterns successfully,  

software developers need to: 

• Have broad knowledge of patterns 
relevant to their domain(s) 

• Evaluate trade-offs & impact of using 
certain patterns in their software 
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Variation-oriented Process for Applying Patterns 
• To apply patterns successfully,  

software developers need to: 

• Have broad knowledge of patterns 
relevant to their domain(s) 

• Evaluate trade-offs & impact of using 
certain patterns in their software 

Mentoring from pattern experts is invaluable, especially when you first start 
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Variation-oriented Process for Applying Patterns 
• To apply patterns successfully,  

software developers need to: 

• Have broad knowledge of patterns 
relevant to their domain(s) 

• Evaluate trade-offs & impact of using 
certain patterns in their software 

Problems 
• Hard-coded algorithms 
• Hard-coded  

data  
structures 

• Hard-coded generators 
• etc. 
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Variation-oriented Process for Applying Patterns 
• To apply patterns successfully,  

software developers need to: 

• Have broad knowledge of patterns 
relevant to their domain(s) 

• Evaluate trade-offs & impact of using 
certain patterns in their software 

Strategy 
pattern 

Template 
Method 
pattern 

Pattern languages help developers navigate thru trade-offs 
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Variation-oriented Process for Applying Patterns 
• To apply patterns successfully,  

software developers need to: 

• Have broad knowledge of patterns 
relevant to their domain(s) 

• Evaluate trade-offs & impact of using 
certain patterns in their software 

• Make design & implementation 
decisions about how best to  
apply the selected patterns  

• Patterns may require  
modifications for particular  
contexts 

Observer 

update 

ConcreteObserver 

update 
… 

Subject 

attach 
detact 
notify 

state 
observerList 

for all observers 
in observerList do 
   observer.update() 

* 

The Observer Pattern 



Overview of Patterns Douglas C. Schmidt 

68 

Variation-oriented Process for Applying Patterns 
• To apply patterns successfully,  

software developers need to: 

• Have broad knowledge of patterns 
relevant to their domain(s) 

• Evaluate trade-offs & impact of using 
certain patterns in their software 

• Make design & implementation 
decisions about how best to  
apply the selected patterns  

• Patterns may require  
modifications for particular  
contexts 

Content  
Observer 
onChange 

MyContent 
Observer 

onChange 
… 

Content 
Observable 

registerObserver 
unregisterObserver 
notifyChange 

state 
observerList 

for all observers 
in observerList do 
   observer.onChange() 

* 

One use of the 
Observer Pattern in 

Android 

Observer Observer 

Subject Observer 

Observer 

Concrete 
Observer 
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Variation-oriented Process for Applying Patterns 
• To apply patterns successfully,  

software developers need to: 

• Have broad knowledge of patterns 
relevant to their domain(s) 

• Evaluate trade-offs & impact of using 
certain patterns in their software 

• Make design & implementation 
decisions about how best to  
apply the selected patterns  

• Patterns may require  
modifications for particular  
contexts 

Broadcast  
Receiver  
onReceive 

BroadcastHandler 

onReceive 
… 

Context 

registerReceiver 
unregisterReceiver 
sendBroadcast 

state 
observerList 

for all observers 
in observerList do 
   observer.onReceive() 

* 

A different use of 
the Observer 

Pattern in Android 

Observer Observer 

Subject Observer 

Observer 

Concrete 
Observer 
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Variation-oriented Process for Applying Patterns 
• To apply patterns successfully,  

software developers need to: 

• Have broad knowledge of patterns 
relevant to their domain(s) 

• Evaluate trade-offs & impact of using 
certain patterns in their software 

• Make design & implementation 
decisions about how best to  
apply the selected patterns  

• Patterns may require  
modifications for particular  
contexts 

If (uniqueInstance == 0) 
    uniqueInstance =  
        new Singleton; 
return uniqueInstance; 

John Vlissides, “To Kill a Singleton”  
sourcemaking.com/design_patterns/ 
to_kill_a_singleton 

Singleton pattern      

http://sourcemaking.com/design_patterns/to_kill_a_singleton
http://sourcemaking.com/design_patterns/to_kill_a_singleton
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Variation-oriented Process for Applying Patterns 
• To apply patterns successfully,  

software developers need to: 

• Have broad knowledge of patterns 
relevant to their domain(s) 

• Evaluate trade-offs & impact of using 
certain patterns in their software 

• Make design & implementation 
decisions about how best to  
apply the selected patterns  

• Patterns may require  
modifications for particular  
contexts 

If (uniqueInstance == 0) 
    uniqueInstance =  
        new Singleton; 
return uniqueInstance; 

class Singleton { 
  private static Singleton inst = null; 
  public static Singleton instance() { 
    Singleton result = inst; 
    if (result == null) { 
      inst = result = new Singleton();  
    } 
    return result; 
  } 
  ... 

Singleton pattern vs. 
Double-Checked 
Locking Pattern 
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Variation-oriented Process for Applying Patterns 
• To apply patterns successfully,  

software developers need to: 

• Have broad knowledge of patterns 
relevant to their domain(s) 

• Evaluate trade-offs & impact of using 
certain patterns in their software 

• Make design & implementation 
decisions about how best to  
apply the selected patterns  

• Patterns may require  
modifications for particular  
contexts 

If (uniqueInstance == 0) 
    uniqueInstance =  
        new Singleton; 
return uniqueInstance; 

class Singleton { 
  private static Singleton inst = null; 
  public static Singleton instance() { 
    Singleton result = inst; 
    if (result == null) { 
      inst = result = new Singleton();  
    } 
    return result; 
  } 
  ... 

Singleton pattern vs. 
Double-Checked 
Locking Pattern 

Too little synchronization 
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Variation-oriented Process for Applying Patterns 
• To apply patterns successfully,  

software developers need to: 

• Have broad knowledge of patterns 
relevant to their domain(s) 

• Evaluate trade-offs & impact of using 
certain patterns in their software 

• Make design & implementation 
decisions about how best to  
apply the selected patterns  

• Patterns may require  
modifications for particular  
contexts 

If (uniqueInstance == 0) 
    uniqueInstance =  
        new Singleton; 
return uniqueInstance; 

class Singleton { 
  private static Singleton inst = null; 
  public static Singleton instance() { 
    synchronized(Singleton.class) { 
      Singleton result = inst; 
      if (result == null) { 
        inst = result = new Singleton();  
      } 
    } 
    return result; 
  } 
  ... 

Singleton pattern vs. 
Double-Checked 
Locking Pattern 
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Variation-oriented Process for Applying Patterns 
• To apply patterns successfully,  

software developers need to: 

• Have broad knowledge of patterns 
relevant to their domain(s) 

• Evaluate trade-offs & impact of using 
certain patterns in their software 

• Make design & implementation 
decisions about how best to  
apply the selected patterns  

• Patterns may require  
modifications for particular  
contexts 

If (uniqueInstance == 0) 
    uniqueInstance =  
        new Singleton; 
return uniqueInstance; 

class Singleton { 
  private static Singleton inst = null; 
  public static Singleton instance() { 
    synchronized(Singleton.class) { 
      Singleton result = inst; 
      if (result == null) { 
        inst = result = new Singleton();  
      } 
    } 
    return result; 
  } 
  ... 

Singleton pattern vs. 
Double-Checked 
Locking Pattern 

Too much synchronization 



Overview of Patterns Douglas C. Schmidt 

75 

Variation-oriented Process for Applying Patterns 
• To apply patterns successfully,  

software developers need to: 

• Have broad knowledge of patterns 
relevant to their domain(s) 

• Evaluate trade-offs & impact of using 
certain patterns in their software 

• Make design & implementation 
decisions about how best to  
apply the selected patterns  

• Patterns may require  
modifications for particular  
contexts 

If (uniqueInstance == 0) 
    uniqueInstance =  
        new Singleton; 
return uniqueInstance; 

class Singleton { 
  private static volatile Singleton  
                              inst = null; 
  public static Singleton instance() { 
    Singleton result = inst; 
    if (result == null) { 
      synchronized(Singleton.class) { 
        result = inst; 
        if (result == null) 
        { inst = result = new Singleton(); } 
      } 
    } 
    return result; 
  ... 

Singleton pattern vs. 
Double-Checked 
Locking Pattern 

Just right amount of synchronization 
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Variation-oriented Process for Applying Patterns 
• To apply patterns successfully,  

software developers need to: 

• Have broad knowledge of patterns 
relevant to their domain(s) 

• Evaluate trade-offs & impact of using 
certain patterns in their software 

• Make design & implementation 
decisions about how best to  
apply the selected patterns  

• Patterns may require  
modifications for particular  
contexts 

If (uniqueInstance == 0) 
    uniqueInstance =  
        new Singleton; 
return uniqueInstance; 

class Singleton { 
  private static volatile Singleton  
                              inst = null; 
  public static Singleton instance() { 
    Singleton result = inst; 
    if (result == null) { 
      synchronized(Singleton.class) { 
        result = inst; 
        if (result == null) 
        { inst = result = new Singleton(); } 
      } 
    } 
    return result; 
  ... 

Singleton pattern vs. 
Double-Checked 
Locking Pattern 

Only synchronizes when inst is null 
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Variation-oriented Process for Applying Patterns 
• To apply patterns successfully,  

software developers need to: 

• Have broad knowledge of patterns 
relevant to their domain(s) 

• Evaluate trade-offs & impact of using 
certain patterns in their software 

• Make design & implementation 
decisions about how best to  
apply the selected patterns  

• Patterns may require  
modifications for particular  
contexts 

If (uniqueInstance == 0) 
    uniqueInstance =  
        new Singleton; 
return uniqueInstance; 

class Singleton { 
  private static volatile Singleton  
                              inst = null; 
  public static Singleton instance() { 
    Singleton result = inst; 
    if (result == null) { 
      synchronized(Singleton.class) { 
        result = inst; 
        if (result == null) 
        { inst = result = new Singleton(); } 
      } 
    } 
    return result; 
  ... 

Singleton pattern vs. 
Double-Checked 
Locking Pattern 

No synchronization after inst is created 
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Variation-oriented Process for Applying Patterns 
• To apply patterns successfully,  

software developers need to: 

• Have broad knowledge of patterns 
relevant to their domain(s) 

• Evaluate trade-offs & impact of using 
certain patterns in their software 

• Make design & implementation 
decisions about how best to  
apply the selected patterns  

• Patterns may require  
modifications for particular  
contexts 

If (uniqueInstance == 0) 
    uniqueInstance =  
        new Singleton; 
return uniqueInstance; 

class Singleton { 
  private static volatile Singleton  
                              inst = null; 
  public static Singleton instance() { 
    Singleton result = inst; 
    if (result == null) { 
      synchronized(Singleton.class) { 
        result = inst; 
        if (result == null) 
        { inst = result = new Singleton(); } 
      } 
    } 
    return result; 
  ... 

Singleton pattern vs. 
Double-Checked 
Locking Pattern 

See en.wikipedia.org/wiki/Double-checked_locking for more info 

Solution only works in JDK5 & above 

http://en.wikipedia.org/wiki/Double-checked_locking
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Variation-oriented Process for Applying Patterns 
• To apply patterns successfully,  

software developers need to: 

• Have broad knowledge of patterns 
relevant to their domain(s) 

• Evaluate trade-offs & impact of using 
certain patterns in their software 

• Make design & implementation 
decisions about how best to  
apply the selected patterns  

• Patterns may require  
modifications for particular  
contexts 

• Combine with other patterns & 
implement/integrate with code 
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Variation-oriented Process for Applying Patterns 
• To apply patterns successfully,  

software developers need to: 

• Have broad knowledge of patterns 
relevant to their domain(s) 

• Evaluate trade-offs & impact of using 
certain patterns in their software 

• Make design & implementation 
decisions about how best to  
apply the selected patterns  

• Patterns may require  
modifications for particular  
contexts 

• Combine with other patterns & 
implement/integrate with code 

High pattern  
density 
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Pattern 
Knowledge 

Trade-off 
Analysis 

Design & 
Implementation 

Decisions 

Implement 
& Integrate 
Patterns & 

Code 

Summary 
• Patterns support a variation-oriented 

design process 
1. Determine which design elements 

can vary 
2. Identify applicable pattern(s) 
3. Vary patterns &  

evaluate trade-offs 
4. Repeat… 
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• Seek generality, but don’t brand 
everything as a pattern 
 

Summary 
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• Seek generality, but don’t brand 
everything as a pattern 

• Articulate specific benefits and 
demonstrate general applicability 
• e.g., find three different existing 

examples from code other than 
yours! 

 

Summary 
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