
Overview of Patterns: Part 1

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Overview of Patterns Douglas C. Schmidt

2

Topics Covered in this Part of the Module
• Motivate the importance of design

experience & leveraging recurring
design structure in becoming a
master software developer

Overview of Patterns Douglas C. Schmidt

3

Becoming a Master
• Experts perform differently than

beginners
• Unlike novices, professional

athletes, musicians & dancers
move fluidly & effortlessly,
without focusing on each
individual movement

Overview of Patterns Douglas C. Schmidt

4

Becoming a Master
• Experts perform differently than

beginners
• Unlike novices, professional

athletes, musicians & dancers move
fluidly & effortlessly,
without focusing on each
individual movement

• When watching experts perform
it’s easy to forget how much effort
they’ve put into reaching high
levels of achievement

Overview of Patterns Douglas C. Schmidt

5

Becoming a Master
• Experts perform differently than

beginners
• Unlike novices, professional

athletes, musicians & dancers move
fluidly & effortlessly,
without focusing on each
individual movement

• When watching experts perform
it’s easy to forget how much effort
they’ve put into reaching high
levels of achievement

• Continuous repetition &
practice are crucial to success

Overview of Patterns Douglas C. Schmidt

6

Becoming a Master
• Experts perform differently than

beginners
• Unlike novices, professional

athletes, musicians & dancers move
fluidly & effortlessly,
without focusing on each
individual movement

• When watching experts perform
it’s easy to forget how much effort
they’ve put into reaching high
levels of achievement

• Continuous repetition &
practice are crucial to success

• Mentoring from other experts is also
essential to becoming a
master

Overview of Patterns Douglas C. Schmidt

7

Becoming a Master Software Developer
• Knowledge of programming languages

is necessary, but not sufficient
• Can fall prey to “featuritis” or worse

• e.g., GPERF perfect hash function
generator, circa 1990

Overview of Patterns Douglas C. Schmidt

8

Becoming a Master Software Developer
• Knowledge of programming languages

is necessary, but not sufficient
• Can fall prey to “featuritis” or worse

• e.g., GPERF perfect hash function
generator, circa 1990

See www.dre.vanderbilt.edu/~schmidt/PDF/gperf.pdf for a paper on GPERF

Problems
• Hard-coded

algorithms
• Hard-coded

data
structures

• Hard-coded
generators

• etc.

http://www.dre.vanderbilt.edu/~schmidt/PDF/gperf.pdf
http://www.dre.vanderbilt.edu/~schmidt/PDF/gperf.pdf
http://www.dre.vanderbilt.edu/~schmidt/PDF/gperf.pdf

Overview of Patterns Douglas C. Schmidt

9

Becoming a Master Software Developer
• Knowledge of programming languages

is necessary, but not sufficient
• Can fall prey to “featuritis” or worse

• e.g., GPERF perfect hash function
generator, circa 1990

GPERF is part of the GNU software release at www.gnu.org/software/gperf

http://www.gnu.org/software/gperf

Overview of Patterns Douglas C. Schmidt

10

Becoming a Master Software Developer
• Knowledge of programming languages

is necessary, but not sufficient
• Can fall prey to “featuritis” or worse!

• e.g., “Best one-liner” from
2006 “Obfuscated C Code”
contest

• This program prints out the time when it was compiled!

main(_){_^448&&main(-~_);putchar(--_%64?32|-~7[
__TIME__-_/8%8][">'txiZ^(~z?"-48]>>";;;====~$::199"
[_*2&8|_/64]/(_&2?1:8)%8&1:10);}

See www.ioccc.org for many examples of obfuscated C

http://www.ioccc.org/

Overview of Patterns Douglas C. Schmidt

11

Becoming a Master Software Developer
• Knowledge of programming languages

is necessary, but not sufficient
• Can fall prey to “featuritis” or worse!

• Software methods emphasize design
notations, such as UML
• Fine for specification & documentation

• e.g., omits mundane implementation
details & focuses on relationships
between key design entities

Overview of Patterns Douglas C. Schmidt

12

• Knowledge of programming languages
is necessary, but not sufficient
• Can fall prey to “featuritis” or worse!

• Software methods emphasize design
notations, such as UML
• Fine for specification & documentation

• But good software design is more
than drawing diagrams
• Good draftsmen/artists are not

necessarily good architects!

Becoming a Master Software Developer

Overview of Patterns Douglas C. Schmidt

13

Becoming a Master Software Developer

See www.dre.vanderbilt.edu/~schmidt/PDF/ECOOP-95.pdf for more info

• Knowledge of programming languages
is necessary, but not sufficient
• Can fall prey to “featuritis” or worse!

• Software methods emphasize design
notations, such as UML
• Fine for specification & documentation

• But good software design is more
than drawing diagrams
• Good draftsmen/artists are not

necessarily good architects!
• Bottom-line: Master software

developers rely on design experience
• At least as important as

knowledge of programming
languages & environments

http://www.dre.vanderbilt.edu/~schmidt/PDF/ECOOP-95.pdf
http://www.dre.vanderbilt.edu/~schmidt/PDF/ECOOP-95.pdf
http://www.dre.vanderbilt.edu/~schmidt/PDF/ECOOP-95.pdf
http://www.dre.vanderbilt.edu/~schmidt/PDF/ECOOP-95.pdf
http://www.dre.vanderbilt.edu/~schmidt/PDF/ECOOP-95.pdf

Overview of Patterns Douglas C. Schmidt

14

Where Should Design Experience Reside?
Well-designed software exhibits recurring structures & behaviors that promote
• Abstraction
• Flexibility
• Reuse
• Quality
• Modularity

Overview of Patterns Douglas C. Schmidt

15

Where Should Design Experience Reside?
Well-designed software exhibits recurring structures & behaviors that promote
• Abstraction
• Flexibility
• Reuse
• Quality
• Modularity

Therein lies valuable
design knowledge

Overview of Patterns Douglas C. Schmidt

16

Where Should Design Experience Reside?
Well-designed software exhibits recurring structures & behaviors that promote
• Abstraction
• Flexibility
• Reuse
• Quality
• Modularity

Therein lies valuable
design knowledge

Unfortunately, this design knowledge is
typically located in:
1. the heads of the experts

Overview of Patterns Douglas C. Schmidt

17

Where Should Design Experience Reside?
Well-designed software exhibits recurring structures & behaviors that promote
• Abstraction
• Flexibility
• Reuse
• Quality
• Modularity

Therein lies valuable
design knowledge

public class KeyGeneratorImpl extends Service {
 private Set<UUID> keys = new HashSet<UUID>();
 private final KeyGenerator.Stub binder = new KeyGenerator.Stub() {
 public void setCallback (final KeyGeneratorCallback callback) {
 UUID id;
 synchronized (keys) {
 do { id = UUID.randomUUID(); } while (keys.contains(id));
 keys.add(id);
 }
 final String key = id.toString();
 try {
 Log.d(getClass().getName(), "sending key" + key);
 callback.sendKey(key);
 } catch (RemoteException e) { e.printStackTrace(); }
 }
 };
 public IBinder onBind(Intent intent) { return this.binder; }
}

Unfortunately, this design knowledge is
typically located in:
1. the heads of the experts
2. the bowels of the source code

Overview of Patterns Douglas C. Schmidt

18

Where Should Design Experience Reside?
Well-designed software exhibits recurring structures & behaviors that promote
• Abstraction
• Flexibility
• Reuse
• Quality
• Modularity

Therein lies valuable
design knowledge

Unfortunately, this design knowledge is
typically located in:
1. the heads of the experts
2. the bowels of the source code

Both locations are fraught with danger!

Overview of Patterns Douglas C. Schmidt

19

Summary
• Achieving mastery of software

development requires
continuous repetition,
practice, & mentoring
from experts

Overview of Patterns Douglas C. Schmidt

20

Summary
• Achieving mastery of software

development requires
continuous repetition,
practice, & mentoring
from experts

• Open-source & open
courses are vital
resources

Overview of Patterns Douglas C. Schmidt

21

Summary
• Achieving mastery of software

development requires
continuous repetition,
practice, & mentoring
from experts

• Open-source & open
courses are vital
resources

Information & registration available at www.coursera.org/course/posa

http://www.coursera.org/course/posa

Overview of Patterns Douglas C. Schmidt

22

Summary
• Achieving mastery of software

development requires
continuous repetition,
practice, & mentoring
from experts

• Good software developers rely
on experience gleaned from
successful designs

Overview of Patterns Douglas C. Schmidt

23

Summary
• Achieving mastery of software

development requires
continuous repetition,
practice, & mentoring
from experts

• Good software developers rely
on experience gleaned from
successful designs

• What we need is a means of
extracting, documenting,
conveying, applying, &
preserving this design
knowledge without undue
time, effort, & risk!

Overview of Patterns: Part 2

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Overview of Patterns Douglas C. Schmidt

25

Topics Covered in this Part of the Module
• Motivate the importance of design

experience & leveraging recurring
design structure in becoming a
master software developer

• Introduce patterns as a
means of improving software
quality & developer
productivity by…

Overview of Patterns Douglas C. Schmidt

26

Topics Covered in this Part of the Module
• Motivate the importance of design

experience & leveraging recurring
design structure in becoming a
master software developer

• Introduce patterns as a
means of improving software
quality & developer
productivity by…

Overview of Patterns Douglas C. Schmidt

27

Topics Covered in this Part of the Module
• Motivate the importance of design

experience & leveraging recurring
design structure in becoming a
master software developer

• Introduce patterns as a
means of improving software
quality & developer
productivity by…

Overview of Patterns Douglas C. Schmidt

28

Topics Covered in this Part of the Module
• Motivate the importance of design

experience & leveraging recurring
design structure in becoming a
master software developer

• Introduce patterns as a
means of improving software
quality & developer
productivity by…

Overview of Patterns Douglas C. Schmidt

29

Topics Covered in this Part of the Module
• Motivate the importance of design

experience & leveraging recurring
design structure in becoming a
master software developer

• Introduce patterns as a
means of improving software
quality & developer
productivity by…

Overview of Patterns Douglas C. Schmidt

30

Topics Covered in this Part of the Module
• Motivate the importance of design

experience & leveraging recurring
design structure in becoming a
master software developer

• Introduce patterns as a
means of improving software
quality & developer
productivity

• Summarize common
characteristics of patterns

Observer
pattern

s->getData()

Observer
update

ConcreteObserver
update
doSomething

state = X;
notify();

Subject

setData
getData
notify
attach
detach

state
observerList

for all observers
in observerList do
 observer.update()

*

Observer
pattern

Overview of Patterns Douglas C. Schmidt

31

• Describes a solution to a common problem arising within a context

Key to Mastery: Knowledge of Software Patterns

Civil
engineering

Mobile
devices

Automotive

Electronic
Trading

Aerospace

Overview of Patterns Douglas C. Schmidt

32

Observer
pattern

• Describes a solution to a common problem arising within a context by

• Naming a recurring design structure

Key to Mastery: Knowledge of Software Patterns

Intent: “Define a one-to-many
dependency between objects so that
when one object changes state, all
dependents are notified & updated”

Observer

ConcreteObserver

Subject

Overview of Patterns Douglas C. Schmidt

33

• Describes a solution to a common problem arising within a context by

• Naming a recurring design structure

• Specifying design structure explicitly
by identifying key class/object
• Roles & relationships
• Dependencies
• Interactions
• Conventions

Key to Mastery: Knowledge of Software Patterns

*Interpret “class” & “object” loosely: patterns are for more than OO languages!

*

s->getData()

Observer
update

ConcreteObserver
update
doSomething

state = X;
notify();

Subject

setData
getData
notify
attach
detach

state
observerList

for all observers
in observerList do
 observer.update()

*

Observer
pattern

Overview of Patterns Douglas C. Schmidt

34

• Describes a solution to a common problem arising within a context by

• Naming a recurring design structure

• Specifying design structure explicitly
by identifying key class/object
• Roles & relationships
• Dependencies
• Interactions
• Conventions

• Abstracting from concrete design
elements
• e.g., problem domain, form factor,

vendor, etc.

Key to Mastery: Knowledge of Software Patterns

s->getData()

Observer
update

ConcreteObserver
update
doSomething

state = X;
notify();

Subject

setData
getData
notify
attach
detach

state
observerList

for all observers
in observerList do
 observer.update()

*

Observer
pattern

Overview of Patterns Douglas C. Schmidt

35

• Describes a solution to a common problem arising within a context by

• Naming a recurring design structure

• Specifying design structure explicitly
by identifying key class/object
• Roles & relationships
• Dependencies
• Interactions
• Conventions

• Abstracting from concrete design
elements

• Distilling & codifying knowledge
gleaned by experts from their
successful design experiences

Key to Mastery: Knowledge of Software Patterns

s->getData()

Observer
update

ConcreteObserver
update
doSomething

state = X;
notify();

Subject

setData
getData
notify
attach
detach

state
observerList

for all observers
in observerList do
 observer.update()

*

Observer
pattern

Overview of Patterns Douglas C. Schmidt

36

Common Characteristics of Patterns
• They describe both a thing &

a process:
• The “thing” (the “what”) typically

means a particular high-level
design outline or description of
code detail

Overview of Patterns Douglas C. Schmidt

37

Common Characteristics of Patterns
• They describe both a thing &

a process:
• The “thing” (the “what”) typically

means a particular high-level
design outline or description of
code detail

• The “process” (the “how”)
typically describes the steps to
perform to create the “thing”

csis.pace.edu/~bergin/dcs/SoftwarePatterns_Coplien.pdf has more info

http://csis.pace.edu/~bergin/dcs/SoftwarePatterns_Coplien.pdf

Overview of Patterns Douglas C. Schmidt

38

Common Characteristics of Patterns
• They describe both a thing &

a process
• They can be independent of

programming languages &
implementation techniques

Naturally, different patterns apply to different programming languages

Overview of Patterns Douglas C. Schmidt

39

Common Characteristics of Patterns
• They describe both a thing &

a process
• They can be independent of

programming languages &
implementation techniques

• They define “micro-architectures”
• In other words, recurring design

structure

Observer

update

ConcreteObserver

update
…

Subject

attach
detact
notify

state
observerList

for all observers
in observerList do
 observer.update()

*

Observer pattern

Overview of Patterns Douglas C. Schmidt

40

Content
Observer
onChange

MyContent
Observer

onChange
…

Content
Observable

registerObserver
unregisterObserver
notifyChange

state
observerList

for all observers
in observerList do
 observer.onChange()

*

One use of the
Observer pattern in
Android

Observer Observer

Subject Observer

Observer

Concrete
Observer

Common Characteristics of Patterns
• They describe both a thing &

a process
• They can be independent of

programming languages &
implementation techniques

• They define “micro-architectures”
• In other words, recurring design

structure
• Certain properties may be

modified for particular contexts

Overview of Patterns Douglas C. Schmidt

41

Broadcast
Receiver
onReceive

BroadcastHandler

onReceive
…

Context

registerReceiver
unregisterReceiver
sendBroadcast

state
observerList

for all observers
in observerList do
 observer.onReceive()

*

A different use of
the Observer
pattern in Android

Observer Observer

Subject Observer

Observer

Concrete
Observer

Common Characteristics of Patterns
• They describe both a thing &

a process
• They can be independent of

programming languages &
implementation techniques

• They define “micro-architectures”
• In other words, recurring design

structure
• Certain properties may be

modified for particular contexts

Overview of Patterns Douglas C. Schmidt

42

Common Characteristics of Patterns
• They describe both a thing &

a process
• They can be independent of

programming languages &
implementation techniques

• They define “micro-architectures”
• They aren’t code or (concrete)

designs, so they must be reified
and applied in particular
languages

Observer pattern
in Java

public class EventHandler
 extends Observer {
 public void update(Observable o,
 Object arg)
 { /*…*/ }
 …

public class EventSource
 extends Observable,
 implements Runnable {
 public void run()
 { /*…*/ notifyObservers(/*…*/); }
 …
 EventSource eventSource =
 new EventSource();
EventHandler eventHandler =
 new EventHandler();
eventSource.addObserver(eventHandler);
Thread thread
 = new Thread(eventSource);
thread.start();
…

Overview of Patterns Douglas C. Schmidt

43

Common Characteristics of Patterns
• They describe both a thing &

a process
• They can be independent of

programming languages &
implementation techniques

• They define “micro-architectures”
• They aren’t code or (concrete)

designs, so they must be reified
and applied in particular
languages

class Event_Handler
 : public Observer {
public:
 virtual void update(Observable o,
 Object arg)
 { /* … */ }
 …

class Event_Source
 : public Observable,
 public ACE_Task_Base {
public:
 virtual void svc()
 { /*…*/ notify_observers(/*…*/); }
 …

Event_Source event_source;
Event_Handler event_handler;
event_source->add_observer
 (event_handler);
Event_Task task (event_source);
task->activate();
…

Observer pattern in C++/ACE
(uses the GoF Bridge pattern with

reference counting to simplify
memory management & ensure

exception-safe semantics)

www.dre.vanderbilt.edu/ACE has more info on ACE

http://www.dre.vanderbilt.edu/ACE

Overview of Patterns Douglas C. Schmidt

44

Common Characteristics of Patterns
• They describe both a thing &

a process
• They can be independent of

programming languages &
implementation techniques

• They define “micro-architectures”
• They aren’t code or (concrete)

designs, so they must be reified
and applied in particular
languages

• They are not methods but can be
used as an adjunct to methods, e.g.:
• Rational Unified Process
• Agile
• Others

Overview of Patterns Douglas C. Schmidt

45

Common Characteristics of Patterns
• They describe both a thing &

a process
• They can be independent of

programming languages &
implementation techniques

• They define “micro-architectures”
• They aren’t code or (concrete)

designs, so they must be reified
and applied in particular
languages

• They are not methods but can be
used as an adjunct to methods

• There are also patterns for organizing
effective software development teams
and navigating other complex settings

Overview of Patterns Douglas C. Schmidt

46

Common Parts of a Pattern Description
• Name

• Should be pithy & memorable
• Intent

• Goal behind the pattern & the
reason(s) for using it

• Problem addressed by pattern
• Motivate the “forces” & situations

in which pattern is applicable
• Solution

• Visual & textual descriptions of
pattern static structure,
participants,
and collaboration dynamics

Overview of Patterns Douglas C. Schmidt

47

Common Parts of a Pattern Description
• Examples & Implementation

guidance
• May include source code snippets

in one or more programming
languages

• Consequences
• Pros & cons of applying the pattern

• Known uses
• Examples of real uses of the pattern
• Should follow the “rule of three”

• Related patterns
• Summarize relationships & tradeoffs

between alternative patterns for
similar problems

See c2.com/cgi/wiki?PatternForms for more info on pattern forms

http://c2.com/cgi/wiki?PatternForms
http://c2.com/cgi/wiki?PatternForms
http://c2.com/cgi/wiki?PatternForms
http://c2.com/cgi/wiki?PatternForms

Overview of Patterns Douglas C. Schmidt

48

Summary
• Patterns codify software expertise &

support design at a more abstract level
than code
• Emphasize design qua design,

not (obscure) language features
• e.g., the Observer pattern

can be implemented in many
programming languages

s->getData()

Observer
update

ConcreteObserver
update
doSomething

state = X;
notify();

Subject

setData
getData
notify
attach
detach

state
observerList

for all observers
in observerList do
 observer.update()

*

Observer
pattern

Patterns often equated with OO languages, but can apply to non-OO languages

Overview of Patterns Douglas C. Schmidt

49

Summary
• Patterns codify software expertise &

support design at a more abstract level
than code
• Emphasize design qua design,

not (obscure) language features
• Treat class/object interactions

as a cohesive conceptual unit
• e.g., form the building blocks

for more powerful pattern
relationships s->getData()

Observer
update

ConcreteObserver
update
doSomething

state = X;
notify();

Subject

setData
getData
notify
attach
detach

state
observerList

for all observers
in observerList do
 observer.update()

*

Observer
pattern

Overview of Patterns Douglas C. Schmidt

50

Summary
• Patterns codify software expertise &

support design at a more abstract level
than code
• Emphasize design qua design,

not (obscure) language features
• Treat class/object interactions

as a cohesive conceptual unit
• Provide ideal targets for design

and implementation refactoring
• e.g., adapters & (wrapper)

facades
s->getData()

Observer
update

ConcreteObserver
update
doSomething

state = X;
notify();

Subject

setData
getData
notify
attach
detach

state
observerList

for all observers
in observerList do
 observer.update()

*

Observer
pattern

Overview of Patterns Douglas C. Schmidt

51

Summary
• Stand-alone “pattern islands”

are unusual in practice

Overview of Patterns Douglas C. Schmidt

52

Summary
• Stand-alone “pattern islands”

are unusual in practice
• Patterns are often related & are typically used together

Overview of Patterns Douglas C. Schmidt

53

Summary
• Stand-alone “pattern islands”

are unusual in practice
• Patterns are often related & are typically used together
• There are various types of pattern relationships

• Pattern complements

Factory
Method

Disposal
Method

Overview of Patterns Douglas C. Schmidt

54

Summary
• Stand-alone “pattern islands”

are unusual in practice
• Patterns are often related & are typically used together
• There are various types of pattern relationships

• Pattern complements
• Pattern compounds

Batch
(Method) I terator

Overview of Patterns Douglas C. Schmidt

55

Summary
• Stand-alone “pattern islands”

are unusual in practice
• Patterns are often related & are typically used together
• There are various types of pattern relationships

• Pattern complements
• Pattern compounds
• Pattern sequences

Overview of Patterns Douglas C. Schmidt

56

Summary
• Stand-alone “pattern islands”

are unusual in practice
• Patterns are often related & are typically used together
• There are various types of pattern relationships

• Pattern complements
• Pattern compounds
• Pattern sequences
• Pattern languages

en.wikipedia.org/wiki/Pattern_language has discussions of pattern languages

http://en.wikipedia.org/wiki/Pattern_language

Overview of Patterns Douglas C. Schmidt

57

• Patterns can be applied in all
software lifecycle phases
• Analysis, design, & reviews
• Implementation &

optimization
• Testing & documentation
• Reuse & refactoring

Summary

Overview of Patterns: Part 3

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Overview of Patterns Douglas C. Schmidt

59

Topics Covered in this Part of the Module
• Motivate the importance of design

experience & leveraging recurring
design structure in becoming a
master software developer

• Introduce patterns as a
means of improving software
quality & developer
productivity

• Summarize common
characteristics of patterns

• Describe a variation-oriented process
for successfully applying patterns to
software development projects

Pattern
Knowledge

Trade-off
Analysis

Design &
Implementation

Decisions

Implement
& Integrate
Patterns &

Code

Overview of Patterns Douglas C. Schmidt

60

Variation-oriented Process for Applying Patterns
• To apply patterns successfully,

software developers need to:

• Have broad knowledge of patterns
relevant to their domain(s)

Client
OBJ
REF

in args
operation()

out args +
return

DII IDL
STUBS

ORB
INTERFACE Object Adapter

 ORB CORE GIOP/IIOP/ESIOPS

IDL
SKEL DSI

Object (Servant)

Proxy Adapter Adapter

Facade

Chain of
Responsibility

Bridge

See www.dre.vanderbilt.edu/~schmidt/PDF/ORB-patterns.pdf for more info

In
te

rp
re

te
r

http://www.dre.vanderbilt.edu/~schmidt/PDF/ORB-patterns.pdf
http://www.dre.vanderbilt.edu/~schmidt/PDF/ORB-patterns.pdf
http://www.dre.vanderbilt.edu/~schmidt/PDF/ORB-patterns.pdf
http://www.dre.vanderbilt.edu/~schmidt/PDF/ORB-patterns.pdf
http://www.dre.vanderbilt.edu/~schmidt/PDF/ORB-patterns.pdf

Overview of Patterns Douglas C. Schmidt

61

Variation-oriented Process for Applying Patterns
• To apply patterns successfully,

software developers need to:

• Have broad knowledge of patterns
relevant to their domain(s)

See c2.com/cgi/wiki?HistoryOfPatterns for a history of patterns

http://c2.com/cgi/wiki?HistoryOfPatterns

Overview of Patterns Douglas C. Schmidt

62

Variation-oriented Process for Applying Patterns
• To apply patterns successfully,

software developers need to:

• Have broad knowledge of patterns
relevant to their domain(s)

Overview of Patterns Douglas C. Schmidt

63

Variation-oriented Process for Applying Patterns
• To apply patterns successfully,

software developers need to:

• Have broad knowledge of patterns
relevant to their domain(s)

• Evaluate trade-offs & impact of using
certain patterns in their software

Overview of Patterns Douglas C. Schmidt

64

Variation-oriented Process for Applying Patterns
• To apply patterns successfully,

software developers need to:

• Have broad knowledge of patterns
relevant to their domain(s)

• Evaluate trade-offs & impact of using
certain patterns in their software

Mentoring from pattern experts is invaluable, especially when you first start

Overview of Patterns Douglas C. Schmidt

65

Variation-oriented Process for Applying Patterns
• To apply patterns successfully,

software developers need to:

• Have broad knowledge of patterns
relevant to their domain(s)

• Evaluate trade-offs & impact of using
certain patterns in their software

Problems
• Hard-coded algorithms
• Hard-coded

data
structures

• Hard-coded generators
• etc.

Overview of Patterns Douglas C. Schmidt

66

Variation-oriented Process for Applying Patterns
• To apply patterns successfully,

software developers need to:

• Have broad knowledge of patterns
relevant to their domain(s)

• Evaluate trade-offs & impact of using
certain patterns in their software

Strategy
pattern

Template
Method
pattern

Pattern languages help developers navigate thru trade-offs

Overview of Patterns Douglas C. Schmidt

67

Variation-oriented Process for Applying Patterns
• To apply patterns successfully,

software developers need to:

• Have broad knowledge of patterns
relevant to their domain(s)

• Evaluate trade-offs & impact of using
certain patterns in their software

• Make design & implementation
decisions about how best to
apply the selected patterns

• Patterns may require
modifications for particular
contexts

Observer

update

ConcreteObserver

update
…

Subject

attach
detact
notify

state
observerList

for all observers
in observerList do
 observer.update()

*

The Observer Pattern

Overview of Patterns Douglas C. Schmidt

68

Variation-oriented Process for Applying Patterns
• To apply patterns successfully,

software developers need to:

• Have broad knowledge of patterns
relevant to their domain(s)

• Evaluate trade-offs & impact of using
certain patterns in their software

• Make design & implementation
decisions about how best to
apply the selected patterns

• Patterns may require
modifications for particular
contexts

Content
Observer
onChange

MyContent
Observer

onChange
…

Content
Observable

registerObserver
unregisterObserver
notifyChange

state
observerList

for all observers
in observerList do
 observer.onChange()

*

One use of the
Observer Pattern in

Android

Observer Observer

Subject Observer

Observer

Concrete
Observer

Overview of Patterns Douglas C. Schmidt

69

Variation-oriented Process for Applying Patterns
• To apply patterns successfully,

software developers need to:

• Have broad knowledge of patterns
relevant to their domain(s)

• Evaluate trade-offs & impact of using
certain patterns in their software

• Make design & implementation
decisions about how best to
apply the selected patterns

• Patterns may require
modifications for particular
contexts

Broadcast
Receiver
onReceive

BroadcastHandler

onReceive
…

Context

registerReceiver
unregisterReceiver
sendBroadcast

state
observerList

for all observers
in observerList do
 observer.onReceive()

*

A different use of
the Observer

Pattern in Android

Observer Observer

Subject Observer

Observer

Concrete
Observer

Overview of Patterns Douglas C. Schmidt

70

Variation-oriented Process for Applying Patterns
• To apply patterns successfully,

software developers need to:

• Have broad knowledge of patterns
relevant to their domain(s)

• Evaluate trade-offs & impact of using
certain patterns in their software

• Make design & implementation
decisions about how best to
apply the selected patterns

• Patterns may require
modifications for particular
contexts

If (uniqueInstance == 0)
 uniqueInstance =
 new Singleton;
return uniqueInstance;

John Vlissides, “To Kill a Singleton”
sourcemaking.com/design_patterns/
to_kill_a_singleton

Singleton pattern

http://sourcemaking.com/design_patterns/to_kill_a_singleton
http://sourcemaking.com/design_patterns/to_kill_a_singleton

Overview of Patterns Douglas C. Schmidt

71

Variation-oriented Process for Applying Patterns
• To apply patterns successfully,

software developers need to:

• Have broad knowledge of patterns
relevant to their domain(s)

• Evaluate trade-offs & impact of using
certain patterns in their software

• Make design & implementation
decisions about how best to
apply the selected patterns

• Patterns may require
modifications for particular
contexts

If (uniqueInstance == 0)
 uniqueInstance =
 new Singleton;
return uniqueInstance;

class Singleton {
 private static Singleton inst = null;
 public static Singleton instance() {
 Singleton result = inst;
 if (result == null) {
 inst = result = new Singleton();
 }
 return result;
 }
 ...

Singleton pattern vs.
Double-Checked
Locking Pattern

Overview of Patterns Douglas C. Schmidt

72

Variation-oriented Process for Applying Patterns
• To apply patterns successfully,

software developers need to:

• Have broad knowledge of patterns
relevant to their domain(s)

• Evaluate trade-offs & impact of using
certain patterns in their software

• Make design & implementation
decisions about how best to
apply the selected patterns

• Patterns may require
modifications for particular
contexts

If (uniqueInstance == 0)
 uniqueInstance =
 new Singleton;
return uniqueInstance;

class Singleton {
 private static Singleton inst = null;
 public static Singleton instance() {
 Singleton result = inst;
 if (result == null) {
 inst = result = new Singleton();
 }
 return result;
 }
 ...

Singleton pattern vs.
Double-Checked
Locking Pattern

Too little synchronization

Overview of Patterns Douglas C. Schmidt

73

Variation-oriented Process for Applying Patterns
• To apply patterns successfully,

software developers need to:

• Have broad knowledge of patterns
relevant to their domain(s)

• Evaluate trade-offs & impact of using
certain patterns in their software

• Make design & implementation
decisions about how best to
apply the selected patterns

• Patterns may require
modifications for particular
contexts

If (uniqueInstance == 0)
 uniqueInstance =
 new Singleton;
return uniqueInstance;

class Singleton {
 private static Singleton inst = null;
 public static Singleton instance() {
 synchronized(Singleton.class) {
 Singleton result = inst;
 if (result == null) {
 inst = result = new Singleton();
 }
 }
 return result;
 }
 ...

Singleton pattern vs.
Double-Checked
Locking Pattern

Overview of Patterns Douglas C. Schmidt

74

Variation-oriented Process for Applying Patterns
• To apply patterns successfully,

software developers need to:

• Have broad knowledge of patterns
relevant to their domain(s)

• Evaluate trade-offs & impact of using
certain patterns in their software

• Make design & implementation
decisions about how best to
apply the selected patterns

• Patterns may require
modifications for particular
contexts

If (uniqueInstance == 0)
 uniqueInstance =
 new Singleton;
return uniqueInstance;

class Singleton {
 private static Singleton inst = null;
 public static Singleton instance() {
 synchronized(Singleton.class) {
 Singleton result = inst;
 if (result == null) {
 inst = result = new Singleton();
 }
 }
 return result;
 }
 ...

Singleton pattern vs.
Double-Checked
Locking Pattern

Too much synchronization

Overview of Patterns Douglas C. Schmidt

75

Variation-oriented Process for Applying Patterns
• To apply patterns successfully,

software developers need to:

• Have broad knowledge of patterns
relevant to their domain(s)

• Evaluate trade-offs & impact of using
certain patterns in their software

• Make design & implementation
decisions about how best to
apply the selected patterns

• Patterns may require
modifications for particular
contexts

If (uniqueInstance == 0)
 uniqueInstance =
 new Singleton;
return uniqueInstance;

class Singleton {
 private static volatile Singleton
 inst = null;
 public static Singleton instance() {
 Singleton result = inst;
 if (result == null) {
 synchronized(Singleton.class) {
 result = inst;
 if (result == null)
 { inst = result = new Singleton(); }
 }
 }
 return result;
 ...

Singleton pattern vs.
Double-Checked
Locking Pattern

Just right amount of synchronization

Overview of Patterns Douglas C. Schmidt

76

Variation-oriented Process for Applying Patterns
• To apply patterns successfully,

software developers need to:

• Have broad knowledge of patterns
relevant to their domain(s)

• Evaluate trade-offs & impact of using
certain patterns in their software

• Make design & implementation
decisions about how best to
apply the selected patterns

• Patterns may require
modifications for particular
contexts

If (uniqueInstance == 0)
 uniqueInstance =
 new Singleton;
return uniqueInstance;

class Singleton {
 private static volatile Singleton
 inst = null;
 public static Singleton instance() {
 Singleton result = inst;
 if (result == null) {
 synchronized(Singleton.class) {
 result = inst;
 if (result == null)
 { inst = result = new Singleton(); }
 }
 }
 return result;
 ...

Singleton pattern vs.
Double-Checked
Locking Pattern

Only synchronizes when inst is null

Overview of Patterns Douglas C. Schmidt

77

Variation-oriented Process for Applying Patterns
• To apply patterns successfully,

software developers need to:

• Have broad knowledge of patterns
relevant to their domain(s)

• Evaluate trade-offs & impact of using
certain patterns in their software

• Make design & implementation
decisions about how best to
apply the selected patterns

• Patterns may require
modifications for particular
contexts

If (uniqueInstance == 0)
 uniqueInstance =
 new Singleton;
return uniqueInstance;

class Singleton {
 private static volatile Singleton
 inst = null;
 public static Singleton instance() {
 Singleton result = inst;
 if (result == null) {
 synchronized(Singleton.class) {
 result = inst;
 if (result == null)
 { inst = result = new Singleton(); }
 }
 }
 return result;
 ...

Singleton pattern vs.
Double-Checked
Locking Pattern

No synchronization after inst is created

Overview of Patterns Douglas C. Schmidt

78

Variation-oriented Process for Applying Patterns
• To apply patterns successfully,

software developers need to:

• Have broad knowledge of patterns
relevant to their domain(s)

• Evaluate trade-offs & impact of using
certain patterns in their software

• Make design & implementation
decisions about how best to
apply the selected patterns

• Patterns may require
modifications for particular
contexts

If (uniqueInstance == 0)
 uniqueInstance =
 new Singleton;
return uniqueInstance;

class Singleton {
 private static volatile Singleton
 inst = null;
 public static Singleton instance() {
 Singleton result = inst;
 if (result == null) {
 synchronized(Singleton.class) {
 result = inst;
 if (result == null)
 { inst = result = new Singleton(); }
 }
 }
 return result;
 ...

Singleton pattern vs.
Double-Checked
Locking Pattern

See en.wikipedia.org/wiki/Double-checked_locking for more info

Solution only works in JDK5 & above

http://en.wikipedia.org/wiki/Double-checked_locking

Overview of Patterns Douglas C. Schmidt

79

Variation-oriented Process for Applying Patterns
• To apply patterns successfully,

software developers need to:

• Have broad knowledge of patterns
relevant to their domain(s)

• Evaluate trade-offs & impact of using
certain patterns in their software

• Make design & implementation
decisions about how best to
apply the selected patterns

• Patterns may require
modifications for particular
contexts

• Combine with other patterns &
implement/integrate with code

Overview of Patterns Douglas C. Schmidt

80

Variation-oriented Process for Applying Patterns
• To apply patterns successfully,

software developers need to:

• Have broad knowledge of patterns
relevant to their domain(s)

• Evaluate trade-offs & impact of using
certain patterns in their software

• Make design & implementation
decisions about how best to
apply the selected patterns

• Patterns may require
modifications for particular
contexts

• Combine with other patterns &
implement/integrate with code

High pattern
density

Overview of Patterns Douglas C. Schmidt

81

Pattern
Knowledge

Trade-off
Analysis

Design &
Implementation

Decisions

Implement
& Integrate
Patterns &

Code

Summary
• Patterns support a variation-oriented

design process
1. Determine which design elements

can vary
2. Identify applicable pattern(s)
3. Vary patterns &

evaluate trade-offs
4. Repeat…

Overview of Patterns Douglas C. Schmidt

82

• Seek generality, but don’t brand
everything as a pattern

Summary

Overview of Patterns Douglas C. Schmidt

83

• Seek generality, but don’t brand
everything as a pattern

• Articulate specific benefits and
demonstrate general applicability
• e.g., find three different existing

examples from code other than
yours!

Summary

	Slide Number 1
	Topics Covered in this Part of the Module
	Becoming a Master
	Becoming a Master
	Becoming a Master
	Becoming a Master
	Becoming a Master Software Developer
	Becoming a Master Software Developer
	Becoming a Master Software Developer
	Becoming a Master Software Developer
	Becoming a Master Software Developer
	Becoming a Master Software Developer
	Becoming a Master Software Developer
	Where Should Design Experience Reside?
	Where Should Design Experience Reside?
	Where Should Design Experience Reside?
	Where Should Design Experience Reside?
	Where Should Design Experience Reside?
	Summary
	Summary
	Summary
	Summary
	Summary
	Slide Number 24
	Topics Covered in this Part of the Module
	Topics Covered in this Part of the Module
	Topics Covered in this Part of the Module
	Topics Covered in this Part of the Module
	Topics Covered in this Part of the Module
	Topics Covered in this Part of the Module
	Key to Mastery: Knowledge of Software Patterns
	Key to Mastery: Knowledge of Software Patterns
	Key to Mastery: Knowledge of Software Patterns
	Key to Mastery: Knowledge of Software Patterns
	Key to Mastery: Knowledge of Software Patterns
	Common Characteristics of Patterns
	Common Characteristics of Patterns
	Common Characteristics of Patterns
	Common Characteristics of Patterns
	Common Characteristics of Patterns
	Common Characteristics of Patterns
	Common Characteristics of Patterns
	Common Characteristics of Patterns
	Common Characteristics of Patterns
	Common Characteristics of Patterns
	Common Parts of a Pattern Description
	Common Parts of a Pattern Description
	Summary
	Summary
	Summary
	Summary
	Summary
	Summary
	Summary
	Summary
	Summary
	Summary
	Slide Number 58
	Topics Covered in this Part of the Module
	Variation-oriented Process for Applying Patterns
	Variation-oriented Process for Applying Patterns
	Variation-oriented Process for Applying Patterns
	Variation-oriented Process for Applying Patterns
	Variation-oriented Process for Applying Patterns
	Variation-oriented Process for Applying Patterns
	Variation-oriented Process for Applying Patterns
	Variation-oriented Process for Applying Patterns
	Variation-oriented Process for Applying Patterns
	Variation-oriented Process for Applying Patterns
	Variation-oriented Process for Applying Patterns
	Variation-oriented Process for Applying Patterns
	Variation-oriented Process for Applying Patterns
	Variation-oriented Process for Applying Patterns
	Variation-oriented Process for Applying Patterns
	Variation-oriented Process for Applying Patterns
	Variation-oriented Process for Applying Patterns
	Variation-oriented Process for Applying Patterns
	Variation-oriented Process for Applying Patterns
	Variation-oriented Process for Applying Patterns
	Variation-oriented Process for Applying Patterns
	Summary
	Summary
	Summary

