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ABSTRACT

The improvement and adoption of security-focused static analysis tools have significantly
improved the detection of vulnerabilities, such as crypto-API misuse and data leaks. We
are continuously becoming more dependent on these security analysis techniques because
of their convenience automation, continuous integration and development support, and
statically finding vulnerabilities efficiently.

However, there is a critical gap in these tools’ practical and effective application. Other
than static benchmarks, we have yet to devise a mechanism to identify previously unknown
flaws in these tools. Furthermore, how industry professionals perceive these tools and their
limitations is unknown. As a result, the current progress towards designing and developing
effective, practical static analysis-based security tools is hindered.

To address these gaps, we (1) contextualize mutation testing techniques by proposing
and implementing a framework called µSE. µSE systematically evaluates static analysis-
based data-leak detectors, identifying previously unknown soundness issues/flaws and ex-
ploring the propagation of 25 found flaws that may propagate or even resurface, across the
lifecycle of three data leak detectors, due to implicit dependencies, assumptions, or simi-
lar design principles. Next, (2) we evaluate cryptographic API misuse detectors (crypto-
detectors). To do this, we create a taxonomy of crypto-API misuse based on the existing
state-of-the-art literature and documentation from industry sources spanning over the
past 20 years. By analyzing the patterns of underlying crypto-APIs, we develop muta-
tion operators and mutation scopes for creating mutations of crypto-API misuse. An
implementation of this approach, namely MASC, is used to systematically evaluate 14
prominent crypto-detectors from industry and academia, finding 25 previously unknown
flaws affecting these crypto-detectors. Based on our discussion with the developers of the
crypto-detectors about the nature of the found flaws, we identify and highlight the need to
shift from a technique-centric to a security-centric approach to address evolving software
security challenges. Afterward, (3) we study the gap that exists in the design and adoption
of static analysis-based security tools. Through interviews with 20 real-world practitioners,
we analyze their perceptions, expectations, and challenges with SAST tools. By applying
thematic analysis, we identify critical insights into developer needs and discuss areas for
improvement in SAST design and development.

Finally, we qualitatively analyze a statistically significant sample of existing bug re-
ports of open-source static analysis based security testing tools to identify the internal,
implicit factors that influence the acknowledging, addressing, and prioritization of the
reported issues as bugs and/or feature requests, and identify the conflicting perspectives
of designers and developers stemming from the duality of the vulnerability detectors; as
security-assurance tools and developer-friendly tools.
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Chapter 1

Introduction

After over a decade of research and development in both academia and industry, security-

focused program-analysis techniques are now being used at nearly every stage of software

development and maintenance lifecycle, from requirements engineering to fault localization

and fixing, e.g., through GitHub CodeScan Initiative [119] for finding vulnerabilities, such

as crypto-API misuse and sensitive data-leaks. Furthermore, such techniques have gained

worldwide attention because of the recent high-profile attacks and exploit across the public

sector e.g., SolarWind [222], triggering responses from both corporate and government

entities, such as emphasizing security through the improvement of existing approaches,

e.g., Static Application Security Testing (SAST) tools. In essence, the use and dependence

on program-analysis techniques will only increase to ensure software security.

The underlying cause of optimistically using and depending on the security-focused

analysis techniques, such as crypto-API misuse detectors (in short, crypto-detectors) and

sensitive data-leak detectors, is the convenience these techniques offer through automation,

support for continuous integration and development (CI/CD), and the promise of detecting

vulnerabilities as long as these are within scope without flaws. In addition, the potential

IEEE Copyright Note: In reference to IEEE copyrighted material which is used with permission in this thesis,
the IEEE does not endorse any of the College of William and Mary’s products or services. Internal or personal use
of this material is permitted. If interested in reprinting/republishing IEEE copyrighted material for advertising or
promotional purposes or for creating new collective works for resale or redistribution, please go to http://www.
ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain a
License from RightsLink. If applicable, University Microfilms and/or ProQuest Library, or the Archives of Canada
may supply single copies of the dissertation.

1

http://www.ieee.org/publications_standards/publications/rights/rights_link.html
http://www.ieee.org/publications_standards/publications/rights/rights_link.html


CHAPTER 1. INTRODUCTION 2

of identifying vulnerabilities statically, i.e.,, without depending on runtime-analysis in a

time-consuming manner, has made the SAST-based tools an attractive choice among the

security-focused program-analysis techniques.

However, such optimism is unwarranted, as we have generally relied on manually cu-

rated, static benchmarks to gauge the effectiveness of SASTs. This is also because of the

lack of a systematic framework that can handle the various patterns of vulnerabilities, i.e.,

variants. Considering these, the thesis statement of this work is the following:

Thesis Statement: For the design, evaluation, and application of SASTs such that

they are effective at detecting vulnerabilities, it is imperative to systematically identify

the design and implementation flaws in them, as well as the factors influencing the flaws.

In proving this thesis, we seek answers to the following research questions in this

dissertation.

RQ1: How to systematically find flaws in SASTs while considering the diverse

practices adopted in the wild? This doctoral research proposes the systematic eval-

uation of SASTs, susceptible data-leak detectors, and crypto-API misuse detectors while

leveraging the well-founded approach of mutation analysis.

While traditional mutation analysis is used to gauge the effectiveness of existing test

cases, this thesis advocates that vulnerabilities can be mutated to represent both the

diverse variations of vulnerabilities that are implemented and introduced by developers,

either intentionally or unintentionally and the complex usage patterns of relevant security-

specific APIs, such as crypto-primitives enabling APIs from language-specific frameworks.

We propose that we can systematically evaluate, analyze, and identify flaws in SASTs by

introducing mutated vulnerabilities in open source program source code, which, then, is

analyzed by a target SAST. This research analyzes both sensitive-data leak detectors and

crypto-detectors from industry and academia. We identify previously unknown, unique

flaws while gaining insights, such as possible causes and remedies.

RQ2: What perceptions and beliefs of practitioners about SASTs and their
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flaws impact the effective application of SASTs? In addition to this, this work

identifies a key gap in the adoption and use of SASTs in the software industry: the research

community does not possess an in-depth understanding of how SASTs are perceived in

the industry, e.g.,, whether practitioners are aware of the flaws, or limitations, these

SASTs may have, and whether such perceptions and beliefs impact the adoption and use

of SASTs. Without addressing this critical gap, it is impossible to create SASTs that

are effective, i.e., possess fundamental properties that help ensure software security, and

aligned i.e., practitioners have an accurate understanding of what SASTs provide, instead

of practitioners having an inaccurate expectation of, and from SASTs.

Therefore, to explore this gap through a qualitative, interview-based study in this

research and report how practitioners with different security and business needs choose

SASTs and depend on those. Furthermore, we study the beliefs and expectations of

practitioners regarding the limitations and flaws of SASTs, and how they address those

flaws of SASTs.

1.1 Dissertation Organization

The rest of the dissertation is organized as follows. Chapter 2 provides background and

discusses related work of this dissertation. In Chapter 3, we contextualize mutation test-

ing techniques to introduce mutation operators and mutation schemes by proposing and

implementing a framework, namely µSE. µSE is then used for systematically evaluating

prominent, well-known static analysis based data-leak detectors. In addition to identifying

soundness issues in these tools, we explore how the found flaws may propagate across tools

based on various factors, such as dependency and similar design principles/ethos.

In Chapter 4, we look at another application of static analysis for security, specifi-

cally for cryptographic API misuse detection, or in short, crypto-detectors. By taking an

in-depth look at prominent crypto-detectors from industry, academia, and open source

community, we contextualize mutation testing techniques for systematically evaluating
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crypto-detectors. As part of this, we start by creating a taxonomy of crypto-API misuse by

analyzing sources from industry and academia. Furthermore, we introduce novel concepts

of mutation scope and crypto-API specific mutation operators, using which we evaluate

prominent crypto-detectors from industry, academia, and open source community, with a

discussion about the current technique-centric approach adopted by crypto-detectors, and

the security-centric approach the community needs to adapt to address the evolving needs

of software engineers.

In Chapter 5, we argue that there is a gap between the SAST developer community

and the user community that needs to be addressed. To develop SASTs that are effec-

tively leveraged by developers for finding vulnerabilities, researchers and tool designers

must understand how developers perceive, select, and use SASTs, what they expect from

the tools, whether they know of the limitations of the tools, and how they address those

limitations. In this chapter, we describe a qualitative study that explores the assump-

tions, expectations, beliefs, and challenges experienced by developers who use SASTs. We

perform in-depth, semi-structured interviews with 20 practitioners who possess a diverse

range of software development expertise, as well as a variety of unique security, product,

and organizational backgrounds. We identify key findings that shed light on developer

perceptions and desires related to SASTs and also expose gaps in the status quo — chal-

lenging long-held beliefs in SAST design priorities. Finally, we provide concrete future

directions for researchers and practitioners rooted in an analysis of our findings.

Finally, in chapter 6, we argue that the lifecycle of bugs in SASTs, that compromise

the offered security guarantees, are influenced by external/internal factors, such as im-

plicit assumptions made by tool designers and availability of data for bug reproduction.

Furthermore, such cases must be aligned with the existing design goals and threat model

defined by the SAST developers, which are often unknown or not communicated with the

SAST users. As a result, a soundness compromising bug that is still within the technical

scope (e.g., statically analyzable) of a SAST may still be considered “out-of-scope” by

SAST developers. Therefore, we perform a qualitative study by sampling representative
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bugs from open source SASTs. Furthermore, we provide details on qualitatively analyzing

them to identify those implicit factors to further reduce the gap between the developers

and users of the SASTs.



Chapter 2

Background and Related Work

2.1 Soundiness and Static Analysis Tools

This work is motivated by the pressing need to help researchers and practitioners identify

instances of unsound assumptions or design decisions in their static analysis tools, thereby

extending the sound core of their soundy techniques. That is, security tools may already

have a core set of sound design decisions (i.e., the sound core) and may claim soundness

based on those decisions. The soundiness manifesto [190] defines the sound core in terms

of specific language features, whereas we use the term in a more abstract manner to refer

to the design goals of the tool. Systematically identifying unsound decisions may allow

researchers to resolve flaws and help extend the sound core of their tools.

Moreover, research papers and tool documentations indeed do not articulate many

of the unsound assumptions and design choices that lie outside their sound core, aside

from some well-known cases (e.g., choosing not to handle reflection, race conditions), as

confirmed by these results (Section 3.4). In addition, there is a chance that developers

of these techniques may be unaware of some implicit assumptions/flaws due to a host of

reasons: e.g., because the assumption was inherited from prior research or a certain aspect

of Android was not modeled correctly. Therefore, the objective is to discover instances of

such hidden assumptions and design flaws that affect the security claims made by tools,

6
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document them explicitly, and possibly, help developers mend existing artifacts.

2.1.1 Motivating Example

Consider the following motivating example of a prominent static analysis tool, Flow-

Droid [32]:

FlowDroid is a highly popular static analysis framework for detecting private data leaks

in Android apps by performing a data flow analysis. Some of the limitations of FlowDroid

are well-known and stated in the paper [32]; e.g., FlowDroid does not support reflection,

like most static analyses for Java. However, through a manual but systematic, prelimi-

nary, analysis of FlowDroid, we discovered a security limitation that is not well-known or

accounted for in the paper, and hence affects guarantees provided by the tool’s analysis.

We discovered that FlowDroid (i.e., v1.5, which was latest at the time of the preliminary

analysis in October 2017) does not support “Android fragments” [26], which are app mod-

ules that are widely used in most Android apps (i.e., in more than 90% of the top 240

Android apps per category on Google Play, as demonstrated in the original USENIX’18

paper [50]). This flaw renders any security analysis of general Android apps using Flow-

Droid unsound, due to the high likelihood of fragment use, even when the app developers

may be cooperative and non-malicious. Further, FlowDroid v2.0, which was released on

10/10/2017 [279], claims to address fragments, but failed to detect the exploit.

On investigating further, we found that FlowDroid v1.5 was extended or used by

at least 13 research tools [180, 172, 305, 37, 218, 252, 188, 259, 6, 244, 179, 182, 210],

none of which acknowledge or address this limitation in modeling fragments. This leads

us to conclude that this significant flaw not only persists in FlowDroid, but may have

additionally propagated to the tools that inherit it directly (i.e., by inheriting its code),

or indirectly (i.e., by adhering to similar design principles/goals). The flaw propagation

study in Section 3.7 confirms this conjecture for inheritors of FlowDroid, as well as the two

other data leak detectors that we evaluate in-depth, i.e., Argus [105] and Horndroid [59].

We reported the flaws to the authors of FlowDroid, and created two patches to fix
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it. The patches were confirmed to work on FlowDroid v2.0 built from source, and were

accepted into FlowDroid’s repository [281] in December 2017. Thus, we were able to

discover and fix an undocumented flaw that significantly affected FlowDroid’s soundness

claims, thereby expanding its sound core. However, we have confirmed that FlowDroid

v2.5 [279] still fails to detect leaks in fragments, and are working with developers to resolve

this issue.

Through this example, we demonstrate that unsound assumptions in security-focused

static analysis tools for Android are not only detrimental to the validity of their own

analysis, but may inadvertently propagate to future research. Thus, identifying these

unsound assumptions is not only beneficial for making the user of the analysis aware of

its true limits, but in addition for the research community in general. As of today, aside

from a handful of manually curated testing tool-kits (e.g., DroidBench [32]) with hard-

coded (but useful) checks there has been no prior effort at methodologically discovering

problems related to soundiness in Android static analysis tools and frameworks. This work

is motivated by the need to systematically identify and resolve the unsound assumptions

in security-related static analysis tools.

2.1.2 Background on Mutation Analysis

Mutation analysis has a strong foundation in the field of SE, and is typically used as a

test adequacy criterion, measuring the effectiveness of a set of test cases [224]. Faulty

programs are created by applying transformation rules, called mutation operators to a

given program. The larger the number of faulty programs or mutants detected by a test

suite, the higher the effectiveness of that particular suite. Since its inception [142, 78],

mutation testing has seen striking advancements related to the design and development of

advanced operators. Research related to development of mutation operators has tradition-

ally attempted to adapt operators for a particular target domain, such as the web [239],

data-heavy applications [27, 308, 85], or GUI-centric applications [225]. Recently, muta-

tion analysis has been applied to measure the effectiveness of test suites for both functional
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and non-functional requirements of Android apps [79, 162, 184].

This chapter builds upon SE concepts of mutation analysis and adapts them to a secu-

rity context. The methodology does not simply use the traditional mutation analysis, but

rather redefines it to effectively improve security-focused static analysis tools, as described

in Sections 3.2 and 3.3.

2.1.3 Related Work on Mutation Analysis and Data Leak Detectors

µSE builds upon the theoretical underpinnings of mutation analysis from SE, and to our

knowledge, is the first work to adapt mutation analysis to evaluate the soundness claimed

by security tools. Moreover, µSE adapts mutation analysis to security, and makes fun-

damental and novel modifications (described previously in Section 3.2). We now describe

prior work in three other related areas:

Formally Verifying Soundness: While an ideal approach, formal verification is one

of the most difficult problems in computer security. For instance, prior work on for-

mally verifying apps often requires the monitor to be rewritten in a new language or use

verification-specific programming constructs (e.g., verifying reference monitors [110, 289],

information flows in apps [204, 205, 304]), which poses practical concerns for tools based

on numerous legacy codebases (e.g., FlowDroid [32], CHEX [191]). Further, verification

techniques generally require correctness to be specified, i.e., the policies or invariants that

the program is checked against. Concretely defining what is “correct” is hard even for

high-level program behavior (e.g., making a “correct” SSL connection) and may be in-

feasible for complex static analysis tools (e.g., detecting “all incorrect SSL connections”).

µSE does not aim to substitute formal verification of static analysis tools; instead, it aims

to uncover existing limitations of such tools.

Evaluating Static Analyses: Recently, there has been significant work in the area of

experimentally evaluating the features and effectiveness of static analysis techniques. For

instance, Qiu et al. [241] performed a comparative evaluation of precision and runtime per-
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formance, among FlowDroid+IccTA, AmanDroid and DroidSafe, by using a common con-

figuration setup, using a benchmark that extends DroidBench [91] and ICC-Bench [154].

Pauck et al. [236] propose the ReproDroid framework that automatically evaluates the ef-

fectiveness of Android taint analysis tools using user-labeled ground truth in Android apps.

However, there are fundamental differences in our work, and these related approaches, in

terms of the primary goal, scope, and the actual techniques leveraged.

To elaborate, µSE focuses on exhaustively generating security test cases for evaluating

Android security tools, and systematically performing in-depth evaluations of such tools

to discover gaps in the soundness that directly affect their ability to detect security vul-

nerabilities such as data leaks. µSE’s security focus is evident in our additional efforts

towards designing security-focused mutation, and attributing undetected mutants to ac-

tual flaws and design choices in tools that affect security. On the contrary, both prior

approaches focus on evaluating either the presence of promised static analysis features, or

the general precision, i.e., with a lack of specific focus on security. Furthermore, µSE is a

holistic, automated, mutation framework that generates thousands of expressive, security-

goal-focused test cases for evaluating security tools, while related work generally relies on

handcrafted benchmarks [241] or user-specified ground-truth [236], which may be sufficient

for evaluating features, but not for a thorough security evaluation of tools. That is, µSE

empowers security researchers to discover flaws without delving into the intricate details

of program analysis techniques. However, we do note that certain aspects of prior work

(e.g., the automated bootstrapping of tools in ReproDroid [236]) are complementary to

µSE, and may be incorporated into its pipeline in the future. Finally, while µSE evaluates

soundness, our mutation-based approach may be used to evaluate precision as well, which

is a separate research direction that we aim to explore in the future. The popularity and

open-source nature of Android has spurred an immense amount of research related to

examining and improving the security of the underlying OS, SDK, and apps. Recently,

Acar et al. have systematized Android security research [7], and we discuss work that

introduces static analysis-based countermeasures for Android security issues according to
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Acar et al.’s categorization.

Perhaps the most prevalent area of research in Android security has concerned the

permissions system that mediates access to privileged hardware and software resources.

Several approaches have motivated changes to Android’s permission model, or have pro-

posed enhancements to it, with goals ranging from detecting or fixing unauthorized in-

formation disclosure or leaks in third party applications [96, 32, 115, 209, 208, 303, 166]

to detecting over privilege in applications [103, 35, 291]. Similarly, prior work has also

focused on benign but vulnerable Android applications, and proposed techniques to de-

tect or fix vulnerabilities such as cryptographic API misuse API [100, 93, 266, 101] or

unprotected application interfaces [104, 66, 177]. Moreover, these techniques have often

been deployed as modifications to Android’s permission enforcement [97, 96, 212, 109, 86,

104, 57, 227, 72, 311, 260, 58, 144, 237, 254], SDK tools [103, 35, 291], or inline reference

monitors [302, 165, 43, 42]. While this work demonstrates the evaluation of only a small

subset of these tools with µSE, our experiments demonstrate that µSE has the potential

to impact nearly all of them. For instance, we can apply µSE to vet SSL analysis tools by

purposely introducing complex SSL errors in applications, or privilege or permission mis-

use analysis tools, by developing security operators that attempt to misuse permissions.

2.2 Static Analysis for Crypto-API Misuse Detection

Insecure use of cryptographic APIs is the second most common cause of software vulner-

abilities after data leaks [290]. To preempt vulnerabilities before software release, non-

experts such as software developers or quality assurance teams are likely to use crypto-API

misuse detectors (or crypto-detectors) as a part of the Continuous Integration/Continuous

Delivery (CI/CD) pipeline (e.g., Xanitizer [300] and ShiftLeft [257] used in GitHub Code

Scan [120]), quality assurance suites (e.g., SWAMP [282]) or IDEs (e.g., CogniCrypt [176]).

Thus, the inability of a crypto-detector to flag an instance of a misuse that it claims to

detect directly impacts the security of end-user software. We illustrate this problem with
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a motivating example, followed by a threat model that describes the potential adversarial

conditions a crypto-detector may face in the wild.

2.2.1 Motivating Example

Consider Alice, a Java developer who uses CryptoGuard [243], a state-of-the-art crypto-

detector, for identifying cryptographic vulnerabilities in her software before release. In

one of her apps, Alice decides to use the DES cipher, as follows:

1 Cipher cipher = Cipher . getInstance ( ” des ” ) ;

Listing 2.1: Instantiating DES as a cipher instance in lower case.

This is another instance of the misuse previously shown in Listing 4.1, i.e., using the

vulnerable DES cipher. CryptoGuard is unable to detect this vulnerability as Alice uses

“des” instead of “DES” as the parameter (see Section 4.7). However, this is a problem,

because the lowercase parameter makes no functional difference as Java officially supports

both parameter choices. As CryptoGuard does not detect this vulnerability, Alice will

assume that her app is secure and release it to end-users. Thus, we need to systemati-

cally identify such flaws, which would allow the maintainers of crypto-detectors such as

CryptoGuard to promptly fix them, enabling holistic security improvements.

2.2.2 Threat Model

To evaluate crypto-detectors, we first define the scope of our evaluation, for which we

leverage the documentation of popular crypto-detectors to understand how they posi-

tion their tools, i.e., what use cases they target (see [15] for all quotes). For example,

ToolX’s documentation states that it may be used to “ensure compliance with security

and coding standards” . Similarly, SpotBugs’s Find Security Bugs plugin is expected to

be used for “security audits” [268]. Further, CogniCrypt states that its analyses “ensure

that all usages of cryptographic APIs remain secure” [175], which may suggest the abil-

ity to detect vulnerabilities in code not produced by the developer, but originating in a

third-party source (e.g., external library, or a contractor), whose developer may not be
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entirely “virtuous”. In fact, 8/9 crypto-detectors evaluated in the S&P’22 [19] paper, in

addition to all the crypto-detectors evaluated in this extended study claim similar cases

that demand strong guarantees, i.e., for tasks such as compliance auditing or security

assurance that are generally expected to be performed by an independent third party that

assumes the worst, including bad coding practices or malpractice [24]. As aptly stated

by Anderson [24], “When you really want a protection property to hold, it’s vital that the

design and implementation be subjected to hostile review”.

Thus, given that crypto-detectors claim to be useful for tasks such as compliance

audits, it is likely for them to be deployed in adversarial circumstances, i.e., where there

is tension between the party that uses a crypto-detector for evaluating software for secure

crypto-use (e.g., markets such as Google Play, compliance certifiers such as Underwriters

Laboratories (UL) [160]), and the party implementing the software (e.g., a third-party

developer). With this intuition, we define a threat model consisting of three types of

adversaries (T1 – T3), which guides/scopes our evaluation according to the conditions

crypto-detectors are likely to face in the wild:

T1 Benign developer, accidental misuse – This scenario assumes a benign devel-

oper, such as Alice, who accidentally misuses crypto-API, but attempts to detect and

address such vulnerabilities using a crypto-detector before releasing the software.

T2 Benign developer, harmful fix – This scenario also assumes a benign developer

such as Alice who is trying to address a vulnerability identified by a crypto-detector

in good faith, but ends up introducing a new vulnerability instead. For instance, a

developer may not fully understand the problem identified by a crypto-detector, such

as missing certificate verification (e.g., an empty checkServerTrusted method in a

custom TrustManager), and address it with an inadequate Stack Overflow fix [272].

T3 Evasive developer, harmful fix – This scenario assumes a developer whose goal

is to finish a task as quickly or with low effort (e.g., a third-party contractor), and is

hence attempting to purposefully evade a crypto-detector. Upon receiving a vulnera-
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bility alert from a crypto-detector, such a developer may try quick-fixes that do not

address the problem, but simply hide it (e.g., hiding the vulnerable code in a class

that the crypto-detector does not analyze).

For example, Google Play evaluates apps by third-party developers to ensure compli-

ance with its crypto-use policies, but there is ample evidence of developers seeking to

actively violate these policies [277, 276]. In fact, as Oltrogge et al. [226] recently dis-

covered that developers have been using Android’s Network Security Configurations

(NSCs) to circumvent safe defaults (e.g., to permit cleartext traffic that is disabled

by default).

This threat model, which guides MASC’s design (Section 4.1), represents that ad-

versarial conditions under which crypto-detectors may have to operate in practice, and

hence, motivates an evaluation based on what crypto-detectors should be detecting. How-

ever, we note that there may be a gap between what should be and what is, i.e., while

crypto-detectors may want to be relevant in strong deployment scenarios such as compli-

ance checking, their actual design may not account for adversarial use cases (i.e., T3).

Therefore, we balance our evaluation that uses this threat model with a discussion that

acknowledges all views related to this argument, and especially the tool designer’s per-

spective (Sec. 4.9).

2.2.3 Related Work on Crypto-API Misuse Detection

Security researchers have recently shown significant interest in the external validation of

static analysis tools [241, 91, 154, 236, 51]. Particularly, there is a growing realization that

static analysis security tools are sound in theory, but soundy in practice, i.e., consisting

of a core set of sound decisions, as well as certain strategic unsound choices made for

practical reasons such as performance or precision [190]. Soundy tools are desirable for

security analysis as their sound core ensures sufficient detection of targeted behavior, while

also being practical, i.e., without incurring too many false alarms. However, given the lack
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of oversight and evaluation they have faced so far, crypto-detectors may violate this basic

assumption behind soundiness and may in fact be unsound, i.e., have fundamental flaws

that prevent them from detecting even straightforward instances of crypto-API misuse

observed in apps. This intuition drives our approach for systematically evaluating crypto-

detectors, leading to novel contributions that deviate from related work.

To the best of our knowledge, MASC is the first framework to use mutation testing,

combined with a large-scale data-driven taxonomy of crypto-API misuse, for comprehen-

sively evaluating the detection ability of crypto-detectors to find design/implementation

flaws. However, in a more general sense, Bonett et al. [51] were the first to leverage

the intuition behind mutation testing for evaluating Java/Android security tools, and de-

veloped the µSE framework for evaluating data leaks detectors (e.g., FlowDroid [32] and

Argus [105]). MASC significantly deviates from µSE in terms of its design focus, in order to

address the unique challenges imposed by the problem domain of crypto-misuse detection

(i.e.,RC1 – RC3 in Sec. 4). Particularly, µSE assumes that for finding flaws, it is sufficient

to manually define “a” security operator and strategically place it at hard-to-reach loca-

tions in source code. This assumption does not hold when evaluating crypto-detectors as it

is improbable to cast cryptographic misuse as a single mutation, given that cryptographic

misuse cases are diverse (RC1), and developers may express the same type of misuse in

different ways (RC2). For example, consider three well-known types of misuse that would

require unique mutation operators: (1) using DES for encryption (operator inserts prohib-

ited parameter names, e.g., DES), (2) trusting all SSL/TLS certificates (operator creates

a malformed TrustManager), and (3) using a predictable initialization vector (IV) (oper-

ator derives predictable values for the IV). In fact, developers may even express the same

misuse in different ways, necessitating unique operators to express such distinct instances,

e.g., the DES misuse expressed differently in Listing 4.1 and Listing 2.1. Thus, instead of

adopting µSE’s single-operator approach, MASC designs general usage-based mutation op-

erators that can expressively instantiate misuses from our taxonomy of 109 misuses. In a

similar manner, MASC’s contextualized mutation abstractions (i.e., for evaluating crypto-
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detectors) distinguish it from other systems that perform vulnerability injection for C

programs [89], discover API misuse using mutation [295, 114], or evaluate static analysis

tools for precision using handcrafted benchmarks or user-defined policies [241, 236].

Finally, the goal behind MASC is to assist the designers of crypto-detectors [100, 93, 71,

175, 176] in identifying design and implementation gaps in their tools, and hence, MASC

is complementary to the large body of work in this area. Particularly, prior work provides

rule-sets or benchmarks [54, 55] consisting of a limited set of cryptographic “bad prac-

tices” [53], or taxonomies of smaller subsets (e.g., SSL/TLS misuse taxonomy by Vasan

et al. [211]), or examines the precision of crypto-detectors [64]. However, we believe that

ours is the first systematically-driven and comprehensive taxonomy of crypto-API misuse,

which captures 109 cases that are further expanded upon into numerous unique misuse

instances through MASC’s operators. Thus, relative to prior handcrafted benchmarks,

MASC can thoroughly test detectors with a far more comprehensive set of crypto-misuse

instances.

2.3 Static Analysis Tools for Security in Practice

SASTs have been adapted for finding security vulnerabilities [65], resource leaks [31, 293,

219, 59, 30, 173, 41], enforcing policies [33], and crypto-API misuse [243, 71, 175, 100,

93, 53, 213, 307]. Our work studies the perspectives and beliefs of practitioners regarding

SASTs through 20 in-depth interviews, and is closely related to work in three areas, namely

prior studies on the usability of static analysis tools, research on evaluating SASTs, and

the study of general security practices in industry.

Usability of Static Analysis Tools: Researchers have studied how practitioners use

static analysis tools and their perspectives on improving the output of static analysis

tools [40, 39, 38, 95, 47, 87]. In particular, Johnson et al. [167] found that poorly presented

output, including false positives, is one of the main problems from developers’ perspective.

This has been confirmed by later studies [67], where they suggested that the false positive
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rate should be around or below 20%. In a similar vein, Distefano et al. [87] recognized

that while false negatives matter, it is difficult to quantify false negative rate compared

to false positive rate, and thus, it is prudent to focus on optimizing the latter. Our work

complements existing literature by detailing how practitioners across the industry choose

and perceive SASTs (F4, F5, F7). However, our qualitative findings deviate from prior

work (in the context of security), i.e., we find that developers prefer low false negatives,

and are willing to tolerate high false positive rates (F10, F11) provided the tool detects

vulnerabilities.

Further, recent work [39, 38, 249] proposes allowing subjective interpretations of defect

warnings for productivity, i.e., the notion of “effective false positives”, which has been

adapted in the context of security by Wickert et al. [296]. We study whether this concept

works in the context of security, i.e., whether practitioners see merit in letting developers

decide what constitutes a vulnerability, and find that it does not, drawing attention to

the risks of letting developers become the arbiters of false positives (F12).

Finally, prior work has focused on particular usability aspects of static analysis tools,

such as the use cases and their contexts [214, 288, 206], and filtering warning mes-

sages [156]. Our analysis of the pain points experienced by developers echoes some of

these concerns (F17), highlights unique challenges practitioners face (F4, F5, F15), and

culminates in our discussion of a path forward for both researchers and practitioners to-

wards better and more useful SASTs.

Evaluating SASTs: Historically, security researchers have focused on creating bench-

marks for evaluating SASTs with a focus on precision, recall, and efficiency, with the

help of benchmarks, such as ICC-Bench [293], DroidBench [111], CryptoAPI-Bench [12],

ApacheCryptoAPIBench [13], OWASP Benchmark [4], Parametric Crypto Misuse Bench-

mark [297], Ghera [198], and CamBench [253]. Moreover, prior work has proposed auto-

mated evaluation using benchmarks [236, 192]. Our study reveals that practitioners, in

general, do not trust third-party benchmarks, due to them being basic (i.e., not repre-
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sentative of real vulnerabilities), or worse, biased in favor of a specific SAST tool. Since

SAST tools often accompany custom benchmarks claimed to be general (as is the case

with many of the benchmarks above), we cannot deny this perception.

A recent body of research considers the limitations of existing benchmarks and lever-

ages mutation testing to uncover flaws in the detection capabilities of SASTs [51, 21, 19,

20, 17]. As we discuss in Section 5.4, enabling better benchmarks or automated evaluation

of SASTs using such evolving approaches may be a path forward towards providing devel-

opers with what they care most, i.e., SASTs that can detect real, valuable, vulnerabilities.

Study of Security Practices in Industry: Finally, prior work has studied the rela-

tionship between developers’ security expertise, and the actual implementation of secure

software. For example, researchers have identified that practitioners need security-specific

support in the form of developer-friendly APIs and supporting tools [10, 137, 136, 207, 261]

to make better security choices, recognizing that practitioners may not know enough about

security [139, 299, 67]. Furthermore, researchers have explored how developers address

security-specific tasks and the challenges they face [8, 140, 143, 280, 164]. Our work com-

plements previous studies by exploring how developers choose SASTs (F4, F5). Moreover,

we explore how developers depend on SASTs to cover their knowledge gaps (F6) and the

challenges, beliefs, and perceptions associated with implementing security in software with

the help of SASTs (F8–F17).

2.4 Bugs in Vulnerability detectors

Traditional Bug detection tools are repurposed for security centric evaluation/vulnerability

detection, even though they originated to function as developer friendly tools. Because

these vulnerability detectors tend to serve multiple roles, i.e., finding vulnerabilities e.g.,

crypto-API misuse detection [53, 93, 100, 175, 176, 213, 243] and data leak detection [30,

32, 41, 59, 152, 173, 221, 294] and reporting non-security issues, such as code quality, this

results in overlapping or conflicting interests, expectations, and assumptions made by both
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tool developers and tool users. This mismatch becomes apparent when users submit an

issue, such as experiencing unexpected behavior or feature requests; developers recognize

these as in-scope issues or reject the issues, prioritize accepted issues, and address and

deliver solutions of the issues.

Since Vulnerability detectors are just like any software when it comes to addressing

their bugs, we need to grasp an understanding of the lifecycle of bugs in software systems

in addition to how bugs in Vulnerability detectors are being addressed in the state of the

art.

Bugs and Their Lifecycle: User reported issues are important to software practitioners

as they are considered as helpful feedback for improving software systems. However, the

quality of bug reports can differ greatly, and this can cause delays in fixing issues. The life

cycle of a bug usually include a number of steps: initially, the issue is reported and found

by a user or developer, preferably with a lot of information such as reproduction steps,

anticipated and actual behavior, and stack traces [312]. After bugs have been reported,

they are triaged. During the bug traiging, they are reviewed, prioritized, and assigned to

developers to be fixed [250]. This process can be complex and time-consuming, especially

when reports are unclear or incomplete [312, 250]. Following triaging, developers try

to reproduce the bug to understand the possible causes, and figure out fixes [250, 62].

Not all reported bugs are resolved. A majority are “won’t fix” because they are out of

scope, not reproducible, or do not have sufficient information. Others remain open for

months pending when developers will mark them as “won’t fix.” That means not all

the issues are similarly prioritized in software development. [235]. Moreover, bugs can

be reopened, which causes loops in their life cycle. It reflects the issues in bug-fixing and

tracking practices [99]. Several characteristics, such as bug type, developer experience, and

quality of communication among the developers, have a significant effect on the time to

resolve or close bug reports [44, 52]. Automated tools have been proposed to improve bug

tracking, classification, prioritization, and even predicting whether issues will be resolved
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or abandoned. The developers of these tools hope to make the process more effective and

save developers time dealing with bad reports [235, 247, 306, 28, 49, 234, 61, 313]. Others

cite that bug fixing is a socio-technical practice that consists of technical, social, and

organizational dimensions. For this reason, complete automation is difficult but desired

for improving software quality [28, 250, 52].

Security Bug Management: Effectively managing the security bug is critical to main-

taining the security of the software. For this reason, the process of vulnerability discovery

and vulnerability disclosure are both important.

Recent studies show that organizations use a mix of specialized internal teams, third-

party contractors, and bug bounty programs to find vulnerabilities. But they still face

problems like communication gaps, resource constraints, and trust issues [14]. The work-

force itself lacks diversity, where the marginalized groups face unique and complex bar-

riers to participation [9]. There are many ways to find vulnerabilities. For example,

using diagnostic tools, reviewing code, creating malicious inputs etc. Although testers

and hackers may use similar methods, their results often differ due to their skills and

experience [292, 48]. Automation and machine learning have made discovery of vulnera-

bilities more flexible as well as scalable, primarily at function as well as patch levels. But

misleading patterns as well as unexpected side effects still make such methods unreliable

[113, 155, 183].

After vulnerability discovery, the next step is to disclose the vulnerability properly.

Vulnerability disclosure is done in multiple ways. Among all, Coordinated Vulnerability

Disclosure (CVD) is most commonly thought to be standard because it facilitates coordi-

nation between researchers, vendors, as well as stakeholders [202, 148]. However, CVD is

difficult to implement for reasons such as difficulties in contacting appropriate stakeholders

[63]. Moreover, CVD is also stressful and time-consuming for researchers, as they might

face ethical dilemmas, communication complexties, etc. [202]. To solve these problems,

automated solutions like Automated Responsible Disclosure (ARD) have been introduced



2.4. BUGS IN VULNERABILITY DETECTORS 21

[187]. But still some problems exists like early discussion of vulnerabilities even before

their disclosure [189].



Chapter 3

Evaluating Data Leak Detectors

using Mutation

Mobile devices such as smartphones and tablets have become the fabric of our consumer

computing ecosystems; by the year 2020, more than 80% of the world’s adult population

is projected to own a smartphone [92]. This popularity of mobile devices is driven by the

millions of diverse, feature-rich, third-party applications or “apps” they support. However,

in fulfilling their functionality, apps often require access to security and privacy-sensitive

resources on the device (e.g., GPS location, security settings). Applications can neither

be trusted to be well-written or benign, and to prevent misuse of such access through ma-

licious or vulnerable apps [185, 138, 309, 245, 100, 266, 93], it is imperative to understand

the challenges in securing mobile apps.

Security analysis of third-party apps has been one of the dominant areas of smart-

phone security research in the last decade, resulting in tools and frameworks with diverse

security goals. For instance, prior work has designed tools to identify malicious behav-

ior in apps [97, 310, 29], discover private data leaks [96, 32, 115, 37], detect vulnerable

application interfaces [104, 66, 191, 177], identify flaws in the use of cryptographic primi-

tives [100, 93, 266], and define sandbox policies for third-party apps [145, 163]. To protect

users from malicious or vulnerable apps, it is imperative to assess the challenges and pit-

22
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falls of existing tools and techniques. However, it is unclear whether existing security tools

are sufficiently robust to expose particularly well-hidden unwanted behaviors.

Our work is motivated by the pressing need to discover the limitations of applica-

tion analysis techniques for Android. Existing application analysis techniques, specifically

those that employ static analysis, must in practice trade soundness for precision, as there

is an inherent conflict between the two properties. A sound analysis requires the technique

to over-approximate (i.e., consider instances of unwanted behavior that may not execute

in reality), which in turn deteriorates precision. This trade-off has practical implications

on the security provided by static analysis tools. That is, in theory, static analysis is ex-

pected to be sound, yet, in practice, these tools must purposefully make unsound choices

to achieve a feasible analysis that has sufficient precision and performance to scale. For in-

stance, techniques that analyze Java generally do not over-approximate analysis of certain

programming language features, such as reflection, for practical reasons (e.g., Soot [287],

FlowDroid [32]). Although this particular case is well-known and documented, many such

unsound design choices are neither well-documented, nor known to researchers outside a

small community of experts.

Security experts have described such tools as soundy, i.e., having a core set of sound

design choices, in addition to certain practical assumptions that sacrifice soundness for

precision [190]. Although soundness is an elusive ideal, soundy tools certainly seem to

be a practical choice: but only if the unsound choices are known, necessary, and properly

documented. However, the present state of soundy static analysis techniques is dire, as

unsound choices (1) may not be documented, and unknown to non-experts, (2) may not

even be known to tool designers (i.e., implicit assumptions), and (3) may propagate into

future research. The soundiness manifesto describes the misplaced confidence generated

by the insufficient study and documentation of soundy tools, in the specific context of

language features [190]. Motivated by the manifesto, we leverage soundiness at the general,

conceptual level of design choices, and attempt to resolve the status quo of soundy tools

by making them more secure as well as transparent.
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We describe the Mutation-based Soundness Evaluation (µSE, read as “muse”) frame-

work that enables systematic security evaluation of Android static analysis tools to discover

unsound design assumptions, leading to their documentation, as well as improvements in

the tools themselves. In particular, this chapter describes the extension of the original

µSE paper published in USENIX’18 in August [50]. µSE leverages the practice of muta-

tion analysis from the software engineering (SE) domain [224, 142, 78, 193, 80, 239, 27,

308, 225, 85], and specifically, more recent advancements in mutating Android apps [184].

In doing so, µSE adapts a well-founded practice from SE to security, by making useful

changes to contextualize it to evaluate security tools.

µSE creates security operators, which reflect the security goals of the tools being ana-

lyzed (e.g., data leak or SSL vulnerability detection). These security operators are seeded,

i.e., inserted into one or more Android apps, as guided by a mutation scheme. This seeding

results in the creation of multiple mutants (i.e., code that represents the target unwanted

behavior) within the app. Finally, the mutated application is analyzed using the security

tool being evaluated, and the undetected mutants are then subjected to a deeper analy-

sis. We propose a semi-automated methodology to analyze the uncaught mutants, resolve

them to flaws in the tool, and confirm the flaws experimentally.

We demonstrate the effectiveness of this approach by evaluating static analysis research

tools that detect data leaks in Android apps. Based on the analysis of the discovered flaws,

we provide immediate patches that address one flaw, and identify classes of design-level

flaws that may be hard to address without significant research effort. Further, we perform

a flaw propagation study that checks for the presence of these flaws among seven data

leak detectors.

The general contributions of this chapter can be summarized as follows:

• We introduce the novel paradigm of Mutation-based Soundness Evaluation (i.e., µSE),

which provides a systematic methodology for discovering flaws in static analysis tools for

Android, leveraging the well-understood practice of mutation analysis. We adapt mu-
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tation analysis for security evaluation and design the abstractions of security operators

and mutation schemes.

• We design and implement the µSE framework for evaluating Android static analysis

tools. µSE adapts to the security goals of a tool being evaluated and allows the detection

of unknown or undocumented flaws.

• We demonstrate the effectiveness of µSE by evaluating several widely used Android

security tools that detect private data leaks in Android apps. µSE detects undocumented

flaws, and demonstrates their propagation. This analysis leads to the documentation of

unsound assumptions at the design-level, and immediate security patches for an easily

fixable but evasive flaw.

We published an earlier version of this work in USENIX’18 [50] where we analyzed Flow-

Droid [32] using µSE and discovered 13 previously undocumented flaws. The current

version of this study, described in this chapter, substantially extends upon the previous

work, in the following manner:

• Design and Implementation of µSE: We designed a new scope-based mutation

placement approach, in addition to the mutation schemes originally explored in the

USENIX’18 paper [50]. Further, we refined the implementation of the reachability-

based scheme by integrating class declaration-level placement. Moreover, this exten-

sion includes a discussion on leveraging the abstractions invented in µSE for evaluat-

ing tools with security goals other than data leak detection, such as the detection of

cryptographic-API misuse vulnerabilities. Such a discussion on the general applicability

of µSE’s abstractions was not present in the USENIX’18 paper. Finally, we enhance

µSE’s execution engine as a part of this extension, thereby improving its accuracy in

terms of associating execution traces with mutants.

• Multiplicative improvement in mutants generated: In the USENIX’18 paper [50],

7 Android apps were used as base applications for mutation, to produce 7, 584 compilable

mutants. In this extension, we added 8 new apps, resulting in a total of 15 real-world,
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open-source Android apps used for mutation. We were able to seed 30, 117 compilable

mutants into these 8 new apps, of which 4, 385 were executable, and were used for

evaluating additional data leak detectors (see next). More importantly, to gauge the

impact of the design and implementation improvements on µSE’s ability to generate

compilable mutants, we also mutated the 7 original apps, which resulted in 24, 819

mutants, i.e., 17, 235 more mutants (a 2.27x increase in compilable mutants) over the

USENIX’18 study.

• Evaluation of the Effectiveness of Mutation Schemes: In this extension, we

perform a data-driven evaluation of the implemented mutation schemes, across two

primary directions: (1) their ability to create executable mutants, and (2) their ability

to create mutants that may lead to the discovery of flaws. This analysis, and the

resultant insights regarding schemes is novel, as no such evaluation was performed in

the USENIX’18 paper [50].

• Significant additional extrinsic evaluation with an in-depth analysis of Ar-

gus and HornDroid: We studied FlowDroid in-depth in the USENIX’18 paper, which

formed the core of the extrinsic evaluation. In this study, we effectively tripled the ex-

trinsic evaluation by performing an in-depth soundness evaluation of two additional

state-of-the-art data leak detecting static analysis approaches for Android, namely Ar-

gus (previously known as AmanDroid) [105] and HornDroid [59]. We used the newly

generated set of 4, 385 executable mutants generated from the 8 new base apps to eval-

uate Argus and HornDroid.

• New Findings: The extended analysis led to significant new findings over the USENIX’18

study [50], which can be summarized into the following four points. (1) New flaws.

We found 12 novel flaws in Argus and HornDroid, in addition to the 13 flaws discovered

in FlowDroid in the USENIX’18 study [50], which brings the total number of discov-

ered flaws to 25. (2) New flaw class. We discovered a new flaw class, aside from the

four classes discussed in the USENIX’18 version, due to a distinctive and novel pattern

exhibited by certain flaws, i.e., a fundamentally flawed analysis of critical Android life-
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cycle methods that are present in all applications (e.g., onCreate). (3) New insight on

propagation. Furthermore, we discovered a new insight in terms of how flaws propa-

gate across tools, relative to the USENIX’18 paper. That is, in the USENIX paper we

found that flaws generally propagate when a direct inheritance relationship is present

among two tools (i.e., directly relying on the code base), but also observed that the

flaws did not propagate to tools that did not have a direct relationship, but were simply

built for similar design goals. However, in this work, on studying the propagation of

flaws with four additional tools (i.e., across total 7 tools), we discovered that every

single flaw was present in at least one other tool, which means that flaws propagate

across tools purely because of the shared design goal, even without any direct inheri-

tance relationship. Such propagation based purely on the design goal was speculated in

the USENIX’18 paper, but was not evident, as it is in this work. (4) New insight on

re-emergence of flaws. Finally, we found that flaws that are fixed after reporting, can

re-emerge in future updates of a tool. These findings demonstrate that soundness issues

can be introduced at any point in tools’ lifecycles, which further necessitates continuous

evaluation with µSE.

We have released the µSE framework, the security operators and mutation schemes

constructed for evaluating data leak detectors, as well as all of the experimental data,

to facilitate the reproducibility of the results, as well as to enable security researchers,

tool designers, and analysts uncover undocumented flaws and unsound choices in soundy

security tools [203].

3.1 µSE

We describe µSE, a semi-automated framework for systematically evaluating Android

static analysis tools that adapts the process of mutation analysis commonly used to evalu-

ate software test suites [224]. That is, we aim to help discover concrete instances of flawed

security design decisions made by static analysis tools, by exposing them to method-
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Figure 3.1: µSE tests a static analysis tool on a set of mutated Android apps and analyzes

uncaught mutants to discover and/or fix flaws.

ologically mutated applications. We envision two primary benefits from µSE: short-term

benefits related to straightforwardly fixable flaws that may be patched immediately, and

long-term benefits related to the continuous documentation of assumptions and flaws, even

those that may be hard to resolve. This section provides an overview of µSE (Figure 3.1)

and its design goals.

As shown in Figure 3.1, we take an Android static analysis tool to be evaluated (e.g.,

FlowDroid [32] or MalloDroid [100]) as input. µSE executes the tool on mutants, i.e.,

apps to which security operators (i.e., security-related mutation operators) are applied, as

per a mutation scheme, which governs the placement of code transformations described

by operators in the app (i.e., thus generating mutants). The security operators represent

anomalies that the static analysis tools are expected to detect, and hence, are closely tied

to the security goal of the tool. The uncaught mutants indicate flaws in the tool, and

analyzing them leads to the broader discovery and awareness of the unsound assumptions

of the tools, eventually facilitating security-improvements.

Design Goals: Measuring the security provided by a system is a difficult problem; how-

ever, we may be able to better predict failures if the assumptions made by the system are

known in advance. Similarly, although soundness may be a distant ideal for security tools,

we assert that it should be feasible to articulate the boundaries of a tool’s sound core.

Knowing these boundaries would be immensely useful for analysts who use security tools,

for developers looking for ways to improve tools, as well as for end users who benefit from

the security analyses provided by such tools. To this end, we design µSE to provide an
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effective foundation for evaluating Android security tools. Our design of µSE is guided by

the following goals:

G1 Contextualized security operators. Android security tools have diverse purposes

and may claim various security guarantees. Security operators must be instantiated

in a way that is sensitive to the context or purpose (e.g., data leak identification) of

the tool being evaluated.

G2 Android-focused mutation schemes. Android’s security challenges are notably

unique, and hence require a diverse array of novel security analyses. Thus, the strate-

gies for defining mutation schemes, i.e., the placement of the target, unwanted be-

havior in the app, must consider Android’s abstractions and application model for

effectiveness.

G3 Minimize manual-effort during analysis. Although µSE is certainly more fea-

sible than manual analysis, we intend to significantly reduce the manual effort spent

on evaluating undetected mutants. Thus, our goal is to dynamically filter inconse-

quential mutants, and to develop a systematic methodology for resolving undetected

mutants to flaws.

G4 Minimize overhead. We expect µSE to be used by security researchers as well

as tool users and developers. Hence, we must ensure that µSE is efficient so as to

promote a wide-scale deployment and community-based use of µSE.

Threat Model: The design goals delineated above are ultimately meant to address a

specific threats that arise from static analyses that are thought to be sound – but are not

actually not sound – leading to undiscovered security vulnerabilities in Android apps. µSE

is designed to help security researchers evaluate tools that detect vulnerabilities (e.g., SSL

misuse), and more importantly, tools that detect malicious or suspicious behavior (e.g.,

data leaks). Thus, the security operators and mutation schemes defined in this work are of

an adversarial nature. That is, behavior like “data leaks” is intentionally malicious/curi-

ous, and generally not attributed to accidental vulnerabilities. Therefore, to evaluate the
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soundness of existing tools that detect such behavior, µSE has to develop mutants that

mimic such adversarial behavior as well, by defining mutation schemes of an adversarial

nature. This is the key difference between µSE and prior work on fault/vulnerability

injection (e.g., LAVA [89]) that assumes the mutated program to be benign.

3.2 Design

Figure 3.2 provides a conceptual description of the process followed by µSE, which consists

of three main steps. In Step 1, we specify the security operators and mutation schemes that

are relevant to the security goals of the tool being evaluated (e.g., data leak detection),

as well as certain unique abstractions of Android that separately motivate this analysis.

In Step 2, we mutate one or more Android apps using the security operators and defined

mutation schemes using a Mutation Engine (ME). After this step each app is said to con-

tain one or more mutants. To maximize effectiveness, mutation schemes in µSE stipulate

that mutants should be systematically injected into all potential locations in code where

operators can be instantiated. In order to limit the effort required for manual analysis due

to potentially large numbers of mutants, we first filter out the non-executing mutants in

the Android app(s) using a dynamic Execution Engine (EE) (Section 3.3). In Step 3, we

apply the security tool under investigation to analyze the mutated app, leading it to detect

some or all of the mutants as anomalies. We perform a methodological manual analysis of

the undetected mutants, which may lead to documentation of flaws, and software patches.
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Note that tools sharing a security goal (e.g., FlowDroid [32], Argus [105], HornDroid [59]

and BlueSeal [255] all detect data leaks) can be analyzed using the same security operators

and mutation schemes, and hence the mutated apps, significantly reducing the overall cost

of operating µSE (Goal G4).

This section describes the design of µSE, including the additional contributions made

in this extension of our USENIX’18 study [50]. Moreover, in Section 3.2.4, we describe

a general approach for leveraging the abstractions introduced in µSE to evaluate secu-

rity tools built for goals other than data leak detection (e.g., cryptographic API misuse

detection).

3.2.1 Security Operators

A security operator is a description of the unwanted behavior that the security tool being

analyzed aims to detect. When designing security operators, we are faced with an impor-

tant question: what do we want to express? Specifically, the operator might be too coarse

or fine-grained; finding the correct granularity is the key. For instance, defining operators

specific to the implementations of individual tools may not be scalable. On the contrary,

defining a generic security operator for all the tools may be too simplistic to be effective.

Consider the following example:

Figure 3.3 describes the limitation of using a generic security operator that describes code

which “exports data to the network”. Depending on the tool being evaluated, we may need

a unique, fine-grained, specification of this operator. For example, for evaluating Flow-

Droid [32], we may need to express the specific types of private data that can be exported

via any of the network APIs, i.e., the data portion of the operator is more important than

what network API is used. However, for evaluating a tool that detects vulnerable SSL

connections (e.g., CryptoLint [93]), we may want to express the use of vulnerable SSL

APIs (i.e., of SSL classes that can be overridden, such as a custom TrustManager that

trusts all certificates) without much concern for what data is exported. That is, the re-

quirements are practically orthogonal for these two use cases, rendering a generic operator
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1 Inject:
2 String dataLeak## = java.util.Calendar.getInstance().getTimeZone().getDisplayName

();
3 android.util.Log.d("leak-##", dataLeak##);

Listing 3.1: Security operator that injects a data leak from the Calendar API access to the device
log.

useless, whereas precisely designing tool-specific operators may not scale.

In µSE, we take a balanced approach to solve this problem: instead of tying a security

operator to a specific tool, we define it in terms of the security goal of the concerned tool

(Goal G1). Because the security goal influences the properties exhibited by a security

analysis, security operators designed with a particular goal in consideration would apply

to all the tools that claim to have that security goal, hence making them feasible and

scalable to design. For instance, a security operator that reads information from a private

source (e.g., IMEI, location) and exports it to a public sink (e.g., the device log, storage)

would be appropriate to use for all the tools that claim to detect private data leaks (e.g.,

Argus [105], HornDroid [59], BlueSeal [255]) (e.g., see Listing 3.1 for one such implemented

operator). Moreover, security operators generalize to other security goals as well; a simple

operator for evaluating tools that detect vulnerable SSL use (e.g., MalloDroid) could add

a TrustManager with a vulnerable isServerTrusted method that returns true.

To derive security operators at the granularity of the security goal, we must examine

the claims made by existing tools; i.e., security tools must certainly detect the unwanted

behavior that they claim to detect, unless affected by some unsound design choice that

hinders detection. We inspect the following sources to precisely identify the security flaws

considered by tools:

1) Research Papers: The tool’s research paper is often the primary source of information

about what unwanted behavior a tool seeks to detect. We inspect the properties and

variations of the unwanted behavior as described in the paper, as well as the examples

provided, to formulate security operator specifications for injecting the unwanted behavior

in an app. However, we do not create operators using the limitations and assumptions

already documented in the paper or well-known in general (e.g., reflection or dynamic
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code loading), as µSE seeks to find unknown assumptions.

2) Open source tool documentation: Due to space limitations or tool evolution over

time, research papers may not have the most complete or up-to-date information consider-

ing what security flaws a tool can actually address. We used tool documentation available

in online appendices and open source repositories to fill this knowledge gap.

3) Testing toolkits: Manually-curated testing toolkits (e.g., DroidBench [32]) may be

available and may provide examples of baseline operators.

3.2.2 Mutation Schemes

To enable the security evaluation of static analysis tools, µSE must seed mutations within

Android apps. For this purpose, we definemutation schemes, i.e., the methods for choosing

where to apply security operators to inject mutations within Android apps.

Our design of mutation schemes leverages a number of factors: (1) Android’s unique

abstractions, (2), the intent to over-approximate reachability for coverage, and (3) the

security goal of the tool being analyzed. We design mutation scheme strategies based on

these factors (Section 3.2.2.1→Section 3.2.2.3), and describe them in the context of our

running example first described in Section 2.1 (but elaborated as follows):

Recall that FlowDroid [32], the target of our analysis in Section 2.1, detects data leaks

in Android apps. Hence, FlowDroid loosely defines a data leak as a flow from a sensitive

source of information to some sink that exports it. FlowDroid lists all of the sources and

sinks within a configurable “SourcesAndSinks.txt” file in its tool documentation. A simple

data leak mutation may be implemented by using the data leak operator described previ-

ously, with a source (e.g.,java.util.Calendar.getTimeZone()) and sink (e.g.,android.util.Log.d())

from this file.

The strategies described in the rest of this section guide our implementation of four

specific mutation schemes, using which we seed this data leak across target Android ap-

plications (see Section 3.3 for implementation). In particular, we significantly enhance the
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goal-based mutation scheme strategy by introducing scope as a factor, and implement a

scope-based mutation-scheme (Section 3.3), which further increases the expressiveness of

the mutation introduced by µSE.

3.2.2.1 Mutation Scheme Strategy 1: Leveraging Android Abstractions

The Android platform and app model support numerous abstractions that pose challenges

to static analysis. One commonly stated example is the absence of a Main method as an

entry-point into the app, which compels static analysis tools to scan for the various entry

points, and treat them all similarly to a traditional Main method [32, 146].

Based on our domain knowledge of Android and its security, we choose the following

features as a starting point in a mutation scheme strategy that models unique aspects

of Android, and more importantly, tests the ability of analysis tools to detect unwanted

behavior placed within these features (Goal G2):

1) Activity and Fragment lifecycle: Android apps are organized into a number of

activity components, which form the user interface (UI) of the app. The activity lifecycle is

controlled via a set of callbacks, which are executed whenever an app is launched, paused,

closed, started, or stopped [83]. In addition, Fragments are UI elements that possess

similar callbacks, although they are often used in a manner secondary to activities. We

design our mutation scheme to place mutants within methods of fragments and activities

where applicable, so as to validate a tool’s ability to model the activity and fragment

life-cycles.

2) Callbacks: Because much of Android relies on callbacks triggered by events, these

callbacks pose a significant challenge to traditional static analyses, as their code can be

executed asynchronously in several different potential orders. We place mutants within

these asynchronous callbacks to validate the tools’ ability to soundly model the asyn-

chronous nature of Android. For instance, consider the example in Listing 3.2, where the

onClick() callback can execute at any point of time.
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1 final Button button = findViewById(R.id.button_id);
2 button.setOnClickListener(new View.OnClickListener() {
3 public void onClick(View v) {
4 // Code here executes on main thread after user presses button
5 }
6 });

Listing 3.2: Dynamically created onClick callback

3) Intent messages: Android apps communicate with one another and listen for system-

level events using Intents, Intent Filters, and Broadcast Receivers [82, 81]. Specifically,

Intent Filters and Broadcast Receivers form another major set of callbacks into the app.

Moreover, Broadcast Receivers can be dynamically registered. Our mutation scheme not

only places mutants in the statically registered callbacks such as those triggered by Intent

Filters in the app’s Android Manifest, but also callbacks dynamically registered within the

program, and even within other callbacks, i.e., recursively. For instance, we generate a

dynamically registered broadcast receiver inside another dynamically registered broadcast

receiver, and instantiate the security operator within the inner broadcast receiver (see

Listing A.1 in the Appendix for the code).

4) XML resource files: Although Android apps are primarily written in Java, they

additionally include resource files that establish callbacks. Such resource files also allow

the developer to register for callbacks from an action on a UI object (e.g., the onClick

event, for callbacks on a button being touched). As described previously, static analysis

tools often list these callbacks on par with the Main function, i.e., as one of the many

entry points into the app. We incorporate these resource files into our mutation scheme,

i.e., mutate them to call our specific callback methods.

3.2.2.2 Mutation Scheme Strategy 2: Evaluating Reachability

The objective behind this simple, but important, mutation scheme is to exercise the reach-

ability analysis of the tool being evaluated. We inject mutants (e.g., data leaks from our

example) at the start of every method in the app. Furthermore, as part of this extended

study, we add leaks at the class declaration-level as well. While the previous schemes add

methods to the app (e.g., new callbacks), this scheme simply verifies if the app successfully
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1 String dataLeak0 = java.util.Calendar.getInstance().getTimeZone().getDisplayName();
2 String[] leakArRay0 = new String[] {"n/a", dataLeak0};
3 String dataLeakPath0 = leakArRay0[leakArRay0.length - 1];
4 android.util.Log.d("leak-0", dataLeakPath0);

Listing 3.3: Complex Path Operator Placement

1 public class ParentClass {
2 String dataLeak = "";
3 int methodA(){
4 android.util.Log.d("leak-0-1", dataLeak);
5 return 1; }
6 class ChildClass{
7 int childMethodA(){
8 dataLeak = java.util.Calendar.getInstance().getTimeZone().getDisplayName

();
9 android.util.Log.d("leak-0-0", dataLeak);

10 return 1; }}}

Listing 3.4: Scope based operator placement at different levels of inheritance.

models the bare minimum.

3.2.2.3 Mutation Scheme Strategy 3: Leveraging the Security Goal

Like security operators, mutation schemes may also be designed in a way that accounts for

the security goal of the tool being evaluated (Goal G1). Such schemes may be applied to

any tool with a similar objective. In keeping with our motivating example (Section 2.1) and

our evaluation (Section 3.4), we develop an example mutation scheme strategy that can

be specifically applied to evaluate data leak detectors. This strategy can be instantiated

in terms of the following three methods of seeding mutants:

1) Taint-based operator placement: This placement methodology tests the tools’

ability to recognize an asynchronous ordering of callbacks, by placing the source in one

callback and the sink in another. The execution of the source and sink may be triggered

due to the user, and the app developer (i.e., especially a malicious adversary) may craft the

mutation scheme specifically so that the sources and sinks lie on callbacks that generally

execute in sequence. However, this sequence may not be observable through just static

analysis. A simple example is collecting the source data in the onStart() callback, and

leaking it in the onResume() callback. As per the activity lifecycle, the onResume()

callback always executes right after the onStart() callback.
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2) Complex-Path operator placement: Our preliminary analysis demonstrated that

static analysis tools may sometimes stop after an arbitrary number of hops when analyzing

a call graph, for performance reasons. This finding motivated the complex-path operator

placement. In this scheme, we make the path between source and sink as complex as

possible (i.e., which is ordinarily one line of code, as seen in Listing 3.1). That is, the

design of this scheme allows the injection of code along the path from source to sink based

on a set of predefined rules. For our evaluation, we instantiate this scheme with a rule that

recreates the String variable saved by the source, by passing each character of the string

into a StringBuilder, then sending the resulting string to the sink as shown in Listing 3.3.

µSE allows the analyst to dynamically implement such rules, as long as the input and

output are both strings, and the rule complicates the path between them by sending the

input through an arbitrary set of transformations.

3) Scope-based operator placement: This scope-based placement methodology was

not defined in our USENIX’18 paper [50], and is a new addition to µSE as part of this

extension. As the name suggests, µSE can inject code by analyzing scopes based on visi-

bility. For example, as shown in Listing 3.4, childMethodA is visible from both ChildClass

and ParentClass. Therefore, we declare a variable dataLeak at the ParentClass, while as-

signing the leak source at the childMethodA. Consequently, we insert corresponding sinks

in childMethodA and methodA. Note that this scheme is not restricted by callbacks and

can be useful for different variations of method declarations. As application developers

may arbitrarily organize class scopes, seeding mutants into applications using this scheme

generally results in interesting and often complicated mutant placement, which further

assists in stress-testing security techniques that assume an adversarial threat model (e.g.,

data leak detectors).

In a traditional mutation analysis setting, the mutation placement strategy would seek

to minimize the number of non-compilable mutants. However, as our goal is to evaluate the

soundness of Android security tools, we design our mutation scheme to over-approximate.
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Figure 3.4: The number of mutants (e.g., data leaks) to analyze drastically reduces at every

stage in the process.

Once the mutated apps are created, for a feasible analysis, we pass them through a dynamic

filter that removes the mutants that cannot be executed, ensuring that the mutants that

each security tool is evaluated against are all executable i.e., the data leaks can indeed

happen in runtime.

Note that although mutation schemes using the first two strategies (Section 3.2.2.1

and Section 3.2.2.2) may be generally applied to any type of static analysis tool (e.g., SSL

vulnerability and malware detectors), the third strategy, as the description suggests, will

need to be adapted per security goal (e.g., data leak detection). We elaborate on this

point by presenting a general approach for leveraging our mutation abstractions for other

security goals, in Section 3.2.4.

3.2.3 Analysis Feasibility & Methodology

µSE reduces manual effort by filtering out mutants whose security flaws are not verified by

dynamic analysis (Goal G3). As described in Figure 3.2, for any given mutated app, we

use a dynamic filter (i.e., the Execution Engine (EE), described in Section 3.3) to purge

non-executable leaks. If a mutant (e.g., a data leak) exists in the mutated app, but is not

confirmed as executable by the filter, (i.e., data does not leak from source to sink), we

discard it. For example, data leaks injected in dead code are filtered out. Thus, when the

Android security tools are applied to the mutated apps, only mutants that were executed

by EE are considered.

Furthermore, after the security tools were applied to mutant apps, only undetected



3.2. DESIGN 39

mutants are considered during analyst analysis. The reduction in the number of mutants

subject to analysis at each step of the µSE process is illustrated in Figure 3.4.

The following methodology is used by an analyst for each undetected mutant after

testing a given security tool to isolate and confirm flaws:

1) Identifying the Source and Sink: During mutant generation, µSE’s ME injects a

unique mutant identifier, as well as the source and sink using util.Log.d statements. Thus,

for each undetected mutant, an analyst simply looks up the unique IDs in the source to

derive the source and sink.

2) Performing Leak Call-Chain Analysis: Since the data leaks under analysis went

undetected by a given static analysis tool, this implies that there exists one (or multiple)

method call sequences (i.e., call-chains) invoking the source and sink that could not be

modeled by the tool. Thus, a security analyst inspects the code of a mutated app and

identifies the observable call sequences from various entry points. This is aided by dynamic

information from the EE so that an analyst can examine the order of execution of detected

data leaks to infer the propagation of leaks through different call chains.

3) Synthesizing Minimal Examples: For each of the identified call sequences invoking

a given undetected data leak’s source and sink, an analyst then attempts to synthesize a

minimal example by re-creating the call sequence using only the required Android APIs or

method calls from the mutated app. This info is then inserted into a pre-defined skeleton

app project so that it can be again analyzed by the security tools to confirm a flaw.

4) Validating the Minimal Example: Once the minimal example has been synthesized

by the analyst, it must be validated against the security tool that failed to detect it earlier.

If the tool fails to detect the minimal example, then the process ends with the confirmation

of a flaw in the tool. If the tool is able to detect the examples, the analyst can either

iteratively refine the examples, or discard the mutant, and move on to the next example.
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3.2.4 Leveraging Security Operators and Mutation Schemes for other

Security Goals

Our design describes the µSE framework in terms of the security goal of data leak detec-

tion, primarily due to the popularity of the goal, as well as the proliferation of data leak

detectors in academic research. However, µSE may be applied as a general framework,

to evaluate detection techniques that target other security goals. We briefly describe the

generality of µSE, and specifically, its abstractions of security operators and mutation

schemes for evaluating tools that detect cryptographic-API misuse, which is the second

most prolific cause of vulnerabilities, after data leaks [290]. In this context, µSE will

evaluate tools such as CryptoGuard [243] and CrySL [175], which try to detect misuse of

crypto APIs.

µSE’s abstractions may be naturally leveraged to evaluate crypto-API misuse detec-

tors. To elaborate, the security operators for evaluating such tools would represent well-

known cryptographic vulnerabilities, such as passing a weak algorithm name as parameter

to an encryption related cryptography API. For example, one operator could be repre-

sented by passing insecure parameters in an API such as Cipher.getInstance(),

such as only passing AES as a parameter, which would initialize an insecure default cipher

that use the ECB mode.

Similarly, µSE’s mutation schemes may also be directly leveraged to place such mu-

tations in a hard-to-detect manner. First, the scheme that evaluates reachability (Sec-

tion 3.2.2.2) can be directly applied, by placing such vulnerable API invocations (i.e.,

mutations) at as many reachable locations within the target app as possible. Similarly,

the Android-specific scheme-strategies (Section 3.2.2.1) can be leveraged to place the vul-

nerable invocation in commonly used Android abstractions such as fragments and broad-

cast receivers. Finally, the security goal-based scheme-strategies (Section 3.2.2.3) can be

leveraged to evaluate crypto-API misuse detectors as well. For example, we can consider

the parameter passed to the Cipher.getInstance() API, i.e., the AES string, as a
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source value, and the API call as the sink, and use the taint-based mutation scheme to

distribute these source and sink values across different Android lifecycle methods, such

that they would execute in the right sequence, but be hard to detect. Similarly, our newly

defined scope-based mutation scheme can be used to inject the source parameter and the

API in different program scopes, in a way that would execute flawlessly at runtime, but

would be hard to detect. Other than syntactical changes required to implement the secu-

rity operator (i.e., defining new source-sink pairs, but with Cipher APIs) and adjusting it

for mutation using the schemes (i.e., scoping them within required try-catch block) , no

other changes will be required to the framework, for making it applicable for evaluating

crypto-API misuse detectors. We elaborate on the estimated effort required to make these

changes in Section 3.9.

3.3 Implementation

This section provides the implementation details of µSE’s components: (1) the ME for

mutating apps, and (2) the EE for exercising and filtering out non-executable mutants.

We have made µSE available to the research community [203], along with all the data and

code generated or used.

1. Mutation Engine (ME): The ME allows µSE to automatically mutate apps accord-

ing to a fixed set of security operators and mutation schemes. The ME is implemented in

Java and extends the MDroid+ mutation framework for Android [184]. More specifically,

µSE’s ME implements the seeding of mutants according to our defined mutation schemes.

This required extensions to MDroid+’s implemented static analyses to identify a more di-

verse array of source code locations (e.g., analyzing the visibility scope for the scope-based

operator placement scheme). MDroid+’s previous implementation only supported identi-

fying strings and specific API patterns. These additions help to make µSE’s ME generic,

as it could be applied to support additional security operators or mutation schemes in the

future. To achieve these extensions, we designed ME to do the following:
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Firstly, the ME derives a mutant injection profile (MIP) of all possible injection points

for a given mutation scheme, security operator, and target app source code. The MIP is

derived through one of two types of analysis: (i) text-based parsing and matching of xml

files in the case of app resources; or (ii) using Abstract Syntax Tree (AST) based analysis

for identifying potential injection points in code. µSE takes a systematic approach toward

applying mutants to a target app, and for each mutant location stipulated by the MIP

for a given app, a mutant is seeded. The injection process additionally uses either text or

AST-based code transformation rules to modify the code or resource files. In the context

of our evaluation, µSE further marks injected mutants in the source code with log-based

indicators that include a unique identifier for each mutant, as well as the source and sink

for the injected leak. This information can be customized for future security operators and

exported as a ledger that tracks mutant data. µSE can be extended to additional security

operators and mutation schemes by adding methods to derive the MIP and perform target

code transformations.

Given the time cost in running the studied security-focused static analysis tools on a set

of apks, µSE breaks from the process used by traditional mutation analysis frameworks

that seed each mutant into a separate program version, and seeds all mutants into a single

version of a target app. Finally, the target app is automatically compiled using its build

system (e.g., Gradle [158], ant [108]) so that it can be dynamically analyzed by the EE.

2. Mutation Schemes: We implemented four mutation schemes using the strategies

outlined in Section 3.2.2. First, we implemented the Reachability scheme, using the

reachability-based strategy (Section 3.2.2.2). Then, we implemented three other schemes,

Scope, Taint, and Complex Reachability, using the security goal-based strategy (Sec-

tion 3.2.2.3). Finally, we integrated the Android-specific mutation scheme strategy (Sec-

tion 3.2.2.1) in these four schemes by prioritizing placement into several abstractions

unique to Android (e.g., fragments, receivers, asynchronous task classes). Among these,

the Scope based scheme was not implemented in our prior USENIX’18 paper [50].
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3. Execution Engine (EE): To facilitate a feasible manual analysis of the mutants

that are undetected by a security analysis tool, µSE uses the EE to dynamically analyze

target apps, verifying whether or not injected mutants can be executed in practice. To

further elaborate with respect to our implementation, an executable mutant represents a

data leak from source to sink as observed through our execution engine. This EE builds

upon prior work in automated input generation for Android apps by adapting the system-

atic exploration strategies from the CrashScope tool [201, 199] to explore a target app’s

GUI. We made several improvements to CrashScope in order to tailor the automated app

execution to the goal of discovering as many executable mutants as possible. For instance,

CrashScope’s execution strategies were originally intended to uncover crashes in Android

apps and thus included several mechanisms that executed common crash inducing actions

on apps including rotating the screen, and injecting text with special characters. In order

to be used in µSE, we discarded these crash inducing operations, and developed strategies

that focused upon uncovering as many execution states of the app as possible. Addition-

ally, as part of extending our USENIX’18 paper [50], we made a practical improvement

to the manner in which CrashScope analyzes applications as part of our current study.

That is, during initial testing we discovered that even after uninstalling an application

from an Android virtual device used in CrashScope, certain background services may

persist, which can contaminate the runtime mutant execution logs across applications.

We addressed this problem by modifying CrashScope to instantiate a new, clean Android

virtual device for each application analyzed, thereby fully isolating application execution

logs.

We discuss the limitations of the EE in Section 3.9 (see the Appendix for additional

details).
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3.4 Evaluation Overview

The primary objective of this evaluation is to measure the effectiveness of µSE at uncov-

ering flaws in security-focused static analysis tools for Android apps, and to demonstrate

the extent of such flaws. As a case study, we focus our evaluation on the security goal

of data leak detection, which has received significant attention from the security research

community in the last decade [96, 94, 115, 181, 94, 180, 168, 244, 179]. Our evaluation

is guided by 6 key research questions that provide an objective measure of the effective-

ness and practicality of µSE, while also shedding light on the general nature of unsound

decisions/flaws in static analysis security tools:

RQ1 Effectiveness of µSE. Can µSE find security problems in static analysis tools for

Android, and help resolve them to flaws/unsound choices?

RQ2 Relative effectiveness of mutation schemes.1 How effective are the individual

mutation schemes for (a) generating executable mutants and (b) discovering security

flaws?

RQ3 Propagation of flaws. Are flaws inherited when a tool is reused, or built based on

similar principles?

RQ4 Addressing flaws. Are all flaws unearthed by µSE hard to address, or can some

be patched?

RQ5 Scalability of µSE. Does the semi-automated methodology of µSE for analyzing

mutants allow for a feasible analysis (i.e., in terms of the manual effort)?

RQ6 Performance of µSE. What is the runtime performance of µSE?

To address RQ1→RQ6, we performed several experiments for a period of over two

years (i.e., October 2017 → January 2020). We started by creating a data-leak security

operator (i.e., as described in Section 3.2.1), and used µSE’s expressive mutation schemes

(Section 3.2.2) to seed the corresponding mutated code in a set of 15 open source Android

applications obtained from F-droid [102] (see Table A.1 in the Appendix for the list), cre-

1RQ2 was not investigated in our USENIX’18 paper [50].
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ating 54, 936 mutants representing injected data leaks. Section 3.5 describes this process,

along with the refinement made possibly by µSE’s EE, and addresses questions pertaining

to µSE’s intrinsic evaluation (RQ2, RQ5 and RQ6). We selected three prominent data

leak detectors, namely, FlowDroid [32], Argus [105] (previously known as AmanDroid),

and HornDroid [59], as the target of our in-depth evaluation using the end-to-end ap-

proach as described in Section 3.2. The in-depth study of FlowDroid was reported in our

USENIX’18 paper [50] and is not re-performed in this study. Due to the longitudinal na-

ture of this study, we strived to use the latest release of the data leak detectors whenever

available. Section 3.6 describes this evaluation, the 13 flaws that we previously discovered

(RQ1) in FlowDroid and the 12 new flaws found in HornDroid and Argus. Further, we

also briefly describe the one flaw that we could fix (RQ4), and the relative effectiveness

of µSE’s mutation schemes in unearthing flaws (RQ2). We developed minimal examples

of the discovered flaws, and performed a flaw propagation study (Section 3.7) to discover

the extent to which flaws discovered in one tool manifest in others developed for the same

security goal (RQ3). Particularly, we used four additional data leak detection tools, i.e.,

in addition to the three tools analyzed in depth in Section 3.6, bringing the total to seven

tools, for which propagation was studied. Note that compared to our USENIX’18 pa-

per [50], which only studied the propagation of flaws discovered in FlowDroid, we describe

the propagation of flaws discovered in three tools, namely FlowDroid, Argus, and Horn-

Droid. Our results demonstrate that flaws generally propagate to other tools, and more

so if the tools rely on common design principles.
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Table 3.1: The number of leaks inserted by µSE, and the final number marked as exe-
cutable by µSE’s EE. Note that the “-” indicates that the scheme is not applicable to a
particular app, due to the app’s particular characteristics (e.g., the absence of fragments)

App ID
Inserted Leaks per Scheme Executable Leaks per Scheme

Reachability Scope Taint
Complex
Reachability

Reachability Scope Taint
Complex
Reachability

App 01 24 48 66 22 13 (≈54%) 12 (≈12%) 8 (≈12%) 11 (≈50%)
App 02 106 - 231 83 63 (≈59%) - 80 (≈34%) 44 (≈14%)
App 03 248 - 668 191 51 (≈20%) - 162 (≈24%) 36 (≈26%)
App 04 45 192 346 41 20 (≈44%) 156 (≈81%) 51 (≈14%) 23 (≈2%)
App 05 3181 - 12104 2777 598 (≈18%) - 1362 (≈11%) 508 (≈42%)
App 06 434 - 2699 384 57 (≈13%) - 110 (≈4%) 51 (≈5%)
App 07 204 - 551 174 111 (≈54%) - 243 (≈44%) 95 (≈34%)
App 08 975 1193 5266 839 215 (≈22%) 56 (≈4%) 567 (≈10%) 168 (≈32%)
App 09 23 8 20 21 15 (≈65%) 6 (≈75%) 13 (≈65%) 12 (≈7%)
App 10 476 - 5283 449 59 (≈12%) - 681 (≈12%) 54 (≈11%)
App 11 316 1111 827 277 50 (≈15%) 287 (≈25%) 83 (≈10%) 41 (≈5%)
App 12 250 354 428 213 77 (≈30%) 111 (≈31%) 59 (≈13%) 38 (≈7%)
App 13 156 203 828 147 89 (≈57%) 112 (≈55%) 295 (≈35%) 84 (≈71%)
App 14 125 844 663 107 79 (≈63%) 55 (≈6%) 27 (≈4%) 59 (≈9%)
App 15 1304 3478 2790 1143 211 (≈16%) 456 (≈13%) 172 (≈6%) 154 (≈41%)

Total 7867 7431 32770 6868 1708 (≈22%) 1251 (≈16%) 3913 (≈11%) 1378 (≈20%)

3.5 Executing µSE to Create Mutants Representing Data

Leaks

We applied µSE to 15 target Android apps obtained from F-Droid [102], and created

54, 936 mutants (i.e., data leaks).2 These leaks were generated by the µSE’s Mutation En-

gine (ME) using the data-leak security operator, and the four mutation schemes described

in Section 3.3, namely, (1) reachability, (2) scope, (3) taint, and (4) complex reachability.

Filtering non-executable leaks: We then used our Execution Engine (EE) to filter out

non-executable leaks, as described in Section 3.3, and confirmed 8, 250 out of 54, 936 leaks

as executable. The remaining 46, 686 non-executable leaks were then removed. Note that

this number is independent of the tools involved, i.e., the filtering only happens once, and

the mutated APKs can then be passed to any number of tools for analysis. By filtering

out a large number of potentially non-executable leaks

2We use “mutants” and “leaks” interchangeably to refer to data-leak-related mutants used in the
evaluation, i.e., Sections 3.4→3.7.
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(i.e., 46, 686/54, 936 or about 85%), our dynamic filtering is tremendously effective at

reducing the number of mutants used to evaluate security tools, and in turn, the manual

effort required to analyze the uncaught mutants, which demonstrates the feasibility of

µSE (RQ5).

Runtime performance: µSE took 19 hours in total to create the mutants and filter out

those that were non-executable, which is a one-time cost for each security goal, i.e., which

does not have to be repeated for any of the tools we analyze in particular (RQ6). To

elaborate, it took us 74 minutes on average to mutate each of the 15 apps, with minimum

and maximum times of 16 and 170 minutes, and a standard deviation of about 53 minutes.

The increase in runtime compared to our original work (92 minutes in worst case) [50]

is due to two reasons: (1) heterogeneity of the applications selected for mutation, and

(2) a bulk of the time spent can be attributed to our improvements to CrashScope (see

Section 3.3) that require the Android virtual device it uses to be recreated more frequently,

leading to an increase in runtime. However, the improvements also increase the reliability

of CrashScope’s mutant detection by preventing cross-contamination of mutation logs

across apps, and hence, are desirable.

Correlation between executable mutants and µSE’s schemes: To improve our

understanding of what factors contribute to more executable leaks, we further examined

the number of executable leaks generated as a factor of the mutation schemes used to

generate them (i.e., since there was a single security operator used) in this extended

study.

Table 3.1 shows the number of executable and non-executable leaks seeded using each

of the mutation schemes described in Section 3.2.2 (RQ2). As seen in the table, the Reach-

ability and Complex Reachability result in the insertion of a somewhat similar number of

leaks (i.e., 7,867 and 6,868 respectively), and the fraction of leaks deemed executable by

our EE is similar as well, i.e., 1,708 (about 22%) and 1378 (i.e., 20%) for the Reachability

and Complex Reachability scheme, respectively. Our intuition is that this equivalence
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results from the inherent similarity in the nature of the two schemes. Moreover, these two

schemes produced the highest fraction of executable mutants (i.e., over 20%). Further,

the Scope-based scheme inserted a total of 7,431 leaks, out of which, 1,251 (i.e., or 16%)

were confirmed as executable by the EE. Note that the number of leaks inserted using the

Scope-based scheme for individual apps is highly variable, primarily due to wide variations

in the developers’ usage of scope. Finally, the Taint-based scheme was the most numer-

ous, both in terms of the number of leaks inserted (i.e., 32,770) as well as the number

of executable leaks (i.e., 3,913) it caused. However, the Taint-based scheme did not lead

to a high rate of executable leaks, which we suspect to be due to the sheer number of

leaks seeded with it. The high number of leaks (and more importantly, non-executable

leaks) seeded by the Taint-based scheme is primarily due to its design, i.e., it places one

source per method in a class, thus creating a total of n sources distributed in n methods.

Then, it places n sinks per source in each method as scope allows. As a result, around n2

number of sinks are created in total for n sources in each class.

The superior performance of the Reachability and Complex Reachability schemes over

the other two is expected, i.e., as both Scope-based and Taint-based schemes insert leaks

with sources and sinks distributed across methods, thereby creating unreachable sinks at

a higher rate. In contrast, the Reachability and Complex Reachability schemes place leaks

with the sources and sinks placed together, resulting in a lower number of unreachable

sinks, and hence, a higher rate of creating executable mutants.

3.6 In-depth Evaluation of Data Leak Detection Tools with

µSE

To demonstrate the utility of µSE, we evaluated three prominent data leak detectors

with it: FlowDroid [32], HornDroid [59], and Argus [105]. Among these, FlowDroid

was analyzed in-depth as part of the previous study [50], whereas we analyze Argus and

HornDroid as part of our current, extended study. We selected FlowDroid and Argus for
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the in-depth analysis as they are regularly maintained, with multiple publicly available

versions, and form a representative sample of the current state-of-the-art. Additionally,

we selected HornDroid as it is the first Android static analysis tool with a formal proof of

soundness, making it an interesting case for a soundiness evaluation. Compatibility with

our mutant apps and general analysis feasibility were also major factors that influenced tool

selection for the in-depth analysis. Specifically, we avoided tools that had not been updated

recently (i.e., were built for outdated Android versions), and hence were incompatible with

many of our mutant apps.

Methodology: Our methodology for evaluating a security tool with µSE is as follows:

First, we analyze executable mutants with the tool being evaluated. Then, we systemati-

cally examine the surviving (i.e., undetected) mutants using the methodology described in

Section 3.2.3, and resolve the undetected mutants to design/implementation flaws. Using

this approach, our analysis of FlowDroid, HornDroid, and Argus led to the discovery of 25

unique flaws, among which 13 were reported in our USENIX’18 paper [50]. We confirmed

that these flaws were undocumented, i.e., mentioned neither in the tools’ corresponding

papers or documentation.

3.6.1 Evaluating FlowDroid

FlowDroid was introduced by Artz et al. [32] in 2014 as a data leak detection tool for

Android. It models the Android life-cycle to handle callbacks invoked by the Android

Framework to perform information flow analysis and data leak detection. Furthermore,

it applies context, flow, field, and object-sensitivity to reduce the number of false positive

sensitive data leaks the tool detects. FlowDroid has been cited over 1,400 times, and the

tool has been continuously maintained since 2014, which motivated its analysis.

For our in-depth analysis, we evaluated FlowDroid v2.0, which was the version available

during our USENIX’18 study [50], using the 7, 584 mutants originally created from our

first seven base apps (i.e., apps 01-07), leveraging the Reachability, Complex Reachability
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and Taint schemes. In this extension, we used the substantially improved version of µSE

to create 30, 117 mutants (4, 385 executable) from the remaining eight apps to evaluate

HornDroid and Argus, using all four mutation schemes (i.e., including the additional

Scope scheme developed in this extension). This separation is mainly due to the order

in which the tools were evaluated, and the longitudinal nature of our study. Moreover,

this two-phase evaluation with disjoint sets of mutants led to the discovery of flaws in all

three tools, which indicates that µSE may be effective at revealing flaws in security tools,

irrespective of the apps used as input.

Results: Out of the 2, 026 mutants that we analyzed using FlowDroid, 987 were unde-

tected. On analyzing the undetected mutants, we discovered 13 unique flaws in FlowDroid,

demonstrating that µSE can be effectively used to find problems that can be resolved to

flaws (RQ1). Using the approach from Section 3.2.3, we needed less than one hour to

isolate a flaw from the set of undetected mutants, in the worst case. In the best case,

flaws were found in a matter of minutes, demonstrating that the amount of manual effort

required to quickly find flaws using µSE is minimal (RQ5). We provide descriptions of

the flaws discovered in FlowDroid in Table 3.2.

We have reported these flaws and are working with the FlowDroid developers to re-

solve them. In fact, we developed two patches [281] to correctly implement Fragment

support (i.e., F5 in Table 3.2), which were accepted by developers. To gain insight about

the practical challenges faced by static analysis tools, and their design flaws, we further

categorize the flaws into the following classes:

FC1: Missing Callbacks: The security tool (e.g., FlowDroid) did not recognize some

callback method(s) and will not find leaks placed within them. Tools that use lists of

APIs or callbacks are susceptible to this problem, as prior work has demonstrated that

the generated list of callbacks (1) may not be complete, and (2) or may not be updated

as the Android platform evolves. We observed both such cases in our analysis of Flow-

Droid. That is, DialogFragments was added in API 11 before FlowDroid was released, and
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NavigationView was added after. These limitations are well-known in the community of

researchers at the intersection of program analysis and Android security, and have been

documented by prior work [60]. However, µSE helps evaluate the robustness of exist-

ing security tools against these flaws and helps in uncovering these undocumented flaws

for the wider security audience. Additionally, some of these flaws may not be resolved

even after adding the callback to the list; e.g.,PhoneStateListener and SQLiteOpenHelper,

both added in API 1, are not interfaces, but abstract classes. Therefore, adding them to

FlowDroid’s list of callbacks (i.e.,AndroidCallbacks.txt) does not resolve the issue.

FC2: Missing Implicit Call: The security tool did not identify leaks within some

method that is implicitly called by another method. For instance, FlowDroid does not

recognize the path to Runnable.run() when a Runnable is passed into the ExecutorSer-

vice.submit(Runnable). The response from the developers indicated that this class of flaws

was due to an unresolved design challenge in Soot’s [287] SPARK algorithm, upon which

FlowDroid depends. This limitation is also generally well known within the program anal-

ysis community [60]. However, the documentation of this gap in analysis, thanks to µSE,

would certainly benefit researchers in the wider security community.

FC3: Incorrect Modeling of Anonymous Classes: The security tool did not detect

data leaks expressed within an anonymous class. For example, FlowDroid did not recognize

leaks in the onReceive() callback of a dynamically registered BroadcastReceiver, which

is implemented within another dynamically registered BroadcastReceiver’s onReceive()

callback. It is important to note that finding such complex flaws is only possible due to

µSE’s semi-automated mechanism and may be rather prohibitive for an entirely manual

analysis.

FC4: Incorrect Modeling of Asynchronous Methods: The security tool did not

recognize a data leak whose source and sink are called within different methods that are

asynchronously executed. For instance, FlowDroid did not recognize the flow between

data leaks in two callbacks (i.e., onLocationChanged and onStatusChanged) of the Loca-
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tionListener class, which the adversary may cause to execute sequentially (i.e., as our EE

confirmed).

Apart from FC1, which may be patched with limited effort, the other three categories

of flaws may require a significant amount of research effort to resolve. However, docu-

menting them is critical to increase awareness of real challenges faced by Android static

analysis tools.

3.6.2 Evaluating Argus

As part of this extended study, we evaluated Argus v3.1.2 (i.e., the latest version at the

time of our analysis) with 4, 385 executable mutants generated from the 8 new base apps,

i.e., apps 08-15. Further, we analyzed the 7, 708 uncaught mutants (i.e., the leaks not

detected by Argus) using the methodology previously described in Section 3.2.3. Through

the addition of 8 new base apps, we aim to add diversity to the created mutants, as

these new apps are likely to encompass a new set of development practices that might

impact our findings. Therefore, this new set of apps might also help us find new flaws

through µSE due to the additional, diverse mutations created. While we do not consider

the original apps from our USENIX’18 study for Argus and HornDroid, we consider this

to be a balanced trade-off as we later study the propagation of flaws from both old and

new sets of apps across tools.

Results: Through analyzing the uncaught mutants, we discovered 9 unique flaws in

Argus, as shown and classified in Table 3.3. Note that these flaws are separate from the

ones found in FlowDroid (Section 3.6.1). This demonstrates that the flaws found from our

USENIX’18 study [50] were not inherently coupled to the base apps chosen, and that µSE

can be effective with different sets of apps representing a reasonable level of diversity. A

description of each flaw is provided in Table 3.3. Our project repository provides minimal

APKs representing the flaws in Argus [203].

Of the 9 flaws, 3 are based on Fragment usage and are of the FC4 flaw class, while the
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remaining 6 fall in FC1. Note that while we found fragment-based flaws in FlowDroid,

the 4 fragment related flaws discovered for Argus are independent, although they could

be interpreted as variants of those found in FlowDroid. The flaws discovered in Argus are

described as follows:

Argus flaws in FC4: Similar to FlowDroid, Argus struggles with identifying leaks in

fragments. We observe that most of these problems are at the design-level, and occur

because Argus does not track flows between the GUI components defined in fragments.

To elaborate, Argus misses asynchronous flows between GUI components defined in the

relevant XML files for fragments and the corresponding click-event listeners. All of our

fragment-based flaws (F14-16) exploit this design-gap in Argus to avoid detection.

Argus flaws in FC1: Of the remaining 6 flaws we discovered in Argus, 5 are based

on RecyclerView widgets. The RecyclerView is used to display a collection of data

within a limited, scrolling, window. Each RecyclerView widget implementation includes

classes extending RecyclerView.ViewHolder and RecyclerView.Adapter. Furthermore,

these classes contain several abstract methods which must be implemented, namely onCre-

ateViewHolder, onBindViewHolder and getItemCount. Our analysis reveals that Argus

fails to detect leaks placed in any of these components and methods. In addition, Argus

does not detect flaws when leaks are placed in click event listeners statically connected

to fragment components via XML resource files. This demonstrates that further work

is required to analyze relations in between methods not only through source code, but

resource files as well. Summary of these flaws are tabulated in Table 3.3, and the example

minimal APKs, each exhibiting a single flaw are available in our online appendix [203].

3.6.3 Evaluating HornDroid

HornDroid was proposed by Calzavara et al. [59] as the first static analysis tool for Android

with a formal proof of soundness. This unique attribute motivated our choice of HornDroid

for in-depth evaluation in this extended study. HornDroid abstracts Android applications
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as a set of Horn clauses to formulate security properties, which can then be processed by

Satisfiability Modulo Theories (SMT) solvers.

HornDroid’s formal proof and over-approximation require far more resources than

the other tools we evaluate, i.e., as stated in the HornDroid paper, the authors tested

HornDroid on a server with 64 multi-thread cores and 758 Gb of memory, although they

reported that the most memory utilization was around 10 GB. To match this maximum

10 GB memory utilization, we conducted our study on a server with 32GB of RAM and

8 cores. When analyzing a mutated app with HornDroid, we set a time-out of 36 hours,

after which we would abort the analysis and report whatever mutants were caught until

that time.

Results: We were not able to analyze many of our mutated apps using HornDroid.

Specifically, out of the 31 mutated APKs (i.e., created after mutating the base APKs

08-15), HornDroid could only analyze 4 without crashing or timing out. This was in spite

of us taking care to compile the APKs with the API level that HornDroid was built to

analyze, i.e., API 19. This outcome is unfortunately not surprising; indeed, prior work

on analyzing the feasibility of Android static analysis tools has reported similar results

for research prototypes [246]. As a result, HornDroid successfully analyzed 46 executable

data leaks, out of which, it caught 14, leaving 32 undetected mutants for further analysis.

We discovered 3 flaws from analyzing these undetected mutants, as shown in Table 3.4.

All of the 3 flaws (F23-F25) we discovered are related to the lack of appropriate sup-

port for fragments; however, unlike prior fragment-related flaws, these flaws are generally

centered around the Android lifecycle methods for fragments and activities. These flaws

could broadly fit in FC1; however, they demonstrate a more fundamental, design-level

lack of support for fragments, as HornDroid fails to detect leaks in even basic lifecycle

methods (e.g., Fragment onCreateView). Hence, we create a new flaw class to represent

such flaws, FC5: Android Lifecycle Callbacks, as a special variant of FC1, described as

follows:
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FC5: Android Lifecycle Callbacks: This class incorporates flaws in detecting leaks

in fundamental lifecycle methods, such as onCreate. To elaborate, there are only six

lifecycle call back methods in total for any Android activity [83], where onCreate is the

only one considered mandatory. It is also the first method to be called when the Activity

is initialized i.e., it is the starting point of the Activity. Hence, analyzing such callbacks is

imperative for a practical analysis of data flows within the app. However, HornDroid fails

to detect leaks in three specific instances of lifecycle callbacks for activities and fragments

(F23-F25), which is concerning, as the tool strongly claims soundness, i.e., quoted as

follows: “In order to support a sound analysis of fragments, HornDroid over-approximates

their life-cycle by executing all the fragments along with the containing activity in a flow-

insensitive way”.

3.6.4 Effectiveness of Individual Schemes in Finding Flaws

As described in Section 3.2.2, µSE uses four different mutation schemes to place operators

in an app. These schemes may sometimes create overlapping mutants wherein operators

are placed in the same position according to two or more schemes. As part of this extended

study, we trace the flaws we found back to the operator placement strategies described in

Section 3.2.2.2 and 3.2.2.3 to determine the usefulness of these approaches in finding flaws

(RQ2).

As shown in Table 3.5, of the 25 flaws, 24 could be discovered using the scope-based

scheme, and 22 using the taint-based scheme. In addition, we found one flaw (i.e., F18)

that could only be reached using the reachability-based scheme. Another interesting ob-

servation is that both the Reachability and Complex Reachability schemes are similar

in terms of usefulness in finding flaws, which may be a positive indicator of a general

reachability-based approach over more complex strategies.

Based on the data in Table 3.5 alone, it may seem that only using the scope-based

scheme is a viable option. However, recall from Section 3.5 that mutation schemes may also

display widely different performance in terms of creating executable mutants. As a result,
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using a single scheme may improve flaw detection, but may also generate a tremendous

overhead in terms of non-executing mutants. Furthermore, even if the same mutation/leak

placement can be achieved using multiple schemes, the common placement may help the

researcher or tool developer resolve the flaw behind an uncaught mutant faster, i.e., by

helping them see the common or different factors (i.e., among the schemes). For example,

the Complex Reachability scheme makes the path between source and sink indirect while

residing within the same scope, whereas the reachability scheme places the source and sink

at the same location without establishing any indirect path. Failure to detect the leak

placed through Complex Reachability would indicate that the flaw is due to the indirect

path, rather than the location of the leak.

3.7 Flaw Propagation Study

The objective of this study is to determine whether flaws from one tool propagate to other

tools, which are either implemented directly on top of the original tool, or inherit certain

design attributes (RQ3). To carry out this study, we utilized the minimal APKs created

for each of our 25 flaws, and analyzed them with other tools built with the same security

goal (i.e., other data leak detectors excluding the tools from which the specific flaws were

discovered). Each minimal APK contains only one type of flaw, i.e., we built 25 APKs,

one for each flaw mentioned in Tables 3.2, 3.3 and 3.4.

Moreover, in order to prevent tools from crashing due to backwards compatibility

issues, we built several versions of the minimal APKs from the same code base, varying

the SDK versions, as well as the build tools (i.e., Android Studio and Gradle, vs building

manually using Android SDK tools). This was done because APK building procedure has

changed over the years, and as a result, many of the studied tools, which are well over 4-5

years old, would break for apps built using the latest build configuration and procedure.

For example, Android Studio’s Gradle based building overrides the target SDK version

defined in the AndroidManifest.xml file, and also uses newer versions of build tools and
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target platforms. We discovered that decompilers such as dare [217] used in some of the

tools we analyzed do not function correctly when analyzing such builds (i.e., either crash,

or run into infinite loops). Considering these factors, we try our best to customize minimal

apks for individual tools, in order to minimize crashes or timeouts, and only report results

from variants of minimal APKs that worked., i.e., resulted in a successfully completed

analysis.

3.7.1 Propagation of FlowDroid’s Flaws (F1-F13)

To determine if the flaws present in FlowDroid are also present in other data leak detectors,

as well as tools that inherit it, we checked if the newer release versions of FlowDroid (i.e.,

v2.5, v2.5.1, v2.7.1), as well as 6 other tools (i.e., Argus, DroidSafe, IccTA, BlueSeal,

HornDroid, and DidFail), are susceptible to any of the flaws discussed in Table 3.2. Among

these, flaw propagation across versions of FlowDroid was done for v2.5, v2.5.1 in our

original µSE study. As part of this extended study, due to availability of FlowDroid

v2.7.1, we include it.

Results: Table 3.6 provides an overview of the propagation of F1-F13. In the Table 3.6,

all the versions of FlowDroid are susceptible to the flaws discovered from our analysis of

FlowDroid v2.0. Note that while we fixed the Fragment flaw and our patch was accepted

to FlowDroid’s codebase, the latest releases of FlowDroid (i.e., v2.5, v2.5.1, and v2.7.1)

still seem to have this flaw. We have reported this issue to the developers.

A significant observation from Table 3.6 is that the tools that directly inherit Flow-

Droid (i.e., IccTA, DidFail) are similarly flawed as FlowDroid. This is especially true when

the tools do not augment FlowDroid in any manner, and use it as a black box (RQ3).

On the contrary, Argus, which is motivated by FlowDroid’s design, but augments it on its

own, does not inherit as many of FlowDroid’s flaws.

BlueSeal, HornDroid, and DroidSafe use a significantly different methodology, and

are also not susceptible to many of µSE’s uncovered flaws for FlowDroid. Interestingly,
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BlueSeal and DroidSafe are similar to FlowDroid in that they use Soot to construct a

control flow graph and rely on it to identify paths between sources and sinks. However,

BlueSeal and DroidSafe both augment the graph in novel ways, and thus do not exhibit

most of the flaws found in FlowDroid.

Finally, it is important to note that our analysis does not imply that FlowDroid is

weaker than the tools, which have fewer flaws in Table 3.6. However, it does indicate that

the flaws discovered may be typical of the design choices made in FlowDroid and inherited

by the tools such as IccTA and DidFail.

3.7.2 Propagation of Argus’s Flaws (F14-F22)

Unique to this extended study (i.e., previously not reported in our original µSE paper [50]),

we analyzed the minimal APKs developed for F14-F22 with FlowDroid v2.5.1, v2.6, v2.6.1,

v2.7, and v2.7.1; BlueSeal, DroidSafe, DidFail, HornDroid, and IccTA to examine their

prevalence. Note that FlowDroid 2.0 had become unavailable at this point in the study

(i.e., deprecated in favor of later versions), which is why we focus on FlowDroid versions

from 2.5 to 2.7.1.

Results: As shown in the Table 3.7, flaws found in Argus largely affect FlowDroid, Horn-

Droid and IccTA. Specifically, recall that while some of the fragment and RecyclerView-

based flaws were missing callbacks that could potentially be fixed with patches, some were

design-level gaps in the data flow tracking performed by these tools. For example, in F14,

an event listener reads sensitive data (i.e., the source), and calls another method, which

leaks the data (i.e., the sink). While such event listeners may not be directly called from

any of the lifecycle methods in the app, they are likely to be invoked when user interacts

with the GUI components of the app. The fact that none of the RecyclerView-based (i.e.,

F18-F22) or fragment-based (i.e., F14-F17) leaks were detected by any of the tools we

evaluated demonstrates the fragility of these tools in face of commonly-used Android GUI

abstractions.
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DroidSafe and BlueSeal crashed when analyzing the minimal APKs for F18-F22, while

DidFail crashed for all flaws, i.e., F14-F22. These crashes are expected, and primarily

occur due to lack of support for newer API. To elaborate, DroidSafe was specifically built

to focus on Android 4.4.1 (API 19), and hence crashes on encountering RecyclerView,

i.e., the set of APIs at the root of F14-F22, which was introduced in Android 5.0 (API

21). Similarly, BlueSeal customizes an older version of Soot for analysis, which fails when

analyzing RecyclerView-based APKs. Finally, DidFail was built using customized but

outdated versions of several other tools, namely FlowDroid, Epicc [220], and dare [217],

and hence crashes on all the newer flaws. Note that while tools such as FlowDroid and

dare may be separately updated and maintained, the current implementation of DidFail

customizes these dependencies to a sufficient degree, which prevents us from simply replac-

ing the dependency with a newer version. However, we can still infer that since DidFail

uses FlowDroid as a component, it is likely to inherit all of FlowDroid’s flaws.

3.7.3 Propagation of HornDroid’s Flaws (F23-F25)

To understand whether the flaws we found in HornDroid propagate to other tools, we

prepared minimal APKs based on the found flaws of HornDroid, and analyzed them using

Argus, FlowDroid versions v2.5.1, v2.6, v2.6.1, v2.7, and v2.7.1; BlueSeal, DroidSafe,

DidFail, and IccTA. None of these flaws, nor their propagation, were reported in our

original µSE paper [50].

Results: As shown in the Table 3.8, we find that Argus did not exhibit any of the

fragment-based flaws identified in HornDroid. This is surprising, considering that Horn-

Droid was susceptible to every single flaw discovered in Argus, as seen previously in

Table 3.7. This finding may indicate that Argus may be relatively more sound than

HornDroid in practice, in spite of the latter providing a formal proof of soundness.

Furthermore, although FlowDroid’s earlier versions (v2.5.1, v2.6.1) were able to detect

leaks F23 and F24, FlowDroid version v2.7.1 was not. This is not an isolated case: recall
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that our patch for another fragment flaw F5 [281] fixed it in FlowDroid v2.0, but future

versions of FlowDroid (i.e., v2.5 onwards) still exhibit the flaw, as seen in Table 3.6.

Interestingly, we note that F23 and F24 are absent in IccTA, an approach that relies on

FlowDroid. This is because IccTA uses an older version of FlowDroid as a component,

which is resistant to these flaws, and hence, remains unaffected as well. Moreover, F25, a

fragment-based flaw, is exhibited by all versions of FlowDroid. This finding is an indicator

of the lack of systematic fragment support in FlowDroid, as well as other major tools, when

in fact fragments are a widely-used GUI element that may contain data leaks.

Finally, the propagation study also allows us to derive certain general conclusions

regarding the quality of the tools studied. First, we conclude that all of the tools we

analyzed are incapable of finding leaks that are exhibited in RecyclerViews. Second, we

find evidence to suggest that Argus is relatively better for detecting fragment-based leaks,

relative to HornDroid and FlowDroid. This may seem counterintuitive considering there

was only one fragment related flaw (F5) in FlowDroid, two in HornDroid (F23, F25) and

four in Argus (F14-17). However, when we consider the propagation of fragment related

flaws as well, Argus is affected by five (F5, F14-17), while HornDroid and FlowDroid

(considering its latest release, v2.7.1) are both affected by seven (i.e., both are affected

by flaws F5, F14-17, and F23, F25). Thus, we argue that Argus provides more holistic

support for fragments, relative to the other tools studied.

3.8 Discussion

µSE has demonstrated efficiency and effectiveness at revealing real undocumented flaws

in prominent Android security analysis tools. While experts in Android static analysis

may be familiar with some of the flaws we discovered (e.g., some flaws in FC1 and FC2),

we aim to document these flaws for the entire scientific community. Further, µSE indeed

found some design gaps that were surprising to expert developers; e.g., FlowDroid’s design

does not consider callbacks in anonymous inner classes (flaws 8-9, Table 3.6), and in our
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interaction with the developers of FlowDroid, they acknowledged handling such classes as

a non-trivial problem. During our evaluation of µSE we were able to glean the following

pertinent insights:

Insight 1: Most mutation schemes are generally effective. While certain mutation schemes

may be Android-specific, our results demonstrate limited dependence on these configura-

tions. Out of the 25 flaws discovered using µSE (i.e., both in our USENIX’18 paper [50]

as well as this extension), we discover that each mutation scheme is necessary for de-

tecting certain flaws (i.e., which may not be detected with other schemes), as shown in

Section 3.6.4.

Insight 2: Security-focused static analysis tools exhibit undocumented flaws that require

further evaluation and analysis. Our results clearly demonstrate that previously unknown

security flaws or undocumented design assumptions, which can be detected by µSE, per-

vade existing Android security static analysis tools. Our findings not only motivate the

dire need for systematic discovery, fixing and documentation of unsound choices in these

tools, but also clearly illustrate the power of mutation based analysis adapted in security

context.

Insight 3: Current tools inherit flaws from legacy tools. A key insight from our work

is that while inheriting code of the foundational tools (e.g., FlowDroid) is a common

practice, some of the researchers may not necessarily be aware of the unsound choices they

are inheriting as well. As our study results demonstrate, when a tool inherits another tool

directly (e.g., IccTA inherits FlowDroid), all the flaws propagate.

Insight 4: Tools which follow similar design principles but do not have a direct relationship

(e.g., inheriting a codebase), have similar flaws. Through our experiments and evaluation

performed in this extended study, we effectively demonstrate that FlowDroid, HornDroid,

and Argus; three different static analysis tools built independently from each other, but

which share similar design principles, can and do exhibit similar flaws. This indicates

that certain unsound decisions or flaws may be tied to the common security goal or could
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be occurring due to fundamental gaps in the high-level design decisions that are common

across the board for such tools.

Insight 5 : Flaws which were not present in previous versions of a static analysis tool can

appear in later versions, as the tool evolves. As we found in this extended study, certain

flaws found in HornDroid were not present in earlier versions of FlowDroid but appeared

in the latest version (Table 3.8). This shows that unsound choices can be made at any

stage and at any iteration of software life cycle, and further establishes the necessity of

automatically and systematically evaluating these tools. µSE lays the groundwork for the

development of such a holistic, dynamic, testing framework.

Insight 6: As tools, libraries, and the Android platform evolve, security problems become

harder to track down. Due the nature of software evolution, all the analysis tools, under-

lying libraries, and the Android platform itself evolve asynchronously. A few changes in

the Android API may introduce undocumented flaws in analysis tools. µSE handles this

fundamental obstacle of continuous change by ensuring that each version of an analysis

tool is systematically tested, as we realize while tracking the Fragment flaw in multiple

versions of FlowDroid.

Insight 7: Benchmarks need to evolve with time. While manually-curated benchmarks

(e.g., DroidBench [32]) are highly useful as a “first line of defense” in checking if a tool

is able to detect well-known flaws, the downside of relying too heavily on benchmarks is

that they only provide a known, finite number of tests, leading to a false sense of security.

Due to constant changes (insight #6) benchmarks are likely to become less relevant unless

they are constantly augmented, which requires tremendous effort and coordination. µSE

significantly reduces this burden on benchmark creators via its suite of extensible and

expressive security operators and mutation schemes, which can continuously evaluate new

versions of tools. The key insight we derive from our experience building µSE is that while

benchmarks may check for documented flaws, µSE’s true strength is in discovering new

flaws.
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3.9 Limitations

1) Soundness of µSE: As acknowledged in Section 2.1.3, µSE does not aim to supplant

formal verification (which would be sound) and does not claim soundness guarantees.

Rather, µSE provides a systematic approach to semi-automatically uncover flaws in exist-

ing security tools, which is a significant advancement over manually-curated tests.

2) Manual Effort: Presently, the workflow of µSE requires an analyst to manually ana-

lyze the result of µSE (i.e., uncaught mutants). However, as described in Section 3.5, µSE

possesses enhancements that mitigate the manual effort by dynamically eliminating non-

executable mutants that would otherwise impose a burden on the analyst examining un-

detected mutants. In our experience, this analysis was completed in a reasonable time

using the methodology outlined in Section 3.2.3.

3) Limitations of Execution Engine: Like any dynamic analysis tool, the EE will

not explore all possible program states, thus, there may be a set of mutants marked

as non-executable by the EE, that may actually be executable under certain scenarios.

However, the CrashScope tool, which µSE’s EE is based upon, has been shown to perform

comparably to other tools in terms of coverage [201]. Future versions of µSE’s EE could

rely on emerging input generation tools for Android apps [196].

4) Dependency on Android Framework APIs: We designed µSE to be as generic

as possible, as discussed in Section 3.2.4 and Section 3.3. For example, the mutation

seeding methodology relies on the AST of the target source code that selects the target

location for mutation. As a result, as long as the Android framework changes through

extension and target code are parse-able as AST, the seeding methodology will not have

to be changed. Indeed, the base apps we used for µSE (Table A.1 in the Appendix) rely

on different versions of Android SDK with both Gradle [158] and pre-Gradle build system,

which demonstrates the versatility of µSE. On the other hand, calls to functions/methods

from the Android framework APIs are introduced through mutation. Therefore, these



3.10. CHAPTER SUMMARY 64

will have to be changed as Android Framework changes over time, as it is not possible to

generalize such calls.

5) Adaptation to Different Goals: µSE requires defining security operator through

manual examination of the claims made by existing tools i.e., the security goal of the

concerned tool (Section 3.2.1). Further changes might be necessary for satisfying syn-

tactical requirements related to the defined, new, security operator. For example, for

Cipher.getInstance, the security operator will have to be enclosed within a try-catch

scope because of its throws-exception signature. Thus, the implementation of secu-

rity operators to mutate cryptographic APIs may require manual intervention by domain

experts initially, but we expect it to be a one-time effort, similar to how we defined security

operators for data leak APIs once for detecting flaws in this work. Finally, we note that

µSE’s modular implementation separates the operators from its core components, i.e., the

Mutation Engine (ME) and the Execution Engine (EE) simply seed and execute security

operators as per the operator specification, and hence, are decoupled from the security

goal per se. Hence, the implementation of µSE framework would not have to change

for different security goals, limiting the amount of code change to only the addition of

goal-specific security operators.

3.10 Chapter Summary

We proposed the µSE framework for performing systematic security evaluation of An-

droid static analysis tools to discover (undocumented) unsound assumptions, adopting

the practice of mutation testing from SE to security. µSE not only detected major flaws

in popular, open-source Android security tools, but also demonstrated how these flaws

propagated to other tools that inherited the security tool or followed similar principles.

With µSE, we demonstrated how mutation analysis can be feasibly used for gleaning un-

sound assumptions in existing tools, benefiting developers, researchers, and end users, by

making such tools more secure and transparent.
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Table 3.2: Descriptions of flaws uncovered∗ in FlowDroid v2.0

ID: Flaw Name Description

FC1: Missing Callbacks

F1: DialogFragmentShow FlowDroid misses the DialogFragment.onCreateDialog() callback regis-
tered by DialogFragment.show().

F2: PhoneStateListener FlowDroid does not recognize the onDataConnectionStateChanged()
callback for classes extending the PhoneStateListener abstract class from
the telephony package.

F3: NavigationView FlowDroid does not recognize the onNavigationItemSelected()
callback of classes implementing the interface Navigation-
View.OnNavigationItemSelectedListener.

F4: SQLiteOpenHelper FlowDroid misses the onCreate() callback of classes extending an-
droid.database.sqlite.SQLiteOpenHelper.

F5: Fragments FlowDroid 2.0 does not model Android Fragments correctly. We added
a patch, which was promptly accepted. However, FlowDroid 2.5 and
2.5.1 remain affected. We investigate this further in the next section.

FC2: Missing Implicit Calls

F6: RunOnUIThread FlowDroid misses the path to Runnable.run() for Runnables passed into
Activity.runOnUIThread().

F7: ExecutorService FlowDroid misses the path to Runnable.run() for Runnables passed into
ExecutorService.submit().

FC3: Incorrect Modeling of Anonymous Classes

F8: ButtonOnClickToDialo-
gOnClick

FlowDroid does not recognize the onClick() callback of Di-
alogInterface.OnClickListener when instantiated within a Button’s
onClick=“method name” callback defined in XML. FlowDroid will rec-
ognize this callback if the class is instantiated elsewhere, such as within
an Activity’s onCreate() method.

F9: BroadcastReceiver FlowDroid misses the onReceive() callback of a BroadcastReceiver im-
plemented programmatically and registered within another program-
matically defined and registered BroadcastReceiver’s onReceive() call-
back.

FC4: Incorrect Modeling of Asynchronous Methods

F10: LocationListenerTaint FlowDroid misses the flow from a source in the onStatusChanged() call-
back to a sink in the onLocationChanged() callback of the LocationLis-
tener interface, despite recognizing leaks wholly contained in either.

F11: NSDManager FlowDroid misses the flow from sources in any callback of a Nsd-
Manager.DiscoveryListener to a sink in any callback of a NsdMan-
ager.ResolveListener, when the latter is created within one of the for-
mer’s callbacks.

F12: ListViewCallbackSe-
quential

FlowDroid misses the flow from a source to a sink within different meth-
ods of a class obtained via AdapterView.getItemAtPosition() within the
onItemClick() callback of an AdapterView.OnItemClickListener.

F13: ThreadTaint FlowDroid misses the flow to a sink within a Runnable.run() method
started by a Thread, only when that Thread is saved to a variable before
Thread.start() is called.

* reported in our USENIX’18 paper [50]
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Table 3.3: Descriptions of flaws uncovered in Argus v3.1.2.

ID: Flaw Name Description

FC4: Incorrect Modeling of Asynchronous Methods

F14: FragmentEventToExter-
nalMethod

Fragment declared within an Activity class requires its click event
listening methods to be defined in the Activity class. When we placed
source in such click event listening method and the sink in an Activity
method callable by, Argus missed the leak.

F15: FragmentCrossClick-
EventListeners

In similar construction of F14, when source and sink are distributed
across click event listener methods connected to Fragment GUI com-
ponents, Argus missed the leak.

F16: OnCreateFragmentClick-
EventListener

Android Activity lifecycle method onCreate can be used to create a
source for leak. If it is then leaked through a method called by a
fragment component click event listening method, it is undetected by
Argus.

FC1: Missing Callbacks

F17: FragmentClickEventLis-
tener

When sink and source are placed in an event listener method de-
fined in an Activity class are coupled with components in a Fragment
through relevant XML resource file, Argus misses the leak. In similar
construction to F14, if both source and sink are placed in event lis-
tener methods for fragment components, Argus does not report it.

F18: RecyclerViewHolder A RecyclerView.ViewHolder abstract class is used to describe each
item within a RecyclerView. This is required to be extended when
used inside the extending class of RecyclerView.Adapter. When leak
source and sink are placed within the scope of the class implementing
the RecyclerView.ViewHolder, Argus is unable to detect it.

F19: RecyclerViewConstruc-
tor

This flaw is similar to F18, but where the leak source and sink
are placed within the constructor of the class extending Recy-
clerView.ViewHolder. Argus is unable to detect the placed leak in
this scenario.

F20: RecyclerOnCreate-
ViewHolder

The class extending RecyclerView.Adapter implements the abstract
method OnCreateViewHolder, when ViewHolder needs to represent
an item. If a leak is placed within OnCreateViewHolder, Argus’s
analysis can’t detect it.

F21: RecyclerViewOnBind-
ViewHolder

Similar to RecyclerCreateViewHolder, the class extending Re-
cyclerView.Adapter implements the abstract method onBind-
ViewHolder, when ViewHolder needs to display the data at the spec-
ified position. If a leak is placed within onBindViewHolder, Argus’s
analysis cannot detect it.

F22: RecyclerViewGetItem-
Count

getItemCount is an abstract method required to be overridden to re-
turn the total number of items bound in RecyclerView. This method
is placed within a class extending RecyclerView.Adapter. Argus is
unable to find a leak if the source and sink are placed within getItem-
Count.
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Table 3.4: Descriptions of flaws uncovered in HornDroid.

ID: Flaw Name Description

FC5: Android Lifecycle Callbacks

F23: OnCreateFragmentCon-
structor

HornDroid does not detect a leak if the source is placed in the onCre-
ate method of an activity, and the sink is placed in the constructor of
the fragment within the activity.

F24: ActivityOncreate When a leak is placed in the onCreate method of Activity, i.e. both
source and sink are placed in the method, HornDroid is unable to
detect the leak.

F25: FragmentOnCreateView When the source of the leak is placed at the onCreate method of ac-
tivity class, and the sink at the onCreateView method of the fragment
class, HornDroid does not detect the leak.

Table 3.5: Impact of Operator Placement Approaches in Finding Flaws.∗

Flaw ID Reachability Complex-Reachability Taint Scope

Flaws found from FlowDroid v2.0

F1 ✓ ✓ ✓ ✓
F2 ✓ ✓ ✓ ✓
F3 ✓ ✓ ✓ ✓
F4 ✓ ✓ ✓ ✓
F5 ✓ ✓ ✓ ✓
F6 ✓ ✓ ✓ ✓
F7 ✓ ✓ ✓ ✓
F8 ✓ ✓ ✓ ✓
F9 ✓ ✓ ✓ ✓
F10 - - ✓ ✓
F11 - - ✓ ✓
F12 - - ✓ ✓
F13 - - ✓ ✓

Flaws found from Argus v3.1.2

F14 - - ✓ ✓
F15 - - ✓ ✓
F16 - - ✓ ✓
F17 ✓ ✓ ✓ ✓
F18 ✓ - - -
F19 ✓ ✓ ✓ ✓
F20 ✓ ✓ ✓ ✓
F21 ✓ ✓ ✓ ✓
F22 ✓ ✓ ✓ ✓

Flaws found from HornDroid

F23 ✓ ✓ ✓ ✓
F24 ✓ ✓ ✓ ✓
F25 - - - ✓

∗A “✓” indicates flaw may be resolved through relevant operator placement approach, whereas “-”
indicates it may not.
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Table 3.6: Analysis of the propagation of flaws in FlowDroid 2.0 to other data leak detectors.∗

Flaw ID FD v2.0 FD v2.5 FD v2.5.1 FD v2.7.1 Argus BlueSeal DidFail DroidSafe HornDroid IccTA

F1 ✓ ✓ ✓ ✓ x x ✓ x ✓ ✓
F2 ✓ ✓ ✓ ✓ x x ✓ x ✓ ✓
F3 ✓ ✓ ✓ ✓ ✓ - ✓ - - ✓
F4 ✓ ✓ ✓ ✓ ✓ x ✓ x ✓ ✓
F5 ✓ ✓ ✓ ✓ ✓ ✓ ✓ - ✓ ✓
F6 ✓ ✓ ✓ ✓ ✓ x ✓ x ✓ ✓
F7 ✓ ✓ ✓ ✓ ✓ x ✓ x ✓ ✓
F8 ✓ ✓ ✓ ✓ x x ✓ ✓ x ✓
F9 ✓ ✓ ✓ ✓ x x ✓ x x ✓
F10 ✓ ✓ ✓ ✓ x x ✓ x x ✓
F11 ✓ ✓ ✓ ✓ ✓ x ✓ x x ✓
F12 ✓ ✓ ✓ ✓ x x ✓ x x ✓
F13 ✓ ✓ ✓ ✓ x x ✓ x x ✓

∗ Note that a “−” indicates tool crash with the minimal APK, a “✓” indicates presence of the flaw, and
a “x” indicates absence; FD* = FlowDroid.

Table 3.7: Analysis of the propagation of flaws in Argus 3.1.2 to other data leak detectors.∗

Flaw ID ArgusFD* v2.5.1 FD* v2.6FD* v2.6.1FD* v2.7FD* v2.7.1BlueSealDidFailDroidSafeHornDroidIccTA

F14 ✓ ✓ - ✓ - ✓ ✓ - ✓ ✓ ✓
F15 ✓ ✓ - ✓ - ✓ ✓ - ✓ ✓ ✓
F16 ✓ ✓ - ✓ - ✓ ✓ - ✓ ✓ ✓
F17 ✓ ✓ - ✓ - ✓ ✓ - ✓ ✓ ✓
F18 ✓ ✓ ✓ ✓ ✓ ✓ - - - ✓ ✓
F19 ✓ ✓ ✓ ✓ ✓ ✓ - - - ✓ ✓
F20 ✓ ✓ ✓ ✓ ✓ ✓ - - - ✓ ✓
F21 ✓ ✓ ✓ ✓ ✓ ✓ - - - ✓ ✓
F22 ✓ ✓ ✓ ✓ ✓ ✓ - - - ✓ ✓

∗ Note that a “−” indicates tool crash with the minimal APK, a “✓” indicates presence of the flaw, and
a “x” indicates absence; FD* = FlowDroid.

Table 3.8: Analysis of the propagation of flaws in HornDroid to other data leak detectors.∗

Flaw ID ArgusFD* v2.5.1 FD* v2.6FD* v2.6.1FD* v2.7FD* v2.7.1BlueSealDidFailDroidSafeHornDroidIccTA

- Argus FD2.5.1 2.6 2.6.1 2.7 2.7.1 BlueSeal DidFail DroidSafe HornDroid IccTA
F23 x x - x - ✓ x - ✓ ✓ x
F24 x x - x - ✓ x - ✓ ✓ x
F25 x ✓ - ✓ - ✓ x - ✓ ✓ ✓

∗ Note that a “−” indicates tool crash with the minimal APK, a “✓” indicates presence of the flaw, and
a “x” indicates absence; FD* = FlowDroid.



Chapter 4

Evaluating Crypto-API Misuse

Detectors

Effective cryptography is critical in ensuring the security of confidential data in modern

software. However, ensuring the correct use of cryptographic primitives has historically

been a hard problem, whether we consider the vulnerable banking systems from Anderson’s

seminal work [23], or the widespread misuse of cryptographic APIs (i.e., crypto-APIs) in

mobile and Web apps that can lead to the compromise of confidential financial or medical

data and even the integrity of IoT devices [100, 243, 266, 283, 314, 307, 169]. In response,

security researchers have developed a wide array of techniques and tools for detecting

crypto-API misuse [176, 243, 100, 93, 266, 267, 300, 284, 263, 129, 257, 178] that can be

integrated into the software development cycle, thereby preventing vulnerabilities at the

source. These crypto-API misuse detectors, or crypto-detectors, play a crucial role in the

security of end-user software.

Crypto-detectors have been independently used by developers for decades [47]. They

are integrated into IDEs (e.g., the CogniCrypt plugin for Eclipse [71]), incorporated in

the internal testing suites of organizations (e.g., CryptoGuard [243], integrated into Or-

acle’s testing suite [76]), or are currently targeted for commercialization and widespread

deployment [243, 75]. In fact, several crypto-detectors are also being formally provisioned

69
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by code hosting services as a way of allowing developers to ensure compliance with data

security standards and security best-practices (e.g., Github’s CodeScan initiative [120]).

Thus, the importance of crypto-detectors in ensuring data security in modern Web and

mobile software cannot be overstated, as key stakeholders (i.e., researchers, code-hosting

services, app markets, and developers) are increasingly reliant on them. However, what

is concerning is that while stakeholders are optimistically adopting crypto-detectors, we

know very little regarding their actual effectiveness at finding crypto-API misuse. That is,

beyond manually-curated benchmarks, there is no approach for systematically evaluating

crypto-detectors. This example in Listing 4.1 illustrates the gravity of this problem:

1 String algorithm = ”DES” ;

2 Cipher cipher = Cipher . getInstance ( algorithm ) ;

Listing 4.1: Instantiating “DES” as a cipher instance.

In this example, we define DES as our algorithm of choice, and instantiate it using

the getInstance API from Cipher. Given that DES is not secure, one would expect

any crypto-detector to detect this relatively straightforward misuse. However, two very

popular crypto-detectors, i.e., ToolX
1 (used by over 3k+ open source Java projects), and

QARK [186] (promoted by LinkedIn and recommended in security testing books [174,

141, 150]), are unable to detect this trivial misuse case as we discuss later in the chapter.

Further, one might consider manually-curated benchmarks (e.g., CryptoAPIBench [12], or

the OWASP Benchmark [231]) as practical and sufficient for evaluating crypto-detectors

to uncover such issues. However, given the scale and diversity of crypto protocols, APIs,

and their potential misuse, benchmarks may be incomplete, incorrect, and impractical to

maintain; e.g., the OWASP benchmark considered using ECB mode with DES as secure

until it was reported in March 2020 [232]. Thus, it is imperative to address this problem

through a reliable and evolving evaluation technique that scales to the volume and diversity

of crypto-API misuse.

In this chapter, we describe the first systematic, data-driven framework that leverages

the well-founded approach of Mutation Analysis for evaluating Static Crypto-API misuse

1We have anonymized this tool in the work as requested by its developers.
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detectors – the MASC framework, pronounced as mask. Stakeholders can use MASC in a

manner similar to the typical use of mutation analysis in software testing: MASC mutates

Android/Java apps by seeding them with mutants, i.e., code snippets exhibiting crypto-

API misuse. These mutated apps are then analyzed with the crypto-detector that is the

target of the evaluation, resulting in mutants that are undetected, which when analyzed

further reveal design or implementation-level flaws in the crypto-detector. To enable this

workflow for practical and effective evaluation of crypto-detectors, MASC addresses three

key research challenges (RCs) arising from the unique scale and complexity of the

problem domain of crypto-API misuse:

RC1: Taming the Complexity of Crypto-API Misuse - An approach that effectively evalu-

ates crypto-detectors must comprehensively express (i.e., test with) relevant misuse cases

across all existing crypto-APIs, which is challenging as crypto-APIs are as vast as the

primitives they enable. For instance, APIs express the initialization of secure random

numbers, creation of ciphers for encryption/decryption, computing message authentication

codes (MACs), and higher-level abstractions such as certificate and hostname verification

for SSL/TLS.

RC2: Instantiating Realistic Misuse Case Variations - To evaluate crypto-detectors, code

instances of crypto-API misuse must be seeded into apps for analysis. However, simply

injecting misuse identified in the wild verbatim may not lead to a robust analysis, as it

does not express the variations with which developers may use such APIs. Strategic and

expressive instantiation of misuse cases is critical for an effective evaluation, as even subtle

variations may evade detection, and hence lead to the discovery of flaws (e.g., passing DES

as a variable instead of a constant in Listing 4.1).

RC3: Scaling the Analysis - Efficiently creating and seeding large numbers of compilable

mutants without significant manual intervention is critical for identifying as many flaws

in crypto-detectors as possible. Thus, the resultant framework must efficiently scale to

thousands of tests (i.e., mutants).

To address these research challenges, this chapter makes the following major contributions
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in its conference version of the paper S&P’22 [19]:

• Crypto-API Misuse Taxonomy: We construct the first comprehensive taxonomy

of crypto-API misuse cases (109 cases, grouped into nine clusters), using a data-driven

process that systematically identifies, studies, and extracts misuse cases from academic

and industrial sources published over the last 20 years. The taxonomy provides a broad

view of the problem space, and forms the core building block for MASC’s approach,

enabling it to be grounded in real misuse cases observed in the wild (RC1).

• Crypto-Mutation Operators and Scopes: We contextualize mutation testing for

evaluating crypto-detectors by designing abstractions that allow us to instantiate the

misuse cases from the taxonomy to create a diverse array of feasible (i.e., compilable)

mutants. We begin by formulating a threat model consisting of 3 adversary-types that

represent the threat conditions that crypto-detectors may face in practice. We then

design usage-based mutation operators, i.e., general operators that leverage the common

usage characteristics of diverse crypto-APIs, to expressively instantiate misuse cases

from the taxonomy (addresses RC2). Similarly, we also design the novel abstraction of

mutation scopes for seeding mutants of variable fidelity to realistic API-use and threats.

• The MASC Framework: We implement the MASC framework for evaluating Java-

based crypto-detectors, including 19 mutation operators that can express a majority of

the cases in our taxonomy, and 3 mutation scopes. We implement the underlying static

analysis to automatically instantiate thousands of compilable mutants, with manual

effort limited to configuring the mutation operators with values signifying the misuse

(RC3).

• Empirical Evaluation of Crypto-Detectors: We evaluate 9 major crypto-detectors

using 20, 303 mutants generated by MASC, and reveal 19 previously unknown flaws

(several of which are design-level). A majority of these discoveries of flaws in individual

detectors (i.e., 45/76 or 59.2%) are due to mutation (vs. being unable to detect the

base/verbatim instantiations of the misuse case). Through the study of open source
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apps, we demonstrate that the flaws uncovered by MASC are serious and would impact

real systems. Finally, we disclose our findings to the designers/maintainers of the af-

fected crypto-detectors, and further leverage these communication channels to obtain

their perspectives on the flaws. These perspectives allow us to present a balanced dis-

cussion on the factors influencing the current design and testing of crypto-detectors, as

well as a path forward towards more robust tool.

This study substantially extends upon the previous work, described as follows:

• Updating the Taxonomy: By applying the data-driven approach from the S&P’22 [19]

paper for recent crypto-API misuse reported in industry and academic sources from the

year 2019 to 2022, we have extended the crypto-API misuse taxonomy. We found 4

new misuse cases from literature, thus increasing the number of misuse from 105 to 109

(RC1).

• Additional Mutation Operators: Bolstered by our experience of evaluating the

crypto-detectors from the previous study, we have extended several mutation-operators

to facilitate better evaluation of crypto-detectors with the goal of finding flaws. Further-

more, we have created additional mutation operators, which we used in the extended

evaluation of crypto-detectors (RC2).

• Extended Evaluation of Additional crypto-detectors: In this extension, we eval-

uated five crypto-detectors from industry, namely, SonarQube, Snyk, Codiga, Deep-

Source, and Amazon CodeGuru Security). Furthermore, we evaluated the updated ver-

sions of all the previously evaluated crypto-detectors with the original and additional

mutations, except Xanitizer and ToolX. Moreover, we expanded the base applications

for mutation by adding 15 open source, visible (at least 200 stars in GitHub) applica-

tions from the wild. With the combination of new base applications and new mutation

operators, we created 30, 236 new mutants, totaling 50, 539 mutants, which we used to

evaluate both the new version of previously used crypto-detectors, and newly acquired

crypto-detectors in this study.
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Additionally, we have made several maintainability and extensibility improvements in

MASC framework over the original implementation of the S&P’22 [19] paper, which we

detail in Section 4.5.

Artifact Release: To foster further research in the evaluation and development of ef-

fective cryptographic misuse detection techniques, and in turn, more secure software, we

have released all code and data associated with this chapter [16].

4.1 The MASC Framework

We propose a framework for Mutation-based Analysis of Static Crypto-misuse detection

techniques (or MASC). Fig. 4.1 provides an overview of the MASC framework. As described

previously (RC1), cryptographic libraries contain a sizable, diverse set of APIs, each with

different potential misuse cases, leading to an exponentially large design space. Therefore,

we initialize MASC by developing a data-driven taxonomy of crypto-API misuse, which

grounds our evaluation in a unified collection of misuse cases observed in practice (Sec. 4.2).

The misuse cases in the taxonomy must be instantiated in an expressive manner to

account for the diverse ways for expressing a misuse, i.e., misuse instances, that crypto-

detectors may face in practice. For example, we previously described two ways of encrypt-

ing with DES: (1) providing DES as a variable in Cipher.getInstance(<parameter>)

(Listing 4.1), or (2) using it in lowercase (Listing 2.1), which both represent something

a benign developer might do (i.e., threat T1). To represent all such instances without

having to hard-code instantiations for every misuse case, we identify usage-characteristics

of cryptographic APIs (particularly, in JCA), and leverage them to define general, usage-

based mutation operators, i.e., functions that can create misuse instances (i.e., mutants)

by instantiating one or more misuse cases from the taxonomy (Sec. 4.3).

Upon instantiating mutants by applying our mutation operators to the misuse cases

from the taxonomy, MASC seeds, i.e., injects, the mutants into real Java/Android appli-

cations. The challenge here is to seed the mutants at specific locations that reflect the



4.2. TAXONOMY OF CRYPTOGRAPHIC MISUSE 75

Crypto-API Misuse TaxonomyData-Driven
Taxonomy Generation

Misuse Sources
Research
Papers

Industry
Tools

Advisories …

Open Source 
Apps

source 
code

 Mutation 
Operators 
Mutation 
Scopes

misuse cases

Target
Crypto-detector

Mutated 
App(s) 

analyze
apps

uncaught
 mutants

Design/
Implementation

flaws

Creating mutants

Evaluating tools

Figure 4.1: A conceptual overview of the MASC framework.

threat scenarios described in Sec. 2.2.2, because crypto-detectors may not only face various

instances of misuse cases, but also variations in where the misuse instances appear, e.g.,

evasive (T3) developers may attempt to actively hide code to evade analysis. Thus, we

define the abstraction of mutation scopes that place the instantiated mutants at strategic

locations within code, emulating practical threat scenarios (Sec. 4.4). Finally, we analyze

these mutated apps with the crypto-detector that is targeted for evaluation (Sec. 4.6),

which results in undetected/unkilled mutants that can be then inspected to uncover design

or implementation flaws (Sec. 4.7).

4.2 Taxonomy of Cryptographic Misuse

To ground MASC in real cases of crypto API misuses, we systematically developed a

taxonomy that provides a unified perspective of previously-known crypto-API misuse.

Particularly, we focus on identifying instances of crypto-API misuse in the popular and

ubiquitous Java ecosystem, as most crypto-detectors that we seek to evaluate were de-

signed to analyze Java/Android apps.

As crypto-API misuse has been widely studied, it is likely that a majority of the misuse

cases that we are interested in codifying are already present in existing literature. There-

fore, our methodology identifies crypto-API misuses in existing artifacts sourced from
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Compromising Integrity through 
Improper Checksum Use  (11)

* CBC is insecure in TLS/client-server context; + applicable in specific situations; some misuse are newer compared to other in same cluster, # PKCS5 suggestion based

Compromising Non-Repudiation (3)

Key Signing Misuses
• Low entropy with DSA (1)
• Low entropy with ECDSA (1)
• Using 1024 bit DSA (2)

Compromising Client & Server Secrecy  (21)

Compromising Secret Keys (12)

Unclustered (6)

Compromising Secrecy of Cipher Text (27)

Compromising Communication Secrecy 
with Intended Receiver  (6)

API/Program Specific Misuses (18)

Compromising Randomness (5)

Small Key Size
• Using RSA with < 1024 bit key (7)
• Using RSA with < 2048 bit key  (7) +
• Using RSA with 2048 bit private key (2)

Weak Algorithm
• Using RSA with CBC (1)
• Using RSA with no padding (6)
• Using RSA with PKCS1 padding (5)

Weak Certificate Management
• Improper certificate validation expiry check (2) ✔
• Trusting all certificates (8) ✔
• Missing certificate validation (4) ✔
• Improper following of a cert’s chain of trust (1) ✔

Weak SSL Protocol
• Using weak SSL context 

{SSLContext.getInstance(“SSL”)} (1)
• Using SSL and not using TLS as context (2)
• Using SSLV3 (2)
• Using SSLV2 (2)
• HMAC for TLS with SHA1 (2)
• HMAC for TLS with MD5 (1)
• Using CBC for SSL/TLS with AES (1) *
• Using TLS < v 1.1 (4)
• Using TLS < v 1.2 (2)

Weak Hostname Management
• Allowing all hostnames (11) ✔
• Using Default hostname verifier (1) +

Insecure Key Size
• ECC < 224 bit (3)
• Using AES with < 128 bit key (3)
• Using RC2 with < 64 bits (1)

Insecure Number of Iterations/Cycles
• Using < 500 iterations for PBE (2) 
• Using < 1000 iterations for PBE (15)

Using Unsafe Mode
• Using ECB for symm. encryp. with AES (6) ✔
• Using AES with CBC for encryption with 

PKCS5Padding (2)
• Using Electronic Code Book Mode (ECB) for 

encryption (19) ✔
• Using AES with CBC for Encryption * (4)
• Using DESede with ECB (1)
• Using DES with CBC3 SHA (1)
• Using CBC without HMAC (1)
• Using 3DES with EDE CBC SHA (1)
• Using non-random IV in Cipher Block Chaining 

(CBC) for encryption (10)

Using Non-Random Salt
• Using constant salts for PBE (18)

Unsafe Algorithm Usage
• Using RC2 for symmetric encryption (9)
• Using NullCipher to encrypt plain text (1)
• Using Blowfish Algorithm for Encryption (8)
• Using ESAPI Encryptor (1)
• Using 3DES/DESEDE for encryption (5)
• Using RC4 (6)
• Using IDEA Algorithm for Encryption  (5)
• Using DES for encryption (14) ✔
• Using EXP1024 for ciphers (1)
• Using Seed Cipher (1)
• Using Blowfish with less than 128 bit key (2)
• Reusing Key with Stream Cipher (1)

Communication Secrecy Compromised
• Use of a key past its expiration date (1)
• HTTP and HTTPs mixing (8)
• Key Exchange without Entity Authentication (2)
• Improper Check for Certificate Revocation (1) ✔
• Improper Validation of Certificate with Host 

Mismatch (2) ✔
• Untrusted CA Signed Certificate (1) ✔

API/Program Specific
• Apache HTTPClient no host verification (1)
• Gnutls_certificate_verify_peers2 returns 0 

when self signed certificate (1)
• Constant password for android keystore (2)
• JSSE checkTrusted method does not check identify if 

the algorithm field is null or empty string (1) ✔
• Android Webview incorrect certificate verification (2)
• Java defaults to ECB for encryption with “AES"
• Weberknecht does not have host verification (1)
• Using DefaultHttpClient (due to no TLSv1.2) (1)
• ignoring onReceivedSSLError (3)
• SSLSocketFactory without verifying Hostname (3)
• Reusing counter value in encryption (2)
• Apache HttpHost data allows mixed schemes (1)
• Using obsolete algorithm (11) ✔
• Storing sensitive data in Java String (5)
• Using Socket directly for connection (1)
• No clearPassword call after using PBEKeySpec (2)
• PBEKeySpec initialized without salt (2)
• Using PBEWithMD5andDES with SecretKeyFactory (1)

Secret Key Misuses
• Using low entropy seeds in key generation (2)
• Password-Based Key Derivation Function (PBKDF) 

Using < SHA224 (1)
• Not using Salts while hashing passwords (1)
• PBKDF Using HMAC (1)
• PBKDF Using MD5  (3)
• PBKDF Using MD2 (2)
• IVs generated w/o random num generator (1) ✔
• Static/Reusing IV (9) ✔
• Zeroed IV (2)
• Using hardcoded key/password (9)
• Using Constant Encryption Key (16)
• Using < 64bit salt for password (4)

Misuse of Randomness
• Bad derivation of IV (file/text) (6) ✔
• Low entropy in key generation/ RNG (3)
• Using static seeds for Secure RNG (14) 
• Not using Secure (Pseudo) RNG (10)
• Using Setseed (3)

• Inscure pinning  with ambiguous values  (3)
• Trusting Self-signed Certificates (2) +
• Using unencrypted server socket 
• Using unencrypted socket
• Using export quality ciphers
• Using stateless encryption

Compromised Checksums
• Hashing credentials - MD5 (11) ✔
• Hashing Credentials - MD4 (7)
• Hashing Credentials - MD2 (9)
• Digital Signature Hashes - MD4
• Obsolete Hash Algorithm (7) ✔
• Hashing Credentials - SHA1 (12)
• Hashing Credentials - SHA224 (1)
• Digital Signature Hashes - MD5 (5) ✔
• Using a custom MessageDigest instead of relying 

on the SHA-224 (1)
• Digital Signature Hashes - MD2 (4)
• Digital Signature Hashes - SHA1 (5)

Figure 4.2: The derived taxonomy of cryptographic misuses. (n) indicates misuse was present
across n artifacts. A ✓indicates that the specific misuse case was instantiated with MASC’s
mutation operators for our evaluation (Sec. 4.6). New misuse cases found as part of this extension
are highlighted in Blue.

both industry and academia, following Kitchenham et al.’s [171] guidelines for identifying

relevant artifacts, as well as Petersen et al.’s [238] recommendations for constructing a

systematic mapping, in three main steps: (1) identifying information sources, (2) defining

the search, inclusion, and exclusion criteria for identifying artifacts, and (3) extracting

misuse cases from artifacts and clustering them for ease of representation and extensi-

bility. Two authors executed this methodology and created the taxonomy illustrated in

Fig. 4.2. Data from each step is provided in the original artifact [15].
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4.2.1 Identifying Information Sources

We considered information sources from both academia and industry. More specifically,

we considered the proceedings of top-tier venues in security and software engineering (i.e.,

USENIX Security, ACM CCS, IEEE S&P, NDSS, ICSE, ASE, FSE), published after 1999,

i.e., in the last 20 years. Moreover, we also performed a thorough search for relevant

keywords (Sec. 4.2.2) in digital libraries, i.e., the ACM Digital Library, IEEE Explore,

and Google Scholar, which aided in identifying artifacts that may have fallen outside the

top conferences. Finally, to incorporate sources outside academia, we studied guidelines

from the Open Web Application Security Project (OWASP) [230], and documentation of

several industry tools.

4.2.2 Search, Inclusion, and Exclusion Criteria

We select artifacts from the identified sources using a keyword-based search with precise

inclusion/exclusion criteria. We defined 3 classes of keyword phrases and enumerated

several keyword combinations for each class, drawing from domain expertise and a random

sample of artifacts.

To decide whether to consider an artifact for further analysis, we defined a simple

inclusion criterion, that the artifact should discuss crypto API misuse or its detection.

We also defined an exclusion criterion, i.e., that the crypto-API misuse described by the

artifact relates to a programming environment outside the Java ecosystem, was published

prior to 1999, or does not contain relevant information. Following this methodology, we

short-listed 40 artifacts for misuse extraction, i.e., 35 from academia and 5 from industry.

Note that we count multiple documents for a single industry tool as one artifact.

4.2.3 Misuse Extraction and Clustering

Two authors independently extracted, described, and grouped individual misuse cases

from the 40 artifacts. More specifically, each identified misuse case was labeled using a
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specifically designed data extraction form (see online appendix for figure [16]). The two

authors met and resolved disagreements, to eventually identify 109 unique misuse cases.

Such a large set of misuse cases could prove intractable for direct analysis or extension.

Hence, we constructed a categorized taxonomy by grouping the discovered misuse cases

into semantically meaningful clusters. Each author constructed the clusters as per two

differentiating criteria: (1) the security goal/property represented by the misuse cases

(e.g., secrecy, integrity, non-repudiation), and (2) its level of abstraction (i.e., specific

context) within the communication/computing stack (e.g., confidentiality in general, or

confidentiality with respect to SSL/TLS). The two authors met and reached agreement on

a taxonomy consisting of 105 misuse cases grouped into nine semantic clusters, as shown

in Fig. 4.2. The process of taxonomy generation took over two person-months effort.

4.2.4 Extending the Taxonomy

To expand the taxonomy of crypto-API misuse cases for the current iteration of our work,

we applied the existing methodology, covering information sources from both academia

and industry, specifically focusing within the year range 2019 - 2022. Additionally, we

manually went through through the Common Weakness Enumeration (CWE) database

to identify crypto-API misuse cases. As a result, we were able to identify 4 crypto-API

misuse cases from 19 additional information sources, as highlighted in blue color in the

Taxonomy (Figure 4.2).

4.3 Usage-based Mutation Operators

In designing our mutation operators, we must balance the dichotomous tradeoff between

representing as many misuse cases (and their corresponding variations) as possible, while

also creating a tractable number of operators that can be reasonably maintained in the

future. Thus, building a large set of hard-coded operators that are tightly coupled with

specific misuse cases would be infeasible from an engineering/maintenance perspective.
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Further, to discover new issues in crypto-detectors, these operators should not exploit

general soundiness-related [265, 190]) limitations, such as dynamic code execution and

implicit calls. Therefore, we seek to build operators that are general enough to be main-

tainable, but which also provide expressive instantiation of several misuse cases, guided

by the threat model in Section 2.2.2, and without focusing on any specific static analysis

technique or soundiness issue.

We define the abstraction of usage-based mutation operators, inspired by a key ob-

servation: misuse cases that are unrelated in terms of the security problem may still be

related in terms of how the crypto APIs corresponding to the misuse cases are expected

to be used. Thus, characterizing the common usage of crypto APIs would allow us to

mutate that characterization and define operators that apply to multiple misuse cases,

while remaining independent of the specifics of each misuse.

Common Crypto-API Usage Characteristics: We identified two common patterns

in crypto-API usage by examining crypto-API documentation from JCA, and our tax-

onomy, which we term as (1) restrictive and (2) flexible invocation. To elaborate, a de-

veloper can only instantiate certain objects by providing values from a predefined set,

hence the name restrictive invocation; e.g., for symmetric encryption with the Cipher.-

getInstance(<parameter>) method, JCA only accepts predefined configuration values

for the algorithm name, mode, and padding, in String form. Conversely, JCA allows sig-

nificant extensibility for certain crypto APIs, which we term as flexible invocation; e.g.,

developers can customize the hostname verification component of the SSL/TLS handshake

by creating a class extending the HostnameVerifier, and overriding its verify method,

with any content. We leverage these notions of restrictive & flexible usage to define our

operator types.
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4.3.1 Operators based on Restrictive Crypto API Invocation

Our derived taxonomy indicates that several parameter values used in restrictive API in-

vocations may not be secure (e.g., DES, or MD5). Therefore, we designed six mutation

operator types (OPs) that apply a diverse array of transformations to such values and gen-

erate API invocations that are acceptable/compilable as per JCA syntax and conventions,

but not secure.

OP1: Atypical case – This operator changes the case of algorithm specifica-

tion misuse to an atypical form (e.g., lowercase), and represents accidental misuse/-

typos by developers (i.e., T1). For example, as previously shown in Listing 4.1, this

operator instantiates the DES misuse by specifying “des” (lowercase) in the Cipher.-

getInstance(<parameter>) API.

OP2: Weak Algorithm in Variable – This operator represents the relatively

common usage of expressing API arguments in variables before passing them to an API,

and can be applied to instantiate all misuse cases that are represented by restrictive API

invocations (e.g., DES instantiation in Listing 2.1).

OP3: Explicit case fix – This operator instantiates misuse cases by using the atyp-

ical case for an argument (e.g., algorithm name) in a restrictive API invocation, as seen

in OP1, but also explicitly fixes the case, emulating a developer attempting to follow con-

ventions by explicitly invoking String manipulation methods (i.e., T2); e.g.,SSLContext.

getInstance("ssl".toUpperCase()) is one instantiation of the misuse of using SSL2

or SSLv3 protocols.

OP4: Removing noise – This operator extends OP3 by defining transformations

that are more complex than simple case changes, such as removing extra characters or

“noise” present in the arguments, which is likely if the arguments are acquired from a

properties/database file; e.g., Cipher.getInstance("DES//".replace("//","")).

OP5: Method chains – This operator performs arbitrary transformations (e.g.,

among those in OP1 – OP4) on the restricted argument string, but splits the transforma-
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tion into a chain of procedure calls, thereby hiding the eventual value (see Listing A.2 in

Online Appendix [16]. Such behavior can be attributed to an evasive developer (T3).

OP6: Predictable/Non-Random Derivation – This operator emulates a benign

developer (T1) attempting to derive a random value (i.e., instead of using a cryptographically-

secure random number generator), by performing seemingly complex operations resulting

in a predictable value, and then using the derived value to obtain other cryptographic

parameters, such as IVs. For example, Listing A.3 in Online Appendix [16] shows such

an instantiation of the “Bad derivation of IV” misuse from the taxonomy that uses the

system time to derive the IV.

We relied on the T3 threat model while creating additional mutation operators in this

extension for two reasons. First, our S&P’22 [19] paper demonstrated that the crypto-

API misuse cases MASC creates is similar to misuse cases found in the wild. However, the

real-life misuse cases can be based on more complex abstractions while still being stati-

cally analyzable [195]. Second, practitioners expect SASTs, including crypto-detectors, to

report any vulnerabilities that fall within the scope of program analysis techniques [22].

Considering these two factors, we extended several of the existing mutation operators

of MASC and created additional mutation operators to further improve the evaluation

capabilities of MASC. Next, we discuss the mutation-operators built for this extension.

OP13: Iterative Method Chaining – Extending OP5, this operator takes a user-

specified, arbitrary numeric value (n) and creates n methods. Furthermore, those method

calls are then chained in succession. Similar to OP5, user can specify two return values,

one of which is used for nth method, whereas the other is returned from the rest of the

methods. The goal of this operator is to analyze the internal limits of crypto-detectors

when following a method chain.

OP14: Iterative Nested Conditionals – This mutation operator extendsOP13 and

creates nested conditionals based on user-specified, arbitrary numeric value. The resulting

misuse consists of two nested branches. The “true” branch always returns an insecure

parameter after traversing, whereas the other returns a secure parameter. Mutations
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created through OP14 can be used to evaluate whether a crypto-detector is following

through the expected length of nested conditions.

OP15: Method Builder – This operator breaks down a crypto-API String parameter

into a chain of method calls. Furthermore, it then creates a concatenation method that

invokes the character containing methods to chain together the string parameter. For

example, for the parameter “DES”, this operator creates three methods. Combined, these

methods return ‘D’, ‘E’, and ‘S’. The concatenation method then adds the letters together

by calling each method and returns the final, concatenated value as the parameter at the

crypto-API call site. This operator also simulates (T3) behavior.

OP16: Object Sensitivity – To evaluate object sensitivity of a crypto-detector,

this operator creates two objects, varA and varB. Together, this pair of objects are

initialized to contain a pair of secure and insecure parameters for the target crypto-API.

Next, assuming that varB contains secure parameter, varA is assigned to varB. Finally,

varB is passed to crypto-API call site.

OP17: Build Variable – This operator at first introduces an array of characters

based on a pre-specified string parameter. Then, it passes the string value of the array to

a target crypto API by using the toString() without doing any additional operations,

emulating a T1 developer.

OP18: Substring – This operator creates a random string with an insecure parameter

as a substring, e.g.,’’HelloWorldDES’’. Next, it uses the substring method to extract

the insecure parameter from the original string and passes it to the target crypto-API,

e.g.,’’HelloWorldDES’’.substring(10);.

OP19: Constant Value Derivation – This operator is similar to OP6, as in it

derives a constant/predictable value, without using any complex operations. For example,

Listing A.23 shows such an instantiation of constant IV derivation from a fixed string.
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4.3.2 Operators based on Flexible Crypto API Invocations

In contrast with restrictive APIs, Java allows several types of flexible extensions to crypto

APIs represented by interfaces or abstract classes, only enforcing typical syntactic rules,

with little control over what semantics developers express. Thus, we consider three par-

ticular types of flexible extensions developers may make and our OPs may emulate, in

the context of API misuse cases that involve flexible invocations: (1) method overriding,

(2) class extension, and (3) object instantiation.

4.3.2.1 Method Overriding

Crypto APIs are often declared as interfaces or abstract classes containing abstract meth-

ods, to facilitate customization. These abstract classes provide a fertile ground for defin-

ing mutation operators with a propensity for circumventing detectors (i.e., considering

threats T3 ).

OP7: Ineffective Exceptions – If the correct behavior of a method is to throw an

exception, such as invalid certificate, this operator creates misuse instances of two types:

(1) not throwing any exception, and (2) throwing an exception within a conditional block

that is only executed when a highly unlikely condition is true. For example, as shown in

Listing A.4 in Online Appendix [16], this operator instantiates a weak TrustManager by

implementing a checkServerTrusted method containing a condition block is unlikely to

be executed.

OP8: Ineffective Return Values – If the correct behavior of a method is to return

a specific value to denote security failure, this operator modifies the return value to create

two misuse instances: (1) if the return type is boolean, return a predefined boolean value

that weakens the crypto feature, or return null otherwise, and (2) introduce a condition

block that will always, prematurely return a misuse-inducing boolean/null value before

the secure return statement is reached. Contrary to OP7, this operator ensures that

the condition will always return the value resulting in misuse (see Listing A.5 in Online
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Appendix [16] .

OP9: Irrelevant Loop – This operator adds loops that seem to perform some

work, or security checks, before returning a value, but in reality do nothing to change the

outcome, emulating an evasive (T3) developer.

4.3.2.2 Class Extension

Creating abstractions on top of previously-defined on crypto classes is fairly common; e.g.,

the abstract class X509ExtendedTrustManager implements the interface X509Trust-

Manager in the JCA, and developers can be expected to extend/implement both these

constructs in order to customize certificate verification for their use-cases. Similarly, de-

velopers may create abstract subtypes of an interface or abstract class; e.g., as shown in

Listing A.6 (Online Appendix [16]), the X509TrustManager can be both extended and

implemented by an abstract type interface and an abstract class respectively. Our next

set of operators is motivated by this observation:

OP10: Abstract Extension with Override – This mutation operator creates an

abstract sub-type of the parent class (e.g., the X509TrustManager as shown in List-

ing A.6), but this time, overrides the methods incorrectly, i.e., adapting the techniques in

OP7 – OP9 for creating various instances of misuse.

OP11: Concrete Extension with Override – This mutation operator creates a

concrete class based on a crypto API, incorrectly overriding methods similar to OP10.

4.3.2.3 Object Instantiation Operators

In Java, objects can be created by calling either the default or a parametrized constructor,

and moreover, it may also be possible to override the properties of the object through Inner

class object declarations. We leverage these properties to create OP12 as follows:

OP12: Anonymous Inner Object – Creating an instance of a flexible crypto

API through constructor or anonymous inner class object is fairly common, as seen for

HostnameVerifier in Oracle Reference Guide [229] and Android developer documenta-
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tion [25], respectively. Similarly, this operator creates anonymous inner class objects from

abstract crypto APIs, and instantiates misuse cases by overriding the abstract methods

using OP7 – OP9, as shown in Listing A.7 ( Online Appendix [16] ), where the misuse is

introduced through OP8.

MASC’s 19 operators are capable of instantiating 69/105 (65.71%), misuse cases dis-

tributed across all 9 semantic clusters. This indicates that MASC’s operators can express

a diverse majority of misuse cases, signaling a reasonable trade-off between the number

of operators and their expressivity. Of the remaining 36 cases that our operators do not

instantiate, 16 are trivial to implement (e.g., using AES with a < 128 bit key, see List-

ing A.13, Online Appendix [16]. Finally, 20 cases (19.01%) would require a non-trivial

amount of additional engineering effort; e.g., designing an operator that uses a custom

MessageDigest algorithm instead of a known standard such as SHA-3, which would

require a custom hashing algorithm.

4.4 Threat-based Mutation Scopes

We seek to emulate the typical placement of vulnerable code by benign (T1, T2), and

evasive (T3) developers, for which we design three mutation scopes:

1. Main Scope: The main scope is the simplest of the three, and seeds mutants at the

beginning of the main method of a simple Java or Android template app developed by

the authors (i.e., instead of the real, third-party applications mutated by the other two

scopes). This specific seeding strategy ensures that the mutant would always be reachable

and executable, emulating basic placement by a benign developer (T1, T2).

2. Similarity Scope: The similarity scope seeds security operators at locations in a

target application’s source code where a similar API is already being used, i.e., akin to

modifying existing API usages and making them vulnerable. Hence, this scope emulates

code placement by a typical, well-intentioned, developer (T1, T2), assuming that the

target app we mutate is also written by a benign developer. This helps us evaluate if the
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crypto-detector is able to detect misuse at realistic locations.

3. Exhaustive Scope: As the name suggests, this scope exhaustively seeds mutants at

all locations in the target app’s code, i.e., class definitions, conditional segments, method

bodies as well as anonymous inner class object declarations. Note that some mutants may

not be seeded in all of these locations; e.g., a Cipher.getInstance(<parameter>) is

generally surrounded by try-catch block, which cannot be placed at class scope. This

scope emulates placement by an evasive developer (T3).

4.5 Implementation

The first iteration of MASC, as discussed in our S&P’22 [19] paper, involved three com-

ponents, namely, (1) selecting misuse cases from the taxonomy for mutation, (2) imple-

menting mutation operators that instantiate the misuse cases, and (3) seeding/inserting

the instantiated mutants in Java/Android source code at targeted locations.

1. Selecting misuse cases from the Taxonomy: We chose 19 misuse cases from

the taxonomy for mutation with MASC’s 19 operators (indicated by a ✓ in Fig. 4.2),

focusing on ensuring broad coverage across our taxonomy as well as on their prevalence,

i.e., prioritizing misuse cases that are discussed more frequently in the artifacts used to

construct the taxonomy, and which most crypto-detectors can be expected to target. We

expand these choices in the S&P’22 [19] paper, and in the Online Appendix [16].

2. Implementing mutants: The mutation operators described in Sec. 4.3 are designed

to be applied to one or more crypto APIs, for instantiating specific misuse cases. To en-

sure compilable mutants by design, MASC carefully considers the syntactic requirements

of the API being implemented (e.g., the requirement of a surrounding try-catch block

with appropriate exception handling), as well as the semantic requirements of a particular

misuse being instantiated, such as the need to throw an exception only under a truly

improbable condition (e.g., as expressed in OP7). MASC uses Java Reflection to deter-
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mine all the “syntactic glue” for automatically instantiating a compilable mutant, i.e.,

exceptions thrown, requirements of being surrounded by a try-catch block, the need to

implement a certain abstract class and certain methods, etc. MASC then combines this

automatically-derived and compilable syntactic glue with parameters, i.e., values to be

used in arguments, return statements, or conditions, which we manually define for specific

operators (and misuse cases), to create mutants.

To further ensure compilability and evaluation using only compilable mutants, we take

two steps: (1) We use Eclipse JDT’s AST-based checks for identifying syntactic anomalies

in the generated mutated apps, and (2) compile the mutated app automatically using

build/test scripts provided with the original app. In the end, every single mutant analyzed

by the target crypto-detector is compilable and accurately expresses the particular misuse

case that is instantiated. This level of automation allows MASC to create thousands of

mutants with very little manual effort, and makes MASC extensible to future evolution in

Java cryptographic APIs (addressing RC3).

3. Identifying Target Locations and Seeding Mutants: To identify target locations

for the similarity scope, we extended the MDroid+ [200, 184] mutation analysis framework,

by retargeting its procedure for identifying suitable mutant locations, adding support for

dependencies that crypto-based mutations may introduce, and enabling identification of

anonymous inner class objects as mutant-seeding locations, resulting in 10 additional,

custom AST- and string-based location detectors. Further, MASC extends µSE [51] to im-

plement the exhaustive scope, i.e., to identify locations where crypto-APIs can be feasibly

inserted to instantiate compilable mutants (e.g., a Cipher.getInstance(<parameter>)

has to be contained in a try-catch block, making it infeasible to insert at class-level).

Based on our prior experience of developing and using the implementation of the MASC

framework, we determined several design goals, namely Diversity of Crypto-APIs (DG1),

Open to Extension (DG2), ease of evaluating crypto-detectors (DG3), and adapting to

users with different levels of skills (DG4), as we demonstrated at the FSE’23 [18].
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Figure 4.3: Architecture Overview of the Main Scope of MASC

scope = main # name of the scope to be used for mutation
type = StringOperator #name of the operator tor be used for mutation
outputDir = app/outputs
apiName = javax.crypto.Cipher
invocation = getInstance # Method call from crypto-API
secureParam = AES/GCM/NoPadding # Secure parameter to use with crypto-API
insecureParam = AES # insecure parameter to use with crypto-API
noise = ˜ # noise value used with mutation
variableName = cryptoVariable # variable, class name used to create necessary
structures
className = CryptoTest
appName = <Name of the App> # name of the app for similarity-scope specific mutation

Listing 4.2: Example configuration file for MASC

To satisfy these design goals (DG1–DG4), we implemented MASC (11K+ effective

Java source line of code) following single/responsibility principle across modules, classes,

and functions. While current implementation of MASC inherits the mutation scopes of the

original implementation with internal structural changes, the bulk of the changes with new

features in the current implementation of MASC are based on the Main Scope. Therefore,

we describe the implementation details of MASC with a focus on Main Scope in the context

of the design goals and provide an overview of the architecture in Figure 4.3.

Configuration Manager: To make MASC as flexible as possible, we decoupled the

crypto-API specific parameters from the internal structure of MASC. As a result, user

can specify any crypto-API along with its necessary parameters through an external con-

figuration file defining the base crypto-API misuse case. The configuration file follows a

key-value format, as shown in Listing 4.2. Additionally, user can specify the mutation

operators and scope to be used, along with other configuration values, thus satisfying

DG1.
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Mutation Operator Module: MASC analyzes the specified crypto-API and uses the

values specified by the user (e.g., secure, and insecure parameters to be used with the API)

for creating mutated crypto-API misuse instances. Internally, the decoupling of crypto-

APIs from MASC is made possible through the use of Java Reflection based API analysis

and Java Source Generation using the Java Poetry Library (DG1). While both the

original and current implementation of MASC comes with several generalizable mutation

operators, the current implementation of MASC includes an additional plug-in structure

that facilitates creating custom mutation operators and custom key-value pairs for the

configuration file. Both of these can be done externally, i.e., no modification to source

code of MASC is necessary (DG2). We provide additional details about MASC’s mutation

operators in Section 4.3.

Automated Evaluation Module: The current implementation of MASC leverages the

SARIF formatted output to automate evaluation of crypto-detectors. To make end-to-end

analysis automated, MASC’s can be configured to use crypto-detector specific commands,

such as e.g., compiling a mutated source code for analysis, evaluation stop conditions,

command for running crypto-detector, output directory, and more (DG3–DG4).

Finally, MASC is implemented to produce verbose logs. With the combination of

flexible configuration, it is therefore possible to use the stand-alone binary MASC jar file

as a module of another software. As a proof of concept, we implemented MASC Web, a

python-django based front-end that offers all the functionalities of the MASC that uses the

binary jar of MASC as a module (DG4).

4.6 Evaluation Overview and Methodology

The two main goals of our evaluation are to (1) measure the effectiveness of MASC at

uncovering flaws in crypto-detectors, and (2) learn the characteristics of the flaws and

their real-world impact, in terms of the security of end-user applications. Therefore, we

formulate the following research questions:
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• RQ1: Can MASC discover flaws in crypto-detectors?

• RQ2: What are the characteristics of these flaws?

• RQ3: What is the impact of the flaws on the effectiveness of crypto-detectors in prac-

tice?

To answer RQ1 – RQ3, we performed experiments throughout several years, spanning

from 2021 to 2024. As part of our S&P’22 [19] paper, we first used MASC to evalu-

ate a set of nine major crypto-detectors, namely CryptoGuard, CogniCrypt, Xanitizer,

ToolX, SpotBugs with FindSecBugs, QARK, LGTM, Github Code Security (GCS), and

ShiftLeft Scan, prioritizing practically relevant tools that were recent and under active

maintenance. As part of this study, we evaluated all of these crypto-detectors with their

updated versions, except ToolX and Xanitizer, in addition to five new crypto-detectors,

namely Amazon CodeGuru Security, Snyk, DeepSource, Codiga, and SonarQube, totaling

12 crypto-detectors.

To be consistent, we addressed several changes in crypto-detectors life-cycle during

this study. First, LGTM was merged with Github Code Security and ceased to exist

separately. As Github Code Security still stores the test suites from LGTM suites, we used

Github Code Security with lgtm test suite as a proxy for the LGTM service. Furthermore,

Github Code Security has two regularly maintained, security-specific test suites 2. First,

the default test suite is described to be more precise by giving “fewer low confidence”

results to reduce false-positives. Second, security-extended is optionally available, and

consists of all rules from the default test suite and additional rules with lower precision.

Since we are interested in identifying flaws in crypto-detectors, we chose security-extended

test suite for this extended study for evaluating Github Code Security. Finally, several of

these new crypto-detectors are web-based and can only be used as part of CI/CD workflow.

As those crypto-detectors do not offer a “fixed version” for evaluation, we used the latest

version whenever possible, and confirmed the existence of the flaws as of April 2024.

2https://docs.github.com/en/code-security/code-scanning/managing-your-code-scanning-
configuration/codeql-query-suites



4.6. EVALUATION OVERVIEW AND METHODOLOGY 91

As MASC’s usefulness is in systematically evaluating individual crypto-detectors by

characterizing their detection-ability, with the goal of enabling improvement in the tools,

and hence, the results of our evaluation indicate gaps in individual tools, and not com-

parative advantages.

Step 1 – Selecting and mutating apps: During the first iteration of this study for

our S&P’22 [19] paper, we used MASC to mutate 13 open source Android apps from F-

Droid [102] and Github [123], and four sub-systems of Apache Qpid Broker-J [242], a large

Java Apache project (for list see [15]). Our selection criteria was biased towards popular

projects that did not contain obsolete dependencies (i.e., compilable using Android Studio

4/Java LTS 1.8). Moreover, we specifically used the similarity scope on 3/13 Android apps,

and all 4 Qpid sub-systems, as they contained several types of crypto API usage (e.g.,

Cipher, MessageDigest, X509TrustManager). In total, we generated 2, 515 mutants

using the 13 Android apps (producing src and apk) and 17, 788 mutants using the 4 Java

programs (producing src and jar), totaling 20, 303 mutants. We confirmed that each

mutated app was compilable and runnable. Generating these 20k mutants took MASC

roughly 15 minutes, and did not require any human intervention, addressing RC3. As the

cost to generate this volume of mutants is feasible, MASC may not benefit from generating

a focused subset of mutants (as we detail in S&P’22 [19]).

In this extension of the study, for mutation using MASC, we selected 10 additional

Android applications for the exhaustive scope, four Android applications for the selective

scope, and one Java-based application from Google. Similar to the previous study, these

apps were chosen based on few specific criteria to represent popular, regularly updated

applications, such as having more than 200 stars in GitHub for Android-based projects,

and latest commit dating back to 2022, and having no obsolete dependencies. Additionally,

we relied on GitHub’s advance code search feature to identify Android applications with

existing crypto-API calls to ensure that those apps can be mutated using MASC’s selective

scope. Finally, we manually confirmed that those 5 newly selected applications indeed
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contained crypto-API call sites.

Using the extended MASC with its additional mutation operators, we mutated these

15 applications and generated 30, 236 new mutants. We used 20, 303 from the previous

study, and 30, 236 from this study, totaling 50, 539 mutations, for evaluating the crypto-

detectors.

Step 2 – Evaluating crypto-detectors and identifying unkilled/undetected mu-

tants: To evaluate a crypto-detector, we analyzed the mutants using the crypto-detector,

and identified the mutants that were not killed by it, i.e., undetected as misuse using similar

methodology in both the previous and current study. To facilitate accurate identification

of killed mutants, we compare the mutation log MASC generates when inserting mutants

(which describes the precise location and type of mutant injected, for each mutant), and

the reports from crypto-detectors, which for all the tools contained precise location fea-

tures such as the class/method names, line numbers, and other details such as associated

variables. To elaborate, we use the following methodology: We first compare the analysis

report generated by the crypto-detector/target on a mutated app, with its analysis report

on the original (i.e., unmutated) version of the same app. Any difference in the two reports

can be attributed to mutants inserted by MASC, i.e., denotes an instance of a “mutant

being killed”. To identify the mutant that was killed, we obtain location features (i.e.,

type, file, class, method, line number and/or variables associated) of the specific “killed

mutant” from the crypto-detectors report on the mutated app, and use them to search

for a unique mutant in MASC’s mutation log. If a match is found, we mark that specific

mutant as killed. We additionally confirm the location of each killed mutant by referring

to the mutated app’s source code. Once all the killed mutants are identified, the remaining

mutants (i.e., inserted in MASC’s mutation but not killed) are flagged as unkilled.

This approach ensures that alarms by the crypto-detector for anomalies not inserted by

MASC are not considered in the evaluation, and all mutants inserted byMASC are identified

as either killed or unkilled. Our semi-automated implementation of this methodology,
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which adapts to the disparate report formats of the studied crypto-detectors, is detailed

in S&P’22 [19].

Step 3 – Identifying flaws (RQ1): We analyzed over 400 randomly chosen, undetected

mutants to discover flaws, wherein a flaw is defined as a misuse case that a particular

crypto-detector claims to detect in its documentation, but fails to detect in practice.

We took care to also exempt the exceptions/limitations explicitly stated in the crypto-

detector’s documentation, ensuring that all of our identified flaws are novel. On a similar

note, while a crypto-detector may seem flawed because it does not detect a newer, more

recently identified misuse pattern, we confirm that all the flaws we report are due to

misuse cases that are older than the tools in which we find them. This can be attributed

to two features of our evaluation: our choice of the most frequently discussed misuse cases

in a taxonomy going back 20 years, and, our choice of tools that were recently built or

maintained. Finally, to confirm the flaw without the intricacies of the mutated app, we

created a corresponding minimal app that contained only the undetected misuse instance

(i.e., the flaw), and re-analyzed it with the detector.

Step 4 – Characterizing flaws (RQ2): We characterized the flaws by grouping them

by their most likely cause, into flaw classes. We also tested each of the nine tools with

the minimal examples for all the flaws, allowing us to further understand each flaw given

its presence/absence in certain detectors, and their documented capabilities/limitations.

We reported the flaws to the respective tool maintainers, and contributed 3 patches to

CryptoGuard that were all integrated [15].

Step 5 – Understanding the practical impact of flaws (RQ3): To gauge the impact

of the flaws, we studied publicly available applications after investigating RQ1 and RQ2

during the previous study. We first tried to determine if the misuse instances similar to

the ones that led to the flaws were also found in real-world apps (i.e., public GitHub repos-

itories) using GitHub Code Search [128], followed by manual confirmation. Additionally,

we manually searched Stack Overflow [274] and Cryptography Stack Exchange [271] for
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keywords such as “unsafe hostnameverifier” and “unsafe x509trustmanager”. Finally, we

narrowed our search space to identify the impact on apps that were in fact analyzed with a

crypto-detector. As only LGTM showcases the repos that it scans, we manually explored

the top 11 Java repositories from this set (prioritized by the number of contributors), and

discovered several misuse instances that LGTM tool may have failed to detect due to the

flaws discovered by MASC.

Step 6 – Attributing flaws to mutation vs. base instantiation: To determine

whether a flaw detected by MASC can be attributed to mutation, versus the crypto-

detector’s inability to handle even a base case (i.e., the most literal instantiations of the

misuse case from the taxonomy), we additionally evaluated each crypto-detector with base

instantiations for each misuse that led to a flaw exhibited by it.

4.7 Results and Findings

Table 4.1: Descriptions of Flaws discovered by Analyzing crypto-detectors

ID Flaw Name

(Operator)

Description of Flaws

Flaw Class 1 (FC1): String Case Mishandling +

F1 smallCaseParameter

(OP1)

Not detecting an insecure algorithm provided in lower

case; e.g.,Cipher.getInstance("des");

Flaw Class 2 (FC2): Incorrect Value Resolution +

F2 value in variable

(OP2)

Not resolving values passed through variables.

e.g.,String value = "DES"; Cipher.getInstance(value);

Continued on next page.



4.7. RESULTS AND FINDINGS 95

ID Flaw Name

(Operator)

Description of Flaws

F3* secure parameter

replaced by insecure

(OP4)

Not resolving parameter replacement; e.g.,

MessageDigest.getInstance( "SHA-256".replace("SHA

-256", "MD5"));

F4* insecure parameter

replaced by insecure

(OP4)

Not resolving an insecure parameter’s replacement

with another insecure parameter e.g.,

Cipher.getInstance("AES".replace("A", "D")); (i.e.,

where “AES” by itself is insecure as it defaults to

using ECB).

F5* string case transform

(OP3)

Not resolving the case after transformation for anal-

ysis; e.g.,Cipher.getInstance("des".toUpperCase( Locale.

English));

F6* noise replace

(OP4)

Not resolving noisy versions of insecure parameters,

when noise is removed through a transformation; e.g.,

Cipher.getInstance("DE$S".replace("$", ""));

F7 parameter from

method chaining

(OP5)

Not resolving insecure parameters that are passed

through method chaining, i.e., from a class

that contains both secure and insecure values;

e.g.,Cipher.getInstance(obj.A().B().getValue()); where

obj.A().getValue() returns the secure value, but

obj.A().B().getValue(), and obj.B().getValue() return

the insecure value.

Continued on next page.
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ID Flaw Name

(Operator)

Description of Flaws

F8* deterministic byte

from characters

(OP6)

Not detecting constant IVs, if created using complex

loops, casting, and string transformations; e.g., a new

IvParameterSpec(v.getBytes(),0,8), which uses a String

v=""; for(int i=65; i<75; i++){ v+=(char)i;}

F9 predictable byte from

system API

(OP6)

Not detecting predictable IVs that are created using

a predictable source (e.g., system time), converted

to bytes; e.g.,new IvParameterSpec(val.getBytes(),0,8);

, such that val = new Date(System.currentTimeMillis()).

toString();

Flaw Class 3 (FC3): Incorrect Resolution of Complex Inheritance and Anony-

mous Objects

F10 X509ExtendedTrustManager

(OP12)

Not detecting vulnerable SSL verification in

anonymous inner class objects created from the

X509ExtendedTrustManager class from JCA; e.g., see

Listing A.8 in Appendix).

F11 X509TrustManager

SubType

(OP12)

Not detecting vulnerable SSL verification in anonymous

inner class objects created from an empty abstract class

which implements the X509TrustManager interface; e.g.,

see Listing A.11).

Continued on next page.
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ID Flaw Name

(Operator)

Description of Flaws

F12 Interface of Hostname

Verifier

(OP12)

Not detecting vulnerable hostname verification in an

anonymous inner class object that is created from an

interface that extends the HostnameVerifier interface

from JCA; e.g., see Listing A.12 in Appendix.

F13 Abstracted Hostname

Verifier

(OP12)

Not detecting vulnerable hostname verification in

an anonymous inner class object that is created

from an empty abstract class that implements the

HostnameVerifier interface from JCA; e.g., see List-

ing A.10 in Appendix.

Flaw Class 4 (FC4): Insufficient Analysis of Generic Conditions in Extensible

Crypto-APIs

F14 X509TrustManager

Generic Conditions

(OP7, OP9, OP12)

Insecure validation of a overridden checkServerTrusted

method created within an anonymous inner class (con-

structed similarly as in F13), due to the failure

to detect security exceptions thrown under impossi-

ble conditions; e.g., if(!(true||arg0 == null||arg1 ==

null)) throw new CertificateException();

F15 Interface Hostname

Verifier Generic

Conditions

(OP8, OP12)

Insecure analysis of vulnerable hostname verifica-

tion, i.e., the verify() method within an anony-

mous inner class (constructed similarly as in F14),

due to the failure to detect an always-true condition

block that returns true; e.g.,if(true || session == null)

return true; return false;

Continued on next page.
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ID Flaw Name

(Operator)

Description of Flaws

F16 Abstract Hostname

Verifier Generic

Conditions

(OP8, OP12)

Insecure analysis of vulnerable hostname verifica-

tion, i.e., the verify() method within an anony-

mous inner class (constructed similarly as in F15),

due to the failure to detect an always-true condition

block that returns true; e.g.,if(true || session == null)

return true; return false;

Continued on next page.
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ID Flaw Name

(Operator)

Description of Flaws

Flaw Class 5 (FC5): Insufficient Analysis of Context-specific, Conditions in

Extensible Crypto-APIs

F17 X509TrustManager

Specific Conditions

(OP7, OP12)

Insecure validation of a overridden checkServerTrusted

method created within an anonymous inner class

created from the X509TrustManager, due to the

failure to detect security exceptions thrown under

impossible but context-specific conditions, i.e., condi-

tions that seem to be relevant due to specific variable

use, but are actually not; e.g.,if (!(null != s || s.

equalsIgnoreCase("RSA")|| certs.length >= 314))throw

new CertificateException("RSA");

F18 Interface Hostname

Verifier Specific

Conditions

(OP8, OP12)

Insecure analysis of vulnerable hostname verification,

i.e., the verify() method within an anonymous in-

ner class (constructed similarly as in F14), due to

the failure to detect a context-specific always-true

condition block that returns true; e.g.,if(true ||

session.getCipherSuite().length()>=0) return true;

return false;

Continued on next page.
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ID Flaw Name

(Operator)

Description of Flaws

F19 Abstract Hostname

Verifier Specific

Conditions

(OP8, OP12)

Insecure analysis of vulnerable hostname verification,

i.e., the verify() method within an anonymous in-

ner class (constructed similarly as in F15), due to

the failure to detect a context-specific always-true

condition block that returns true; e.g.,if(true ||

session.getCipherSuite().length()>=0)return true;

return false;

+ flaws were observed for mulitple API misuse cases, * Certain seemingly-unrealistic flaws

may be seen in or outside a crypto-detector’s “scope”, depending on the perspective; see

Section 4.9 for a broader treatment of this caveat.

Table 4.2: Descriptions of Flaws discovered by Analyzing crypto-detectors in Current
Iteration

ID Flaw Name

(Operator)

Description of Flaws

Flaw Class 2 (FC2): Incorrect Value Resolution +

F20 Static Bytes in

Keystore

(OP19)

Not detecting bytes that are created using a static

source converted to bytes and passed into IV; e.g.,new

IvParameterSpec(val.getBytes(),0,8);, such that byte[]

val = "12345678".getBytes();

Continued on next page.
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ID Flaw Name

(Operator)

Description of Flaws

F21 Char Array to String

(OP17)

Being unable to convert an array of Char into a String

object and parsing the value; e.g.,javax.crypto.Cipher

.getInstance(String.valueOf(cryptoVariable));, such

that char[] cryptoVariable = "DES".toCharArray();

F22 Unsafe Value from

Substring

(OP18)

Not detecting a Substring misuse being parsed from

a longer string; e.g.,javax.crypto.Cipher.getInstance("

secureParamAES".substring(11));,

F23 Object Sensitivity

(OP16)

Not being able to differentiate between two instances

of the same object type one containing a misuse and

one containing a safe value; e.g.,

String securecipher = new CipherPack().safe().

getpropertyName();String unsecurecipher = new

CipherPack().unsafe().getpropertyName(); securecipher

= unsecurecipher; javax.crypto.Cipher cryptoVariable =

javax.crypto.Cipher.getInstance(securecipher);

F24 parameter Built From

Method Calls

(OP15)

Unable to detect the construction of a misuse String

based on calls to methods that construct the misuse;

e.g., Listing A.19 in Appendix

F25 parameter From

Nested Conditionals

(OP14)

Being unable to keep track of a variable as it is passed

through a nested number of conditional statements;

e.g., see Listing A.18 in Appendix

+ flaws were observed for mulitple API misuse cases, * Certain seemingly-unrealistic flaws

may be seen in or outside a crypto-detector’s “scope”, depending on the perspective; see

Section 4.9 for a broader treatment of this caveat.
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Our manual analysis of undetected mutants revealed 19 flaws in our previous S&P’22 [19]

study, and six additional flaws in this study across crypto-detectors we evaluated, which

we resolved to both design and implementation-gaps (RQ1). We organize these flaws into

five flaw classes (RQ2), representing the shared limitations that caused them. Table 4.1

and Table 4.2 provides the complete list of the flaws, categorized along flaw classes, while

Table 4.3 and Table 4.4 provides a mapping of the flaws to the crypto-detectors that

exhibit them.

As we have shown in Table 4.3 in our previous study, a majority of the total flaws

(computed by adding ✗ and Ø instances) identified in crypto-detectors, i.e., 45/76 or

59.21% can be solely attributed to our mutation-based approach, whereas only 31/76, i.e.,

40.79% could also be found using base instantiations of the corresponding misuse cases.

Further, all flaws in 6/9 crypto-detectors were only identified using MASC. This demon-

strates the advantage of using mutation, over simply evaluating with base instantiations

of misuses from the taxonomy. GCS, LGTM, and QARK fail to detect base cases due to

incomplete rule sets (see online Appendix [16] for discussion). Similarly, in our current

study, a significant portion of the total flaws (122/196) we identified in crypto-detectors

can be attributed to mutation based approach, whereas 74 could be found using base

instantiations of the corresponding misuse cases as shown in Table 4.4. Moreover, 6 fixed

flaws (✓✓in Table 4.4) in this extended study, i.e., flaws that were present in our previous

study, but are no longer present, can be attributed to MASC because of the responsibly

disclosed reports submitted in S&P’22 [19].

In our previous study, at the initial stage of our evaluation (i.e., before we analyzed

uncaught mutants), we discovered that certain crypto-detectors [243, 176] analyze only

a limited portion of the target applications, which greatly affects the reliability of their

results. As these gaps were not detected using MASC’s evaluation, we do not count these

in our flaws or flaw classes. However, due to their impact on the basic guarantees provided

by crypto-detectors, we believe that such gaps must be discussed, addressed, and avoided

by future crypto-detectors, which is why we discuss them under a flaw class zero.
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Flaw Class Zero (FC0) – Incomplete analysis of target code: Starting from An-

droid API level 21 (Android 5.0), apps with over 64k reference methods are automatically

split to multiple Dalvik Executable (DEX) byte code files in the form of classes<N>.dex.

Most apps built after 2014 would fall into this category, as the Android Studio IDE au-

tomatically uses multidex packaging for any app built for Android 5.0 or higher [84].

However, we discovered that CryptoGuard and CogniCrypt do not handle multiple dex

files (see Table 4.3), despite being released 4 and 5 years after Android 21, respectively.

Given that this flaw affected CryptoGuard’s ability to analyze a majority of Android

mutants (i.e., detecting only only 871/2515), we developed a patch that fixes this issue,

and used the patched version of CryptoGuard for our evaluation. The CogniCrypt main-

tainers confirmed that they are working on this issue in their upcoming release, which is

why we did not create a patch, but used non-multidex minimal examples to confirm that

each flaw discovered in CogniCrypt is not due to the multidex issue. Similarly, we dis-

covered that CryptoGuard ignores any class whose package name contains “android.”

or ends in “android”, which prevents it from analyzing important apps such as Last-

Pass (com.lastpass.lpandroid) and LinkedIn (com.linkedin.android), which

indicates the severity of even trivial implementation flaws. We submitted a patch to ad-

dress this flaw and evaluated the patched version [15]. Finally, Codiga was unable to

detect any of the crypto-API misuse we analyzed, even though it explicitly claims that

it “supports hundreds of rules for Java, checking that your code is safe and secure” [70].

When we reached out to Codiga (April 2023), we were informed that Codiga would shut

down by May 3rd, 2023 without addressing this issue. As a result, we have marked all

flaws accordingly (Ø), i.e., claims to handle but does not detect base version of misuse in

Table 4.4.

The remainder of this section discusses each flaw class with representative examples as

they manifest in crypto-detectors and the impact of the flaws in terms of examples found

in real software.
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FC1: String Case Mishandling (F1): As discussed in the motivating example (and

seen in F1 in Table 4.1), a developer may use des or dEs (instead of DES) in Cipher.-

getInstance(<parameter>) without JCA raising exceptions. As shown in Table 4.3,

CryptoGuard did not detect such misuse in our previous study. We submitted a patch to

CryptoGuard to address this flaw, which was accepted, and demonstrates that this flaw

was recognized as an implementation gap by the CryptoGuard developers [15]. Since

the latest version of CryptoGuard can identify this misuse, we have marked it as such

(✓✓) in Table 4.4. Snyk is able to detect when the misuse is instantiated using the

MessageDigest.getInstance( <parameter>) API (using “md5”), but not using the

Cipher.getInstance(<parameter>) API (using “aes”, which defaults to ECB mode).

Similarly, DeepSource could detect it for the Cipher.getInstance(<parameter>) API,

but not MessageDigest.getInstance( <parameter>) API, indicating a partial imple-

mentation gap in both these crypto-detectors.

FC2: Incorrect Value Resolution (F2 – F9, F20 – F25): The flaws in this class

occur due to the inability of 13/12 of the crypto-detectors to resolve parameters passed

to crypto-APIs. For example, consider F2, previously discussed in Listing 4.1 in Sec-

tion 4, where the string value of an algorithm type (e.g., DES) is passed through a

variable to Cipher.getInstance(<parameter>). ToolX was not able to detect this

(mis)use instance, hence exhibiting F2 (Table 4.3), and in fact, demonstrated a con-

sistent inability to resolve parameter values (flaws F2 – F7), indicating a design gap.

On the contrary, as SpotBugs partially detects the type of misuse represented in F5,

i.e., when it is instantiated using the Cipher.getInstance(<parameter>) API, but

not using the MessageDigest.getInstance( <parameter>) API, which indicates an

implementation gap, which continues to exist throughout the previous and current study.

Further, LGTM and GCS are partially susceptible to F2 because of an intricate prob-

lem in their rule-sets. That is, both tools are capable of tracking values passed from

variables, and generally detect mutations similar to the one in F2 (i.e., and also the one
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in Listing 4.1, created using OP2). However, one of the mutant instances that we created

using OP2 used AES in Cipher.getInstance(<parameter>), which may seem correct

but is actually a misuse, since specifying AES alone initializes the cipher to use the highly

vulnerable ECB mode as the block chaining mode. Unfortunately, both LGTM and GCS

use mostly similar CodeQL rule-set [124] which does not consider this nuance, leading

both tools to ignore this misuse.

Interestingly, SonarQube, as shown in Table 4.4, is partially susceptible to F2, as it does

detect misuse for Cipher.getInstance(<parameter>)API, but not for MessageDigest.-

getInstance( <parameter>) because of an entirely different reason. As we found from

the discussion with SonarQube during the responsible disclosure, this flaw stems from the

tendency of avoiding false-positives. As they elaborated, evaluating a non-constant value

may result in increased number of false-positives, and as a result, the analyzer avoids

evaluating non-constant identifiers in this particular case. While both weak hashing al-

gorithm and weak encryption are within OWASP’s TOP 10 crypto API issues and are

similarly considered within scope by SonarQube, this reveals that developers of the same

crypto-detector may treat crypto-APIs differently based on internal prioritization factors,

which led to this particular flaw. We address this particular insight in Section 4.9 later

on.

Finally, we observe that CogniCrypt detects some of the more complex behaviors rep-

resented by flaws in FC2 (i.e., F7 – F9), but does not detect the simpler ones (F3 – F6).

From our interaction with CogniCrypt’s maintainers, we have discovered that CogniCrypt

should be able to detect such transformations by design, as they deviate from CrySL

rules. However, in practice, CogniCrypt cannot reason about certain transformations at

present (but could be modified to do so in the future), and produces an ambiguous output

that neither flags such instances as misuse, nor as warnings for manual inspection, due

to an implementation gap. The developers agree that CogniCrypt should clearly flag the

API-use that it does not handle in the report, and refer such use to manual inspection.

Impact (FC2): We found misuse similar to the instance in F2 in Apache Druid, an app
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with 10.3K stars and 400 contributors on Github (see Listing A.16 in online Appendix [16] .

Further, we found real apps that convert the case of algorithm values before using them in

a restrictive crypto API [134] (F5, instantiated using OP3), or process values to replace

“noise” [126] (F3, F4, F6, instantiated using OP4). We observed that ExoPlayer, a

media player from Google with over 16.8K stars on GitHub, used the predictable Random

API for creating IvParameterSpec objects [127] until 2019, similar in nature to F9.

Developers also use constants for IVs (F8), as seen in UltimateAndroid [275] (2.1K stars),

and JeeSuite (570 stars) [273].

We also found instances of these flaws in apps that were analyzed with a crypto-

detector, specifically, LGTM. Apache Ignite [121] (360 contributors, 3.5K stars) contains

a misuse instance similar to one that led to F2, where only the name of the cipher is

passed to the Cipher.getInstance(<parameter>) API [131] which causes it to default

to “ECB” mode. LGTM does not report this as it considers ECB use as insecure for Java

(but oddly secure for JavaScript). We found similar instances of ECB misuse in Apache-

Hive [130] (250 contributors, 3.4K stars), Azure SDK for Java [122] (328 contributors,

857 stars), which LGTM would not detect. Finally, in Apache Ignite [121], we found a

Cipher.getInstance(<parameter>) invocation that contained a method call in place

of the cipher argument (i.e., a chain of length 1, a basic instance of F7) [131].

FC3: Incorrect Resolution of Complex Inheritance and Anonymous Objects

(F10 – F13): The flaws in this class occur due to the inability of crypto-detectors to

resolve complex inheritance relationships among classes, generally resulting from applying

flexible mutation operators (Sec. 4.3.2) to certain misuse cases. For example, consider F11

in Table 4.1, also illustrated in Listing A.11 in online Appendix [16] . Further, we find

that several crypto-detectors, e.g., Xanitizer, SpotBugs and SonarQube are immune to

these flaws, which indicates that traversing intricate inheritance relationships is a design

consideration for some crypto-detectors, and a design gap in others such as CryptoGuard

and QARK. Moreover, such indirect relationships can not only be expected from evasive
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developers (i.e., T3) but is also found in real apps investigated by the crypto-detectors,

as described below.

Impact (FC3): We found an exact instance of the misuse representing F10 (generated

from OP12) in the class TrustAllSSLSocketFactory in Apache JMeter [133] (4.7K stars

in GitHub). F11 is the generic version of F10, and fairly common in repositories and

libraries (e.g., BountyCastle [45, 46]). F12 an F13 were also generated using OP12, but

with the HostnameVerifier-related misuse, and we did not find similar instances in the

wild in our limited search.

FC4: Insufficient Analysis of Generic Conditions in Extensible Crypto-APIs

(F14 – F16): The flaws in this class represent the inability of certain crypto-detectors to

identify fake conditions within overridden methods, i.e., unrealistic conditions, or always

true condition blocks (e.g., as Listing A.15 in online Appendix [16] shows for F14). Flaws

in this class represent the behavior of an evasive developer (T3). Several crypto-detectors,

e.g., Xanitizer and SpotBugs, can identify such spurious conditions.

FC5: Insufficient Analysis of Context-specific Conditions in Extensible Crypto-

APIs (F17 – F19): The flaws in this class represent misuse similar to FC4, except that

the fake conditions used here are contextualized to the overridden function, i.e., they check

context-specific attributes (e.g., the length of the certificate chain passed into the method,

F17). An evasive developer may attempt this to add further realism to fake conditions to

evade tools such as Xanitizer that are capable of detecting generic conditions. Indeed, we

observe that Xanitizer fails to detect misuse when context-specific conditions are used, for

both F17 and F18. Our suspicion is that this weakness is due to an optimization, which

exempts conditions from analysis if they seem realistic.

Particularly, we observe that Xanitizer correctly detects the fake condition in F19,

and that the only difference between F19 and F18 is that the instances of misuse they

represent occur under slightly different class hierarchies. Hence, our speculation is that

this an accidental benefit, i.e., the difference could be the result of an incomplete imple-
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mentation of the unnecessary optimization across different class hierarchies. SpotBugs

with FindSecBugs shows a similar trend, potentially because Xanitizer uses SpotBugs for

several SSL-related analyses. Finally, we observe that ToolX is immune to both generic

FC4) and context-specific fake conditions FC5).

Impact (FC4, FC5): In this Stack Overflow post [272], the developer describes sev-

eral ways in which they tried to get Google Play to accept their faulty TrustManager

implementation, one of which is exactly the same as the misuse instance that led to F17

(generated using OP7 and OP12), which is a more specific variant of F14 (generated

OP7, OP9 and OP12), as illustrated in Listing A.9 in online Appendix [16] . We observe

similar evasive attempts towards vulnerable hostname verification [269] which are similar

in nature to F15 and F16, and could be instantiated using OP8 and OP10. We also

found developers trying to evade detection by applying context-specific conditions in the

hostname verifier [270], similar to F18 and F19.

4.8 Limitations

MASC does not attempt to replace formal verification, and hence, does not guarantee

that all flaws in a crypto-detector will be found. Instead, it enables systematic evaluation

of crypto-detectors, which is an advancement over manually curated benchmarks. Aside

from this general design-choice, our approach has the following limitations:

1. Completeness of the Taxonomy: To ensure a taxonomy that is as comprehensive

as possible, we meticulously follow best-practices learned from prior work [171, 73], and

also ensure labeling by two authors. However, the fact remains that regardless of how

systematic our approach is, due to the manual and generalized of the SLR, we may miss

certain subtle contexts during the information extraction phase (see specific examples in

Online Appendix [16] ). Thus, while not necessarily complete, this taxonomy, generated

through over 2 person months of manual effort, is, to the best of our knowledge, the most

comprehensive in recent literature.
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2. Focus on Generic Mutation Operators: We have currently constructed generic

operators based on typical usage conventions, i.e., to apply to as many misuse instances

from the taxonomy as possible. However, currently, MASC does not incorporate operators

that may fall outside of usage-based conventions, i.e., which may be more tightly coupled

with specific misuse cases, such as an operator for calling create and clearPassword in

a specific order for PBEKeySpec. We plan to incorporate such operators into MASC in the

future.

3. Focus on Java and JCA: MASC’s approach is largely informed by JCA and Java.

Additional operators and adjustments will be required to adapt MASC to JCA-equivalent

frameworks in other languages, specially when adapting our usage-based mutation opera-

tors to non-JCA conventions.

4. Evolution of APIs: Future, tangential changes in how JCA operates might require

changing the implementation of MASC’s mutation operators. Furthermore, incremental

effort will be required to incorporate new misuse cases that are discovered with the evo-

lution of crypto APIs. We have designed MASC to be as flexible as possible by means

of reflection and automated code generation for mutation operators, which should make

adapting to such changes easier.

5. Relative Effectiveness of Individual Operators: This work demonstrates the key

claims of MASC, and its overall effectiveness at finding flaws, but does not evaluate/claim

the relative usefulness of each operator individually. A comprehensive investigation of

relative usefulness would require the mutation of all/most misuse cases from the taxonomy,

with every possible operator and scope, a broader set of apps to mutate, and a complete

set of crypto-detectors, which is outside the scope of MASC, but a direction for future

work.
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4.9 Discussion and Summary

Designing crypto-detectors is in no way a simple task; tool designers have to balance several

orthogonal requirements such as detecting as many vulnerabilities as possible without

introducing false positives, while also scaling to large codebases. Yet, the fact remains

that there is significant room for improvement in how crypto-detectors are built and

evaluated, as evidenced by the flaws discovered by MASC.

To move forward, we need to understand the divergent perspectives regarding the

design of crypto-detectors, and reach a consensus (or at least an agreeable minima) in

terms of what is expected from crypto-detectors and how we will design and evaluate

them to satisfy the expectations. We seek to begin this discourse within the security

community by integrating several views on the design decisions behind crypto-detectors,

informed by our results and conversations with tool designers (quoted with consent) during

the vulnerability reporting process.

4.9.1 Security-centric Evaluation vs. Technique-centric Design

Determining what misuse is within or outside the scope for a crypto-detector is a com-

plex question that yields several different viewpoints. We argue for security-centric, i.e.,

even if some misuse instances may seem unlikely or evasive, crypto-detectors that target

security-focused use cases (e.g., compliance, auditing) should attempt to account for them.

In other words, crypto-detectors should be able to detect any variation of vulnerability as

long as those are statically analyzable. Furthermore, crypto-detectors should also explic-

itly state or document their limitations related to analysis techniques, so that the software

developers are aware of such limitations, and handle such limitations accordingly, e.g., by

adopting additional detectors based on different analysis techniques, and/or by supple-

menting manual techniques. However, we observe that tool designers typically adhere to

a technique-centric perspective, i.e., the design of crypto-detectors is not influenced by a

threat model, but mainly by what static analysis can and cannot accomplish (while im-
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plicitly assuming a benign developer). This quote from the maintainers of CryptoGuard

highlights this view, wherein they state that the “lines” between what is within/outside

scope “seen so far were technically motivated – not use-case motivated..should we use

alias analysis?...”. This gap in perspective does not mean that crypto-detectors may not

detect any of the mutants generated by MASC using operators based on the T3 threat

model; rather, it only means that detection (or lack thereof) may not be caused by a

security-centric design.

4.9.2 Defining “Scope” for the Technique-centric Design

We observe that even within crypto-detectors that take a technique-centric approach,

there is little agreement on the appropriate scope of detection. For instance, Xanitizer

focuses on catching every possible misuse instance, regardless of any external factors such

as whether that kind of misuse is observed in the wild, or a threat model, as the designers

believe that “the distinction should not be between ‘common’ and ‘uncommon’, but instead

between ‘can be (easily) computed statically’ and ‘can not be computed’.”. This makes it

possible for Xanitizer to detect unknown or rare problems, but may also result in it not

detecting a commonly observed misuse that is hard to compute statically, although we did

not observe such cases. For SonarQube, the “cost” of analyzing a pattern versus whether

it is easy to detect through manual analysis is an additional consideration, “... easy to

identify for simple human readers. For our analyzer ... this kind of method is expensive

... issue is more of a misconfiguration on the developer’s side, trying to cover this type of

case seems a bit out of scope.”

In contrast, CryptoGuard, CogniCrypt, and GCS/LGTM (same developers) would

consider seeminglyunlikely/evasive flaws within scope (e.g., F3 – F6, F8), because they

were found in the wild (unlike Xanitizer, for which this is not a consideration). This view

aligns with our perspective, that regardless of how it was generated, if a misuse instance

(representing a flaw) is discovered in real apps (which is true for all flaws except F12 and

F13, it should be within the detection scope. However, GCS/LGTM maintainers extend
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this definition with the condition that the observations in the wild be frequent, to motivate

change. Note that this scope defining factor also extends to the additional, extended

securithy test–suite available in Github Code Security, while the default test–suite focuses

on precision, i.e., as the number of false-positives is often a concern for developers of

crypto-detectors, likely inherited from the program analysis community studies [167, 156,

67]. These divergent perspectives motivate the need to clearly define the expectations

from crypto-detectors by the designers, i.e., crypto-detectors need to clearly communicate

if their use cases are for hostile/adversarial context (e.g., security audit, certification, or

compliance), or for developer-friendly, helping-with-coding context. Furthermore, to avoid

creating a false sense of security, it is important to document known limitations, such as

design considerations, and share them with (potential) users, so that the users can make

informed decisions about their capabilities.

4.9.3 Utility of Seemingly-Uncommon or Evasive Tests

As Bessey et al. state from practical deployment experience in 2010 [47], “No bug is too

foolish to check for”, and that “Given enough code, developers will write almost anything

you can think of...”. The results from our evaluation and the impact study corroborate

this sentiment, i.e., F3 – F6 and F8 were all obtained using operators (OP3, OP4, and

OP6) modeled to emulate threats T1 and T2, i.e., representing benign behavior (however

unlikely); and indeed, these flaws were later found in supposedly benign applications. This

suggests that the experience of Bessey et al. is valid a decade later, making it important

to evaluate crypto-detectors with “more-than-trivial” cases to not only test their detection

prowess, but to also account for real problems that may exist in the wild.

4.9.4 The Need to Strengthen Crypto-Detectors

We argue that it is not only justified for tools to detect uncommon cases (e.g., given that

even benign developers write seemingly-unlikely code), but also critical for their sustained

relevance. As designers of Coverity found [47], false negatives matter from a commercial
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perspective, because “Potential customers intentionally introduced bugs into the system,

asking ‘Why didn’t you find it?’”.

Perhaps more significantly, the importance of automated crypto-detectors with the

ability to guarantee assurance is rising with the advent of new compliance legislation such

as the IoT Cybersecurity Improvement Act of 2020 [159], which seeks to rein in vulnera-

bilities in billions of IoT systems that include vulnerable server-side/mobile components.

Vulnerabilities found after a compliance certification may result in penalties for the devel-

opers, and financial consequences for the compliance checkers/labs and crypto-detectors

used. Complementing static detection with manual or dynamic analysis may be infeasible

at this scale, as tool designers noted: e.g., “...review an entire codebase at once, manual

review can be difficult.” (LGTM) and “Existing dynamic analysis tools will be able to de-

tect them only if the code is triggered (which can be notoriously difficult)” (CryptoGuard).

Thus, static crypto-detectors will need to become more robust, and capable of detecting

hard-to-detect misuse instances.

4.9.5 Towards Crypto-Detectors Strengthened by a Security-Centric Eval-

uation

Fortunately, we observe that there is support among tool designers for moving towards

stronger security guarantees. For instance, CogniCrypt designers see a future research

direction in expressing evasive scenarios in the CrySL language i.e.,“...what would be a nice

future direction is to tweak the SAST with such optimizations/ more analysis but still allow

the CrySL developer to decide if he wants to switch these ‘evasive user’ checks...”, but

indicate the caveat that developers may not use such additional configuration options [167].

However, we believe that such options will benefit independent evaluators, and developers

who are unsure of the quality of their own supply chain, to perform a hostile review at

their disposal. Similarly, the CryptoGuard designers state that “...this insight of evasive

developers is very interesting and timely, which immediately opens up new directions.”

This potential paradigm-shift towards a security-focused design of crypto-detectors is
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timely, and MASC’s rigorous evaluation with expressive test cases can play an effective role

in it, by enabling tool designers to proactively address gaps in detection during the design

phase itself, rather than reactively (i.e., after a vulnerability is discovered in the wild).

More importantly, further large-scale evaluations using MASC, and the flaws discovered

therein, will enable the community to continually examine the design choices made by

crypto-detectors and reach consensus on what assurances we can feasibly expect. We

envision that such development aided by MASC will lead to a mature ecosystem of crypto-

detectors with a well-defined and strong security posture, and which can hold their own in

adversarial situations (e.g., compliance assessments) within certain known bounds, which

will eventually lead to long-lasting security benefits for end-user software.
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Table 4.3: Flaws observed in crypto-detectors in previous iteration

Class ID CG CC SB XT TX QA SL GCS LGTM

FC1 F1 ✗ ✓ ✓ ✓ ✓ Ø ✓ ✓ ✓

FC2

F2 ✓ ✓ ✓ ✓ ✗ Ø ✓ G# G#

F3* ✗ ✗ ✗ ✓ ✗ Ø ✗ ✓ ✓

F4* ✗ ✗ ✗ ✓ ✗ Ø ✗ ✗ ✗

F5* ✗ ✗ G# ✓ ✗ Ø G# ✓ ✓

F6* ✗ ✗ ✗ ✓ ✗ Ø ✗ ✗ ✗

F7 ✗ ✓ ✗ ✓ ✗ Ø ✗ ✓ ✓

F8 ✗ ✓ ✓ ✓ - Ø ✓ Ø ✗

F9 ✗ ✓ ✓ ✓ - Ø ✓ Ø ✗

FC3

F10 ✗ - ✓ ✓ G# G# ✓ Ø Ø

F11 ✗ - ✓ ✓ G# G# ✓ Ø Ø

F12 ✗ - ✓ ✓ ✓ - ✓ Ø Ø

F13 ✗ - ✓ ✓ ✓ - ✓ Ø Ø

FC4

F14 ✗ - ✓ ✓ ✓ ✗ ✓ Ø Ø

F15 ✗ - ✓ ✓ ✓ - ✓ Ø Ø

F16 ✗ - ✓ ✓ ✓ - ✓ Ø Ø

FC5

F17 ✗ - ✗ ✗ ✓ ✗ ✗ Ø Ø

F18 ✗ - ✓ ✗ ✓ - ✓ Ø Ø

F19 ✗ - ✓ ✓ ✓ - ✓ Ø Ø

✗ = Flaw Present, ✓ = Flaw Absent, G# = Flaw partially present, -= detector does not
claim to handle the misuse associated with the flaw, Ø= detector claims to handle but did
not detect base version of misuse; CG = CryptoGuard, CC = CogniCrypt, SB = Spot-
Bugs, XT = Xanitizer, TX = ToolX, QA = QARK, SL = ShiftLeft, GCS = Github
Code Security.

*Certain seemingly-unrealistic flaws may be seen in/outside a crypto-detector’s “scope”,
depending on the perspective; see Section 4.9 for a broader treatment of this caveat.
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Table 4.4: Flaws observed in crypto-detectors in current iteration

Class New versions of crypto-detectors Newly introduced crypto-detectors

ID nCG nCC nSB nQA nSL nGCS nLGTM AC SQ SY CD DS

FC1 F1 ✓✓ ✓ ✓ Ø ✓ ✓ ✓ ✓ ✓ G# Ø G#

FC2

F2 ✓ ✓ ✓ Ø ✓ G# G# ✓ G# ✓ Ø ✓

F3* ✓✓ ✗ ✗ Ø ✗ ✓ ✓ ✗ ✗ ✗ Ø ✗

F4* ✓✓ ✗ ✗ Ø ✗ ✓✓ ✗ ✓ ✗ ✗ Ø ✗

F5* ✓✓ ✗ G# Ø G# ✓ ✓ ✗ ✗ ✗ Ø ✗

F6* ✗ ✗ ✗ Ø ✗ ✓✓ ✗ ✓ ✗ ✗ Ø ✗

F7 ✗ ✓ ✗ Ø ✗ ✓ ✓ - ✗ ✗ Ø ✗

F8 ✗ ✓ ✓ Ø ✓ Ø Ø - ✓ ✗ Ø Ø
F9 ✗ ✓ ✓ Ø ✓ Ø Ø Ø ✓ ✗ Ø Ø
F20 ✓ ✓ ✓ Ø ✓ Ø Ø Ø ✓ ✓ Ø Ø
F21 ✓ ✗ ✗ Ø ✗ ✓ ✗ ✗ ✗ ✗ Ø ✗

F22 ✗ ✗ ✗ Ø ✗ ✓ ✗ ✗ ✗ ✗ Ø ✗

F23 ✗ ✗ ✗ Ø ✗ ✗ ✗ ✗ ✗ ✗ Ø ✗

F24 ✗ ✗ ✗ Ø ✗ ✗ ✗ ✗ ✗ ✗ Ø ✗

F25 ✗ ✗ ✗ Ø ✗ ✗ ✗ ✗ ✗ ✗ Ø ✗

FC3

F10 ✗ - ✓ G# ✓ ✗ ✗ Ø ✓ ✓ Ø ✓

F11 ✗ - ✓ G# ✓ ✗ ✗ Ø ✓ ✓ Ø ✓

F12 ✗ - ✓ - ✓ Ø Ø Ø ✓ ✓ Ø ✓

F13 ✗ - ✓ - ✓ Ø Ø Ø ✓ ✓ Ø ✓

FC4
F14 ✗ - ✓ ✗ ✓ ✗ ✗ Ø ✗ ✗ Ø ✗

F15 ✗ - ✓ - ✓ Ø Ø Ø ✗ ✗ Ø ✗

F16 ✗ - ✓ - ✓ Ø Ø Ø ✗ ✗ Ø ✗

FC5
F17 ✗ - ✗ ✗ ✗ ✗ ✗ Ø ✗ ✗ Ø ✗

F18 ✗ - ✓ - ✓ Ø Ø Ø ✗ ✗ Ø ✗

F19 ✗ - ✓ Ø ✓ Ø Ø Ø ✗ ✗ Ø ✗

✗ = Flaw Present, ✓ = Flaw Absent, ✓✓= Flaw was present in the previous study, is no longer present after
responsible disclosureG#= Flaw partially present, -= detector does not claim to handle the misuse associated
with the flaw, Ø= detector claims to handle but did not detect base version of misuse AC = Amazon
CodeGuru Security, SQ = SonarQube, SY = Snyk, CD = Codiga, DS = DeepSource, nCG = CryptoGuard
version 04.05.03, nCC = CogniCrypt version 2.8.0, nSB = SpotBugs 4.0.4 with FindSecBugs version 1.12.0
, nQA = QARK version 4.0.0 , nSL = ShiftLeft version 2.1.1, nGCS = GitHub Code Security CI/CD Apr
2024, nLGTM = GitHub Code Scan v2.12.6 with LGTM Ruleset.
*Certain seemingly-unrealistic flaws may be seen in/outside a crypto-detector’s “scope”, depending on the
perspective; see Discussion for a broader treatment of this caveat.



Chapter 5

Identifying the Gaps in the

Practice of SASTs

Software security has gained continued international attention in recent years due to the

increase of high-profile cyberattacks and exploits across the public sector. For example,

incidents such as the SolarWinds Cyberattack prompted the U.S. Government Account-

ability Office to elicit responses from both private and public sectors in 2021 to increase

the effectiveness of security practices [223]. Consequently, corporate and government en-

tities alike are now increasingly emphasizing the security of software and services through

a combination of (1) new approaches (e.g., Software Bill of Materials (SBOM) [285]),

(2) adoption of security focused certifications of software (e.g., Cyber Shield Act [286],

IoT Compliance [161]), and (3) improvement of existing approaches (e.g., identifying and

employing recommended types of automated software security testing [147]). As a re-

sult, the existing multi-billion dollar industry of automated security analysis tools [157],

particularly Static Application Security Testing (SAST), have continued to proliferate to

meet the increased security needs of organizations worldwide. Further, such tools are now

being incorporated into nearly every stage of the software development and maintenance

lifecycle, from requirements engineering to fault localization and fixing (e.g., the GitHub

Code Scan initiative [2]).

117
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However, SAST tools have been found to suffer from design and implementation

flaws [19, 21] that prevent them from detecting vulnerabilities that they claim to detect,

or which can be expected for certain critical use cases they support (e.g., compliance,

audits). Particularly, while SAST tools from industry, the open-source community, and

academia have been found to support similar use cases, their design goals often differ

dramatically [19]. That is, tools may adopt a technique-centric approach, wherein what

they can detect is tied to the limitations of a set of chosen static analysis techniques,

or, a security-centric approach, wherein the tool aims to use whichever static analysis

techniques necessary to detect vulnerabilities falling under a specific security goal. These

different design ethos carry with them various trade-offs that impact the applicability,

efficiency, and effectiveness of the security tools. These trade-offs and their implications

for cybersecurity in practice are currently poorly understood, at best.

In other words, we are increasingly heading towards a future where software developers

will be depending more than ever on security focused program-analysis techniques for

security assurance, compliance, and audits. While we know of potential flaws in SASTs (as

discussed previously), there exists a key gap in prior research: the research community has

only a limited understanding of how software developers perceive SASTs, what they expect

from SASTs and believe in (particularly in terms of their ability to detect vulnerabilities),

and how these perceptions and beliefs impact the adoption and use of SASTs in practice.

Without addressing this gap through an understanding of the practitioners’ perspective,

we may not be able to develop SASTs that are truly effective in practice, i.e., possess key

properties that practitioners desire in order to improve software security, and moreover,

will be unable to uncover gaps in what the practitioners (i.e., users of the tools) expect

or believe, versus what the tools actually provide, leading to a false sense of security.

Contributions: This chapter describes a qualitative study that investigates the assump-

tions, expectations, beliefs, and challenges experienced by practitioners who use program-

analysis based security-assurance tools, specifically SASTs. Our study is guided by 3 key
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research questions (RQ1 – RQ3), which we explore via in-depth interviews (n = 20) with

software developers, project managers, research engineers and practitioners, who together

cover a broad range of security, product, and business contexts:

RQ1: How do practitioners at organizations, with different types of business and secu-

rity needs, choose and depend on SASTs for ensuring security in their services/products?

Various factors may influence an organization’s process for selecting a SAST tool, ranging

from security or business needs (e.g., compliance), brand reputation, or inclusion of safety-

critical components. Thus, we are interested in exploring what individual practitioners

and their organizations care about in terms of security, and how those needs affect the

selection of SASTs, as well as their incorporation into their overall vulnerability detection

processes. We also seek to explore how SASTs are selected, i.e., the subjective or objective

processes involved in choosing a particular SAST.

RQ2: What do practitioners know and believe about the limitations of SASTs, and what

do they expect from them? While certain limitations, such as false positives, are relatively

well-known, potential issues related to design and/or implementation flaws that result

in security-specific false negatives are often unknown and unaccounted for in SASTs.

We are interested to understand the awareness, expectations, and beliefs of practitioners

about such limitations, both known and unknown, of SASTs, particularly in terms of false

positives and negatives.

RQ3: How do practitioners navigate, address, or work around flaws of SASTs? A SAST

that does not detect vulnerabilities may lead to vulnerabilities in otherwise security-

assured software. We are interested in learning about practitioners’ experiences regarding

the impact of the flaws in SASTs (e.g., product-related security incidents). Furthermore,

we are interested to know how practitioners balance the possibility of unsound SASTs that

may make their product vulnerable, and the decision to release potentially vulnerable soft-

ware. Moreover, if practitioners do happen to find a flaw in a SAST, we seek to uncover

their experiences in reporting the issues to the SASTs. Finally, we seek to investigate the

typical pain points that practitioners experience regarding SASTs, in order to understand
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the key properties they desire more than anything else.

5.1 Methodology

To understand the potentially diverse perspectives of practitioners related to SASTs, we

performed a two-phase study, composed of a survey, followed by in-depth, detailed inter-

views. The purpose of the survey was to develop an initial understanding of the landscape,

and more importantly, to guide the design of the interview protocol. Therefore, this sec-

tion (and the rest of the chapter) focuses on the interviews and their qualitative analysis.

Moreover, the artifacts associated with the survey and the interview, including the in-

formed consent forms, survey questionnaires, and the interview guide, are available in our

online appendix [228].

We now provide a brief summary of the survey protocol and results, which are fur-

ther detailed in Appendix A.5 and Appendix A.6 respectively. The interview protocol is

described in Section 5.1.2.

5.1.1 Summary of the Survey Protocol and Results

To understand how practitioners perceive and use SASTs and security tools more broadly,

and how security is prioritized by individuals and organizations, we prepared an online

survey questionnaire (the questionnaire is in the online appendix [228]) consisting of Likert-

based questions, with optional open-ended responses to clarify their selected choice(s). The

survey protocol was approved by the Institutional Review Boards (IRBs) at the authors’

universities.

We used two recruitment channels. First, we relied on snowball sampling [135] from

our professional networks primarily by sending invitation emails and requesting forwards

to colleagues. Second, we emailed OSS developers who had interacted with SASTs via

CI/CD actions, e.g., GitHub Workflows, in open-source repositories that (a) had at

least one star or watcher, (b) were not a fork, and (c) used one of the top ten pro-



5.1. METHODOLOGY 121

gramming languages reported in GitHub Octoverse [5]. We developed scripts that used

GitHub Search APIs and crawled public repositories in Coverity Scan [1] to find quali-

fying repositories. Next, we extracted email addresses from commits specific to CI/CD

files (e.g.,.github/workflows/*.yml) that contained SAST names. Finally, we excluded

any Github-assigned private emails and those that indicated no-reply. In the end, we con-

tacted 1, 918 OSS developers exactly once via email. We discuss the ethical considerations

in recruiting OSS developers in Appendix A.5.1.

Survey Results Overview: We received 89 responses from the survey, of which 39

(18/39 responses from OSS developers) were complete and valid. Of these, 35/39 worked

for organizations, whereas 2 were freelancers, and 2 chose not to indicate organizational

status. We made several observations that guided the design of our interview protocol

based on these valid responses. First, over 83% (29/35) participants (from organizations)

stated that security was of “extreme” importance to them, with an additional 17% (6/35)

stating it as “very” important. In contrast, 63% (22/35) participants identified security

as of “extreme” importance from their organization’s perspective, with several (8/35 or

23%) considering it “very” important. This tells us that security may be prioritized

differently by the organization and the individual, and more importantly, that individuals

may be willing to talk about these differences, which is critical for our interviews. Second,

participants mostly relied on a combination of automated and manual security analyses,

with some exceptions. Finally, almost all practitioners expressed that even in the case of

flaws of SASTs, their applications would be moderately impacted at most, as they rely on

multiple tools and/or manual reviews. These observations guided our protocol design for

the interview phase, which we describe next.

5.1.2 Interview Protocol

We drafted an interview protocol consisting of a semi-structured interview-guide [11, 149]

structured by “laddering” questions [74], a questioning strategy that is used to understand
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the relations between concepts in a domain and to explore the concepts in-depth. The

interview guide is designed to help understand the processes used to choose SASTs, how

practitioners depend on SASTs for security assurance, their expectations about limita-

tions of SASTs, and how they work around such limitations. An abridged version of the

interview guide is in Table A.7 in the Appendix.

5.1.2.1 Interview Recruitment

We recruited 20 interview participants through multiple recruitment channels, aiming for

diversity in project, cultural background, experience and industry contexts. Particularly,

we recruited (i) 10 participants from the survey and (ii) 10 separately through our pro-

fessional network. When recruiting from the survey-pool, we only invited participants

who submitted reasonably valid responses and expressed interest in interview participa-

tion. To recruit from our professional networks, we relied on snowball sampling [135], i.e.,

emailed invitations to software engineers within our network, with details of the study as

per protocol, and requested them to forward the invitation to colleagues experienced with

SASTs.

Overall, we recruited 20 interview participants with diverse cultural background (e.g.,

participants were from Asia, Europe, United Kingdom and North America, working in

either local or international projects), industry contexts (e.g., safety-critical, business-

critical, research & development, open-source etc.), experience ranging from entry level

engineers to project managers, and security-context (e.g., working towards compliance).

The anonymized details of participants are shown in Table 5.1.

5.1.2.2 Interview Protocol and Ethics

Similar to the survey, the final version of our interview guide and protocol was approved by

our Institutional Review Boards (IRBs). Our consent form emphasized that no personally

identifiable information would be collected, and responses will be anonymized even in the

case of willfully shared private information, such as a participant’s (or colleagues) name,
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associated previous or current organization, and product/client name(s). Each participant

would be interviewed for approximately an hour, and would receive a $50.00 gift card or

voucher in local currency.

Furthermore, as our interview-guide contained sensitive questions e.g., security en-

hancement vs meeting deadlines, or site-incidents due to flawed SAST, we followed the

Menlo Report Guidelines [170, 88] to refine our protocol and interview guide to avoid any

potential harm, and reminded participants that they could withdraw/redact at any time,

as further detailed in Section 5.1.2.4.

5.1.2.3 Interview Pilot & Refinement

We conducted pilot interviews, followed by an in-depth discussion, with three participants

within our professional network to improve the interview guide. Among these, one held a

doctoral degree in computer science, with a focus in CyberSecurity, while the other two

were pursuing a Ph.D. in Computer Science.

5.1.2.4 Interviewing Procedure

We conducted the interviews using either the lead-interviewer or lead-and-backup ap-

proaches, while following the semi-structured interview-guide. The lead-and-backup ap-

proach ensured that each interviewer experienced conducting the interview with the guide.

While relevant questions from the guide were raised, it also allowed the lead interviewer

to focus on listening and asking laddering/follow-up questions to the interviewee. All the

interviews were conducted virtually via Zoom. We emailed the Informed Consent Form

(and survey response when applicable) with IRB protocol references a day before the in-

terview. After the participant joined us in the online interview session, we reminded the

participant before starting the interview that (a) the interview will be recorded, (b) we

will anonymize any sensitive information while transcribing, (c) recorded audio will be

destroyed after transcribing, (d) they can redact anything they said at any point of the

interview and/or can email us about it, and (e) they have the option to stop the interview
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at any point. The median, effective duration of the interviews, i.e., excluding the intro,

briefing and verbal consent, was 1 hour 52 seconds.

5.1.3 Structure of the Interview Guide

We designed the semi-structured interview guide in a way that facilitates understanding

how practitioners at organizations choose and depend on SASTs with the context of their

business and security needs (RQ1), what practitioners with different needs and priorities

know and assume about limitations, such as soundness issues, in SASTs (RQ2), how they

address the limitations of SASTs (RQ3). As shown in Figure 5.1, the interview guide

consists of questions arranged in six segments, ordered by increasing-depth as applicable.

5.1.3.1 Participants, Projects, and Organizations

At the start of the interview, we asked several “warm-up questions” to understand the

products/services the participants contribute to, their organization, their experience with

developer tools for software security and how they define security in terms of their work.

Through these questions we developed the initial context to ask more in-depth follow-up

questions. More specifically, we asked the participants about their domain of work, their

target clients, how they learned about software security that’s relevant to their work, the

security aspects that are important in their work, as well as the relevant threat models

they consider.

5.1.3.2 Organization and Security

Next, to gain a deeper understanding of the organizational context of security in their

practice, we asked the participants about how they address security in their organizations

product development life-cycle. For example, we asked whether there are conflicts between

feature deadlines and the security of a given feature, what the conflict resolution process

is in general, and whether they have experienced any external factors that constrained
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Challenges and Improvements
Understand the challenges participants experience while using SAST through 
hypothetical scenarios and their suggestions to improve the status quo

Impact of unsound SAST
Explore previous vulnerability experiences caused by flaws of SAST, relevant 
policies such as vulnerability disclosure procedure, and addressing flaws of SAST

Limitations of and Expectations about SAST
Learn whether participants are aware of the limitations, such as FP and FN of SAST, 
their preferences, and expectations from SAST for building secure software 

Organizational Context of SAST
Understand how SASTs are used in the development, how they were selected, and 
how much they depend on the SASTs

Security and Organization
Identify how security is assured in products, the priority of security at organization 
and experienced external factors constraining security

Participants, Projects, and Organizations
Understand Organization, Product, Client, and Security contexts of Participant

Introduction
Details about the purpose of this Study, Participant Rights, and Verbal Consent to 
Record the interview

Conclusion
Additional remarks and Follow-up to improve the overall state of SAST for Security 
Assurance

Figure 5.1: Overview of Semi-structured Interview Guide. We used Laddering technique
to delve deeper in each topic, while the semi-structured approach helped us to freely
deviate as necessary based on participant response.
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security. By raising such questions, we developed a better understanding of the trade-offs

an organization makes when it comes to security.

5.1.3.3 Organizational Context of SAST

We then asked questions about how one or more SASTs are being used in organizational

and team contexts. From the survey, we observed that organizations and their developers

may have different priorities and perceptions when it comes to security, which motivated us

to distinguish between these two contexts. To elaborate, we asked the participants about

their team structure, whether the team(s) address security requirements collaboratively or

separately and how, and what happens when such requirements are not met. Moreover,

to understand the role of SASTs in the organization and team, we asked questions to

understand how they decided to use SASTs in the first place, how they selected SASTs,

and to explain why and to what degree they rely on SASTs.

5.1.3.4 Expectations from SAST

We asked questions related to participant’s expectations from SASTs and their limitations,

using both hypothetical scenarios and also leveraging opinions the participant expressed

throughout the interview. For example, we asked about preferences regarding false pos-

itives vs. false negatives, explaining the concepts as necessary. Furthermore we asked

whether their preference of SASTs is tied to their work, values shared within the commu-

nity, or something else.

5.1.3.5 Impact of Unsound/Flawed SAST

To understand the impact of a flawed/unsound SAST, we asked the participants about

their experiences and organizational processes. For example, we requested that partici-

pants share specific experiences related to security vulnerabilities resulting from a SAST

that did not work as intended. If that participant did not have such experiences, we asked

whether a process exists that helps them address such potential flaws. In addition, we
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asked how and why the participants generally attempt to address problems encountered

while using SASTs.

5.1.3.6 Challenges and Improvements

Finally, we concluded the interview by raising several “creative” questions. For example,

if a participant is given unlimited resources to solve one particular problem of the SAST

they use, what problem would they prioritize before anything else, and why would they

want to solve it. By raising such open-ended questions that remove limitations tied to

organization and product-context, we aimed to understand what participants want or need

in the SASTs they use.

5.1.4 Transcribing, Coding and Analysis

One of the authors systematically transcribed the audio records while anonymizing the

text. This required significant amount of time as the median, effective interview dura-

tion was one hour, consisting of approximately 9, 000 words, with a total word count of

over 187, 000 words across all interviews. We chose reflexive thematic analysis combined

with inductive coding for our analytical approach [56] as it offered us the flexibility of

capturing both latent and semantic meaning based on the complex interactions between

the participant’s perceptions and contexts, such as assurances offered by automated se-

curity analysis techniques, organizational priorities, limitations of security resources, and

the nature of products. Furthermore, it considers researcher subjectivity, i.e., experiences

and skills of researchers in analysis. We chose a single-coder approach, which is consid-

ered “good practice for reflexive TA”, as it helps interpretation, or “meaning-making”,

from data [56]. While transcribing provides an initial idea about the data and internal

patterns, we had to iterate through the steps of thematic analysis (familiarization, coding,

identifying potential themes, refining) to finalize the themes.
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Table 5.1: Overview of interviewed participants, position(s), product area(s), security
priority from the perspectives of participants and project metadata. Fine-level details are
binned to ensure the anonymity of the participants.

ID Time1 Chl2 Role(s)3 Product Area4 Security Priority

Org5 Dev6 Prod7

Interview Participants Recruited from Survey

P01 01:00:12 OSS Senior Engineer Program Analysis for Security ✓ ✓ ✓

P02 01:04:08 OSS Developer OSS - Java Application Server ✓ ✓ ✓

P03 00:51:04 OSS Developer OSS - Internet Anonymity Network ✓ ✓ ✓

P04 01:00:44 OSS Embedded Engineer Automobile Sensors ✓ ✓ ✓

P05 00:57:46 PN Developer Web Applications ✓ ✓ ✓

P06 00:53:53 PN Developer Software Service ✗ ✗ ✓

P07 01:04:23 PN Engineering Manager B2B, SaaS ✓ ✓ ✗

P08 00:55:03 PN Full stack Developer Media, Web and Back-end services ✓ ✓ ✓

P09 01:05:25 PN Senior Engineer Fintech, Business Critical ✓ ✓ ✓

P10 01:01:40 PN Developer Healthcare ✓ ✓ ✓

Interview Participants Recruited through Snowball Sampling from Professional Network

P11 01:01:48 SS Developer Website Backend of Program Analysis
for Security

✓ ✓ ✓

P12 01:13:48 SS Developer Finance of International Online Mar-
ketplace

✓ ✓ ✓

P13 00:51:14 SS Research Engineer Research Institute with Industry ties
(EU)

✓ ✗ ✗

P14 01:02:09 SS Principal Configuration &
Dev-Ops Engineer

Law Enforcement ✓ ✓ ✓

P15 01:00:57 SS Senior Developer Service Company ✓ ✓ ✗

P16 01:03:43 SS AI Developer, Project Man-
ager

AI Products ✓ ✗ ✗

P17 00:49:15 SS Entrepreneur Enterprise Resource Planning, Educa-
tion platform

✗ ✗ ✗

P18 00:50:53 SS Software Infrastructure En-
gineer

Fortune 500 Global R&D Center ✓ ✗ ✓

P19 01:05:13 SS Senior Software Engineer Software Solution Provider ✓ ✓ ✗

P20 00:36:14 SS Backend Senior Software En-
gineer

Telematics ✓ ✓ ✓

1Effective duration, i.e., timed after introduction, briefing and verbal consent for starting to record the interview, 2Recruitment
channel; OSS = Open Source Software developers, PN = Survey participants recruited from Professional Network, SS =
Snowball Sampling within Professional Network, 3Self-reported by the participants, multiple roles separated by commas,
4Product area binned, none of the interviewees work in small (e.g., 2-person) organizations, 5Invests in security in terms of
the security team, tools, infrastructure, and/or training for developers (✓), 6Participant explicitly expressed that developers
in organization are concerned about programmatic security, and/or is directly related with security tool development/setup
(✓) , 7Product is required to be compliant to privacy and/or security standards (e.g., HIPAA, GDPR, PCI DSS, OWASP) or
is critical in terms of safety (✓).
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5.2 Interview Results

This section describes the results from our interpretation and analysis of 20 semi-structured

interviews of practitioners, substantiated by transcribed quotes (omissions highlighted by

. . . and anonymization in <angle brackets>). Also, when quoting participants (except

when inline), we also include the product area, to provide further context behind the quote,

e.g., P20 Telematics.

5.2.1 Participants, Projects, and Organizations

We succeeded in recruiting participants involved with a diverse range of products or ser-

vices, such as web applications, anonymity networks, research software, safety-critical

embedded systems, business-critical financial tech systems, and more, as illustrated in

Table 5.1.

All the participants in our study work on multiple projects, with a number of them

working in multiple organizations. Further, all the participants work in team(s), although

the structure varies. For instance, P01 worked in a team that maintains an Interactive

Application Security Testing (IAST) product, but also used SASTs in their work. On the

other hand, P03 worked with a collection of people responsible for maintaining a popular

open source anonymity protocol (“It’s a community run project...no corporation in control

of any particular aspect of it”), and is responsible for configuring the SAST tools used by

their team.

In summary, and as seen in Table 5.1, the recruited participants possessed valuable,

diverse experience by working in different types of projects with varying levels of security

needs at their own, unique organizations. This positioned us to further understand how

productivity, in terms of feature implementation/completion, and security, in terms of

ensuring that features implementations are not vulnerable, are balanced at these diverse

organizations.
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5.2.2 Organization and Security

Unsurprisingly, all participants agreed that delivering secure software is important. How-

ever, we were also interested to learn about the prioritization of security in organizations.

Therefore, we queried participants about the potential tension within their organizations

related to prioritizing software security at the expense of features and vice versa. Given

that introducing and using SASTs in a development workflow requires nontrivial effort

from individuals and potential financial investment from an organization, we expected

most participants and organizations had a vested interest in prioritizing security. We

found that this expectation to generally hold true, with a few exceptions.

Prioritizing Security vs Functionality Deadlines: Most participants indicated a

prioritization of security over deadlines, e.g., as P08 states, “Security gets the highest

priority. Always.. . . Even if we are not meeting the deadline, we cannot break this.” We

found that various factors can be responsible for necessitating this prioritization, e.g., the

need to be compliant with existing laws and standards:

“We serve the government . . . we need to have some certifications that we are com-

plying . . . (If) we have a release tomorrow and the security team found a vulnerability

today, we have to block that release, and we have to fix it. Then we will release that.

. . .We cannot compromise that.” — P20 Telematics

It can also be due to safety-critical and/or business-critical nature of the product being

built, since a bug can be costly, both in terms of lives and financial measures:

“So our security and safety and usage of the static analysis tools is mostly to prevent

bugs, which could be life-threatening, of course, but also they could cost us millions”

— P04Automobile Sensors

For open-source collaborations, the concept of deadlines may not be applicable at all. As

P02 described, security is always of priority, and there is “No such thing as deadlines. It’s

ready when it’s ready”.
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Finding 1 (F1) – Participants generally said that they err on the side of security,

fixing any known vulnerabilities before releasing a feature, regardless of deadlines.

However, some participants expressed that prioritizing security is not always possible,

even when security is generally a high priority from the organization’s perspective. This

can be due to the management prioritizing bug-fixing for the sake of users, as shared by

P07,

“. . .Our user was facing a lot of issues. So, there was a deadline pressure on us to

deliver the product very quickly” — P07 B2B, SAAS

This is true even for a security-testing product, albeit rarely:

“So in most cases, we try to be really strict because it’s a security testing product

. . .Then it’s kind of a business trade off. . . . a new feature, we can usually just delay

it . . . If it’s an existing feature that we now uncover the vulnerability, you can’t usually

switch off the feature because you have customers relying on it.. . . Eventually you get

that fixed and then responsibly disclose it. . . . I think we had to do one of those in

the five years I’ve been with the company.” — P01Program Analysis for Security

The “overriding” of security to meet deadlines for existing features may incur heavy

cost, however. P07 expressed the following after further conversation, “That had a certain

impact. We found .3 to .4 million <currency> of fraudulent activity after that release”.

Finding 2 (F2) – Select situations can lead to the de-prioritization of software

security, including maintaining support for existing features, or fixing bugs that being

experienced by prominent users.

This finding echoes similar observations in prior work, that in some cases security

is forgone for functionality bugs or releasing other features [112, 233, 34, 301]. Further,

contrary to our initial intuition, P06 shared that an organization may not prioritize security

unless it is required by its clients.

“Security is a great concern . . . So if the client is strict enough to focus on the security

aspects, then we follow it. Other than that, actually our <previous org> do not



5.2. INTERVIEW RESULTS 132

care (about security) . . . ” — P06Software Service

Unsurprisingly, several participants shared that an organization may not afford to miss

functionality deadlines if it is still in startup or growth stage:

“When I worked on a startup environment, it is always expected that we ship the

features to production as soon as possible...There is a little room to explore the security

options . . . ” — P10 Healthcare

Finding 3 (F3) – Participants expressed that in certain circumstances, organizations

may entirely forego security considerations and prioritize releasing features as rapidly

as possible, particularly when the client does not care, or when the organization is in

its early growth stage.

5.2.3 Organizational Context of SAST

With the understanding of how security is viewed from a participant’s perspective in

the context of their organization, we aimed to understand their organizational context of

SASTs. Particularly, we asked participants about reasons for using SASTs, the selection

process of SASTs, and how they generally use those SASTs in their workflows. Although

participants named SASTs, e.g., Coverity, Find-Sec-Bugs, SonarQube, Semmle/CodeQL,

WhiteSource/Mend, CryptoGuard, Fortify, and VeraCode, we anonymize such details to

reduce the chance of profiling developers and to avoid creating any impressions specific to

any particular SAST.

Selecting SASTs: To start, we asked participants about the events that led to choosing

a given SAST and to walk us through the selection process at their organizations. Inter-

estingly, we did not find any pattern in the selection processes that would hold true for a

majority of the participants.

Particularly, only P04 shared that they performed a multi-stage evaluation, i.e., they

started with a preliminary list of 10− 15 SASTs, and filtered to four SASTs based on

their own product-specific needs. Next, they evaluated those four SASTs using a custom
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benchmark, and settled on a SAST that was the most usable.

Further, six practitioners shared that they chose SASTs solely based on popularity,

developer friendly documentation and/or ease of use.

“We didn’t evaluate that many tools in terms of static analysis tools. We take what

is the industry standard across different companies. Like <tool> is pretty popular,

so that is our first choice.” — P08Media, Web and Back-end services

P09 additionally mentioned that <SASTA> was chosen due to regulatory reasons, “I believe

it was either PCI DSS requirement or a regulatory requirement”, admitting that they do

not remember the exact standard. On the other hand, four participants reported using

previous experience or familiarity to select a SAST.

“Because I actually inherited some of that. The person who, actually set a lot of it

up ... I think that it was what was available and what he was familiar with at the

time.” — P03OSS - Internet Anonymity Network

Several developers justified that they prefer freely available SASTs because it helps cut

costs, e.g., P07 said “...As of now, we are looking at a free solution. If we find benefits,

then we’ll go for the paid solution ...”

Corporate influence is an additional factor for selecting a particular SAST, particularly

when it comes down to cost, e.g., as P14 said, “A lot of it comes down from management,

. . . because they’re the ones that are paying for it”. In a similar vein, P08 shared:

“We have different teams and different teams have different requirements. In my

team, we use <SASTA>, and it is enforced by the team leader or the team owner to

use <SASTA> as a code analysis tool.” — P08Media, Web and Back-end Services

Finding 4 (F4) – Participants generally recall selecting SASTs due to factors such

as recommendations/reputation, ease of use/integration, corporate pressure, cost, or

compliance requirements. Only one participant selected a SAST for their product via

exhaustive testing of 10-15 tools using a (custom) benchmark.

Furthermore, we asked participants about whether they considered using benchmarks,
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such as the OWASP benchmark while selecting SAST. Most participants said that they

were not familiar with any benchmarks, with the rest sharing that benchmarks are not rep-

resentative of their specific application context, e.g.,“The thing is, OWASP is something

that only covers your basics. It doesn’t go beyond” (P09). Furthermore, P01 shared that

while community-based benchmarks such as OWASP are usually neutral, many others are

biased.

“Quite a few of these benchmarks are created by tool vendors where their tool finds

some specific edge case. No one in the right mind would write an application like

this, but their tool finds a specific edge case, so they put it in the benchmark.” —

P01Program Analysis for Security

Finding 5 (F5) – Participants who are aware of benchmarks generally do not trust

them for evaluating/selecting SASTs, viewing benchmarks as either too basic to model

real problems, or biased towards specific SASTs, given that vendors often contribute

to their construction.

Preference between Manual Techniques and SAST: As expected, participants who

use SASTs stated that they found them useful, regardless of the selection process. Several

participants shared that they use SASTs because they help focus manual analysis efforts

on non-trivial issues by automatically finding the trivial issues, e.g.,“. . . helps find all the

stupid stuff for you. Then you can concentrate on the actual logic (P01)” and makes it

easier to analyze a large code base, e.g.,“Is it possible to go through each of the code change

by a human being? (P20)” and “I think they’re absolutely useful. It kind of reduces the

number of mistakes you can make” (P09). Furthermore, several shared that it is helpful

for applying a rigorous quality control to the whole code base without being affected by

subjective analysis, e.g.,

“Lot of reasons to be paranoid about it. None of us really, totally trust ourselves. And

so, we need to have these tools to make the job of finding our own mistakes easier.

If only one person is working on a thing, you’re stuck with only that person’s blind
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spots. ” — P03OSS - Internet Anonymity Network

Finding 6 (F6) – Participants consider SASTs highly useful for both reducing de-

veloper effort and helping to cover what subjective manual analysis may miss.

Reasons for not relying on SAST: Finally, we had two participants in our study who

do not rely on SASTs. P13 stated that while their product needs to be secure, it is not

public-facing, i.e.,“Even if there is a problem in some projects, so one can access those

deployed or the application from outside of our internet”. Interestingly, P02 shared that

while they have tried premium SASTs, they did not find them useful in their particular

application niche, i.e., web servers, stating that

“The primary issue with the <generic SAST> tools, every time we’ve looked at

these tools, is it’s all false positives and no genuine issues at all, which is some-

what demoralizing if you try to wade through large amounts of these reports. ” —

P02OSS - Java App Server

That is, as P02 further elaborated, since their product is a web server, it is required to

handle “vulnerable” requests, such as “HTTP” headers, in code based on existing stan-

dards. These code components, however, trigger SASTs built to target web-applications,

resulting in high false positives.

Finding 7 (F7) – The few participants who do not use SASTs cite the lack of a

“fit” for their product: i.e., as the product does not need extensive testing (echoing

similar observations in prior work [298]), or because generic SASTs flag features (e.g.,

handling standard-mandated vulnerable HTTP requests) as vulnerabilities.

5.2.4 Expectations from SAST

Developers shared that while they expect SAST tools to detect all vulnerabilities as long

as they are within scope, they generally do not expect SASTs to detect all types of security

vulnerabilities, e.g.,“If it is in the scope, then it can detect, but my expectation is not like

static analysis is the final solution...(P10)”. When asked whether this assertion was based
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on “belief” or “evidence”, P18 explained that it was “based on belief”, further explaining

that “We have the user ratings of our tools and there are many stars in the repos. So we

think that it is reliable, and many developers use that, so it must be good”.

Finding 8 (F8) – Although expressing that no tool can find everything, participants

believe that SASTs (should or do) detect all vulnerabilities considered within scope

(i.e., which a SAST tool claims to detect).

When

asked to give examples of vulnerabilities that developers do not expect SASTs to detect,

runtime (Input/Output), external component, and software goal based issues frequently

came up, e.g.,“These tools are pretty agnostic of the goals that we have put forward in the

first place. They can only really seem to process errors in code and not errors in software

taken as a whole (P03)”.

Interestingly, when we asked developers if they consider a SAST to be acceptable to

use even if it misses some more difficult issues, they generally expressed that they do,

e.g.,“I don’t expect that there will ever be a tool that will look at a piece of code as complex

as <product> and find all the security issues. . . . But any issue fixed is an issue fixed

and that’s a good thing” (P02). When asked to elaborate, participants shared different

reasons for finding such SASTs acceptable, such as lack of alternatives, “If there is no

other accessible alternative, then I would go and accept whatever it offers” (P10) and

additional techniques being used to cover for (issues in) SASTs e.g.,“. . . for our team, the

manual review part is actually the biggest deal for us. . . . So, for our team, I think that

should not be a big issue” (P07).

Finding 9 (F9) – Participants consider SASTs valuable even if they miss certain

vulnerabilities, as finding something would be better than nothing.

Reducing False Positives vs False Negatives: In the context of program analysis,

increasing analysis sensitivity decreases false negatives, while increasing false positives,

and vice versa. Contemporary literature asserts that false positives are a major reason for

practitioners to avoid using SASTs [167, 156] since “Developer Happiness is Key” [248],
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and argues that it is necessary to reduce false positives, in general. That is, conventional

wisdom dictates that developers want lower false positives even at the cost of false nega-

tives, which has led to a significant focus on increasing the precision of SASTs in academia

and industry in pursuit of practicality [243, 293, 31, 111, 173, 153, 30].

However, we found considerable evidence that contradicts this understanding of the

developers’ perspective on the soundness-precision tradeoff, with participants strongly

favoring lower false negatives, even at the cost of increased false positives. As P04 and

P06 state,

“False negative for sure. I just told you the amount of the price of the bug (in

millions), so I don’t care if there are 10 false positives. False negative - that one is

going to kill you.” — P04Automobile Sensors

“From my understanding it is actually more threatening that we aren’t even aware of

the vulnerability...So to me, false negative should be bigger concern...it (false pos-

itives) wastes time of developers, but it is not harmful in the whole picture” —

P06Software Service

P14 even argued that false positives indicate a working SAST, and when it comes to

security, no stone should be left unturned,

“If you’re getting a bunch of false positives, then that typically means your static

code analysis tool is doing its job. . . . I’d rather my security tool be annoying and tell

me about every single possible issue over it not telling me anything and just letting

security things slide through.” — P14Law Enforcement

Finding 10 (F10) – Nearly all the practitioners expressed a preference for fewer false

negatives, i.e., as long as the SAST is able to find valid security vulnerabilities, they

would tolerate and even prefer few false negatives at the cost of many false positives.

Since existing literature argues that false positive rate for program analysis should not

exceed 20% [167, 256, 67, 47], we requested our participants to approximately quantify
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their preference (or experience) regarding the acceptable proportion of false positives to

true positives. For most participants, this preference was far higher than 20% as long as

the tool detected some valid vulnerabilities (i.e., had true positives), as indicated in F10

as well. For instance, P02 admitted to dropping a tool in favor of manual analysis due to

overwhelming false positives without a single valid vulnerability:

“I wouldn’t mind wading through 100 false positives, if I thought there were actually

going to be genuine issues there” — P02OSS - Java App Server

Some participants expressed tolerance for 80% or more false positives, although not to

the extreme extent as P02.

“The acceptable range is for (reducing) one false negative, that there could be five

false positive” — P10Healthcare

Further, some, e.g., P09, stated that 80% false positives were common in a tool they

were currently using; although they were dismayed by the low number of serious, real

vulnerabilities found:

“(At present) 80% of them are actually false positives and 20% of them are actually

something we can fix. Even those 20, you don’t generally find serious problems.” —

P09Fintech

Finally, P01 expressed a lower tolerance for FPs than most other practitioners, stating

that

“We ended up with 20% real issues. 80% just false positives. And one of my last

actions in that company before leaving was saying, ‘Hey, look, this tool is a waste of

time’” — P01Program Analysis for Security

Finding 11 (F11) – Practitioners are generally more tolerant of false positives than

the 20% upper bound proposed in literature, given their preferences and the tools

they currently use, with some finding even 80% or more false positives practical.

Effective False Positives and SAST: Due to the perceived notoriety of false positives
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affecting adoption of general static analysis tools, the notion of effective false positives,

defined as “any report from the tool where a user chooses not to take action to resolve the

report” [249], or in other words - letting the developer determine whether any reported

defect is a false positive, is gaining attention. Effective false positives have further been

contextualized in SASTs in the form of letting a developer determine whether a reported

vulnerability should be considered as within the scope of security context [296]. However,

several participants cautioned that in their experience, developers may not make the right

call when it comes to identifying an effective false positive issue e.g., when an insecure

code segment is considered “inactive”.

P14 and P15 expressed something similar to “The Developer is the enemy” threat

model [299]. P15 argues that “Junior developers don’t understand what is the impact”,

and P14 states (on effective false positives): “From a security standpoint, you can’t really

trust, you shouldn’t trust other devs, and users to always know that something could be

potentially insecure. So you need to make sure that it’s not possible for it to happen or

reduce the possibility of it happening as much as possible (by removing insecure code)”.

Furthermore, P14 cautioned that developers may habitually mark an actual issue as false

positives erroneously,

“It seems familiar, but it may be new. And then you’re just going to ignore it because

it’s close enough to something you’ve seen in the past, and you just say that it’s OK.

So we do need to be vigilant on those false positives to make sure that they are truly

false positives” — P14Law Enforcement

P04 made a similar remark about making mistakes in deciding whether to run SAST or

not on code patches, sharing that they had a vulnerability that could’ve been detected

using static analysis, but was not due to the deliberate decision of not using SAST, costing

millions:

“The undisclosed amount is in a couple of millions. . . .We had two static analysis

tools which should be used, but the decision from the management was because it was
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a minor fix that they did not use them” — P04Automobile Sensors

Finding 12 (F12) – Practitioners are generally against letting developers define

“effective” false positives, or letting them decide when to run SASTs. This reservation

stems from their prior experience of the adverse cost of leaving a vulnerability in the

code, and/or from their knowledge of developers (1) lacking an understanding of the

impact of vulnerabilities, (2) being prone to incorrectly marking actual issues as false

positives, (3) being untrustworthy/biased towards marking issues as effective false

positives.

5.2.5 Impact of Unsound/Flawed SAST

After learning about what participants expect from SASTs, we aimed to understand if and

how participants were impacted by flaws in SASTs, i.e., their inability to detect what they

claim as “in scope”, how participants generally addressed the flaws, and their experiences

reporting the flaws to SASTs.

Impact of Unsound SAST: All developers across survey and interviews, save for a

few, shared that while they had experienced false negatives, they had not experienced

any adverse impact due to flaws/unsoundness in SASTs. The practitioners explained that

while false negatives are not observable since they are not reported by the SAST, they

expect manual/code reviews to detect vulnerabilities missed by SASTs. Therefore, as any

false negatives resulting from even unknown flaws in SASTs are addressed by their manual

reviews, unsound SASTs do not impact their software.

Finding 13 (F13) – Practitioners are not overly concerned about the impact of

unknown unsoundness issues in SASTs, as they expect subsequent manual reviews to

find what the SAST missed.

P18, who works with an internal static analysis team, offered an alternate explanation

as to why developers may overlook false negatives of SASTs, or their impact, because the

assumption is that SASTs just work

“If the tools miss something, we can not detect that issue, and we just overlook the
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issues. . . because no one ever reports about false negatives, and we don’t check if the

tool ever miss the vulnerabilities” — P18 Fortune 500 Global R&D Center

Finding 14 (F14) – Developers may use SASTs in a state of denial, i.e., assume that

SASTs just work, and hence, simply overlook any evidence of false negatives, or flaws

in the SASTs that lead to false negatives.

Among the exceptions, P02’s organization tried and stopped using SAST because of false

negatives, thus effectively negating any potential impact, as previously described in 5.2.4.

On the other hand, P01 shared that while their own SAST product unintentionally intro-

duced a vulnerability, which could’ve impacted their clients, “never public, no customer

ever suffered”, as it was detected during development.

Addressing/Reporting flaws to SASTs: Participants expressed that security is im-

portant, but shared challenges associated with reporting flaws to SASTs.

Generally, flaw reports consist of either a minimal code example that demonstrates

the flaw, or actual code snippet from software. However, P04 and P09 shared that going

for either is problematic for two very different reasons. First, sharing actual code snippet

may require going against company or client’s confidentiality policy. P04 circumvents this

because of a pre-existing NDA between their organization and the SAST, “we have an

NDA signed, so in case I cannot get a small example, they can also check our source code”,

whereas P09 is unable to do so.

“For certain external communications, it’s a little bit difficult to do. What we can

share with third party or other party is very strictly regulated by the state bank. . . . If

we want something from <tool>, we have to justify why we are sharing this particular

code snippet. In particular, I think if you don’t share a large amount of code with

them, they won’t even be able to tell why this is problematic” — P09Fintech

On the other hand, several participants stated that sometimes, developers are not willing

to report flaws since it is “additional work” (i.e., reporting the flaw, following up):

“We were asked to not do things on our own, because they will maybe increase more
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pressure . . . I would actually report it to my team lead, but I don’t think they would

actually report it to back to them” — P05Web Applications

“That might not happen as well because inherently developers are lazy. If you want to

share this, you have to go through with certain things” — P11Website Backend of Program Analysis for Security

“That might not happen as well because inherently developers are lazy. If you want to

share this, you have to go through with certain things” — P11Website Backend of Program Analysis for Security

Finally, some participants shared that while they have reported flaws to SASTs, the

lack of response, or lack of addressing flaws discouraged them from reporting flaws later

on. P02 said, “Nothing as far as I recall” when asked about whether anything happened

after reporting false negatives to SAST, whereas P04 said that some SAST developers

might be unwilling to accept a flaw as an issue.

“So, <SASTA>, we have a worse experience. They are mostly evasive, so they are

not really progressing as <SASTB>. It takes a lot of time to convince them that they

are bugs. Even though you have a small example, they still ask you to try different

configurations and all that stuff, but we were aware of that before we came to this

part, before we selected them. Because simply they (<SASTA>> are, I wouldn’t say

confident, but they are confident that their solution works.” — P04Automobile Sensors

Finding 15 (F15) – Participants may hesitate to report flaws/false negatives in

SASTs for several reasons, ranging from prior negative experiences with SASTs (in-

cluding inaction on reported flaws), or issues internal to the organization, such as the

need to maintain product confidentiality (without an explicit NDA), red tape, and

the lack of incentive to perform the additional effort.

P01 shared some insight to decisions related to fixing flaws in SAST, sharing that while

severity and likeliness (“correlates to presence in open source libraries”) are motivating

factors, so is what the business-competitors are detecting. To understand this in-depth,

we presented a hypothetical scenario to P01 where a class of vulnerability is ignored by

the rest of the SAST building industry and asked how is it decided whether to address it
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in their SAST. P01’s response was “It depends on the effort and depends on how critical

it is”.

Exploiting Flaws and Evasive Developers: We adopted the concept of evasive de-

velopers from [19, 299], defined as a developer who actively attempts to bypass a SAST’s

checks. The motives vary, such as malice, lack of stake (third-party contractor), and/or

simply being lazy. A majority of the participants stated that while they consider evasive

developers realistic, such developers are unlikely to cause serious harm in their organiza-

tional context due to several factors, such as company policies e.g.,“It is strictly prohibited,

and it is communicated in that way that it is not acceptable to bypass those checks (P08)”,

and manual code reviews.

“The process that we have is designed that, first, it needs to pass the review of the

initial reviewer which allows it to get it on the main branch. So if we, put another

hurdle here and we say that there are two friends which decide that this is okay, it

still needs to come through the third guy who is gonna test, the test will kill. So

that’s already three guys that would need to accept the issue in the whole team.” —

P04Automobile Sensors

On the other hand, some participants shared that they have observed their colleagues

being evasive, or they themselves attempted to be evasive due to stressed work environ-

ment.

“We had six people and one would actually do something like that.” — P05Web Applications

“There was an extreme pressure because we needed to bypass the SAST tests, other-

wise we would not receive green flag from the security team. So it actually happened once.

We used to work late night to resolve all those conflicts and red flags.” — P06Software Service

In contrast, P01 expressed that in an organization a developer being evasive is unlikely due

to ownership at their organization, “I want to believe that our developers are responsible

. . . I don’t believe anyone will try to game our system like that”.
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Finding 16 (F16) – The risk of evasive developers is real. That is, while some

participants consider the scenario of “evasive developers” as adequately prevented by

existing code reviews, this optimism is not universal: others have prior experience of

evasive developers in their teams, or have evaded SASTs themselves.

5.2.6 Challenges and Improvements

Finally, we wanted to learn about the pain-points of participants related to SASTs. Our

approach was to present hypothetical (but ideal) scenarios, such as unlimited resources to

fix or address just one issue of SAST, with the goal of getting the participants to focus on

the most severe SAST-specific issues in their perspective.

A few participants wanted to invest their resources on improving analysis techniques,

both for reducing false negatives e.g.,“I guess the first thing would be I would try to make

it so that we’re covering all of the most obvious” (P14), and providing meaningful alert

messages e.g.,

“So the static analysis tool should be able to detect all the security issues within its

scope and within possibilities. It should show meaningful messages . . . it should expose

enough information about the issue so that the respective developer can address the

issue easily” — P10 Healthcare

Alternately, P02 (who was generally unimpressed by SASTs throughout the study) wanted

unlimited human resources for manual analysis:

“If I’ve got unlimited time and resources, then some poor, unfortunate soul is going

. . . going to have to go through all of the false positives in SAST and just confirm

that they are actually false positives because there’s just so many of them. . . . If those

unlimited resources included some experienced security researchers, I get them doing

some manual analysis. Because to be perfectly honest, the best vulnerability reports

we get, which generally tends to be the more serious issues, they’re not found by tools,

they’re found by people” — P02OSS - Server
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Several participants focused on SAST CI/CD integration issues explaining that often

configuration is a major pain-point for them e.g.,“I would definitely say integrations would

be the top. . . . I think the best example would just be for all major CI/CDs to have an open

source example of how to implement and integrate with various things.”. Other responses

covered niches, such as better language-specific support, concurrency and abstraction

support.

Finally, participants generally agreed that actionable reports that explain what can be

done to address an issue, or provide more context, would be useful e.g.,“if you write this

code like this, this issue should be resolved” (P12), and “An explanation of why the tool

flagged that particular code is very helpful. It saves us having to second guess on why is

the tool reporting that” (P02).

Finding 17 (F17) – The key pain points for developers when it comes to SAST

tools include: false negatives, lack of meaningful alert messages/reports, and config-

uration/integration into product CI/CD pipelines.

5.3 Threats to Validity

This study seeks to understand the diverse perspectives of practitioners with different

types of business and security needs, and is affected by the following threats to validity:

Internal Validity: Practitioners with different experiences and roles at organizations

may provide responses influenced by over/under-reporting, self-censorship, recall, and

sampling bias. We mitigated these factors by asking participants to share organization-

specific incidents and experiences, with follow-up questions to understand their con-

text, and reassuring that the responses would remain anonymous and untraceable (Sec-

tion 5.1.3). Moreover, some participants may have experienced loss of agency in selecting

SASTs (e.g., P08, F4). However, all our participants have played key roles in selecting or

using SASTs in their organizations (see Section 5.2.3), leading to useful experiences and

observations that reveal meaningful patterns in SAST selection.



5.4. DISCUSSION 146

External Validity: Due to the nature of interview-based qualitative research focusing on

a specific experience (here: with SAST), generalizability is considered an issue for recruit-

ment through snowball/convenience sampling. Findings from such studies are considered

“softly generalisable” [56]. Prior research demonstrates that such studies are reliable for

identifying salient trends [36, 90]; indeed, given the diverse organizational and product

contexts of our participants, their responses provide key insight into how SASTs are used

in practice in complex organizations.

In other words, given the number of our participants (n=20), and the recruitment

process, we do not claim that the participants are representative of the broader developer

population, or that the findings are generalizable. That said, this study captures and

analyzes the experiences of participants from diverse organizational and security contexts

and offers salient insights related to the use of SASTs in practice.

5.4 Discussion

The findings from our study reveal salient aspects of how developers use SASTs, what

they expect from them, and how they react when SASTs do not fulfill those expectations.

We now distill the findings into four themes related to the problems inherent in the use

and perceptions of SASTs as well as a path forward for researchers and practitioners.

5.4.1 Mind the Gap: The Dichotomy of Perceived Developer Needs and

SAST Selection/Evaluation

A common sentiment observed throughout this study is that practitioners do care about

and prioritize security. To elaborate, practitioners stated that they would generally fix

vulnerabilities regardless of release deadlines (F1), except in certain mitigating circum-

stances (F2, F3), and use SASTs to cover the blind spots and subjectivity pertinent to

manual code analysis (F6). Moreover, nearly all practitioners favored lower false negatives

(i.e., not “letting security things slide through”) (F10), expressing a surprising tolerance

for false positives as long as SASTs found vulnerabilities (F11).
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However, we found that this strong preference for security, and particularly SASTs that

find real vulnerabilities, is not reflected in how practitioners select SASTs. To elaborate,

practitioners select SASTs based on cost, corporate pressure, ease of integration/use, and

particularly, recommendations from peers and general reputation of the tool (F5). This

generally ad-hoc and subjective criteria does not provide objective evidence of a SAST’s

performance in detecting vulnerabilities. Hence, there is a clear gap between the criteria

that practitioners use for selecting SASTs, and what they want most from SASTs (evidence

of real vulnerability detection abilities).

5.4.2 The Power of Reputation and the Lack of Reliable Objective Cri-

teria

The key question is, why does this gap exist? That is, why don’t practitioners evaluate the

security properties of SASTs? Our findings point to two key reasons:

First, we find that practitioners may not have any motivation to evaluate SASTs.

That is, practitioners seem to be unreasonably optimistic about the SASTs’ abilities,

assuming that SASTs must detect everything they claim to (i.e., define as within scope)

(F8), and assume that SASTs “just work” (F14). This optimism, coupled with their

reliance on reputation as a valid metric for selecting SASTs (F4), may be sufficient to

dissuade practitioners from any additional effort required to evaluate SASTs. Thus, the

observed lack of motivation to evaluate SASTs is concerning, particularly as the blind

belief practitioners express in SASTs and their reputation does not hold up to scrutiny:

e.g., a recent evaluation of reputed crypto-API vulnerability detectors showed serious,

previously unknown flaws, which prevent the detectors from finding vulnerabilities they

consider “in scope” [19].

Second, even when practitioners want to evaluate SASTs, the existing means to do so,

i.e., benchmarks, are perceived as insufficient. As we found, while some practitioners may

be unaware of benchmarks for evaluating SASTs, most are not. In fact, most practitioners

do not trust existing benchmarks, viewing them as either too basic (and not representative
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of real, complex, vulnerabilities), or biased (F5). These findings indicate a significant

gap in the research on evaluating SASTs, and motivate the development of high-quality,

comprehensive, real-world benchmarks vetted by both researchers and practitioners, if we

intend to help practitioners objectively evaluate SASTs for what they most desire: the

ability to detect vulnerabilities.

5.4.3 Giving Developers What They Want

We observe that practitioners repeatedly expressed that they want two things from SASTs:

ease of configuration (F4, F17), and for tools to detect real vulnerabilities (F8).

Fortunately, the ease of configuration is being addressed by the recent, additional sup-

port for SASTs through integration into CI/CD pipelines of open source projects, such as

via Github Actions [3, 2], as well as standardized output formats, such as SARIF [216].

However, the latter is harder to achieve at present. That is, while our practitioners re-

peatedly expressed that they want SASTs to be first and foremost able to find critical

vulnerabilities (and all those considered within scope, F8), even at the cost of higher

number of false positives (F10, F11), the research community continues to show prefer-

ence towards improving precision instead, i.e., decreasing false positives, for SAST tools

throughout the last decade [293, 31, 153, 243, 47, 256, 248]. Thus, for SASTs to actually

be useful, the research and industry communities need to refocus their efforts towards find-

ing critical vulnerabilities (and all that is deemed within scope), with improved precision

being an additional, desired, property.

5.4.4 Industry is not prepared for the flaws of SASTs

Our findings expose a critical paradox in the assumptions industry practitioners make

about their approach towards SASTs: While practitioners do expect SASTs to detect all

vulnerabilities within scope (F8), they are not overly concerned with SASTs missing such

vulnerabilities due to undocumented flaws, because their subsequent manual analysis to

find what the SASTs missed (F13). However, practitioners also emphasized that their key

reason for using SASTs is to account for knowledge gaps, blind spots, and subjectivity
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inherent in manual analysis (F6, F12). To summarize the paradox, practitioners use

SASTs to account for gaps in manual analysis, but then, in turn, are confident that

manual analysis will account for (unknown) SAST flaws.

This paradox suggests several undesirable aspects of the status quo. First, that devel-

opers may be overly confident in guarantees offered by their process of combining SASTs

(or other tools) and manual analysis, or may simply take the reports of SASTs at face

value (F14), which may result in undetected vulnerabilities in code that are missed by both

SASTs and manual analysis; e.g., previous work has shown that the same undocumented

flaws can manifest in any number of SASTs, and lead to vulnerabilities in programs ana-

lyzed by the SASTs [19, 21]. Second, given that practitioners generally hesitate to report

flaws in SASTs (F15), the flaws in a SAST would persist and harm most software using the

SAST, even if a few practitioners do uncover false negatives/flaws during manual analysis.

That is, if the status quo observed in this study continues, SASTs will likely never improve

in their ability to detect vulnerabilities, but instead, will continue to be used in a manner

that inspires a false sense of security among practitioners.

To summarize, we conclude that the industry is ill-equipped to find or address any

flaws in SASTs, particularly given the state of current reporting processes that are mired

in confidentiality issues, an evasive attitude, and lack of response from SASTs (F15).

Thus, practitioners are stuck with repurposing common issue submission processes that

does not cater to their confidentiality needs, does not elicit a response, and does not

facilitate discussion.

5.4.5 Moving Forward: New Directions and Ideas

To improve this status quo, researchers and practitioners need to establish a dedicated pro-

cess for reporting false negatives, as well as expectations from SASTs upon receiving such

reports, in a manner similar to bug reporting expectations for typical software products.

This might involve the development of automated methods for creating minimal examples

of vulnerabilities missed by SASTs or even “self-healing” SASTs that leverage advance-
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ments in automated program repair to address missed vulnerabilities. Moreover, future

work may also explore streamlining the automated evaluation of SASTs (e.g., developing

web-based services that allow practitioners to “test” SASTs with realistic vulnerabilities),

so that developers may be able to evaluate SASTs before using them, instead of lever-

aging subjective criteria for the same. Beyond evaluation techniques, researchers should

also consider orienting future work on SAST development toward the high preference of

practitioners in finding important/critical vulnerabilities, even at the expense of a high

number of false positives.

To summarize, only by raising awareness about the flaws in SASTs, aligning their goals

with the goals of developers, designing protocols for evaluating them, and streamlining

bug reporting, particularly for false negatives, can we move towards a more desired state

where practitioners are able to leverage SASTs to their true potential, resulting in a holistic

reduction in hard-to-find vulnerabilities.

5.5 Chapter Summary

This chapter provides a comprehensive understanding of how practitioners with diverse

business and security needs choose SASTs, and their perspectives and assumptions about

limitations of SASTs. By qualitatively analyzing the responses from 20 in-depth inter-

views, we uncover 17 key findings that demonstrate that contrary to existing literature,

practitioners have a higher level of tolerance for false positives, and prioritize avoiding

false negatives. Moreover, we find that practitioners, regardless of their strong preference

for security, rely on reputation to choose SASTs, as they do not trust benchmarks or find

them reliable. Finally, practitioners may be overconfident in assuming their ability to ad-

dress a SAST’s flaw with manual analysis, and are generally hesitant to report such flaws.

We conclude with research directions towards automated evaluation of SASTs, aligning

SASTs with what developers desire, and creating dedicated protocols for reporting flaws

in SASTs.



Chapter 6

Identifying the Factors in the

Lifecycle of Bugs in vulnerability

detectors

Software security continues to gain attention from academia, the private, and public

sectors alike. This is due to recent string of cyber attacks that are affecting private

homes [151, 258], safety-critical systems such as healthcare with near fatal incidents [215],

and the SolarWinds cyberattack [107]. As a result, fortifying the security of software and

services that we use today through our mobile devices, smart devices, and personal com-

puters has become of significant importance. For example, the U.S. Government Account-

ability Office requested for response from both public and private sectors about possible

ways to increase the effectiveness of security practices [222]. As part of this fortification,

new approaches are being introduced (e.g., Software Bill of Materials (SBOM) [118]) and

studied [278], certification of end-user software / applications is gaining attention [194],

and existing approaches of automated security testing approaches are being improved [19].

Indeed, an Executive Order of the US Govt. explicitly asks publishing guidelines that

includes regularly employing automated tools to check for known vulnerabilities [147].

Additionally, newly introduced standardized output formats of such automated security

151
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testing tools, such as Static Analysis Result Interchange Format (SARIF) [216], are now

enabling widespread integration in nearly every stage of software development lifecycle

through continuous integration/continuous development (CI/CD) pipelines, e.g., GitHub

CodeScan Initiative [120].

However, such automated vulnerability detection (and remediation) tools are not free

from flaws. As shown in studies (e.g., [19, 21]), these tools, similar to any other soft-

ware, may suffer from design and implementation bugs. As a result, these tools may not

detect vulnerabilities that are well within their scope. However, unlike traditional bugs,

the false-negative inducing bugs often remain invisible because of their non-functional na-

ture. Moreover, as we discussed in Chapter 5, we found that submitting false-negative

related issues and addressing those is not straightforward (Chapter 5.2.5). Fixing such

an issue may require providing access to sensitive code or creating minimal, bug-inducing

examples. Furthermore, such cases must be aligned with the existing design goals and

threat model defined by the vulnerability detector developers (Chapter 4.9), which are

often implicit or not communicated with the vulnerability detector users (Chapter 5.2).

As a result, a soundness compromising bug that is still within the technical scope (e.g.,

statically analyzable) of a vulnerability detector may still be considered “out-of-scope” by

vulnerability detector developers.

Because bugs in vulnerability detectors directly compromise the security guarantees

expected from software services, it is, therefore, essential to learn about the lifecycle of

vulnerability detection compromising bugs if we want to address RQ2 comprehensively.

In other words, it is necessary to learn, analyze, and understand the implicit assumptions

made by the designers of the vulnerability detectors, who are also practitioners. More

specifically, it is important to learn:

• The factors that influence the decision-making process of addressing (or not addressing)

such bugs,

• the evolution or change in the decision-making process in the wild by vulnerability

detector developers, and
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• patterns in triaging vulnerability detector bugs.

While it is possible to learn about these implicit assumptions made by the designers

of the vulnerability detectors through qualitative interviews (Similar to the study dis-

cussed in Chapter 5), it is also possible to learn about the implicit assumptions, design

choices, and preferences made explicit by the designers through their publicly accessible

bug management systems used over the years. Only by identifying and learning about

these choices can we hope to understand the limitations and advantages of such choices

made independently by each of these tools, and we can help develop existing and future

tools by addressing those limitations.

6.1 Research Methodology

To address RQ2 from the tool designers’ end, i.e., learning the factors that influence the

addressing of bugs in vulnerability detectors, we performed a study that consisted of (a)

mining software repositories to identify relevant bug-reports/issues, and (b) qualitatively

analyzing those issues (i.e., title, content, interactions in the forms of comments, and

reactions). We now detail these two steps.

6.1.1 Identifying and Collecting Bug Reports

For this step, we need to select vulnerability detectors that are representative of the real

world, i.e., has a prominent presence in online and the industry, and have publicly available

discussion boards of issues (e.g., GitHub). Furthermore, the vulnerability detectors need

to be

(a) in active development and exist for at least two years. This is necessary, as a vulner-

ability detector needs to have a history as a software repository that we can extract

information from, with developed practices refined throughout years.

(b) in active use by practitioners, i.e., it is used in industry, listed by communities (e.g.,

analysis-tools.dev) and/or OWASP, public service sites, such as NIST.
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Next, we collect issues of two categories to create a statistically significant, representa-

tive sample of the issues discussed per tool. In the context of this study, a straightforward

approach would be to only analyze issues that mention keywords such as false positive

and false negative, along with their different formats (e.g., FP, false-positive) in the title,

description, label, and/or description of the issues. To prioritize selecting samples of is-

sues, a large number of interactions (e.g., comments and/or emoji based reactions) can be

used to filter and/or sort those issues.

However, as we explored the repositories to understand their structure and practices,

we noticed a few factors that need to be considered while considering such a straightforward

approach.

(a) Use of Alternative Terms A software practitioner may choose to submit an issue

using alternative words, such as “X tool not detecting Y ”, “false alarm”, and “triggers

warning” instead of using specific keywords, e.g., “false negative” or “false positive”.

(b) Absence of Specific Terms The maintainers of the tool may not explicitly allo-

cate labels for “false-negative” and/or “false-positive” available. For example, while

GitHub/CodeQL has “False-positive” label for issues, it does not use any label for

specifically marking “false-negative” as of April 2025 [117], even though it positions

itself as a tool for “automating security checks” by developers and “identifying vari-

ants of vulnerability” by security researchers.

(c) Urgent Issues can get addressed and closed without Interaction We noticed

that critical, urgent issues can and will get addressed and closed without any signifi-

cant number of interactions or no interactions at all. e.g., a false positive related issue

was addressed and closed without any interaction at all in less than a month [116] in

Github CodeQL repository.

Considering these factors, we adjusted our approach to collect issues, both open and

closed types, based on both (a) the straightforward approach and (b) a randomized ap-

proach that accounts for these factors. That is, in addition to including issues that are
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interacted most, or least, (comments, reactions, and both comments and reactions) and

contain the keywords (or their different forms, e.g., short, abbreviated), we additionally

analyze a portion of the issues randomly sampled from the repositories.

We now provide detailed steps with respect to an example repository, X. For con-

venience, we assume it has N = 134 issues, and the statistically significant number of

sample issues for 95% confidence for this repository is n = 100. We split the sample

size to several categories, with each category having specific search criteria based on the

factors mentioned earlier.

(a) sorted by the number of comments, 10% of the sample size issues (which equals to

10 for this example repository) with the highest, or lowest number of comments. In

this case, this would be selecting 5 issues each from the top and the bottom from the

list of issues that is sorted by the number of comments. This is done so that we get

an overview of issues that are most interacted/least interacted within that particular

tool’s community. Similarly,

(b) sorted by the number of interactions, 10 issues with highest or lowest number of emoji

based interactions,

(c) sorted by the number of comments, 30 issues with highest and lowest number of

comments that contain specific, case-insensitive keywords related to false-positive

(fp, false positive, false-positive, and FPs) and false-negative (fn, false negative, false-

negative, FNs) in the titles or description of the reports,

(d) sorted by the number of comments, 40 issues with highest and lowest number of

comments, while additionally having labels related to bugs e.g., as wontfix, bug,

error, error-reporting. Since each tool come with their own labels, we consider labels

for each repository individually.

(e) randomly chosen 10 issues.

Note that it may not always be possible to find the calculated number of issues for

a particular category, e.g., issues that are labeled as “false-positive”. In such cases, we
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collected all issues that satisfy the search criteria of that particular category. In addition

to this, we ensured that each of the issues collected in each category are unique, i.e., an

issue that satisfies both criterion (a) highest number of comments, and (b) highest number

of interactions will only be collected once to prevent double-counting.

Note that we chose to analyze statistically significant samples per repository, instead

of samples across all repositories (i.e., issues from all repositories), because each tool

repository has its own labels, issues, design considerations, and priorities. This is because

statistically significant sample size increases diminishingly with population size. That is,

for two repositories, each with 100 issues, the statistically significant sample size (95% con-

fidence) would be 132 if both repositories are considered together, whereas the statistically

significant sample size would be 160 per repository.

Table 6.1: Breakdown of Repositories, the total number of issues, and statistically significant
sample size for 95% confidence as of February 2024

Repository Total Labels Expected Sample Size/

Name Issues Used Collected Size*

CodeQL 1, 969 acknowledged, bug, questions 322/274
FindSecBugs 425 false-positive, false-negative, bug, wontfix 202/187
MobSF 1, 423 bug, wontfix 303/257
Pyre 380 bug, wontfix 192/119
Semgrep 2, 817 error-reporting:parse-error-msg, bug, wontfix, error-

reporting
339/296

Total 7, 014 2, 709

* It may not always be possible to find the expected number of issues under a particular category, e.g.,
issues that are labeled as “false-positive”. In such cases, we collected all issues that satisfy a particular
category criteria.

We applied this approach on the bug repositories/issue discussion boards of five vul-

nerability detectors with a total of 7, 014 issues, resulting in 2, 709 sample size. The details

of each repository, total issues, and extracted issues are provided in Table 6.1.

6.1.2 Analyzing Data

After collecting unique issues from our target repositories, we systematically labeled and

qualitatively analyzed the contents of the issues. We chose reflexive thematic analysis com-
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bined with inductive coding for our analytical approach [56], as this approach is suitable

for capturing both latent and semantic meaning of data through the subjective interpre-

tation of the researchers, i.e., experience and skills of researchers in analysis. Further, we

chose single-coder approach, but with two researchers for “meaning-making” from data.

This is necessary, considering the large quantity of data. Specifically, while the number

of issues is already large (2, 709), interactions, such as all comments under an issue are

also within the scope of our analysis. For example, the highest number of comments in an

issue for the GitHub repository is 62 in the CodeQL repository (Issue#10132). Consider-

ing the large number of issues, our collected sample contained 6, 432 comments in total.

While not all comments are equally complex, elaborate, or significant, each comment still

needs to be analyzed to determine their relevance nevertheless, easily adding up the effort.

Considering these, we adapted the single-coder approach in the following way to ensure

consistency across both coders and different repositories.

Our data labeling consists of two distinct stages. In the first stage, we labeled the sta-

tistically significant sample size of the GitHub CodeQL tool (274 issues) using MAXQDA,

a qualitative data analysis software. Two researchers individually labeled the data after an

initial exploration to create a code book. After labeling each category of CodeQL issues,

both researchers met for the agreement-disagreement meeting and resolved the conflicts

to get a Kappa score greater than 80% at sentence level. For each category, the code book

was updated to remove or merge redundant codes, and create new codes. This process,

consisting of five agreement-disagreement meetings, and additional meetings to discuss,

helped us to create a consistent labeling approach for this particular repository.

Afterwards, both authors individually analyzed and labeled issues from the remaining

four repositories, namely Semgrep, Find-sec-bugs, MobSF, and Pyre. After completing

each tool, both researchers met to discuss analyzed data, interesting issues, introduced

new codes, and modified existing codes. This was necessary to adapt the approach to

the different repositories. Furthermore, each of the researchers individually maintained a

separate document that consisted of Emerging Thoughts related to observed patterns, a
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step that is considered valuable in thematic analysis of data. Finally, we iterated through

the later steps of thematic analysis (identifying potential themes, refining) to finalize the

themes.

6.2 Analysis Results

This section describes the results from our analysis, and interpretation of the contents

collected from the issues posted in the open-source vulnerability detectors. During the

course of our analysis, we noticed that most of the tools have their dedicated, internal

communication channels, e.g., Slack Workspace. As a result, processes, such as introducing

or modifying key design decisions, prioritizing specific types of bugs, and determining

internal policies are not visible publicly. However, we can still gain an understanding

of such processes by analyzing the interactions in between the developers and software

developers in the publicly available discussion boards, as those internal processes dictate

the nature of the visible responses.

For example, we found an instance of user investigating a vulnerability detector as a

Proof of Concept (PoC) for future adoption and requesting a feature. The tool designers

asked the timeline for PoC, and if they need to “rush” it, only to be responded by the

user, “Don’t rush out a release on my account!”. This particular interaction indicates

prioritizing features or bug requests that has business potential, or large scale impact

from the vulnerability detectors perspective.

Note that we such interpretations and deduce processes only when these are implied

in the interactions. To provide a counter example, we noticed that regardless of being

security focused vulnerability detectors, none of the tools except one (Find Security Bugs)

used a specific label for false-negative in the issue management board. Furthermore, only

two tools used specific label for false positive. While it is certainly possible to interpret

these observations as a lack of focus on security specific issues across tools in most cases, it

is also possible that such issues are still prioritized nevertheless in an internal board with
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the help of issue management “bots”. Therefore, we only report about such ambiguous

observations, and refrain from offering possible interpretive insights.

6.2.1 The Balancing act of Vulnerability Alert and Alert Fatigue

From our analysis, we found that while vulnerability detectors aim to detect vulnerabilities,

most of these tools also act as multi-purpose tools, i.e., reporting code quality issues,

general bugs and performance optimization issues. While these vulnerability detectors

are built to serve multiple use-cases, i.e., security auditing, and helping developers write

quality code and avoid mistakes that may lead to vulnerabilities, the expectations of

software developers tend to overlap across these use cases, which we discuss next.

Tool Effectiveness and User Efficiency: Across the vulnerability detectors, we ob-

serve that the tension between software developers and developers towards balancing the

effectiveness of vulnerability detectors, i.e., detecting real vulnerabilities, vs user efficiency,

i.e., preferring reduced number of false positives, depends on their own use cases. For ex-

ample, an user argued that they prefer a “High Signal/Low Noise” approach in a taint

analysis feature request (Semgrep#2787 ). However, the same user elaborated that im-

plementing the requested feature would result in more detections of vulnerabilities (“good

number of TPs”), and potentially “many false-negatives”. In other words, the user ex-

pressed preference towards at least partial coverage of vulnerabilities, compared to no

coverage, while also expressing that less number of false positives is preferable as long as

it works. This preference towards vulnerability detectors that work, i.e., finds vulnerabili-

ties that matter, while having less number of false positives is also independently reported

by Ami et al [22].

We see similar preference from the developers of Find Security Bugs, where one of

the “main developers” explicitly expressed that for security, the goal is detect real vul-

nerabilities, while balancing false positives, i.e.,“Everybody wants no false positives to be

reported, the problem is that the analysis is quite complex and I cannot guarantee, that
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no true positives are missed. FindSecurityBugs is intended for security code review and

should not miss any real problem” (Find Security Bugs#76 ). The user further suggested

that reported items should contain high and low confidence scores to help tool software

developers prioritize, and address security bugs.

Finding 1 (F1) – While users prefer not having false false positives, for security,

they prefer having no false negatives over having no false positives.

Furthermore, developers of vulnerability detectors expressed a similar opinion when

it comes to detecting vulnerabilities and addressing false-negatives while acknowledging

that a sound analysis may not be feasible. “Fundamentally, the core analysis is neither

sound or complete, so it is not surprising that corner cases can be found where improve-

ments are desirable. As such, we do not consider this a “bug”, but rather a pragmatic

limitation”(GitHub/CodeQL#7106 ).

However, in addition to technical feasibility, the “legitimacy” of code is considered as

an additional factor when it comes to determining the scope of detection by some tool de-

velopers, e.g.,“We are implementing heuristic to detect true positive and to eliminate false

positive, But in both case we are scoping to code that are written by human or a legitimate

developer”(Find Security Bugs#559 ) and “... more focus on finding vulnerabilities from

developers with good intention”(Find Security Bugs#560 ).

Finding 2 (F2) – Apart from technical/pragmatic limitations, tool designers consider

additional factors, such as intention and legitimacy of developer when it comes to

addressing a false-negative inducing bug in vulnerability detectors

Prioritizing Bugs based on Visibility: Because of limited resources, developers tend

to focus on addressing bugs that are more visible. That is, developers accept that the

analysis may not be “sound or complete”, and therefore, it is not surprising to find corner

cases of vulnerabilities. Such cases are considered less of a bug, and more of a “pragmatic

limitation”. However, developers may still consider such corner cases if “it is both relatively

simple and likely to be common in practice”(GitHub/CodeQL#7106 ).
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Finding 3 (F3) – Visbility of a bug and simplicity of the solution makes it more

likely to be implemented.

Addressing Bugs need Deliberation: Developers of vulnerability detectors prefer de-

signing generic solutions that follow the existing architecture, instead of creating compli-

cated, scenario-specific solutions. “Improving taint seems like a more generalized solution,

and doesn’t further complicate the pattern syntax”(Semgrep#3085 ). Moreover, developers

were also wary of introducing changes that may result in overall increase of false-negatives

because of potential silent errors, “I do, however, worry that such a change could silently

break things in a number of places”(GitHub/CodeQL#5672 ). Thus, even if they want to

prioritize addressing a particular type of bug, both design considerations and avoiding

invisible consequences may delay creating, and deploying a solution.

Finding 4 (F4) – Vulnerability detector developers prefer solutions that are generic

and do not have invisible consequences.

Vulnerability detectors and Compiler Optimization/Bytecode Conversion: Some

vulnerability detector designers reported that external factors, such as compiler optimiza-

tion and/or bytecode conversion may result in affecting vulnerability analysis. For exam-

ple, for a bug report that reported that some vulnerabilities are being randomly detected

across multiple runs, the tool designers responded that it is possibly due to different opti-

mization techniques being used across multiple versions of compilers, “It seems worse than

just reported..Current theory is the strings in the constant pool are known to be optimized

differently among compiler versions.”(Find Security Bugs#456 ).

Finding 5 (F5) – External factors, such as as compiler optimizations and bytecode

conversion techniques, may affect the performance of vulnerability detectors.

Software Developers do not Desire Temporary Workarounds: Sometimes, vul-

nerability detector designers provide a temporary workaround, such as downgrading the

compiler version, when a fix is not immediately available. However, software developers

can be wary of such temporary workarounds. For example, “Unfortunately, I cannot down-
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grade go, but if the fix is poised to be released soon I can wait...”(GitHub/CodeQL#14373 ).

This is because software developers are wary of technical debts, i.e., switching to the sta-

ble release once the update is made available after reverting the temporary workaround

may require manual intervention from the software developers’ side.

Finding 6 (F6) – While temporary workarounds are offered by tool designers, soft-

ware developers are wary about such solutions due to the possible technical debt and

increased workload that comes with such workarounds.

Version Fragmentation and Ineffective Bug-fixes: A similar problem occurs when

the same vulnerability detector is maintained across multiple channels, resulting in version

fragmentation. That is, while software developers expect bug fixes to be applied for a

vulnerability detector available across different distribution channel, tool designers may

find it challenging to ensure this across internal and external channels, and various package

managers. For example, a tool designer responded that they were unable to reproduce the

false-negative related bug, as it is likely that a bug fix was not applied across the internal

and external versions of the tool: “...we haven’t updated open source Pyre in a while, so it’s

possible it is a bug that we fixed a while ago that newer versions won’t have.”(Pyre#790 ).

Such bugs can also be caused by the different mechanisms of various package managers,

e.g.,“actually it is homebrew side’s pypi mapping issue (fixed it now)” (Semgrep#9168 ).

Finding 7 (F7) – Maintaining the availability of the same vulnerability detector

across multiple distribution channels and versions may result in version fragmentation,

i.e., the same bug-fixes may not be applied across all channels.

Security Specific and Generic False Positives: We found that developers of vulnera-

bility detectors that offer additional features, such as code quality checking, may differen-

tiate between security-specific false-positive issues, and non-security issues, e.g.,GitHub/-

CodeQL developers mentioned that they prioritize solving security-specific false-

positives “current focus is on improving our security analysis”. Additionally, they also

mentioned that they may prioritize solving generic, non-security false-positives if it is re-
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ported by a sufficient number of users, “prioritize it if we get enough reports of the same

underlying issue in other projects”(GitHub/CodeQL#5813 ).

Finding 8 (F8) –While reducing security specific false positives is prioritized, generic

false positives are prioritized only when frequently observed.

6.2.2 Balancing Security-First Features and Developer Happiness

vulnerability detectors strive to be effective from a security-centric perspective, i.e., to be

used for security auditing, compliance, or finding vulnerabilities and their variation, and

developer-friendly in terms of use, configuration, and alert fatigue. However, by analyzing

the issues across the vulnerability detectors in this study, we found that these two desirable

goals are often at odds with each other. Furthermore, both tool software developers and

developers can take opposing roles when it comes to preferring security assurance over

developer happiness and vice versa, which we detail next.

Transparency and Deviation from Expected Behavior: To achieve the goal of

developer happiness, i.e., reducing alert fatigue, vulnerability detectors may silently fail

to detect issues or skip analyzing files without notifying the user. software developers

consider such issues are “worth reporting” as “it is easy to get frustrated by this kind of

issue”(Pyre#93 ).

Finding 9 (F9) – software developers consider silent suppression of errors, e.g., failed

analysis, a frustrating issue

The tension between security-first and developer happiness also extends towards cus-

tomizability of vulnerability scanning rules. For example, a user reported that his custom

rules related to statements were being matched as both statements and expressions, which

he considers a bug. To elaborate, from an analysis perspective, statements (i.e., code seg-

ments that end with ;, e.g., foo();) and expressions (e.g., foo()) are different, and

the user’s expectation was that both of these should be distinct. However, the developers

of the relevant vulnerability detector pushed back, stating that novice software devel-
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opers may not know the difference between statements and expressions, “since many of

our software developers don’t fully understand the difference between statements and ex-

pressions, making the engine try to follow a user’s intuitive mental model is a design

decision that (I think) benefits the novice user at the expense of some annoyance to the

expert.”(Semgrep#2137 ). Based on the user’s feedback, however, the developers agreed

that this should be explicitly mentioned in the documentation for Transparency.

Finding 10 (F10) – While most tools additionally offer customization for developers,

some tools silently create additional rules based on the custom rule to be ‘novice-

friendly’. However, developers may not consider such automatic creation helpful as

this potentially results in unpredictable behavior of the vulnerability detector in future

However, even if a behavior is documented, it can be unexpected according to the

same developers of the vulnerability detector, e.g.,“Per our documentation, this is the

“expected” behavior (although perhaps not expected by us!)”(Semgrep#1414 ).

Finding 11 (F11) – software developers expect documentation to detail the limita-

tions of a tool to ensure transparency and for avoiding resubmission of bug reports.

Additionally, some tool designers prefer writing documentation as a guideline, instead

of explaining internal processes of a vulnerability detector(Find Security Bugs#346 ).

Finding 12 (F12) – Some tool designers prefer to exclusively use the documemtation

for guidelines and examples only.

Caching and False-Negatives: Because of the common tendency of vulnerability de-

tectors to take too much time when it comes to analyzing large software projects, different

strategies are being adopted to reduce the runtime, such as optimization by caching re-

sults of analysis. However, sometimes, these optimizations are buggy, resulting in silently

ignoring vulnerabilities that are well within the analysis scope of the detectors. For ex-

ample, “if you were working on a local machine ... perhaps some scans were run using



6.2. ANALYSIS RESULTS 165

cached data, and any uncommitted code changes were not picked up.” (Bearer#1114 ).

Finding 13 (F13) – The default behavior of vulnerability detectors to cache analysis

may result in missed vulnerability detections.

Alerting Security and Non-Security Issues: We observed a similar tension between

the tool designers and software developers about the scope of detection, and reporting

issues. For example, one user was hesitant about requesting a feature of introducing

coding standard related issue, as those are not related to security. While the developers

encouraged such feature requests, “Semgrep is not intended only for security issues. Its

target user are also regular developers.”, the user pushed back, stating that they have

always differentiated between security and non-security issues, since “security and testing

findings are often blockers; but other types are not”(Semgrep#8074 ). On the other hand,

Find Security Bugs uses a combination of labels (rank and confidence) to help developers

prioritize addressing bugs. However, the lack of a common meta-data based labeling of

detection rules may result in compatibility issues when a vulnerability detector is used

as a component/plug-in, e.g.,“if confidence levels are not supported by plugins, we should

change it of course”. For example, Find Security Bugs can be used as a plugin with

SonarQube, even though SonarQube uses different label (severity) to help developers

prioritize both security and non-security related bugs.

Finding 14 (F14) – Tool designers may or may not differentiate between security

and non-security issues, whereas additional labels accompanying vulnerability report,

such as severity, and rank are considered helpful for software developers to prioritize

addressing bugs.

Furthermore, tool designers are wary about providing features that make ignoring false

positive “too easy”; such as inline comments because “Blanket ignores seem dangerous or

at least not ideal”, as “AppSec engineers at multiple companies ... the only ones who can ig-

nore...developers can propose ignores, but ... AppSec team for approval.”(Semgrep#3521 ).
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Finding 15 (F15) – Tool designers distinguish between Security-specific and

development-specific roles when designing suppression mechanisms of vulnerability

detectors

Effective False Positive and Bypass Mechanisms: Letting the developers determine

whether a reported vulnerability is practically a false positive due to additional factors,

such as context, dead code, and use case, is gaining attention as the concept of effective

false positive. Therefore, the ease of marking alerts as false positives is an important

factor to the users. However, when it comes to security, making this too easy can introduce

confusion discussed in (GitHub#11427 ). While the software developers pushed for easier

suppression of false positives through inline annotations “I am honestly shocked that there

is no inlining mechanism to suppress false positives”, the developers pushed back stating

that while “it’s a topic that is often debated in the team”, offering both UI-based and

inline suppression can “lead to significant confusion” as security teams may want to take

a look at suppressed alerts, and by collecting information related to false-positives from

the UI, it becomes possible to improve GitHub/CodeQL.

Finding 16 (F16) – The duality of vulnerability detectors as security-evaluation

tools and developer-helping tools may result in conflicting expectations from software

developers and tool designers.

6.3 Threats to Validity

In this study, our understanding of the factors that influence the lifecycle of bugs in

vulnerability detectors is affected by the following threats to validity:

Internal Validity: The discussions in between developers and users of vulnerability

detectors as visible in issue management boards provides us a partial picture, as often these

are influenced by internal, privately accessible discussions in between the maintainers of the

detectors. We attempted to mitigate it by being as thorough as possible while analyzing

the visible contents, and analyzing referred chain of issues/report as relevant.
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External Validity: Due to the nature of this study, generalizability is considered an is-

sue due to our sampling of issues from a limited number of vulnerability detectors. While

findings from such studies are considered “softly generalisable” [56], prior research demon-

strates that such studies are still reliable for identifying salient trends [36, 90]. Because of

the diverse background of users, the selection of different vulnerability detectors, and our

systematic way of selecting and extracting information of issues, we believe this study pro-

vides valuable insights about the factors that influence the lifecycle of bugs in vulnerability

detectors.

6.4 Chapter Summary

In this chapter, we discussed the different roles played by vulnerability detectors, and

presented the first, qualitative study of factors that influence the lifecycle of bugs in

vulnerability detectors. We systematically selected 2, 709 issues, consisting of 6, 432 com-

ments from five prominent vulnerability detectors used in the industry and qualitatively

analyzed them to identify insights that directly influence how developers and users rec-

ognize, prioritize and address the bugs that affect the effective and efficient application

of vulnerability detectors. These insights are also helpful for identifying the overlapping

and conflicting design and use case assumptions made by both designers and users of

vulnerability detectors, enabling researchers to identify future research opportunities.



Chapter 7

Future Work

Because bugs in SASTs directly compromise the security guarantees expected from soft-

ware services, it is, therefore, essential to learn about the lifecycle of bugs if we want to

address comprehensively. In other words, it is necessary to learn, analyze, and understand

the implicit assumptions made by the designers of the vulnerability detectors, who are

also practitioners. More specifically, it is important to learn:

• The factors that results in introducing a soundness-compromising bug, e.g., other bug-

fixing commits or new features,

• The factors that influence the decision-making process of addressing (or not addressing)

such bugs, and

• the evolution or change in the decision-making process in the wild by vulnerability

detector developer.

As this work has shown, reporting false negative issues is of great importance when it

comes to improving security analysis tools. However, the effectiveness of such reports is

often compromised because of several factors, such as non-disclosure agreements or red-

tapes, lack of incentives, non-straightforward approach for reproducibility, and a lack of

dedicated processes for reporting false negatives. As the world adopts security analysis

tools, so will it become more important to streamline the process for reporting false nega-

tive, so that the end-users can participate in improving those tools, and in turn, improve

the security of their software and systems.
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Chapter 8

Conclusion

Throughout the dissertation, we dissected the security focused vulnerability detectors

that are used in the software industry at large, regardless of whether the software is built,

maintained, and/or developed by commercial organizations, open source entities, or by

hobbyists. In our analysis, we looked at the claims made by prominent vulnerability

detectors from the industry, academia, and the open source community, particularly data

leak detectors and crypto-detectors. We created and extended novel frameworks, namely

µSE (Chapter 3) and MASC (Chapter 4), to systematically evaluate them.

Through the evaluation, we found that vulnerability detectors can and do contain flaws

that make them unsound, i.e., they do not detect vulnerabilities that are well within their

scope of detection. Through the responsible disclosure process, and subsequent discussion,

we further found that the developers of vulnerability detectors often adopt a technique-

centric design stance, without focusing on a security-centric, or security-focused evaluation

based approach. As a result, while vulnerability detectors make claims, such as detecting

all variants of in-scope vulnerabilities, or to be used for security audits, they end up

providing a false sense of security because of various factors, such as having no threat model

or a threat model that does not align with the described use-case scenarios. Systematic

evaluation frameworks, that are built to evolve, and can evaluate using expressive test-

cases that resemble the different use-case scenarios, including hostile reviews.
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Because we, as a community of software engineers and security practitioners, are de-

pending more and more on the vulnerability detectors, it is important to understand

the expectations and perceptions of practitioners about vulnerability detectors. Hence,

we performed a qualitative research (Chapter 5) with industry practitioners from orga-

nizations requiring different types of business and security-critical needs. We found that

practitioners rarely evaluate vulnerability detectors and depend on word of mouth referral

because they lack the means to evaluate based on their own use-cases. Further, while they

do consider reducing false-positives an important goal, they want vulnerability detectors

that work first in the first place, and are willing to tolerate a relatively large number of

false-positives if it means that they can detect important vulnerabilities. further, we found

that the industry as a whole is not ready to address the flaws in vulnerability detectors,

as discovered flaws by users are rarely reported because of various reasons, such as NDAs,

red-tapes, associated difficulties, and lack of incentives.

Finally, to understand how the flaws, or bugs are acknowledged, addressed, prioritized,

and delivered to the users, we performed a qualitative study on a statistically significant

sample of issues collected from prominent, open-source vulnerability detectors (Chapter 6).

We found that the duality of vulnerability detectors, i.e., the use case of finding vulner-

abilities in a hostile settings, and the use case of finding mistakes made by developers in

a friendly environment, are both served by vulnerability detectors, and can lead to both

overlapping, and conflicting factors that influence the lifecycle of bugs. Finally, we discuss

the future directions that stem from this dissertation in Chapter 8.
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Appendix

A.1 Appendix of Chapter 3

1 BroadcastReceiver receiver = new BroadcastReceiver() {

2 @Override

3 public void onReceive(Context context, Intent intent) {

4 BroadcastReceiver receiver = new BroadcastReceiver(){

5 @Override

6 public void onReceive(Context context, Intent intent) {

7 String dataLeak = Calendar.getInstance().getTimeZone().

getDisplayName();

8 Log.d("leak-1", dataLeak);}};

9 registerReceiver(receiver, new IntentFilter().addAction("android.intent.

action.SEND"));

10 }};

11 registerReceiver(receiver, new IntentFilter().addAction("android.intent.action.

SEND"));

Listing A.1: A dynamically-created BroadcastReceiver, created inside another, with data leak.

Whenever the onReceive() callback of the receiver object is invoked, it will create another receiver

object of similar type, with a leak inside its own onReceive() callback. This can be further evolved

to use anonymous object declaration that can leak information in a similar nature.

CrashScope (Execution Engine): The EE functions builds upon CrashScope [201,

199], which statically analyzes the code of a target app to identify activities implementing

potential contextual features (e.g., rotation, sensor usage) via API call-chain propagation.

215
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This execution is guided by one of several exploration strategies, organized along three

dimensions: (i) GUI-exploration, (ii) text-entry, and (iii) contextual features.

Note that because the goal of the EE is to explore as many screens of a target app

as possible, the EE forgoes certain combinations of exploration strategies from Crash-

Scope [201, 199] (e.g., entering unexpected text or disabling contextual features) prone

to eliciting crashes from apps. The approach uses adb and Android’s uiautomator

framework to interact with and extract GUI-related information from a target device

or emulator. Further implementation details of exploration strategies can be found in

[201, 199].

Table A.1: List of App names, URLs and IDs assigned by us for the purpose of the µSE study

App IDAndorid App name URL

app 01 2048 https://f-droid.org/en/packages/com.uberspot.a2048/
app 02 Protect Baby Monitor https://f-droid.org/en/packages/protect.babymonitor/
app 03 QR Scanner https://f-droid.org/en/packages/com.secuso.privacyFriendlyCodeScanner/
app 04 Location Share https://f-droid.org/en/packages/ca.cmetcalfe.locationshare/
app 05 Camera Roll https://f-droid.org/en/packages/us.koller.cameraroll/
app 06 AndroidPN Client https://f-droid.org/en/packages/org.androidpn.client/
app 07 Activity Launcher https://f-droid.org/en/packages/de.szalkowski.activitylauncher/
app 08 Man Man https://f-droid.org/en/packages/com.adonai.manman/
app 09 BMI Calculator https://f-droid.org/en/packages/com.zola.bmi/
app 10 A Time Tracker https://f-droid.org/en/packages/com.markuspage.android.atimetracker/
app 11 AFH Downloader https://f-droid.org/en/packages/org.afhdownloader/
app 12 Android Explorer https://f-droid.org/en/packages/com.iamtrk.androidexplorer/
app 13 Kaltura Device Info https://f-droid.org/en/packages/com.oF2pks.kalturadeviceinfos/
app 14 Apod Classic https://f-droid.org/en/packages/com.jvillalba.apod.classic/
app 15 Calendar Trigger https://f-droid.org/en/packages/uk.co.yahoo.p1rpp.calendartrigger/

Apps used in the study: For our study, we collected a set of 15 open-source apps

from F-Droid [102], as shown in Table A.1. The apps come from different heterogeneous

build configuration settings, with compile SDK API level 23 (Marshmallow) to 27 (Oreo),

minimum SDK API level 9 (Gingerbread) to 16 (Jelly Bean), and target SDK API level

from 17 (Jelly Bean) to 26 (Oreo), with sizes ranging from several hundred KB to a

maximum of 3.5 MB.

https://f-droid.org/en/packages/com.uberspot.a2048/
https://f-droid.org/en/packages/protect.babymonitor/
https://f-droid.org/en/packages/com.secuso.privacyFriendlyCodeScanner/
https://f-droid.org/en/packages/ca.cmetcalfe.locationshare/ 
https://f-droid.org/en/packages/us.koller.cameraroll/ 
https://f-droid.org/en/packages/org.androidpn.client/ 
https://f-droid.org/en/packages/de.szalkowski.activitylauncher/
https://f-droid.org/en/packages/com.adonai.manman/
https://f-droid.org/en/packages/com.zola.bmi/
https://f-droid.org/en/packages/com.markuspage.android.atimetracker/
https://f-droid.org/en/packages/org.afhdownloader/
https://f-droid.org/en/packages/com.iamtrk.androidexplorer/
https://f-droid.org/en/packages/com.oF2pks.kalturadeviceinfos/
https://f-droid.org/en/packages/com.jvillalba.apod.classic/
https://f-droid.org/en/packages/uk.co.yahoo.p1rpp.calendartrigger/
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A.2 Additional Evaluation Details

We provide additional details about evaluation, e.g., rationale for choosing certain muta-

tion operators for evaluation, the necessity of optimizing number of mutations generated,

and details about confirmation of killed mutations are available in S&P’22 [19] and in the

online appendix [16].

Table A.2: List of Applications mutated using MASC for the current study, CLOC = Count
Lines of Code from Java Source files only [68], Source = Source Code collected from/Originated
From

ID Name Type Source CLOC

T1 Fake Traveler Android GitHub 552
T2 Simple-Solitaire Android GitHub 29,303
T3 OpenTracks Android GitHub 27,432
T4 RevenueCat Android GitHub 1,294
T5 Orbot Android GitHub 6,231
T6 Mastodon Android GitHub 31,328
T7 Snapdrop Android GitHub 1,782
T8 OpenTasks Android GitHub 34,105
T9 Nextcloud Notes Android GitHub 24,262
T10 MIFARE Classic Tool Android GitHub 7,807
T11 Armadillo - Encrypted Shared Preference Android GitHub 3,809
T12 Authorizer Android GitHub 35,241
T13 Android GoldFinger Android GitHub 2,374
T14 OVAA Android GitHub 687
T15 Tink Java GitHub 97,703

Table A.3: Relevance of crypto-detectors evaluated using MASC for the Extended Study

Tool Practical Relevance Deployment Use Case

DeepSource (Indus-
try)

Available in Github Code
Scan integration [119]

Prevent hundreds of known security vulnerabilities in
your code and stay compliant with industry standards.
[77]

SonarQube (Indus-
try)

Available in Github Code
Scan integration [119]

... detects security vulnerabilities in your code so they
can be eliminated before you build and test your appli-
cation [264]

Amazon CodeGuru
Security (Industry)

Used in the Industry (e.g., by
Amazon, and offered as ser-
vice) [69]

Detect security vulnerabilities at any stage of the de-
velopment lifecycle [69]

Codiga (Industry) Available in Github Code
Scan integration [119]

...find critical application vulnerabilities, such as Mitre
CWE, SANS CWE Top 25 and OWASP Top 10 [70]

Snyk (Industry) Available in Github Code
Scan integration [119]

Secure your code as it‘s written with static application
security testing built by, and for, developers. [262]

∗We obtained full licenses for these proprietary tools for first iteration of this study, 1Xanitizer has been merged
to another product and is not included in this extension, 2We did not obtain license for this extended study
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A.3 Crypto-API Misuse Taxonomy Data

Additional details of the taxonomy data, e.g., types of cases that our SLR approach may

miss, is available in the S&P’22 [19] paper and the online appendix [16].

Table A.4: Selected Sources for Extracting Cryptography Misuse, from Academia from
2019-2022

ID Title Year Venue

36 Ensuring correct cryptographic algorithm and provider usage at compile time 2021 FTfJP
37 Why Eve and Mallory Still Love Android: Revisiting TLS (In)Security in Android Applications 2021 USENIX
38 Towards HTTPS Everywhere on Android: We Are Not There Yet 2020 USENIX
39 CRYPTOAPI-BENCH: A Comprehensive Benchmark on Java Cryptographic API Misuses 2019 SecDev
40 CRYPTOREX: Large-scale Analysis of Cryptographic Misuse in IoT Devices 2019 USENIX
41 Negative Results on Mining Crypto-API Usage Rules in Android Apps 2019 MSR
42 Java Cryptography Uses in the Wild 2020 ESEM
43 Python Crypto Misuses in the Wild 2021 ESEM
44 Understanding How to Use Static Analysis Tools for Detecting Cryptography Misuse in Software 2019 ToR
45 A Comparative Study of Misapplied Crypto in Android and iOS Applications 2019 ICETE
46 A Dataset of Parametric Cryptographic Misuses 2019 MSR
47 CogniCryptGEN: generating code for the secure usage of crypto APIs 2020 CGO
48 CryptoTutor: Teaching Secure Coding Practices through Misuse Pattern Detection 2020 SIGITE
49 Using Graph Embeddings and Machine Learning to Detect Cryptography Misuse in Source Code 2020 ICMLA
50 Evaluation of Static Vulnerability Detection Tools with Java Cryptographic API Benchmarks 2022 TSE
51 Automatic Detection of Java Cryptographic API Misuses: Are We There Yet? 2022 TSE
52 Hotfixing Misuses of Crypto APIs in Java Programs 2021 ICCSS
53 CRYLOGGER: Detecting Crypto Misuses Dynamically 2021 SP
54 CRYScanner: Finding cryptographic libraries misuse 2021 NICS
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A.4 Appendix

A.4.1 Code Snippets

1 Class T { String algo=”AES/CBC/PKCS5Padding” ;

2 T mthd1 ( ) { algo = ”AES” ; re turn t h i s ;} T mthd2 ( ) { algo=”DES” ; re turn t h i s ;} }

3 Cipher . getInstance (new T ( ) . mthd1 ( ) . mthd2 ( ) ) ;

Listing A.2: Method Chaining (OP5).1 val = new Date ( System . currentTimeMillis ( ) ) . toString ( ) ;

2 new IvParameterSpec ( val . getBytes ( ) , 0 , 8 ) ;}

Listing A.3: Predictable/Non-Random Derivation of Value (OP6)1 void checkServerTrusted ( X509Certificate [ ] x , String s )

2 throws CertificateException {

3 i f ( ! ( nu l l != s && s . equalsIgnoreCase ( ”RSA” ) ) ) {

4 throw new CertificateException ( ”not RSA” ) ;}

Listing A.4: Exception in an always-false condition block (OP7).1 pub l i c boolean verify ( String host , SSLSession s ) {

2 i f ( t rue | | s . getCipherSuite ( ) . length ( )>=0)}

3 return true ;} re turn f a l s e ;}

Listing A.5: False return within an always true condition block (OP8).1 i n t e r f a c e ITM extends X509TrustManager { }

2 abs t ra c t c l a s s ATM implements X509TrustManager { }

Listing A.6: Implementing an Interface with no overridden methods.
1 new HostnameVerifier ( ) {

2 pub l i c boolean verify ( String h , SSLSession s ) {

3 return true ; } } ;

Listing A.7: Inner class object from Abstract type (OP12)1 new X509ExtendedTrustManager ( ) {

2 pub l i c void checkClientTrusted ( X509Certificate [ ] chain , String a ) throws

CertificateException {}

3 pub l i c void checkServerTrusted ( X509Certificate [ ] chain , String authType ) throws

CertificateException {}

4 pub l i c X509Certificate [ ] getAcceptedIssuers ( ) { re turn nu l l ;} . . . } ;

Listing A.8: Anonymous Inner Class Object of X509ExtendedTrustManager (F10)
1 void checkServerTrusted ( X509Certificate [ ] certs , String s )

2 throws CertificateException {

3 i f ( ! ( nu l l != s | | s . equalsIgnoreCase ( ”RSA” ) | | certs . length >= 314) ) {

4 throw new CertificateException ( ”Error ” ) ;}}

Listing A.9: Specific Condition in checkServerTrusted method (F17)
1 abs t ra c t c l a s s AHV implements HostnameVerifier{} new AHV ( ) {

2 pub l i c boolean verify ( String h , SSLSession s )

3 return true ;}} ;

Listing A.10: Anonymous Inner Class Object of An Empty Abstract Class that implements

HostnameVerifier
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1 abs t ra c t c l a s s AbstractTM implements X509TrustManager{} new AbstractTM ( ) {

2 pub l i c void checkServerTrusted ( X509Certificate [ ] chain , String authType ) throws

CertificateException {}

3 pub l i c X509Certificate [ ] getAcceptedIssuers ( ) { re turn nu l l ;}}} ;

Listing A.11: Anonymous inner class object with a vulnerable checkServerTrusted

method
1 i n t e r f a c e IHV extends HostnameVerifier{} new IHV ( ) {

2 pub l i c boolean verify ( String h , SSLSession s ) re turn true ;}} ;

Listing A.12: Anonymous Inner Class Object of an Interface that extends HostnameVerifier
1 KeyGenerator keyGen = KeyGenerator . getInstance ( ”AES” ) ;

2 keyGen . init (128) ; SecretKey secretKey=keyGen . generateKey ( ) ;

Listing A.13: Misuse case requiring a trivial new operator
1 i f ( ! className . contains ( ” android . ” ) )

2 classNames . add ( className . substring (1 , className . length ( ) − 1) ) ; r e turn classNames ;

Listing A.14: CryptoGuard’s code ignoring names with “android”
1 i f ( ! ( t rue | | arg0==nu l l | | arg1==nu l l ) ) {

2 throw new CertificateException ( ) ;}

Listing A.15: Generic Conditions in checkServerTrusted
1 t h i s . name = name == nu l l ? ”AES” : name ;

2 t h i s . mode = mode == nu l l ? ”CBC” : mode ;

3 t h i s . pad = pad == nu l l ? ”PKCS5Padding” : pad ;

4 t h i s . string = StringUtils . format ( ”%s/%s/%s” , t h i s . name , t h i s . mode , t h i s . pad ) ;

Listing A.16: Transformation String formation in Apache Druid similar to F2 which uses AES in

CBC mode with PKCS5Padding, a configuration that is known to be a misuse [106, 232].
1 Class T {

2 in t i = 0;

3 cipher = ”AES/GCM/NoPadding” ;

4 pub l i c void A ( ) {

5 cipher = ”AES/GCM/NoPadding” ;

6 }

7 pub l i c void B ( ) {

8 cipher = ”AES/GCM/NoPadding” ;

9 }

10 pub l i c void C ( ) {

11 cipher = ”AES/GCM/NoPadding” ;

12 }

13 pub l i c void D ( ) {

14 cipher = ”AES” ;

15 }

16 pub l i c String getVal ( ) {

17 return cipher

18 }

19 }

20 Cipher . getInstance (new T ( ) . A ( ) . B ( ) . C ( ) . D ( ) . getVal ( ) ) ;

Listing A.17: Iterative Method Chaining
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1 Class T {

2 in t i = 0;

3 cipher = ”AES/GCM/NoPadding” ;

4 pub l i c void A ( ) {

5 i f ( i == 0){

6 i f ( i == 0){

7 i f ( i == 0){

8 cipher = ”AES” ;

9 }

10 e l s e {

11 cipher = ”AES/GCM/NoPadding” ;

12 }

13 }

14 e l s e {

15 cipher = ”AES/GCM/NoPadding” ;

16 }

17 } e l s e {

18 cipher = ”AES/GCM/NoPadding” ;

19

20 }}

21 pub l i c String getVal ( ) {

22 return cipher

23 }

24 }

25 Cipher . getInstance (new T ( ) . A ( ) . getVal ( ) ) ;

Listing A.18: Iterative Conditionals
1 Class T {

2 in t i = 0;

3 cipher = ”AES/GCM/NoPadding” ;

4 pub l i c String A ( ) {

5 return ”D” ;

6 }

7 pub l i c String B ( ) {

8 return ”E” ;

9 }

10 pub l i c String C ( ) {

11 return ”S” ;

12 }

13 pub l i c void add ( ) {

14 cipher = A ( ) + B ( ) + C ( ) ;

15 }

16 pub l i c String getVal ( ) {

17 return cipher

18 }

19 }

20 Cipher . getInstance (new T ( ) . add ( ) . getVal ( ) ) ;

Listing A.19: Method Builder
1 T secure = new T ( ) ;

2 T insecure = new T ( ) . mthd2 ( ) ;

3 secure = insecure ;

4 Cipher . getInstance ( secure . getVal ( ) ) ;
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Listing A.20: Object Sensitive, using the object created in Listing A.1
1 String cryptoVariable = ”AES” ;

2 char [ ] cryptoVariable1 = cryptoVariable . toCharArray ( ) ;

3 javax . crypto . Cipher . getInstance ( String . valueOf ( cryptoVariable1 ) ) ;

Listing A.21: Build Variable
1 javax . crypto . Cipher . getInstance ( ”secureParamAES” . substring (11) ) ;

Listing A.22: Substring
1 byte [ ] cryptoTemp = ”12345678” . getBytes ( ) ;

2 javax . crypto . spec . IvParameterSpec ivSpec = new javax . crypto . spec . IvParameterSpec . getInstance

( cryptoTemp , ”AES” ) ;

Listing A.23: Constant IV

A.4.2 Additional Implementation and Evaluation Details

A.4.2.1 Expanded rationale for choosing certain operators

We prioritized misuse cases for inclusion in MASC that are discussed more frequently in

the artifacts. For instance, when implementing restrictive operators (Sec. 4.3.1), we chose

the misuse of using AES with ECB mode, or using ECB mode in general, as both misuse

cases were frequently mentioned in our artifacts (i.e., in 2 and 11 artifacts respectively).

Additionally, we chose the misuse of using DES mode, since several crypto-detectors did

not consider that not specifying a mode explicitly for encryption defaults to ECB mode.

Similarly, we chose the misuse cases of using MD5 algorithm with the MessageDigest

API for hashing (5 artifacts), and digital signatures (5 artifacts). When implementing

flexible mutation operators (Sec. 4.3.2), we observed that the majority of the misuse cases

relate to improper SSL/TLS verification and error handling, and hence chose to mutate

the X509TrustManager and HostnameVerifier APIs with OP7 – OP13.

A.4.2.2 Do we need to optimize the number of mutants generated?

MASC generates thousands of mutants to evaluate crypto-detectors, which may prompt

the question: should we determine exactly how many mutants to generate or optimize

them? The answer to this question is no, for two main reasons.
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First, MASC generates mutants as per the mutation-scope applied, i.e., for the ex-

haustive scope, it is natural for MASC to seed an instance of the same mutation at every

possible/compilable entry point (including internal methods) in the mutated application.

Similarly, for the similarity scope, we seed a mutant besides every similar “usage” in the

mutated application. Therefore, in all of these cases, every mutant seeded is justified/ne-

cessitated by the mutation scope being instantiated. Any reduction in mutants would

require MASC to sacrifice the goals of its mutation scopes, which may not be in the inter-

est of a best-effort comprehensive evaluation. Second, in our experience, the number of

mutants does not significantly affect the time to seed taken by MASC. That is, MASC took

just 15 minutes to seed over 20000 mutants as a part of our evaluation (see Section 4.7).

Moreover, once the target tool’s analysis is complete, we only have to analyze the unkilled

mutants, which is a far smaller number than those originally seeded (Section 4.7). There-

fore, in our experience, there is little to gain (and much to lose) by reducing the number

of mutants seeded; i.e., we want to evaluate the tools as thoroughly as we can, even if it

means evaluating them with certain mutation instances/mutants that may be effectively

similar.

That said, from an analysis perspective, it may be interesting to dive deeper into the

relative effectiveness of individual features (i.e., operators as well as scopes), even if they

are all individually necessary, as each mutation operator exploits a unique API use char-

acteristic, and scopes exploit unique code-placement opportunities, and any combination

of these may appear in real programs. However, it would be premature to determine

relative advantages among scopes/operators using the existing evaluation sample (i.e., 9

detectors evaluated, 13 open-source apps mutated, 19 misuse cases instantiated, with 12

operators). For instance, mutating other misuse cases, or evaluating another tool, or using

a different set of open source apps to mutate, may all result in additional/different success

at the feature-level (although overall, MASC would still find flaws, and satisfy its claims).

We defer such an evaluation to determine the relative advantages of different mutation

features to future work, as described in Section 4.8.
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A.4.2.3 Further details regarding confirming killed mutants

Matching the mutation log generated by MASC with the reports generated by crypto-

detectors is challenging because crypto-detectors often generate reports in heterogeneous

and often mutually incompatible ways; i.e., GCS, LGTM, ShiftLeft, and more recently,

CogniCrypt generate text files following the recently introduced Static Analysis Results

Interchange Format (SARIF) [216] format. However, CryptoGuard, ToolX, SpotBugs

and QARK generate reports in custom report formats, downloadable as HTML, CSV,

or text, web-based services such as Amazon CodeGuru Security, Snyk, SonarQube, and

DeepSource offer results through web-based user-interface, and finally, Xanitizer generates

PDFs with source code annotations. We developed a semi-automated implementation

that allows us to systematically identify uncaught mutants given these disparate formats.

For QARK and CryptoGuard, we wrote custom scripts to parse and summarize their

reports into a more manageable format, which we then manually reviewed and matched

against MASC’s mutation logs. For SARIF formatted reports, we used a VSCode based

SARIF viewer [251] that allows iterative searching of logs and tool reports by location.

For CogniCrypt, SpotBugs, and Xanitizer, we performed the matching manually since

even though they used custom Text or PDF formats, they were generated in such a

way that manual checking was trivial. This process is in line with prior work that faces

similar challenges [21]. As more tools move to standard formats such as SARIF (which

is being promoted by analysis suites such as Github Code Scan) and being adopted by

crypto-detectors (e.g., Xanitizer and CogniCrypt adopted SARIF after our 2022 study

concluded), we expect the methodology to be fully automated.

A.4.2.4 Why GCS, LGTM, and QARK fail to detect base cases

In our 2022 study, we observe that GCS and LGTM fail to detect base cases (i.e., Ø in

Table 4.3) for FC3 – FC5, although they claim to find SSL vulnerabilities in Java, due

to incomplete rulesets (i.e., the absence of several SSL-related rules) [124]. However, we
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Table A.5: Mutants analyzed vs detected by crypto-detectors

Tool Input Type Analyzed Detected

CryptoGuard apk or jar 45,763 25,299
Xanitizer 1 Java Src Code & jar 17,788 17,774
CogniCrypt apk or jar 23,601 4,576
ToolX

2 Android or Java Src Code 9,774 8,547
SpotBugs jar 17,702 13,848
QARK Java Src Code or apk 46,324 7
LGTM Java Src Code 34,846 21,474
GCS Java Src Code 34,846 21,440
ShiftLeft Java Src Code 46,252 35,200
Snyk Java Src Code 47,002 40,877
DeepSource Java Src Code 47,002 17,028
Codiga Java Src Code 26,725 0
SonarQube Java Src Code 13,749 11,601
Amazon CodeGuru Security Java Src Code 46,967 840
1Xanitizer has been merged to another product and is not included in
this extension,
2We did not obtain license for this extended study

noticed that there was an SSL-related experimental pull request for GCS’s ruleset [125,

132] and even upon integrating it into GCS and LGTM, we found both tools to still

be vulnerable to the base cases. In our current study, even after we used the Github

Code Security with both the default, and security-extended test suites as of April 2024,

it was unable to detect misuse related to X509TrustManager and HostnameVerifier.

Similarly, QARK fails to detect base cases for all flaws in FC1 and FC2, because of its

incomplete ruleset [240].

A.4.3 Types of cases that our SLR approach may miss

Our SLR approach involves manually analyzing each document in an attempt to include

all misuse cases, but this extraction of misuse cases is often affected by the context in

which they are expressed. For instance, CogniCrypt’s core philosophy is whitelisting,

which is reflected throughout its papers and documentation. However, there are two ways

in which whitelisting is expressed in the paper, one concerning functionality, and another
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security, i.e., cases of desired behavior expressed in the paper may not always indicate a

security best-practice. For instance, the ORDER keyword in the CrySL language initially

caused us to miss the PBEKeySpec misuse (now included in the taxonomy), because as

defined in the paper, ORDER keyword allows defining “usage patterns” that will not

break functionality. Thus, as the “usage” patterns were not security misuses (or desired

behaviors for security), we did not include them as misuse cases in the taxonomy.However,

in a later part of the paper, the ORDER keyword is used to express a security-sensitive

usage, for PBEKeySpec, but the difference in connotation is not made explicit. This

implicit and subtle context-switch was missed by both our annotators in the initial SLR,

but fixed in a later iteration, and misuse cases related to the ORDER keyword were added

to the taxonomy.

Similarly when labeling for misuse extraction (Sec. 4.2.3) we marked each misuse found

in a document using common terminology (i.e., labels) across all documents. Thus, if a

misuse found in the current document was previously discovered and annotated with a

particular label, we would simply apply the same label to the newly found instance.This

standard, best-practice approach [171, 197] makes it feasible to extract a common taxon-

omy from a variety of documents written by different authors, who may use inconsistent

terminology. However, a limitation of this generalization is that in a rare case wherein

a particular example may be interpreted as two different kinds of misuse, our approach

may lose context and label it as only one type of misuse. For instance, based on how

the misuse of a “password stored in String” was described in most of the documents we

studied, the misuse label of “using a hardcoded password” was applied to identify it across

the documents. However, this results in the loss of the additional, semantically different

misuse that may still be expressed in terms of a “password stored in String”, that pass-

words should not be stored/used in a String data construct for garbage collection-related

reasons. Note that this problem would only occur in rare instances wherein (1) there

are multiple contexts/interpretations of the same misuse example, and (2) only one or

few document(s) use the additional context. This misuse has also been included in the
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taxonomy.

A.4.4 Additional Evaluation Data

Table A.6: List of Applications mutated using MASC in previous study (S&P’22 [19]), CLOC
= Count Lines of Code from Java Source files only [68], Source = Source Code collected from/O-
riginated From

ID Name Type Source CLOC

A1 2048 Android GitHub 136
A2 BMI Calculator Android GitHub 145
A3 Calendar Trigger Android GitHub 8, 553
A4 LocationShare Android GitHub 215
A5 NasaApodCL Android GitHub 706
A6 AFH Downloader Android GitHub 1, 657
A7 A Time Tracker Android GitHub 2, 928
A8 Kaltura Device Info Android GitHub 1, 049
A9 Protect Baby Monitor Android GitHub 625
A10 Activity Monitor Android GitHub 1, 168
A11 personalDNSfilter Android GitHub 8, 446
A12 aTalk Android GitHub 254, 364
A13 Car Report Android BitBucket 16, 966

Apache QpidTM Broker-J

J14.1 Broker-J - AMQP/JDBC Java Apache 597

J14.2 Broker-J - Tools Java Apache 1, 725
J14.3 Broker-J - HTTP Java Apache 24, 141
J14.4 Broker-J - Core Java Apache 127, 280

A.5 Survey Protocol

To understand how practitioners perceive security tools, and whether security is prioritized

by individuals and organizations similarly, we prepared an online survey questionnaire

(questionnaire in the online appendix [228]) and drafted a research protocol. We piloted

the initial survey with five participants. Three of the participants were graduate students,

and the rest had doctoral degrees. All pilots were from computer science background,

with additional experience in software engineering and/or security. By incorporating their
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feedback, we improved the survey by modifications and additional descriptions as neces-

sary. Our final survey protocol received the approval of our Institutional Review Boards

(IRBs). The experimental protocol of both our survey and interviews included a consent

form which emphasized that the data of the participants will remain confidential and de-

identified. Furthermore, a participant could optionally submit their email address to have

the chance of winning one of two $50.00 gift cards or the equivalent value in local currency

vouchers. The winners would be chosen from qualified participants who completed the

survey and provided valid responses in the survey.

A.5.1 Survey Recruitment

To diversify our recruitment approach in terms of experience, culture and industry con-

texts, we leveraged multiple recruitment channels. We sent invitation emails describing the

goal of the survey (i.e., in order to learn about their professional experiences and opinions

about vulnerability detectors) to our professional networks, relying on snowball sampling

for recruitment, as well as to OSS developers (as previously described in Section 5.1.1).

Ethical Considerations in Recruiting OSS developers: We collected publicly avail-

able email addresses only, and explicitly stated our recruitment procedure in our initial

contact, which is common in other recent studies (e.g., Endres et al. [98]). We considered

several potential trade-offs that factored into this recruitment strategy, in addition to fol-

lowing the guidance provided by our IRB: (a) It is difficult to recruit practitioners across

borders who have the relevant experience, i.e., configured and used automated security

analysis tools, (b) we were collecting publicly available information and not amplifying

the visibility of the individuals’ email address, and (c) we carefully considered the Menlo

Report’s ethical guidelines [170, 88]. Specifically based on these guidelines, the only po-

tential harm to an invited person would be receiving one unsolicited email, whereas the

potential benefit of this research is in helping create more secure software, for everyone,

by understanding the needs and challenges of practitioners related to security analysis
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techniques.

A.5.2 Online Survey and Data Analysis

Our survey (provided in the online appendix [228]) consisted of Likert Scale based ques-

tions, with optional, open-ended response to clarify their selected choice(s). Our analysis

prioritized the text-based responses since these provided additional context for the selected

choice(s) in Likert scale. One of the authors open-coded the responses for analysis. The

responses of the survey, which we summarize next, guided our interview protocol.

A.6 Survey Results

The results of our survey helped us refine the semi-structure guide of questions for the

interview. We now describe the demographics as well as general results elicited from the

survey responses.

Demographics: Of the 39 responses we received, 25 worked in a full time employment,

and 12 worked as both freelancers and full-time employees. Almost all of them (85%) iden-

tified themselves as developers with 25 of them having more than five years of professional

experience and six with at least three years of experience. 53% participants helped release

a new version of software or service at least on a monthly basis in the past two years, with

26% on quarterly basis. All the participants ranked themselves as at least slightly knowl-

edgeable in security, with five being extremely knowledgeable, eight very knowledgeable

and 20 moderately knowledgeable. 50% of the participants entered their location as Asia,

with the rest distributed equally between North America, Europe, United Kingdom and

Africa.

Prioritizing Security by Organizations and Individuals: Through the survey, we

asked the participants to rate the importance of privacy, security against malicious attacks,

ease of use, multi-platform compatibility, multitude of features and responsiveness with

respect to applications they help develop from their individual perspective. Furthermore,
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we asked the participants to rate how these are prioritized by their organizations based

on their personal experience.

All participants individually expressed that securing against malicious attack is very

important, with 83% working in organizations expressing that it is of extreme importance.

However, from their organization’s perspective, only 30/35 participants shared that se-

curing against malicious attacks is at least very important, with two selecting slightly

important and three moderately important. The remaining two participants chose not to

answer. In other words, the importance of security against malicious attacks might not

be prioritized similarly by an organization and an individual of the same organization.

For similar questions about protecting privacy in software and or services, 25 participants

expressed that it is at least very important, with two selecting moderately important. Sim-

ilar to the trend observed for securing against malicious attacks, participants expressed

that they think their organizations prioritizes privacy differently compared to themselves.

To summarize, an organization and its practitioners can have significantly different

priorities on security and privacy for their software or services.

Reliance on Automated and/or Manual Analysis Techniques: When asked how

the participants relied on automated and manual techniques for finding security vulnerabil-

ities, seven participants expressed that they rely on automated techniques for reasons such

as lack of security-related expertise, manual testing being time-consuming and for auto-

matically preventing intruders from attacking their systems. All the participants (26/39)

who chose both automated analysis and manual analysis techniques expressed that they

do it because of additional coverage, with the manual technique being used to cover corner

cases, application specific logic, or out of scope issues. Finally, the participants (6/39)

who expressed that they rely only on manual analysis techniques shared that it is due to

lack of effectiveness, or lack of resources, or due to simply being more comfortable with

manual analysis techniques.

To summarize, practitioners mostly rely on a combination of automated and manual
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techniques to increase coverage, with the only exceptions being an exclusive reliance on

automated techniques due to lack of security expertise, and on only manual techniques due

to expertise/comfort with the same.

Impact due to Unsound vulnerability detectors: We asked participants how their

software or service would get impacted in case there was a soundness issue vulnerability

detectorsthey use. Interestingly, almost all practitioners expressed that even in the case of

flaws of vulnerability detectors, their applications would be moderately impacted at most,

explaining that they do not entirely depend on these tools for ensuring security and instead

rely on multiple tools and/or manual reviews.

The few participants who shared that they would be significantly affected were either

involved with tool development, or were entirely dependent on vulnerability detectors.

In other words, practitioners take the impact of flaws in security tools lightly as they use

multiple tools and/or manual analysis techniques to overcome limitations.
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Table A.7: Abridged version of the Semi-structured Interview Guide

Section A: Participants, Projects, and Organizations

To get started, can you tell us about the type or domain of software you primarily develop?

How would you describe your target client for software? Is it general people, government, or other software firms?

How did you get to learn about security? Does your company arrange training/workshops for you? Or self-learning?

What is important in terms of security in terms of your product/software?

What potential threats do you consider that may compromise the security of system?

Are these the threat assumptions you normally consider in the domain you work on/at work?

Section B: Organization and Security

Do you remember being constrained by any factors, such as Deadline/Time, Requested Features, Dependencies, or others, when
programming that may have affected/compromised security guarantees?

How would you describe the software development process you follow?

Do you remember your organization’s existing coding standards, national regulations or any other software development process
aspects having any influence on security guarantees?

Have you implemented security functionalities through in-house development instead of relying on third-party libraries? What
situation necessiated this?

Between using third-party libraries for security-sensitive functionalities and implementing security-specific features on your own,
which one do you prefer?

Can you tell us more about the team you work with?

Can you tell us about your team structure and security specific functions/components?

Do you write test cases specifically for covering/testing security-related requirements? Can you give us an example?

What are the consequences if the security requirements in your software are not met?

Section C: Organizational Context of vulnerability detector

Why do you favor using vulnerability detectors in your organization? What events led to this decision?

Where does the vulnerability detector come in the Software Development Life Cycle (SDLC) you follow? Can you walk us through
the process?

Do all (security-related) team members know/receive training about the vulnerability detectorsthat you use?

Are there generally any vulnerability detector-specific requirements from the user/customer?

Can you please walk us through the process of selecting such a security focused tool?

How are vulnerability detectorsSecurity helpful for Agile/Scrum processes?

Can you tell us more about the events which influenced you in becoming a vulnerability detector user instead of focusing on being a
manual technique based user?

How much is generally the cost in dollar value for licensing and/or using vulnerability detectors?

You have mentioned that your organization relies more on the vulnerability detectorsover Manual Techniques (or vice versa). Why
is that?

How do you generally handle security bugs in product?

Section D: Expectations from vulnerability detector

Consider the following statement: “When using an automated code review/scanner, a static tool should be capable of reporting all the
issues in the code as far as static analysis allows”. What is your opinion regarding this statement?

“When using an automated code review/scanner, a static tool should only show results it is 100% certain about, even if it means it may
miss a few potential issues”, What is your opinion regarding this statement?

Depending on the difficulty/nature of vulnerable code issues, some issues might be more difficult than others to detect by tools.
Therefore, would you consider tools that are not perfect (i.e., may miss some vulnerabilities) to still be acceptable to use? What is
your opinion regarding this?

You mentioned that you prefer FN/FP over FN/FP; Do you think this is purely because of the kind of software you work on, or do
you think it is shared in the general developer community or in <type> developer community?

How would you describe your overall impression when using security analysis tools for analyzing custom implemented security features?

Does the tool clearly present detected security vulnerabilities, provide any explanations, link detected security vulnerabilities to
known examples? Anything else you prefer these tools should have/report that is currently not available?

Section E: Impact of Unsound/Flawed vulnerability detector

Have you ever been in a situation where there was a vulnerability in your software, which should’ve been detected by a vulnerability
detector but was not? How did you handle it?

If in case your software has a security issue which was not found due to buggy vulnerability detector, how do you handle the
consequences?

“Just because a tool report states that there are no security errors does not mean the software is secure, since the tool itself may be buggy”.
Can you please elaborate on your opinion regarding this statement?

Do you expect the vulnerability detector to catch everything?

What happens if you find something that a vulnerability detector should catch, but does not? Do you report it to the vulnerability
detector developers?

Have you encountered any situation where any developer tried to evade vulnerability detector security checks by abusing flaws?

If you ever reported a problem to vulnerability detector developers, did you ever get a response and a follow-up fix to the issue that
you reported (with example)?

(Previous context) What role do you think fuzzing tools play in comparison to vulnerability detectorshere? Do you think fuzzing
tools can replace vulnerability detectors?

Section F: Challenges and Improvements

Have you ever considered designing and using an in-house vulnerability detector? What limitations of existing tools motivated you
to do so?

If you were given unlimited resources to fix/create the perfect vulnerability detector, what issue would you address before anything
else?

Do you have any kind of final thoughts or anything that you would like to follow up on?
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