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ABSTRACT

Mutation testing can be used to assess the fault-detection capabili-
ties of a given test suite. To this aim, two characteristics of mutation
testing frameworks are of paramount importance: (i) they should
generate mutants that are representative of real faults; and (ii) they
should provide a complete tool chain able to automatically generate,
inject, and test the mutants. To address the first point, we recently
proposed an approach using a Recurrent Neural Network Encoder-
Decoder architecture to learn mutants from ∼787k faults mined
from real programs. The empirical evaluation of this approach con-
firmed its ability to generate mutants representative of real faults.
In this paper, we address the second point, presenting DeepMuta-
tion, a tool wrapping our deep learning model into a fully auto-
mated tool chain able to generate, inject, and test mutants learned
from real faults. Video: https://sites.google.com/view/learning-
mutation/deepmutation

CCS CONCEPTS

• Software and its engineering → Software testing and de-
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1 INTRODUCTION

The goal of mutation testing is to inject artificial faults into a pro-
gram [8, 12] to simulate defects. Mutation testing has multiple ap-
plications, including guiding developers to write a test suite (which
discovers as many artificial faults as possible), or driving automatic
test data generation [11]. Also, mutants can be used to assess the
effectiveness of a test suite or the extent to which a testing strategy
discovers additional faults with respect to another [4].
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A crucial issue in mutation testing is the representativeness of
mutation operators — i.e.,types of artificial faults to be seeded —
with respect to real faults. Empirical research in this area highlights
advantages of mutation testing (carefully-selectedmutants can be as
effective as real faults [2, 7]), but also disadvantages (mutants might
underestimate a test suite effectiveness [2]). As a result, literature
suggests to carefully devise mutant taxonomies [16], especially to
reflect domain-specific characteristics of the software. While past
research has proposed mutants for specific domains [9, 13, 14, 18,
19, 26, 27], such a task has been recognized to be effort-intensive.

We have proposed a Neural Machine Translation (NMT) ap-
proach to automatically learn mutants from a large corpus of exist-
ing bug fixes mined from software repositories [24]. After changes
related to bug-fixes have been extracted using an AST-based dif-
ferencing tool [10], they are grouped into clusters, where each
cluster represents a common, recurring set of changes. After that,
a Recurrent Neural Network (RNN) Encoder-Decoder architec-
ture [6, 17, 23] first learns a model from the corpora of bug-fixing
changes, and then applies it to the unseen code. Key advantages of
the proposed approach — differently from previous work by Brown
et al., which extracts all possible mutations from fixing changes —
are its capability to determine where and how to mutate source
code, as well as its capability to introduce new (unseen) literals and
identifiers in the mutated code.

This paper describes DeepMutation, the tool that implements
the NMT-based mutation approach we have previously proposed
[24]. Overall, the major contributions of the paper are:
• The design and release of DeepMutation, the first mutation
tool based on an NMT model;
• The tool is available as open source on GitHub [1];
• The summary of the evaluation we performed for the muta-
tion approach behind DeepMutation[24] and a study show-
ing the applicability of the tool on real systems.

2 ARCHITECTURE

Figure 1 provides an overview of the architecture ofDeepMutation.
Given as input a configuration file and a software system to mutate,
DeepMutation begins by invoking an Extractor, which builds a
meta-model of the project and extracts the methods for which
mutants will be generated. Each method is then transformed by
an Abstractor, which creates an abstracted representation of the
method. The abstracted method is fed to theMutator which, using a
trained NMT model, generates n (user-specified) different abstract
mutations. Subsequently, the abstract mutant is translated into
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Figure 1: Overview of DeepMutation

source code by the Translator. Finally, the Tester compiles and tests
the generated mutants.

2.1 Extractor

DeepMutation starts by reading the user-specified settings from
a configuration file, storing the paths to the software under test,
output folders, and other mutation preferences (details on how to
use our tool, starting with the setting of the configuration file, are
available in our GitHub repository [1]).

The first component to execute is the Extractor, which starts by
building a meta-model of the software project using Spoon [22].
Spoon is an open-source library capable of building a well-designed
Abstract Syntax Tree (AST), on top of which it provides powerful
analysis and transformation APIs. In our case, we primarily use
this model to query program elements (i.e.,specifically methods,
but we plan, as future work, to allow DeepMutation to work on
different granularities) from the software project to analyze, filter,
and extract their source code.

Specifically, the Extractor queries all the concrete methods in
the software system, disregarding abstract or interface methods. It
can optionally discard getters/setters methods. Additionally, the
Extractor can select only the methods of interest for the user, by
matching the signature of the methods with those listed in a user-
provided file. The Extractor outputs a list of methodsM from the
system which pass the filtering criteria.

2.2 Abstractor

The main goal of the Abstractor is to transform the source code of
the methods selected by the Extractor into an abstract representa-
tion more suitable for our NMT-based Mutator. This abstract form
is a high-level representation, which reduces the number of tokens
used to represent the method (i.e.,vocabulary size) yet retains all
the method’s syntactic and semantic information. It contains the
following types of tokens:

Java keywords and separators: the Abstractor keeps all the key-
words and separators in order to guarantee syntactic correctness.

Idioms: frequent identifiers and literals (e.g.,size, index, 0, 1,
etc.), which we refer to as idioms, are retained in the abstract repre-
sentation, since they provide meaningful semantic information.

Typified IDs: theAbstractor replaces any other tokens (not idioms
nor keywords/separators) with IDs, which represents the role and
type of the identifier/literal replaced.

Specifically, for each methodm ∈ M the Abstractor starts from
a canonical form of its source code, where any comments or an-
notations are removed and types are expressed in a fully qualified
fashion. Next, a Java Lexer (based on ANTLR [20, 21]) reads the
source code tokenizing it into a stream of tokens. The tokenized
stream is then fed into a Java Parser [25], which discerns the role
of each identifier (i.e.,whether it represents a variable, method, or
type name) and the type of literals (e.g.,string, char, int, etc.).

The Abstractor generates and substitutes a unique ID for each
identifier/literal within the tokenized stream. If an identifier or
literal appears multiple times in the stream, it will be replaced
with the same ID. IDs are represented using the following format:
<TYPE>_#, where <TYPE> refers to the role of the identifier (i.e.,VAR,
TYPE, METHOD) or type of literal (i.e.,STRING, CHAR, INT, FLOAT), and
# is a numerical ID. These Typified IDs are assigned to identifiers
and literals in a sequential and positional fashion. Thus, the first
string literal found will be assigned the ID of STRING_0, likewise
the second string literal will receive the ID of STRING_1.

This process continues for all identifiers and literals in the given
methodm, except for those recognized as idioms, that will be kept in
the abstract versionma with their original token. The list of idioms
can be specified in a text file by the user, while we provide a default
list of 300 idioms mined from thousands of GitHub repositories.

Here we provide an example of how the Abstractor would trans-
form the following method:

public Integer getMinElement(List myList) {
if(myList.size() >= 1) {

return ListManager.min(myList);
}
return null;

}

into the following abstract stream of tokens, where we highlighted
java keywords in blue, idioms in green, and typified IDs in red:

public TYPE_1 METHOD_1 ( List VAR_1 ) { if (
VAR_1 . size ( ) >= 1 ) { return TYPE_2 . min (
VAR_1 ) ; } return null ; }

In conclusion, for each methodm ∈ M the Abstractor generates
an abstracted versionma and a mapping fileMap where the map-
ping of identifiers/literals with their corresponding IDs is stored.

2.3 Mutator

TheMutator takes as input an abstracted methodma and generates
k different mutantsm′a1 . . .m

′
ak , where k is a user-specified param-

eter defining the number of mutants to generate for each method.
The Mutator relies on a NMT model that was trained on real bug-
fixes mined from thousands of GitHub repositories. Given a bug-fix
b f = (mb ,mf ) which modifies a buggy method mb into a fixed
methodmf , and their abstracted representation b f a = (mab ,maf ),
the NMTmodel is trained to learn the translationmaf →mab , that
is, learning to generate a buggy method given a method without a
bug. In the next paragraphs, we provide technical details behind the
NMT model and the approach used to generate multiple mutants.

2.3.1 NMTModel. Ourmodel is based on an RNNEncoder-Decoder
architecture, commonly adopted in Machine Translation [6, 17, 23].
This model comprises two major components: an RNN Encoder,
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which encodes a sequence of terms x into a vector representation,
and a RNN Decoder, which decodes the representation into another
sequence of terms y. The model learns a conditional distribution
over a (output) sequence conditioned on another (input) sequence
of terms: P(y1, ..,ym |x1, ..,xn ), where n andm may differ. In our
case, given an input sequence x = maf = (x1, ..,xn ) and a target
sequence y = mab = (y1, ..,ym ), the model is trained to learn
the conditional distribution: P(mab |maf ) = P(y1, ..,ym |x1, ..,xn ),
where xi and yj are abstracted source tokens: Java keywords, sep-
arators, IDs, and idioms. The Encoder takes as input a sequence
x = (x1, ..,xn ) and produces a sequence of states h = (h1, ..,hn ).
We rely on a bi-directional RNN Encoder [3] which is formed by a
backward and forward RNNs, which are able to create representa-
tions taking into account both past and future inputs [5]. That is,
each state hi represents the concatenation of the states produced
by the two RNNs reading the sequence in a forward and backward
fashion: hi = [

−→
hi ;
←−
hi ]. The RNN Decoder predicts the probability of

a target sequence y = (y1, ..,ym ) given h. Specifically, the probabil-
ity of each output term yi is computed based on: (i) the recurrent
state si in the Decoder; (ii) the previous i − 1 terms (y1, ..,yi−1);
and (iii) a context vector ci . The latter constitutes the attention
mechanism. The vector ci is computed as a weighted average of
the states in h, as follows: ci =

∑n
t=1 aitht where the weights ait

allow the model to pay more attention to different parts of the input
sequence. Specifically, the weight ait defines how much the term
xi should be taken into account when predicting the target term
yt . The entire model is trained end-to-end (Encoder and Decoder
jointly) by minimizing the negative log likelihood of the target
terms, using stochastic gradient descent.

2.3.2 Generating Multiple Mutants via Beam Search. The main in-
tuition behind Beam Search decoding is that rather than predicting
at each time step the token with the best probability, the decoding
process keeps track of k hypotheses (with k being the beam size
or width). Formally, letHt be the set of k hypotheses decoded till
time step t :Ht = {(ỹ

1
1, . . . , ỹ

1
t ), (ỹ

2
1, . . . , ỹ

2
t ), . . . , (ỹ

k
1 , . . . , ỹ

k
t )}

At the next time step t + 1, for each hypothesis there will be |V |
possibleyt+1 terms (V being the vocabulary), for a total ofk · |V | pos-

sible hypotheses:Ct+1 =
k⋃
i=1
{(ỹi1, . . . , ỹ

i
t ,v1), . . . , (ỹ

i
1, . . . , ỹ

i
t ,v |V |)}

From these candidate sets, the decoding process keeps the k
sequences with the highest probability. The process continues until
each hypothesis reaches the special token representing the end of
a sequence. We consider these k final sentences as candidate mu-
tants for the given methodm. When k = 1, Beam Search decoding
coincides with the greedy strategy.

2.4 Translator

The Translator takes as input an abstract mutant m′a generated
by the Mutator, translates it in real source code to generate an
actual mutant m

′

, which is then injected in the subject system
by replacing the existing methodm. The Translator relies on the
mappingMap to replace back all the original identifiers/literals in
place of the typified IDs introduced by the Abstractor and modified
by the Mutator. While the Mutator has been trained to re-use only
IDs available in the input method or idioms in the vocabulary, it is

still possible that the Mutator might introduce an ID which is not
present in the original mappingMap (i.e.,<TYPE>_# < Map).

These cases are detected by the Translator, which will perform a
series of best-effort attempts to generate real source code for the
mutant. In particular, if the missing IDs refer to literals (i.e.,STRING,
CHAR, INT, FLOAT), it will generate a new literal (of the specified
type) making sure that is not already defined in the original method
m (since it would have been referred alreadywith an ID). Conversely,
if the missing IDs refer to variables or method calls, the Translator
will discard the current mutant and select the next one.

Once all the IDs inm′a are replaced, we obtain the concrete code
of the mutantm′. Next, the code is automatically formatted and
indented. Finally, DeepMutation replaces the original methodm
with the newly generated and translated mutantm′.

2.5 Compiler & Tester

DeepMutation allows the user to specify custom commands for
compilation and testing of the mutants in the configuration file.
This enables DeepMutation to compile and test every mutant
generated and output a log reporting the results of these steps.

3 EVALUATION

The goal of this evaluation is to assess the performance of the end-
to-end mutation infrastructure offered by DeepMutation. A more
comprehensive evaluation of the quality of the mutants generated
by the NMT model can be found in [24].

We execute the entire pipeline ofDeepMutation on four projects
from theDefects4j [15] dataset. Specifically, we select the first (fixed)
revision of the following projects: Chart, Lang, Math, Time.

3.1 Settings

AsDeepMutation core NMTmodel we rely on a pre-trained model
from our previous work [24]. This model was trained on a large,
diverse set of bug-fixes mined from thousands of GitHub reposito-
ries. For this evaluation, we do not fine-tune nor re-train the NMT
model on the Defects4J codebase. This allows us to demonstrate the
capabilities of the model on a novel, previously unseen codebase
and provide insights on the transfer learning opportunities.

We set the beam size equal to one, thus allowing the model to
generate only a single mutant for each method extracted from the
project. Note that DeepMutation supports the generation of many
different mutants for each method.

The maximum method size is set to 50 tokens for the purpose of
this evaluation. Thus, we disregard methods larger than 50 tokens
after the extraction process and before the abstraction. DeepMuta-
tion supports the mutation of methods larger than 50 tokens.

3.2 Mutation Performances

Table 1 shows the results of our preliminary evaluation in terms of
the number of methods extracted and mutated, throughout the dif-
ferent phases of DeepMutation. The Extractor identified between
3k-7k methods in each project. After this stage, we automatically
discard getters/setters as well as methods longer than a predefined
threshold. Between 1.1k-2.8k methods are abstracted and mutated
for each project. Next, the Translator was able to correctly trans-
late abstract mutants generated by the Mutator in concrete source
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Table 1: Preliminary Evaluation Results

Project Extractor Abstractor/Mutator Translator Compiler

Chart.1 3,383 1,134 1,103 (97.27%) 741 (67.18%)
Lang.1 4,350 1,607 1,322 (82.27%) 585 (44.25%)
Math.1 8,988 2,810 2,416 (85.98%) 1,397 (57.82%)
Time.1 7,047 2,028 1,941 (95.71%) 687 (35.39%)

Table 2: Timing Performances

Project Thread Load Compiler Time Total Mutation Time

Chart.1 34/35 4min 9min
Lang.1 41/42 5min 12min
Math.1 75/76 15min 27min
Time.1 60/61 16min 24min

code in 82%-97% of the cases. Finally, DeepMutation creates a
mutated version of the project for each mutant, by injecting the
mutant in a copy of the project and attempting to compile the entire
mutated project. DeepMutationwas able to successfully compile
35%-67% of the mutated projects. We claim this is a satisfactory
level of compilability, although we aim to improve it, in future work,
by dynamically replacing non-compilable mutants with the next
probable mutant obtained via beam search.

3.3 Timing Performances

Table 2 provides details on the timing performance of DeepMu-
tation. We report the total mutation time for all the mutants for
a given project, the time spent specifically by the compiler, and
the thread load during these experiments. The results show that
DeepMutation can mutate thousands of methods (see Table 1) in a
reasonable amount of time. Specifically, if we exclude the time spent
compiling the projects, DeepMutation takes between 5-12min to
extract, abstract, mutate, and translate the mutants.

4 CONCLUSIONS

We presented DeepMutation, a mutation infrastructure featuring
an NMT model trained to generate mutants that resemble real
bugs [24]. We described the infrastructure, able to extract, abstract,
and mutate methods from a given project, as well as automatically
compile and test the generated mutants. We provided an evaluation
of the infrastructure by generating mutants for four projects.
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